JP3405669B2 - Nickel-plated steel sheet excellent in corrosion resistance and surface appearance and method for producing the same - Google Patents
Nickel-plated steel sheet excellent in corrosion resistance and surface appearance and method for producing the sameInfo
- Publication number
- JP3405669B2 JP3405669B2 JP27087797A JP27087797A JP3405669B2 JP 3405669 B2 JP3405669 B2 JP 3405669B2 JP 27087797 A JP27087797 A JP 27087797A JP 27087797 A JP27087797 A JP 27087797A JP 3405669 B2 JP3405669 B2 JP 3405669B2
- Authority
- JP
- Japan
- Prior art keywords
- nickel
- plating
- steel sheet
- corrosion resistance
- plated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Electroplating Methods And Accessories (AREA)
Description
【発明の詳細な説明】Detailed Description of the Invention
【0001】[0001]
【発明の属する技術分野】本発明は、アルカリ液を封入
する電池ケースをはじめとする電気電子部品、またはバ
インダーなどの文具その他の材料に適した耐食性と表面
外観に優れたニッケルメッキ鋼板およびその製造法に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nickel-plated steel sheet excellent in corrosion resistance and surface appearance, which is suitable for electric and electronic parts such as a battery case in which an alkaline solution is sealed, stationery such as a binder and other materials, and a surface appearance thereof. Concerning the law.
【0002】[0002]
【従来の技術】アルカリ液を封入する電池ケースをはじ
めとする電気電子部品、またはバインダーなどの文具そ
の他の材料にニッケルメッキが広く使用されている。ニ
ッケルメッキはメッキ被膜の応力が高く、またピットも
発生しやすいため、通常は応力緩和、ピット抑制等の目
的で有機系の添加物含有浴が使用される。また光沢メッ
キを得る場合には、これらに加えてメッキ結晶を微細化
するための添加剤も用いられる。2. Description of the Related Art Nickel plating is widely used for electric and electronic parts such as a battery case in which an alkaline solution is sealed, and for stationery and other materials such as a binder. Since nickel plating has a high stress of the plated film and pits are easily generated, an organic additive-containing bath is usually used for the purpose of stress relaxation and pit suppression. Further, in the case of obtaining bright plating, an additive for refining plated crystals is also used in addition to these.
【0003】以上のような添加剤浴から得られたニッケ
ルメッキは、ピットは減少しているものの、添加剤がメ
ッキ被膜中に不純物として取り込まれるため、必ずしも
十分な耐食性を得ることが出来ていない。電池ケースの
ような厳しい加工を受ける用途には、加工時のメッキの
剥離を防止するため、メッキ後熱拡散処理してニッケル
メッキ層の一部を鉄ニッケル合金化した鋼板が用いられ
ることが多いが、この熱拡散処理の際、前述の不純物が
メッキ層に含まれるとメッキ層の脆化が発生し、耐食性
は著しく悪化する。以上のように、ニッケルメッキのピ
ットを防止する有機系添加剤は、必ずしも耐食性向上に
寄与せず、ピットを抑制して耐食性を向上させようとす
ると、メッキ被膜を厚くする以外に方法はなく不経済で
あった。In the nickel plating obtained from the additive bath as described above, although the pits are reduced, the additive is incorporated as an impurity in the plating film, so that it is not always possible to obtain sufficient corrosion resistance. . For applications such as battery cases that undergo severe processing, steel plates with a nickel-nickel alloy part of the nickel-plated layer are often used to prevent the plating from peeling off during processing. However, when the above-mentioned impurities are contained in the plating layer during this thermal diffusion treatment, the plating layer becomes brittle and the corrosion resistance is significantly deteriorated. As described above, the organic additive that prevents the nickel plating pit does not necessarily contribute to the improvement of the corrosion resistance, and when suppressing the pit to improve the corrosion resistance, there is no other method than thickening the plating film. It was an economy.
【0004】これに対し例えば、特開平6−2104号
公報では、ニッケルメッキの下地にニッケルまたはニッ
ケル−コバルトのストライクメッキを施し、これによっ
て緻密でピットの少ないニッケルメッキを得る方法が記
載されている。しかしこの方法でも、耐食性向上は十分
でなく、またメッキ前処理の工程が一つ増えることにな
り、コスト的にも問題がある。また、耐食性の問題以外
にも、従来のニッケルメッキ方法は経済的な問題をも含
む。すなわち、ニッケルはその析出・溶解における反応
速度の低さから、高い電流密度による効率的な生産が困
難であった。例えばワット浴として知られる標準的なニ
ッケルメッキの場合、メッキ面のやけが生じやすいた
め、最大電流密度は高々10A/dm2 程度である。On the other hand, for example, Japanese Unexamined Patent Publication No. 6-2104 discloses a method in which nickel or nickel-cobalt strike plating is applied to a nickel-plated base to obtain a dense nickel plating with few pits. . However, even with this method, the corrosion resistance is not sufficiently improved, and the number of pre-plating treatment steps is increased by one, which causes a problem in cost. In addition to the problem of corrosion resistance, the conventional nickel plating method also has an economical problem. That is, since nickel has a low reaction rate in its precipitation and dissolution, it has been difficult to efficiently produce nickel with a high current density. For example, in the case of standard nickel plating known as a watt bath, the maximum current density is at most about 10 A / dm 2 because the plating surface is easily burnt.
【0005】これを改善するため、特開昭63−186
889号公報では、通板速度を増加させて相対速度を非
常に大きくとることで、100A/dm2 程度の高電流
密度でのメッキを可能にしている。しかし、このような
条件で、十分な耐食性の確保できるメッキ付着量を得よ
うとすると、メッキセルが多数必要となり、設備費が膨
大になる。その上、特開昭63−186889号公報で
は言及されていないが、通常の可溶性アノードによるメ
ッキ方法では、このような高電流密度では、アノードで
の金属ニッケルの溶解が問題になり、溶解効率の低下に
伴う浴濃度の変動等が発生し、安定な製造は困難であっ
た。In order to improve this, JP-A-63-186
In Japanese Patent No. 889, the plate passing speed is increased to make the relative speed very large, thereby enabling plating at a high current density of about 100 A / dm 2 . However, if it is attempted to obtain a plating adhesion amount capable of ensuring sufficient corrosion resistance under such conditions, a large number of plating cells are required, resulting in enormous equipment cost. Moreover, although not mentioned in Japanese Patent Laid-Open No. 63-186889, in the conventional plating method using a soluble anode, at such a high current density, the dissolution of metallic nickel in the anode becomes a problem, resulting in a problem of dissolution efficiency. As the bath concentration fluctuated with the decrease, stable production was difficult.
【0006】[0006]
【発明が解決しようとする課題】本発明は、ピットが少
なくかつメッキ層中に不純物を含まない耐食性に優れた
ニッケルメッキ鋼板とその経済的な製造方法を提供する
ことを目的とする。SUMMARY OF THE INVENTION It is an object of the present invention to provide a nickel-plated steel sheet which has few pits and which does not contain impurities in the plating layer and which is excellent in corrosion resistance, and an economical manufacturing method thereof.
【0007】[0007]
【課題を解決するための手段】本発明者等は、有機添加
系浴では、耐食性を満足できないと考え、このような添
加剤の無い系でのピット抑制を検討した結果、ニッケル
メッキの結晶配向とピットの存在には密接な関係があ
り、結晶配向を制御することでピットを抑制できること
を見出し本発明に至った。すなわち本発明の第1は、鋼
板に、S含有量およびC含有量がいずれも0.01%以
下であり、(220)面の結晶配向指数が0.5以上で
あるニッケルメッキが施されていることを特徴とする耐
食性と表面外観に優れたニッケルメッキ鋼板である。本
発明の第2は、メッキ層の一部がニッケル−鉄合金を形
成していることを特徴とする上記本発明の1に記載のニ
ッケルメッキ鋼板である。本発明の第3,4,5は、本
発明の第1,2のニッケルメッキ鋼板の製造方法であ
る。DISCLOSURE OF THE INVENTION The inventors of the present invention considered that the corrosion resistance cannot be satisfied with an organic addition system bath, and as a result of studying suppression of pits in a system without such an additive, the crystal orientation of nickel plating was found. The inventors have found that there is a close relationship between the existence of pits and pits, and pits can be suppressed by controlling the crystal orientation, leading to the present invention. That is, according to the first aspect of the present invention, a steel sheet is nickel-plated in which both the S content and the C content are 0.01% or less and the (220) plane crystal orientation index is 0.5 or more. It is a nickel-plated steel sheet with excellent corrosion resistance and surface appearance. A second aspect of the present invention is the nickel-plated steel sheet according to the first aspect of the present invention, wherein a part of the plated layer forms a nickel-iron alloy. The third, fourth and fifth aspects of the present invention are the first and second methods for producing a nickel-plated steel sheet according to the present invention.
【0008】たゞし、ここで結晶配向指数は以下のよう
に定義した。X線回折(Cu,Kα)により、ニッケル
結晶の代表的な5つの面(111面、200面、220
面、311面、222面)の強度から、以下式で定義し
たものである。(Iは各面の強度)
(220)面結晶配向指数=I(220)/21×5/
(I(220)/21+I(111)/100+I(2
00)/42+I(311)/20+I(222)/
7)However, here, the crystal orientation index is defined as follows. By X-ray diffraction (Cu, Kα), five representative faces of nickel crystal (111 face, 200 face, 220 face)
Surface, 311 surface, 222 surface), and is defined by the following formula. (I is the strength of each surface) (220) plane crystal orientation index = I (220) / 21 × 5 /
(I (220) / 21 + I (111) / 100 + I (2
00) / 42 + I (311) / 20 + I (222) /
7)
【0009】[0009]
【発明の実施の形態】ピット抑制剤、レベリング剤等の
有機添加物無添加浴からメッキしたニッケルメッキの表
面をSEMで観察すると、数μ以下程度の粒径の結晶粒
が多数観察される。一方有機添加浴からのメッキ表面に
は顕著な結晶粒を観察することが出来ない。メッキのピ
ットは結晶粒と結晶粒の隙間に発生するものと考えられ
るため、粒の成長を抑え平滑な表面を得ることが重要で
ある。また有機添加浴のメッキ層には、添加剤に起因す
るCやS等の不純物が含まれ、メッキピットは減少して
いるものの、耐食性は良くないため、添加剤なしでメッ
キピットの抑制を検討した。BEST MODE FOR CARRYING OUT THE INVENTION When observing the surface of nickel plating plated from a bath containing no organic additive such as a pit suppressor or a leveling agent by SEM, many crystal grains with a grain size of several μ or less are observed. On the other hand, no remarkable crystal grains can be observed on the plated surface from the organic addition bath. Since plating pits are considered to occur in the gaps between crystal grains, it is important to suppress grain growth and obtain a smooth surface. In addition, the plating layer of the organic addition bath contains impurities such as C and S due to the additive, and although the plating pits are reduced, the corrosion resistance is not good, so the suppression of the plating pits without additives is considered. did.
【0010】有機添加剤なしの種々のメッキ浴から種々
の条件でメッキしたものの表面を観察すると、条件によ
っては、有機添加浴からのメッキ表面と同様に顕著な結
晶粒が観察されないものがあった。X線回折によりメッ
キ結晶配向と表面の結晶粒の存在状態の関係を調査した
結果、(220)面が多いものほど結晶粒は減少する傾
向がみられた。以下式で定義する(220)面配向指数
が0.5以下の場合には、全面結晶粒で覆われている
が、0.5を越える場合には、結晶粒のない平滑なメッ
キ面が存在するようになった。When observing the surface of the plated product under various conditions from various plating baths without organic additives, depending on the conditions, as with the plated surface from the organic additive bath, remarkable crystal grains were not observed. . As a result of investigating the relationship between the plating crystal orientation and the existence state of crystal grains on the surface by X-ray diffraction, it was found that the crystal grains tended to decrease as the number of (220) planes increased. When the (220) plane orientation index defined by the following formula is 0.5 or less, the whole surface is covered with crystal grains, but when it exceeds 0.5, there is a smooth plated surface without crystal grains. It was way.
【0011】図1は、(220)面配向指数と、SEM
で観察した場合の結晶粒のない平滑な表面の存在割合と
の関係を示したものである。図2は、(220)面配向
指数と耐食性(平板SST6Hr後の赤錆発生率)の関
係を示したものである。(220)面配向指数が0.5
以上では、SST6Hr時点で赤錆発生なく、耐食性は
良好であった。なお、有機添加剤なしの系でメッキして
も、測定誤差や原料からの不可避的混入によりC,Sは
検出されるため、メッキ層中のC,S濃度の上限は0.
01%とした。FIG. 1 shows the (220) plane orientation index and SEM.
3 shows the relationship with the abundance ratio of a smooth surface having no crystal grains when observed in (1). FIG. 2 shows the relationship between the (220) plane orientation index and corrosion resistance (red rust occurrence rate after flat plate SST6Hr). (220) plane orientation index is 0.5
In the above, no red rust was generated at the time of SST6Hr, and the corrosion resistance was good. Even when plating is performed in a system without organic additives, C and S are detected due to measurement errors and inevitable mixing from raw materials, so the upper limit of C and S concentrations in the plating layer is 0.
It was set to 01%.
【0012】以上のように(220)面配向指数を0.
5以上とすることで、有機系の添加剤なしでもメッキの
ピットは減少し、高耐食性のニッケルメッキ鋼板が得ら
れることが分かった。なお副次的な効果として、(22
0)面配向指数が高い程表面が平滑となり、光沢のある
美麗な外観が得られることも分かった。なお、(22
0)面の結晶配向指数は以下のように定義した。X線回
折(Cu,Kα)により、ニッケル結晶の代表的な5つ
の面(111面、200面、220面、311面、22
2面)の強度から、以下式で定義したものである。(I
は各面の強度)
(220)面結晶配向指数=I(220)/21×5/
(I(220)/21+I(111)/100+I(2
00)/42+I(311)/20+I(222)/
7)As described above, the (220) plane orientation index is set to 0.
By setting the ratio to 5 or more, it was found that the plating pits were reduced and a nickel-plated steel sheet with high corrosion resistance could be obtained without using an organic additive. As a side effect, (22
It was also found that the higher the (0) plane orientation index, the smoother the surface and the more beautiful the appearance is. In addition, (22
The crystal orientation index of the 0) plane was defined as follows. By X-ray diffraction (Cu, Kα), five typical faces of nickel crystal (111 face, 200 face, 220 face, 311 face, 22 face)
It is defined by the following formula based on the strength of the second surface). (I
Is the strength of each surface) (220) crystal orientation index = I (220) / 21 × 5 /
(I (220) / 21 + I (111) / 100 + I (2
00) / 42 + I (311) / 20 + I (222) /
7)
【0013】熱処理によりメッキ層の一部を鉄ニッケル
合金化した場合でも、上記のニッケルメッキ材を使用す
ると優れた耐食性が得られる。特に有機添加剤ありのメ
ッキに比較した場合、優れた耐食性を示す。電池ケース
等のDI加工に供される材料は、この熱処理によって加
工後耐食性をより向上させたニッケルメッキ鋼板を使用
することが望ましい。Even when a part of the plated layer is made into an iron-nickel alloy by heat treatment, excellent corrosion resistance can be obtained by using the above nickel plated material. Especially when compared to plating with organic additives, it exhibits excellent corrosion resistance. As a material used for DI processing such as a battery case, it is desirable to use a nickel-plated steel sheet whose corrosion resistance after processing is further improved by this heat treatment.
【0014】次に(220)面配向指数が0.5以上の
ニッケルメッキを得る具体的方法について述べる。原板
の鋼材としては特に制限はなく、焼鈍材、未焼鈍材いず
れも用いることができる。メッキ前処理についても特殊
な処理は必要なく、通常行われる脱脂・酸洗処理を行
う。なお電清ライン通板後の原板にメッキする場合には
脱脂処理を省略することも可能である。Next, a specific method for obtaining nickel plating having a (220) plane orientation index of 0.5 or more will be described. The steel material of the original plate is not particularly limited, and both annealed material and unannealed material can be used. No special treatment is required for the pre-plating treatment, and the usual degreasing / pickling treatment is performed. In addition, when plating the original plate after passing through the electric cleaning line, it is possible to omit the degreasing treatment.
【0015】メッキ条件では電流密度が重要であり、本
発明者等の検討の結果、電流密度を増加するほど、(2
20)面配向指数も増加することが分かった。しかし単
に電流密度を増加するだけでは、所望の(220)面配
向は得られず、また場合によっては、メッキのムラが発
生するため実質的に商業生産することは困難である。ま
た、アノード側の金属ニッケルの溶解も問題になる。メ
ッキ浴としては、一般にワット浴として知られているよ
うな、塩素イオンを含んだ浴で有機添加物無添加浴が必
要である。塩素イオンはメッキ液の抵抗を下げ、またニ
ッケル等の鉄族イオンの析出過電圧を下げることが知ら
れており、本発明の高電流密度で良好なメッキを行うた
めには必須である。The current density is important in the plating conditions, and as a result of studies by the present inventors, as the current density increases, (2
20) It was found that the plane orientation index also increased. However, simply increasing the current density does not provide the desired (220) plane orientation, and in some cases causes uneven plating, which makes practical production difficult. Further, the dissolution of metallic nickel on the anode side is also a problem. As the plating bath, a bath containing chlorine ions, which is generally known as a Watt bath, and an organic additive-free bath is required. It is known that chlorine ion lowers the resistance of the plating solution and also lowers the precipitation overvoltage of iron group ions such as nickel, and is essential for performing good plating with high current density according to the present invention.
【0016】塩素イオンは塩化ニッケルによって供給す
るのが望ましく、その濃度は塩化ニッケルとして65g
/l以上必要である。これより少ないと、所望の(22
0)面配向が得られないばかりでなく、電流密度条件等
によっては、メッキやけが発生し、またアノードでのニ
ッケル溶解効率が顕著に低下した。図3は、塩化ニッケ
ル40g/lの場合と、本発明範囲である70g/lの
場合とで、電流密度がメッキ析出効率に及ぼす影響を比
較したものである。塩化ニッケル40g/lの場合、電
流密度が増加するにしたがって析出効率が低下し、更に
50A/dm2以上の電流密度ではメッキヤケが発生し
た。一方、塩化ニッケル70g/lの場合には、電流密
度が増加しても、析出効率は95%以上の高い値のまま
であり、メッキ外観も良好であった。Chlorine ion is preferably supplied by nickel chloride, and its concentration is 65 g as nickel chloride.
/ L or more is required. If less than this, desired (22
Not only the 0) plane orientation could not be obtained, but plating and burn were generated depending on the current density condition and the nickel dissolution efficiency at the anode was significantly reduced. FIG. 3 compares the effect of the current density on the plating deposition efficiency between the case of nickel chloride of 40 g / l and the case of the invention range of 70 g / l. In the case of nickel chloride of 40 g / l, the deposition efficiency decreased as the current density increased, and plating burn occurred at a current density of 50 A / dm 2 or more. On the other hand, in the case of 70 g / l of nickel chloride, the deposition efficiency remained as high as 95% or more even if the current density was increased, and the plating appearance was also good.
【0017】図4は、図3と同様にアノード側の金属ニ
ッケルの溶解効率を示したものである。塩化ニッケル4
0g/lの場合には、電流密度が増加するにしたがって
溶解効率が低下したが、70g/lの場合には95%以
上の高い値が保たれた。塩化ニッケル濃度の上限は特に
重要ではないが、濃度が高くなるほど設備の腐食性が高
くなるので、100g/l程度に抑えることが望まし
い。なお、塩化ニッケル濃度がこれ以上に増加しても、
ピットの少ない良好なメッキが得られるため、未加工ま
たは軽加工での耐食性は問題ない。一方、メッキ層が硬
く、応力も大きくなるため加工時の耐食性は悪化する。
以上の観点から、本発明のメッキ浴としては、有機添加
剤無添加で、塩化ニッケル濃度が65g/l以上、望ま
しくは70〜100g/lの範囲にあることが必要であ
る。Similar to FIG. 3, FIG. 4 shows the dissolution efficiency of metallic nickel on the anode side. Nickel chloride 4
In the case of 0 g / l, the dissolution efficiency decreased as the current density increased, but in the case of 70 g / l, a high value of 95% or more was maintained. The upper limit of the nickel chloride concentration is not particularly important, but the corrosiveness of the equipment increases as the concentration increases, so it is desirable to control it to about 100 g / l. In addition, even if the nickel chloride concentration increases more than this,
Since good plating with few pits can be obtained, there is no problem with corrosion resistance in unprocessed or light processing. On the other hand, since the plated layer is hard and the stress is large, the corrosion resistance during processing is deteriorated.
From the above viewpoints, the plating bath of the present invention needs to have a nickel chloride concentration of 65 g / l or more, and preferably 70 to 100 g / l, with no organic additive added.
【0018】塩化ニッケル以外の成分の濃度について
は、従来知見のワット浴でよく、より好ましは、硫酸ニ
ッケル(300〜400g/l)、ほう酸(40〜60
g/l)、pH(3.5〜4.5)の範囲の濃度が用い
られる。本発明のニッケルメッキ方法のより好ましい形
態は、可溶性アノードとして純ニッケルを用いることで
ある。一般的にアノードニッケルの溶解を容易にするた
め、S等の不純物をわずかに含んだニッケルが使われる
ことが多いが、この場合は該不純物(S入りニッケルの
場合はNiS)がスラッジとなってメッキ品質を悪化さ
せる(押し疵、汚れ等)。従来技術では、純ニッケルを
用いた場合、高電流密度での溶解が困難であったが、本
発明の上記のメッキ浴条件に従えば、純ニッケルアノー
ドが使用できるため、スラッジ発生が少なく、メッキ品
質が安定する。またスラッジを除去するための特別な設
備も不要となる。Regarding the concentrations of components other than nickel chloride, the Watt bath of the conventional knowledge may be used, and more preferably nickel sulfate (300 to 400 g / l) and boric acid (40 to 60).
Concentrations in the range of g / l), pH (3.5-4.5) are used. A more preferred form of the nickel plating method of the present invention is to use pure nickel as the soluble anode. In general, nickel containing a slight amount of impurities such as S is often used to facilitate the dissolution of the anode nickel. In this case, the impurities (NiS in the case of nickel containing S) become sludge. It deteriorates the plating quality (such as scratches and stains). In the prior art, when pure nickel was used, it was difficult to dissolve at high current density, but according to the plating bath conditions of the present invention, since pure nickel anodes can be used, sludge generation is small and plating Quality is stable. In addition, no special equipment is required to remove sludge.
【0019】また、メッキ時の鋼板表面の液流速も重要
であり、0.1m/sec未満の流速では、良好な外観
と0.5以上の(220)面配向指数を両立することは
出来なかった。流速の上限は設備上の制約で決定するば
よい。流速が0.1m/sec以上の場合、電流密度が
50A/dm2 以上であれば、(220)面配向指数が
0.5以上を確保できることが分かった。なお電流密度
の上限については流速に依存し、略以下式で表されるこ
とが分かった。(電流密度上限A/dm2 )=67×
(流速m/sec)+73この上限を越える電流密度で
はメッキムラのため良好な外観が得られなかった。Further, the liquid flow velocity on the surface of the steel sheet during plating is also important, and at a flow velocity of less than 0.1 m / sec, it is impossible to achieve both a good appearance and a (220) plane orientation index of 0.5 or more. It was The upper limit of the flow velocity may be determined by the facility restrictions. It was found that when the flow velocity is 0.1 m / sec or more and the current density is 50 A / dm 2 or more, the (220) plane orientation index of 0.5 or more can be secured. It was found that the upper limit of the current density depends on the flow velocity and is represented by the following formula. (Current density upper limit A / dm 2 ) = 67 ×
(Flow rate m / sec) +73 At a current density exceeding this upper limit, a good appearance could not be obtained due to uneven plating.
【0020】上記のニッケルメッキ鋼板を熱処理する場
合は、連続焼鈍炉で600〜850℃程度の温度で10
〜120秒の熱処理を行うことにより、メッキ層の一部
をニッケル−鉄合金層とし、熱処理後も耐食性の良好な
(220)面配向のニッケルメッキ層を一部残してお
く。これにより未加工および加工後とも優れた耐食性が
得られる。焼鈍箱による熱処理では処理時間が長く、拡
散が進行しすぎて良好な耐食性が得られなくなる。な
お、経済的には、未焼鈍材にニッケルメッキした後、鋼
板の焼鈍と拡散処理を兼ねて熱処理する方法が有効であ
り、この場合には鋼板の再結晶温度以上での処理が必要
である。熱処理後、調質圧延によって表面外観をブライ
トまたはダルに仕上げることも可能である。When heat-treating the above-mentioned nickel-plated steel sheet, a continuous annealing furnace is used at a temperature of about 600 to 850 ° C. for 10 hours.
By performing a heat treatment for 120 seconds, a part of the plated layer is made into a nickel-iron alloy layer, and after the heat treatment, a part of the (220) -oriented nickel plated layer having good corrosion resistance is left. As a result, excellent corrosion resistance can be obtained both unprocessed and processed. In the heat treatment in the annealing box, the treatment time is long and the diffusion proceeds too much, so that good corrosion resistance cannot be obtained. Note that, economically, a method of nickel-plating an unannealed material and then heat-treating the steel sheet for both annealing and diffusion treatment is effective, and in this case, treatment at a recrystallization temperature of the steel sheet or higher is required. . After heat treatment, it is also possible to finish the surface appearance to bright or dull by temper rolling.
【0021】[0021]
【実施例】以下に実施例によって本発明を詳細に説明す
る。
(実施例1)板厚0.25mmのNb−Ti−Sulc
鋼を原板とし、脱脂、酸洗処理後メッキを行った。脱脂
条件は、苛性ソーダ50g/l、浴温60℃中で、アノ
ード処理(20A/dm2 )×5秒およびカソード処理
(20A/dm2 )×5秒で行った。酸洗条件は、硫酸
50g/l、常温で10秒浸漬した。メッキ浴は以下の
ものを用い、縦型の循環セルを用いてメッキした。
硫酸ニッケル:350g/l
塩化ニッケル:70g/l
ホウ酸:45g/l
pH:4.2EXAMPLES The present invention will be described in detail below with reference to examples. (Example 1) Nb-Ti-Sulc having a plate thickness of 0.25 mm
Steel was used as a base plate, and degreasing, pickling and plating were performed. The degreasing conditions were as follows: caustic soda 50 g / l, bath temperature 60 ° C., anode treatment (20 A / dm 2 ) × 5 seconds and cathode treatment (20 A / dm 2 ) × 5 seconds. The pickling conditions were 50 g / l of sulfuric acid and 10 seconds of immersion at room temperature. The following plating baths were used, and plating was performed using a vertical circulation cell. Nickel sulfate: 350 g / l Nickel chloride: 70 g / l Boric acid: 45 g / l pH: 4.2
【0022】なお、この基本浴に加えて、比較例ではサ
ッカリン1g/lを添加した浴も使用した。浴温は60
℃であり、線流速1m/sec、陽極は純ニッケル板を
使用した。ニッケル付着量は27g/m2 とした。一部
例で実施している合金化処理は、790℃×40秒無酸
化雰囲気中で行った。耐食性平板は、SST6Hr後の
赤錆発生率で評価し、次の基準で記述した。(◎;0.
5%未満、〇:0.5%以上2%未満、Δ;2%以上5
%未満、×;5%以上)加工耐食性は、φ30mm、高
さ50mmの電池ケースに加工した後、SST6Hrで
の赤錆発生率で評価し、次の基準で記述した。(◎;
0.5%未満、〇:0.5%以上2%未満、Δ;2%以
上5%未満、×;5%以上)In addition to this basic bath, a bath containing 1 g / l of saccharin was also used in the comparative example. Bath temperature is 60
C., a linear flow rate of 1 m / sec, and a pure nickel plate was used as the anode. The amount of nickel deposited was 27 g / m 2 . The alloying treatment carried out in some cases was performed at 790 ° C. for 40 seconds in a non-oxidizing atmosphere. The corrosion-resistant flat plate was evaluated by the rate of occurrence of red rust after SST6Hr and described according to the following criteria. (◎; 0.
Less than 5%, ◯: 0.5% or more and less than 2%, Δ; 2% or more and 5
The processing corrosion resistance was evaluated by the red rust occurrence rate in SST6Hr after being processed into a battery case having a diameter of 30 mm and a height of 50 mm, and was described by the following criteria. (◎;
Less than 0.5%, ◯: 0.5% or more and less than 2%, Δ; 2% or more and less than 5%, ×; 5% or more)
【0023】本実施例では、表1に示すようにいずれも
良好な耐食性が得られ、合金化処理を施したNo5〜8
は加工耐食性も極めて良好であった。比較例では、22
0面配向指数が本発明の範囲を外れており、耐食性が劣
った。また有機添加剤ありの比較例で合金化処理ありの
場合(No15,16)、合金化処理によってメッキが
脆化し、耐食性は本発明例に比較すると劣悪であった。In this example, as shown in Table 1, good corrosion resistance was obtained, and alloyed Nos. 5 to 8 were used.
The processing corrosion resistance was also very good. In the comparative example, 22
The 0-plane orientation index was out of the range of the present invention, and the corrosion resistance was poor. Further, in the comparative example with the organic additive and the alloying treatment (Nos. 15 and 16), the plating was embrittled by the alloying treatment, and the corrosion resistance was poor as compared with the inventive examples.
【0024】[0024]
【表1】 [Table 1]
【0025】(実施例2)実施例1と同じ原板に同じ前
処理を施した後、メッキ浴とメッキ条件を変えてニッケ
ルメッキを行った。用いたメッキ浴は、実施例1と同じ
基本浴、および以下に示す非塩化浴、低塩化浴である。
(非塩化浴)
硫酸ニッケル;350g/l
ホウ酸;45g/l
pH ;2.5
(低塩化浴)
硫酸ニッケル;350g/l
塩化ニッケル;40g/l
ホウ酸;45g/l
pH ;4.2
メッキ流速は種々変化させた。これ以外は実施例1と同
じ条件である。(Embodiment 2) After subjecting the same original plate as in Embodiment 1 to the same pretreatment, nickel plating was performed by changing the plating bath and the plating conditions. The plating baths used were the same basic bath as in Example 1, and the non-chlorinated baths and low-chlorinated baths shown below. (Non-chlorinated bath) Nickel sulfate; 350 g / l Boric acid; 45 g / l pH; 2.5 (Low chloride bath) Nickel sulfate; 350 g / l Nickel chloride; 40 g / l Boric acid; 45 g / l pH; 4.2 The plating flow rate was variously changed. The other conditions are the same as those in Example 1.
【0026】表2に示すように、実施例では、220面
配向指数が0.5以上でメッキ外観も良好な領域が存在
したが、比較例では、配向指数とメッキ外観を両立する
ことは出来なかった。なお、表2中、メッキ外観△また
は×で示したものは、メッキヤケが発生しており(特に
顕著な発生を×で示した)、メッキ鋼板としての商品価
値は全くないものであった。これらについては(22
0)面配向指数の信頼性ある算出が困難であった。As shown in Table 2, in the example, there was a region where the 220 plane orientation index was 0.5 or more and the plating appearance was good, but in the comparative example, the orientation index and the plating appearance were not compatible. There wasn't. In Table 2, the plating appearance Δ or × indicates that plating burns have occurred (especially marked occurrence is indicated by ×) and has no commercial value as a plated steel sheet. For these (22
0) It was difficult to reliably calculate the plane orientation index.
【0027】[0027]
【表2】 [Table 2]
【0028】[0028]
【発明の効果】本発明では、メッキの結晶配向を特定し
て、有機系添加物によらず表面を平滑化してピットの発
生を抑制したことにより、優れた耐食性を得ることが出
来た。また、このような優れた耐食性のメッキを得るた
めの製法は、流速と電流密度と塩化ニッケル濃度を規制
するという簡略なものであり、生産性に優れ、コスト的
にも有利な方法である。According to the present invention, excellent corrosion resistance can be obtained by specifying the crystal orientation of the plating and smoothing the surface to suppress the generation of pits regardless of the organic additive. Further, the manufacturing method for obtaining such excellent corrosion resistance plating is a simple method of regulating the flow velocity, the current density, and the nickel chloride concentration, and is a method that is excellent in productivity and cost effective.
【図面の簡単な説明】[Brief description of drawings]
【図1】(220)面の配向指数と表面の平滑性の関係
を示す図である。FIG. 1 is a diagram showing the relationship between the orientation index of the (220) plane and the smoothness of the surface.
【図2】(220)面の配向指数と耐食性の関係を示す
図である。FIG. 2 is a diagram showing the relationship between the orientation index of the (220) plane and corrosion resistance.
【図3】電流密度とメッキ析出効率の関係を示す図であ
る。FIG. 3 is a diagram showing a relationship between current density and plating deposition efficiency.
【図4】電流密度とアノードニッケルの溶解効率の関係
を示す図である。FIG. 4 is a diagram showing a relationship between current density and anode nickel dissolution efficiency.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−186889(JP,A) 特開 昭61−270390(JP,A) 特開 昭50−109820(JP,A) 特開 平6−174053(JP,A) 特開 平6−174051(JP,A) 特開 平6−36702(JP,A) 特開 平6−2104(JP,A) 特開 平2−129395(JP,A) 特開 平4−6298(JP,A) 特開 平3−104855(JP,A) 特開 昭63−38595(JP,A) 特開 昭62−202093(JP,A) 特開 昭55−50483(JP,A) 特開 昭52−140433(JP,A) (58)調査した分野(Int.Cl.7,DB名) C25D 5/26 C25D 5/50 ─────────────────────────────────────────────────── --- Continuation of the front page (56) Reference JP-A-63-186889 (JP, A) JP-A61-270390 (JP, A) JP-A-50-109820 (JP, A) JP-A-6- 174053 (JP, A) JP-A-6-174051 (JP, A) JP-A-6-36702 (JP, A) JP-A-6-2104 (JP, A) JP-A-2-129395 (JP, A) JP-A-4-6298 (JP, A) JP-A-3-104855 (JP, A) JP-A-63-38595 (JP, A) JP-A-62-202093 (JP, A) JP-A-55-50483 (JP, A) JP-A-52-140433 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C25D 5/26 C25D 5/50
Claims (5)
れも0.01%以下であり、(220)面の結晶配向指
数が0.5以上であるニッケルメッキが施されているこ
とを特徴とする耐食性と表面外観に優れたニッケルメッ
キ鋼板。たゞし、ここで結晶配向指数は以下のように定
義した。X線回折(Cu,Kα)により、ニッケル結晶
の代表的な5つの面(111面、200面、220面、
311面、222面)の強度から、以下式で定義したも
のである。(Iは各面の強度) (220)面結晶配向指数=I(220)/21×5/
(I(220)/21+I(111)/100+I(2
00)/42+I(311)/20+I(222)/
7)1. A steel plate is nickel-plated with an S content and a C content of 0.01% or less and a (220) plane crystal orientation index of 0.5 or more. Nickel-plated steel sheet with excellent corrosion resistance and surface appearance. However, here, the crystal orientation index was defined as follows. By X-ray diffraction (Cu, Kα), five typical faces of the nickel crystal (111 face, 200 face, 220 face,
It is defined by the following formula from the strengths of the 311th surface and the 222nd surface). (I is the strength of each surface) (220) plane crystal orientation index = I (220) / 21 × 5 /
(I (220) / 21 + I (111) / 100 + I (2
00) / 42 + I (311) / 20 + I (222) /
7)
成していることを特徴とする請求項1に記載のニッケル
メッキ鋼板。2. The nickel-plated steel sheet according to claim 1, wherein a part of the plated layer forms a nickel-iron alloy.
上の塩化ニッケルを含み、かつ有機添加物を含まない浴
を使用し、鋼板表面のメッキ液流速を0.1m/sec
以上とし、50A/dm2 以上の電流密度でメッキする
ことを特徴とする請求項1に記載のニッケルメッキ鋼板
の製造方法。3. A nickel plating solution containing 65 g / l or more of nickel chloride and containing no organic additive is used, and the plating solution flow rate on the surface of the steel sheet is 0.1 m / sec.
The method for producing a nickel-plated steel sheet according to claim 1, wherein the plating is performed at a current density of 50 A / dm 2 or more.
ことを特徴とする請求項3に記載のニッケルメッキ鋼板
の製造方法。4. The method for producing a nickel-plated steel sheet according to claim 3, wherein a soluble anode of pure nickel is used.
した鋼板を、熱処理することを特徴とする請求項2に記
載のニッケルメッキ鋼板の製造方法。5. The method for producing a nickel-plated steel sheet according to claim 2, wherein the steel sheet plated under the conditions of claim 3 or 4 is heat-treated.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27087797A JP3405669B2 (en) | 1997-06-10 | 1997-10-03 | Nickel-plated steel sheet excellent in corrosion resistance and surface appearance and method for producing the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9-151462 | 1997-06-10 | ||
JP15146297 | 1997-06-10 | ||
JP27087797A JP3405669B2 (en) | 1997-06-10 | 1997-10-03 | Nickel-plated steel sheet excellent in corrosion resistance and surface appearance and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1161484A JPH1161484A (en) | 1999-03-05 |
JP3405669B2 true JP3405669B2 (en) | 2003-05-12 |
Family
ID=26480708
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27087797A Expired - Fee Related JP3405669B2 (en) | 1997-06-10 | 1997-10-03 | Nickel-plated steel sheet excellent in corrosion resistance and surface appearance and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3405669B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9498933B2 (en) | 2010-01-08 | 2016-11-22 | Toyo Kohan Co., Ltd. | Surface-treated metal sheet and process for producing formed article from the surface-treated metal sheet |
DE112017004606T5 (en) * | 2016-09-13 | 2019-08-29 | Toyo Kohan Co., Ltd. | Process for producing a surface treated steel sheet for battery cases |
KR102146511B1 (en) * | 2020-05-18 | 2020-08-20 | 김출기 | Method for nikel coating |
-
1997
- 1997-10-03 JP JP27087797A patent/JP3405669B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH1161484A (en) | 1999-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3045612B2 (en) | High corrosion resistant nickel-plated steel strip and its manufacturing method | |
US4331518A (en) | Bismuth composition, method of electroplating a tin-bismuth alloy and electroplating bath therefor | |
US4613388A (en) | Superplastic alloys formed by electrodeposition | |
CN112368425A (en) | Surface-treated steel sheet and method for producing surface-treated steel sheet | |
US6852445B1 (en) | Battery sheath made of a formed cold-rolled sheet and method for producing battery sheaths | |
US2085543A (en) | Process for coating metals | |
Das et al. | Electrowinning of cobalt I. Winning from pure cobalt sulphate bath | |
JPH0578889A (en) | Aluminum alloy sheet for terminal | |
JP3405669B2 (en) | Nickel-plated steel sheet excellent in corrosion resistance and surface appearance and method for producing the same | |
US2075623A (en) | Zinc plating | |
TW446761B (en) | A steel sheet for electrogalvanization and an electrogalvanized steel sheet with excellent black mark resistance, and a method for manufacturing them | |
EP0045017B1 (en) | Process for surface treatment of stainless steel sheet | |
US1787139A (en) | Process of forming iron foils | |
JP3670857B2 (en) | Chemical treatment of nickel-plated steel sheet | |
JP3422595B2 (en) | Zinc displacement bath for aluminum alloy | |
JP3267797B2 (en) | Manufacturing method of electrogalvanized steel sheet with excellent surface appearance | |
JP2005330502A (en) | CHEMICAL TREATMENT METHOD FOR Ni PLATED STEEL SHEET | |
US2626895A (en) | Electrolytic production of iron | |
US3079310A (en) | Electroplating zinc on aluminum | |
GB2245002A (en) | Method of producing anode materials for electrolytic uses | |
US5965002A (en) | Elecrodeposition of manganese and other hard to deposit metals | |
US2739106A (en) | Method of electroplating copper-lead alloy | |
Faust et al. | Study of Copper Anodes in Acid and Cyanide Plating Baths | |
JPH11264039A (en) | Brass material containing tin and excellent in mechanical property, and its production | |
JP3643473B2 (en) | Surface-treated steel sheet with excellent high-speed seam weldability, adhesion, and corrosion resistance, and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20030128 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080307 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090307 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090307 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100307 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110307 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120307 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130307 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130307 Year of fee payment: 10 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130307 Year of fee payment: 10 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130307 Year of fee payment: 10 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130307 Year of fee payment: 10 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140307 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |