JP2005344208A - Treatment method for electroless nickel plating solution - Google Patents

Treatment method for electroless nickel plating solution Download PDF

Info

Publication number
JP2005344208A
JP2005344208A JP2004269132A JP2004269132A JP2005344208A JP 2005344208 A JP2005344208 A JP 2005344208A JP 2004269132 A JP2004269132 A JP 2004269132A JP 2004269132 A JP2004269132 A JP 2004269132A JP 2005344208 A JP2005344208 A JP 2005344208A
Authority
JP
Japan
Prior art keywords
plating solution
electroless nickel
nickel plating
electrolytic treatment
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004269132A
Other languages
Japanese (ja)
Other versions
JP4517177B2 (en
Inventor
Toru Morimoto
徹 森本
Hiromi Shimizu
博美 清水
Naomi Yamaguchi
直美 山口
Hajime Okumura
元 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuno Chemical Industries Co Ltd
Original Assignee
Okuno Chemical Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuno Chemical Industries Co Ltd filed Critical Okuno Chemical Industries Co Ltd
Priority to JP2004269132A priority Critical patent/JP4517177B2/en
Publication of JP2005344208A publication Critical patent/JP2005344208A/en
Application granted granted Critical
Publication of JP4517177B2 publication Critical patent/JP4517177B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemically Coating (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method where, from an electroless nickel plating solution with zinc ions and iron ions stored, these metallic ions are selectively removed with high efficiency, and the service life of the electroless nickel plating solution can be remarkably made longer. <P>SOLUTION: In the treatment method for an electroless nickel plating solution, an electrolytic treatment cell separated into a cathode chamber and an anode chamber with a cation exchange membrane is used, an electroless nickel plating solution comprising at least one kind of metal ion selected from the group consisting of a zinc ion and an iron ion is fed to the cathode chamber, an aqueous solution having conductivity is fed to the anode chamber, and d.c. current is applied so as to perform electrolytic treatment. Alternatively, in the treatment method for an electroless nickel plating solution, with an electroless nickel plating solution comprising at least one kind of metallic ion selected from the group composed of a zinc ion and an iron ion as the object to be treated, PR pulse current is applied so as to perform electrolytic treatment. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、無電解ニッケルめっき液の処理方法に関する。   The present invention relates to a method for treating an electroless nickel plating solution.

アルミニウム、アルミニウム合金等のアルミニウム系材料は、その表面に無電解ニッケルめっきを直接行うことができず、通常、置換処理によって基材上に亜鉛皮膜を形成した後、無電解ニッケルめっき処理が行われている。   Aluminum-based materials such as aluminum and aluminum alloys cannot be directly electrolessly nickel-plated on the surface, and are usually subjected to electroless nickel plating after a zinc film is formed on the substrate by a substitution process. ing.

しかしながら、亜鉛置換皮膜を形成したアルミニウム系材料を被めっき物とする場合には、被めっき物から溶出した亜鉛イオンが無電解ニッケルめっき液中に蓄積し、亜鉛イオン濃度が50mg/l程度以上になると、形成されるニッケルめっき皮膜の外観や密着性の低下が生じる。このため、通常、亜鉛イオン濃度が30〜50mg/l程度になるとめっき液は廃棄処分されている。   However, when an aluminum-based material on which a zinc replacement film is formed is used as an object to be plated, zinc ions eluted from the object to be plated accumulate in the electroless nickel plating solution, and the zinc ion concentration is about 50 mg / l or more. If it becomes, the fall of the external appearance and adhesiveness of the nickel plating membrane | film | coat formed will arise. For this reason, the plating solution is usually discarded when the zinc ion concentration is about 30 to 50 mg / l.

一般に、無電解ニッケルめっき液処理においては、めっき処理によって消耗した成分を定期的に補給しつつ、めっき処理が行われているが、長期間連続してめっき処理を行うと、還元剤が酸化生成物となってめっき液中に蓄積し、これが無電解ニッケルめっきの析出性や物性等に悪影響を及ぼす原因となる。このため、一定期間めっきを行うと、めっき液を廃液として処分しており、建浴時の無電解ニッケルめっき液中に含まれるニッケル量に相当する金属ニッケルが析出するまでめっき処理を行うことを1ターンとすると、通常、5〜6ターン程度が無電解ニッケルめっき液の寿命とされている。   Generally, in the electroless nickel plating solution treatment, the plating treatment is performed while periodically replenishing the components consumed by the plating treatment. However, if the plating treatment is performed continuously for a long period of time, the reducing agent is oxidized. It becomes a product and accumulates in the plating solution, which causes an adverse effect on the deposition properties and physical properties of electroless nickel plating. For this reason, when plating is performed for a certain period, the plating solution is disposed of as a waste solution, and the plating treatment is performed until metallic nickel corresponding to the amount of nickel contained in the electroless nickel plating solution at the time of building bath is deposited. Assuming one turn, normally, about 5 to 6 turns are regarded as the life of the electroless nickel plating solution.

ところが、亜鉛置換皮膜を形成したアルミニウム系材料を被めっき物として無電解ニッケルめっき処理を行う場合には、通常、2〜3ターン程度のめっき処理を行うと廃棄処分が必要な亜鉛イオン濃度である30〜50mg/l程度となり、通常の寿命である5〜6ターン程度と比べると大幅に寿命が短くなる。このため、コストが大きく増加し、廃液が多量に発生するという問題がある。特に、寿命に達した無電解ニッケルめっき液中には、リン化合物、錯化剤等が多量に含まれており、この影響で廃液処理が非常に困難である。   However, when the electroless nickel plating process is performed using the aluminum-based material on which the zinc-substituted film is formed as an object to be plated, the zinc ion concentration is usually required to be disposed of when the plating process is performed for about 2 to 3 turns. The life is about 30 to 50 mg / l, which is significantly shorter than the normal life of about 5 to 6 turns. For this reason, there is a problem that the cost is greatly increased and a large amount of waste liquid is generated. In particular, the electroless nickel plating solution that has reached the end of its life contains a large amount of phosphorus compounds, complexing agents, and the like, and this makes it very difficult to treat the waste solution.

磁気ディスク用アルミニウム又はアルミニウム合金基板処理における無電解ニッケルめっき液の寿命を延長する方法として、前処理工程の亜鉛置換処理の時間を変更することで亜鉛イオンの溶出を遅らせる方法が報告されている(下記特許文献1参照)。この方法によれば、無電解ニッケルめっき液の寿命を伸ばすことができるとされているが、無電解ニッケルめっき液中に亜鉛が蓄積した場合に、これを除去する方法については、何も開示していない。   As a method of extending the life of the electroless nickel plating solution in the treatment of aluminum or aluminum alloy substrates for magnetic disks, a method of delaying elution of zinc ions by changing the time of zinc replacement treatment in the pretreatment step has been reported ( See Patent Document 1 below). According to this method, it is said that the life of the electroless nickel plating solution can be extended. However, when zinc accumulates in the electroless nickel plating solution, nothing is disclosed about how to remove it. Not.

その他、現在めっき業界で行われている方法としては、亜鉛置換皮膜を形成した後、電気ニッケルめっき又は電気青化銅めっきによるストライクめっき処理を行い、その後、無電解ニッケルめっきを行う方法がある。しかしながら、ストライクめっき処理は、低電部への付き廻りや均一電着性が劣り、更に、処理工程数の増加、整流器や電気めっき用治具が必要になるなどの問題があるため、一般的な方法と言うことはできない。   In addition, as a method currently performed in the plating industry, there is a method in which after a zinc replacement film is formed, a strike plating process is performed by electro nickel plating or electro bronze copper plating, and then electroless nickel plating is performed. However, the strike plating process is inferior because it has poor adhesion to the low power area and uniform electrodeposition, and further increases the number of processing steps and requires a rectifier and an electroplating jig. I can't say that.

一方、鉄鋼系材料を被めっき物とする場合には、被めっき物から溶出した鉄イオンが無電解ニッケルめっき液中に蓄積し、鉄イオン濃度が50mg/l程度以上になると、形成されるニッケルめっき皮膜の外観や耐食性が低下する。通常、3〜6ターン程度のめっき処理を行うと、鉄イオンの影響で外観及び耐食性の低下が起こり、品質の低下しためっき皮膜となる。めっき皮膜の品質低下を避けるには、鉄イオンの影響が出る前にめっき液を廃棄すればよいが、廃液が多量に発生するために、通常は、そのまま5〜6ターン程度まで使用されている。   On the other hand, when iron-based material is used as an object to be plated, the iron ions eluted from the object to be plated accumulate in the electroless nickel plating solution, and the nickel formed when the iron ion concentration is about 50 mg / l or more. The appearance and corrosion resistance of the plating film are reduced. Usually, when a plating treatment of about 3 to 6 turns is performed, the appearance and corrosion resistance are lowered due to the influence of iron ions, and a plating film having a reduced quality is obtained. In order to avoid deterioration of the quality of the plating film, the plating solution should be discarded before the influence of iron ions occurs. However, since a large amount of waste solution is generated, it is normally used as it is for about 5 to 6 turns. .

無電解ニッケルめっき液から不要成分を選択的に除去する方法としては、電気透析によって還元剤の酸化生成物等を分離して除去する方法が知られている(下記特許文献2参照)。しかしながら、この方法では、亜リン酸塩などの還元剤の酸化物を減少させることは可能であるが、亜鉛イオンや鉄イオンが蓄積した無電解ニッケルめっき液から、これらの金属イオンを選択的に除去することはできない。   As a method of selectively removing unnecessary components from the electroless nickel plating solution, a method of separating and removing the oxidation product of the reducing agent by electrodialysis is known (see Patent Document 2 below). However, with this method, it is possible to reduce oxides of reducing agents such as phosphites, but these metal ions are selectively removed from the electroless nickel plating solution in which zinc ions and iron ions are accumulated. It cannot be removed.

また、無電解ニッケルめっき液から一部を抜き取って半永久的な使用を可能にする方法も知られている(下記特許文献3参照)。しかしながら、この方法は、めっき液の一部を廃棄する方法であり、有効成分も同時に多量に廃棄されるという大きな問題点がある。
特許第3033455号公報 特公平5−83635号公報 特開2001−49448号公報
A method is also known in which a part is extracted from the electroless nickel plating solution to enable semi-permanent use (see Patent Document 3 below). However, this method is a method of discarding a part of the plating solution, and has a big problem that a large amount of the active ingredient is also discarded at the same time.
Japanese Patent No. 3033455 Japanese Patent Publication No. 5-83635 JP 2001-49448 A

本発明は、上記した如き従来技術の問題点に鑑みてなされたものであり、その主な目的は、亜鉛イオンや鉄イオンが蓄積した無電解ニッケルめっき液から、これらの金属イオンを効率よく選択的に除去して、無電解ニッケルめっき液の寿命を大きく延長できる方法を提供することである。   The present invention has been made in view of the above-described problems of the prior art, and its main purpose is to efficiently select these metal ions from an electroless nickel plating solution in which zinc ions and iron ions are accumulated. And to provide a method that can greatly extend the life of the electroless nickel plating solution.

本発明者は、上記した目的を達成すべく鋭意研究を重ねてきた。その結果、カチオン交換膜によって陰極室と陽極室とに分離された電解処理槽を用い、処理対象の無電解ニッケルめっき液を陰極室に供給し、導電性水溶液を陽極室に供給して電解する方法によれば、ニッケルイオンの析出を抑制して、亜鉛イオン及び鉄イオンを優先的に陰極上に析出させて除去することが可能となることを見出した。また、PRパルス電流を用いて電解処理を行う場合にも、同様に亜鉛イオン及び鉄イオンを優先的に陰極上に析出させて除去することが可能となることを見出した。本発明は、これらの知見に基づいてなされたものである。   The present inventor has intensively studied to achieve the above-described object. As a result, using an electrolytic treatment tank separated into a cathode chamber and an anode chamber by a cation exchange membrane, an electroless nickel plating solution to be treated is supplied to the cathode chamber, and a conductive aqueous solution is supplied to the anode chamber for electrolysis. According to the method, it has been found that the deposition of nickel ions can be suppressed, and zinc ions and iron ions can be preferentially deposited on the cathode and removed. In addition, it has also been found that zinc ions and iron ions can be preferentially deposited on the cathode and removed when electrolytic treatment is performed using a PR pulse current. The present invention has been made based on these findings.

即ち、本発明は、下記の無電解ニッケルめっき液の処理方法を提供するものである。
1. カチオン交換膜によって陰極室と陽極室に分離された電解処理槽を用い、亜鉛イオン及び鉄イオンからなる群から選ばれた少なくとも一種の金属イオンを含有する無電解ニッケルめっき液を陰極室に供給し、導電性を有する水溶液を陽極室に供給して、直流電流を通電して電解処理を行うことを特徴とする無電解ニッケルめっき液の処理方法。
2. 亜鉛イオン及び鉄イオンからなる群から選ばれた少なくとも一種の金属イオンを含有する無電解ニッケルめっき液を被処理物として、PRパルス電流を通電して電解処理を行うことを特徴とする無電解ニッケルめっき液の処理方法。
3. カチオン交換膜によって陰極室と陽極室に分離された電解処理槽を用い、亜鉛イオン及び鉄イオンからなる群から選ばれた少なくとも一種の金属イオンを含有する無電解ニッケルめっき液を陰極室に供給し、導電性を有する水溶液を陽極室に供給して、PRパルス電流を通電して電解処理を行うことを特徴とする無電解ニッケルめっき液の処理方法。
4. 正電解電流密度:1〜9A/dm、逆電解電流密度:3.5〜20A/dm、正電解時間:4.5〜20m秒、逆電解時間:0.2〜0.9m秒の条件でPRパルス電流を通電して電解処理を行うことを特徴とする上記項2又は3に記載の無電解ニッケルめっき液の処理方法。
5. 上記項1〜4のいずれかに記載の無電解ニッケルめっき液の処理方法であって、更に、電解処理を行う前又は電解処理を行った後、陽極と陰極の間に陽イオン交換膜と陰イオン交換膜を交互に配列した電気透析槽を用いて処理対象の無電解ニッケルめっき液を該電気透析槽の脱塩室に供給して電気透析を行うことを特徴とする無電解ニッケルめっき液の処理方法。
That is, this invention provides the processing method of the following electroless nickel plating solution.
1. Using an electrolytic treatment tank separated into a cathode chamber and an anode chamber by a cation exchange membrane, an electroless nickel plating solution containing at least one metal ion selected from the group consisting of zinc ions and iron ions is supplied to the cathode chamber. A method for treating an electroless nickel plating solution, wherein an electrolytic solution is supplied by supplying a conductive aqueous solution to the anode chamber and passing a direct current.
2. Electroless nickel characterized in that an electroless nickel plating solution containing at least one metal ion selected from the group consisting of zinc ions and iron ions is used as an object to be electrolyzed by applying a PR pulse current. Treatment method for plating solution.
3. Using an electrolytic treatment tank separated into a cathode chamber and an anode chamber by a cation exchange membrane, an electroless nickel plating solution containing at least one metal ion selected from the group consisting of zinc ions and iron ions is supplied to the cathode chamber. A method for treating an electroless nickel plating solution, comprising conducting an electrolytic treatment by supplying an aqueous solution having conductivity to an anode chamber and supplying a PR pulse current.
4). Positive electrolysis current density: 1-9 A / dm 2 , reverse electrolysis current density: 3.5-20 A / dm 2 , normal electrolysis time: 4.5-20 msec, reverse electrolysis time: 0.2-0.9 msec 4. The method for treating an electroless nickel plating solution as described in 2 or 3 above, wherein the electrolytic treatment is performed by applying a PR pulse current under conditions.
5). 5. The method for treating an electroless nickel plating solution according to any one of items 1 to 4, further comprising a cation exchange membrane and an anion between the anode and the cathode before the electrolytic treatment or after the electrolytic treatment. An electroless nickel plating solution characterized in that electrodialysis is performed by supplying an electroless nickel plating solution to be treated to a desalting chamber of the electrodialysis vessel using an electrodialysis vessel in which ion exchange membranes are alternately arranged. Processing method.

処理対象
本発明では、亜鉛イオン及び鉄イオンからなる群から選ばれた少なくとも一種の金属イオンを含有する無電解ニッケルめっき液であれば、特に限定なく処理対象とすることができる。
Object to be treated In the present invention, any electroless nickel plating solution containing at least one metal ion selected from the group consisting of zinc ions and iron ions can be treated without particular limitation.

亜鉛イオンを含有する無電解ニッケルめっき液として代表的なものは、亜鉛置換皮膜を形成したアルミニウム、アルミニウム合金等のアルミニウム系材料を被めっき物として無電解ニッケルめっき処理を行うことによって、被めっき物から溶出した亜鉛イオンが蓄積した無電解ニッケルめっき液である。また、鉄イオンを含有する無電解ニッケルめっき液として代表的なものは、鉄鋼系材料を被めっき物として無電解ニッケルめっき処理を行うことによって、被めっき物から溶出した鉄イオンが蓄積した無電解ニッケルめっき液である。   A typical electroless nickel plating solution containing zinc ions is an object to be plated by performing an electroless nickel plating treatment using an aluminum-based material such as aluminum or an aluminum alloy with a zinc-substituted film formed thereon. This is an electroless nickel plating solution in which zinc ions eluted from the electrolyte accumulate. In addition, a typical electroless nickel plating solution containing iron ions is an electroless material in which iron ions eluted from the object to be plated are accumulated by performing an electroless nickel plating process using an iron-based material as the object to be plated. Nickel plating solution.

本発明では、亜鉛イオンと鉄イオンのいずれか一方が含まれている無電解ニッケルめっき液を処理対象とすることができ、更に、亜鉛イオンと鉄イオンの両方が同時に含まれている無電解ニッケルめっき液についても処理対象とすることができる。   In the present invention, an electroless nickel plating solution containing either zinc ions or iron ions can be treated, and further, electroless nickel containing both zinc ions and iron ions at the same time. A plating solution can also be treated.

処理対象とする無電解ニッケルめっき液の組成については、特に限定はなく、通常の還元剤を含有する自己触媒性の無電解ニッケルめっき液であれば、いずれも処理対象とすることができる。   The composition of the electroless nickel plating solution to be treated is not particularly limited, and any autocatalytic electroless nickel plating solution containing a normal reducing agent can be treated.

この様な無電解ニッケルめっき液としては、金属ニッケルの供給源として、硫酸ニッケル、塩化ニッケル等の水溶性ニッケル塩を含有し、更に、還元剤として、次亜リン酸ナトリウム、次亜リン酸カリウム、次亜リン酸アンモニウム等の次亜リン酸塩を含有し、錯化剤として、リンゴ酸、クエン酸、乳酸、コハク酸等のカルボン酸を含有するめっき液が代表的なものである。   Such an electroless nickel plating solution contains a water-soluble nickel salt such as nickel sulfate or nickel chloride as a source of metallic nickel, and further contains sodium hypophosphite or potassium hypophosphite as a reducing agent. Typical examples include plating solutions containing hypophosphites such as ammonium hypophosphite and carboxylic acids such as malic acid, citric acid, lactic acid and succinic acid as complexing agents.

本発明の処理方法を行う際の無電解ニッケルめっき液中の亜鉛イオンと鉄イオンの濃度は、特に限定的ではなく、通常は、亜鉛イオン及び/又は鉄イオンの蓄積によって析出皮膜の特性に悪影響が生じる前に処理を行えばよい。一般的には、亜鉛イオン濃度については、析出皮膜の密着性や外観に悪影響を及ぼすとされている、30〜50mg/l程度となっためっき液について処理を行えばよい。また、鉄イオン濃度については、析出皮膜の外観や耐食性に悪影響を及ぼすとされている50〜100mg/l程度となっためっき液について処理を行えばよい。   The concentration of zinc ions and iron ions in the electroless nickel plating solution when performing the treatment method of the present invention is not particularly limited, and usually, the accumulation of zinc ions and / or iron ions adversely affects the properties of the deposited film. Processing may be performed before the occurrence. In general, with regard to the zinc ion concentration, a plating solution having a concentration of about 30 to 50 mg / l, which is considered to adversely affect the adhesion and appearance of the deposited film, may be processed. Moreover, what is necessary is just to process about the plating solution used as the iron ion density | concentration used as about 50-100 mg / l which is said to have a bad influence on the external appearance and corrosion resistance of a deposit film.

本願第一方法
本願第一方法は、カチオン交換膜によって陰極室と陽極室とに分離された電解処理槽を用い、処理対象とする無電解ニッケルめっき液を陰極室に供給し、導電性を有する水溶液を陽極室に供給して電解処理を行う方法である。
First method of the present application The first method of the present application uses an electrolytic treatment tank separated into a cathode chamber and an anode chamber by a cation exchange membrane, supplies an electroless nickel plating solution to be treated to the cathode chamber, and has conductivity. In this method, an aqueous solution is supplied to the anode chamber to perform electrolytic treatment.

上記方法を実施するために用いる電解処理槽の一例の概略図を図1に示す。図1に示す電解処理槽は、陰極板が設置された陰極室と、陽極板が設置された陽極室を有し、これらがカチオン交換膜によって分離された構造を有するものである。   A schematic view of an example of an electrolytic treatment tank used for carrying out the above method is shown in FIG. The electrolytic treatment tank shown in FIG. 1 has a cathode chamber in which a cathode plate is installed and an anode chamber in which an anode plate is installed, and these have a structure separated by a cation exchange membrane.

陰極板の材質については、特に限定はなく、処理対象の無電解ニッケルめっき液中で変質の生じない材質であって、十分な導電性を有し且つ析出した亜鉛、鉄、ニッケルなどを適度な密着性で保持できるものであればよい。例えば、鉄板、ステンレス板等を好適に用いることができる。陰極板として鉄板を用いる場合には、析出したニッケル、亜鉛、鉄等を金属として回収することができる。また、陰極板としてステンレス板を用いる場合には、例えば、硝酸水溶液中に浸漬することによって、ニッケル、亜鉛、鉄などをイオンとして再溶解させることができ、ステンレス板は、電解処理用として再利用が可能である。   There is no particular limitation on the material of the cathode plate, and it is a material that does not change in the electroless nickel plating solution to be processed, has sufficient conductivity, and deposits zinc, iron, nickel, etc. Any material can be used as long as it can be held with adhesiveness. For example, an iron plate, a stainless plate, etc. can be used suitably. When an iron plate is used as the cathode plate, the deposited nickel, zinc, iron or the like can be recovered as a metal. Also, when using a stainless steel plate as the cathode plate, for example, nickel, zinc, iron, etc. can be re-dissolved as ions by dipping in a nitric acid aqueous solution, and the stainless steel plate can be reused for electrolytic treatment. Is possible.

陽極板としては、可溶性陽極及び不溶性陽極をいずれも用いることができるが、無電解ニッケルめっき液中への金属イオンの混入を防止するためには、不溶性陽極を用いることが好ましい。この様な不溶性陽極としては、例えば、チタン板上へ白金めっきを施したチタン白金板、酸化イリジウム板、カーボン板などを用いることができる。   As the anode plate, both a soluble anode and an insoluble anode can be used, but in order to prevent metal ions from being mixed into the electroless nickel plating solution, it is preferable to use an insoluble anode. As such an insoluble anode, for example, a titanium platinum plate obtained by performing platinum plating on a titanium plate, an iridium oxide plate, a carbon plate, or the like can be used.

陰極室と陽極室との間の隔膜として用いるカチオン交換膜については、特に限定的ではなく、各種の市販のカチオン交換膜を使用できる。通常、これらのカチオン交換膜は、陽イオン交換基として、スルホン酸基(−HSO)、カルボン酸基(−COOH)、リン酸基(−HPO)等を含有するものである。特に、低抵抗であって選択性の高い膜が好ましく、更に、処理液に対する耐久性を有し、十分な機械的強度を有するものが好ましい。例えば、乾燥膜又は湿潤膜当たりのイオン交換容量が0.5〜4meq/g程度のカチオン交換膜を使用できる。電気抵抗については、例えば、0.5mol/lのNaCl水溶液又は0.6mol/lのKCl水溶液中での25℃における膜抵抗が0.1〜5Ω・cm程度の膜を好適に用いることができる。カチオン交換膜の材質についても特に限定はなく、例えば、パーフルオロカーボン系交換膜、スチレン系交換膜などが代表的なものであるが、これらに限定されるものではない。 The cation exchange membrane used as a diaphragm between the cathode chamber and the anode chamber is not particularly limited, and various commercially available cation exchange membranes can be used. Usually, these cation exchange membranes contain a sulfonic acid group (—HSO 3 ), a carboxylic acid group (—COOH), a phosphoric acid group (—HPO 3 ) or the like as a cation exchange group. In particular, a membrane having low resistance and high selectivity is preferable, and a membrane having durability against a processing solution and sufficient mechanical strength is preferable. For example, a cation exchange membrane having an ion exchange capacity per dry membrane or wet membrane of about 0.5 to 4 meq / g can be used. As for electrical resistance, for example, a film having a film resistance of about 0.1 to 5 Ω · cm 2 at 25 ° C. in a 0.5 mol / l NaCl aqueous solution or a 0.6 mol / l KCl aqueous solution is preferably used. it can. The material of the cation exchange membrane is not particularly limited, and examples thereof include perfluorocarbon exchange membranes and styrene exchange membranes, but are not limited thereto.

カチオン交換膜の具体例としては、ナフィオン(Du Pont社製)、アシプレックス、ネオセプタ((株)アストム製)、フレミオン、セレミオン(旭硝子(株)製)等の商標名で市販されているものを挙げることができる。   Specific examples of the cation exchange membrane include those commercially available under trade names such as Nafion (manufactured by Du Pont), Aciplex, Neoceptor (manufactured by Astom Co., Ltd.), Flemion, and Selemion (manufactured by Asahi Glass Co., Ltd.). Can be mentioned.

導電性を有する水溶液としては、電解処理が可能な程度の導電性を有する水溶液であればよく、更に、無電解めっき液の特性に影響を及ぼす可能性がある金属イオンを含有しない水溶液が好ましい。例えば、硫酸、塩酸、酢酸等の酸;水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物;硫酸ナトリウム、塩化カリウム等のアルカリ金属塩などを含む水溶液を好適に用いることができる。これらの酸、アルカリ金属水酸化物、又はアルカリ金属塩の濃度は、要求される導電性の程度によって決めればよいが、通常、0.01〜10mol/l程度の範囲とすればよい。   The aqueous solution having electrical conductivity may be an aqueous solution having conductivity that allows electrolysis, and an aqueous solution that does not contain metal ions that may affect the characteristics of the electroless plating solution is preferable. For example, an aqueous solution containing an acid such as sulfuric acid, hydrochloric acid or acetic acid; an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide; an alkali metal salt such as sodium sulfate or potassium chloride can be preferably used. The concentration of these acids, alkali metal hydroxides, or alkali metal salts may be determined depending on the required degree of conductivity, but is usually in the range of about 0.01 to 10 mol / l.

電解処理槽の容量、電極間隔などについては、処理液の容量に応じて適宜決めればよい。電解処理槽の一例としては、陰極室と陽極室がほぼ同程度の容積となるようにカチオン交換膜によって分離されたものを挙げることができるが、この様な容積比の電解処理槽に限定されることはなく、円滑に電解処理が進行する限り、陰極室と陽極室の容積比は任意に決めることができる。   What is necessary is just to determine suitably about the capacity | capacitance of an electrolytic treatment tank, an electrode interval, etc. according to the capacity | capacitance of a process liquid. As an example of the electrolytic treatment tank, a cathode chamber and an anode chamber may be separated by a cation exchange membrane so as to have almost the same volume. However, the electrolytic treatment tank is limited to an electrolytic treatment tank having such a volume ratio. As long as the electrolytic treatment proceeds smoothly, the volume ratio of the cathode chamber to the anode chamber can be arbitrarily determined.

電解処理を行う際の無電解ニッケルめっき液の液温については、高すぎると電解処理槽中でニッケルイオンの自己析出反応により陰極板へニッケルイオンが優先的に析出して亜鉛イオン及び鉄イオンの析出効率が低下し、更に、装置や配管等の熱による破損や変形が生じ易くなる。一方、液温が低すぎると、導電性が低下して亜鉛イオン及び鉄イオンの析出効率が低くなる。この様な点から、処理対象とする無電解ニッケルめっき液の液温は、15〜50℃程度に保持することが好ましい。   When the temperature of the electroless nickel plating solution during the electrolytic treatment is too high, nickel ions preferentially precipitate on the cathode plate due to the self-deposition reaction of nickel ions in the electrolytic treatment tank, and zinc ions and iron ions The deposition efficiency is lowered, and further, damage and deformation due to heat of the apparatus and piping are likely to occur. On the other hand, when the liquid temperature is too low, the conductivity is lowered and the deposition efficiency of zinc ions and iron ions is lowered. From such a point, it is preferable to maintain the temperature of the electroless nickel plating solution to be processed at about 15 to 50 ° C.

電解処理の条件については、特に限定的ではないが、例えば、1〜20A/dm程度の陰極電流密度で直流電流を通電して電解処理を行えばよい。 The conditions for the electrolytic treatment are not particularly limited. For example, the electrolytic treatment may be performed by applying a direct current at a cathode current density of about 1 to 20 A / dm 2 .

電解処理の方法としては、処理対象の無電解ニッケルめっき液を電解処理槽に供給してバッチ式で電解処理を行っても良く、或いは、無電解ニッケルめっき液をめっき液貯蔵槽から冷却しながら電解処理槽に連続的に供給して電解処理を行い、電解処理された無電解ニッケルめっき液をめっき液貯蔵槽に戻すことによって、めっき液貯蔵槽と電解処理槽との間を連続的に循環させながら電解処理を行っても良い。   As a method of electrolytic treatment, the electroless nickel plating solution to be treated may be supplied to the electrolytic treatment tank and batch-type electrolytic treatment may be performed, or while the electroless nickel plating liquid is cooled from the plating solution storage tank Continuously circulates between the plating solution storage tank and the electrolytic treatment tank by continuously supplying the electrolytic treatment tank to the electrolytic treatment and returning the electroless nickel plating solution to the plating solution storage tank. Electrolytic treatment may be carried out while allowing

電解処理は、電解処理槽に供給した無電解ニッケルめっき液中の亜鉛イオンと鉄イオンが目的とする濃度に減少するまで行えばよいが、電解処理を長時間行うと、亜鉛イオンと鉄イオンだけでなく、ニッケルイオン、安定剤などの有効成分も減少する。このため、一回の電解処理では、減少させることを目的とする金属イオンの濃度が、処理前の濃度の10重量%程度以上減少し、かつニッケルイオン濃度の減少割合が、処理前の濃度の30重量%程度を超えない程度まで電解を行うことが適当である。この場合、亜鉛イオンと鉄イオンのいずれか一方の金属イオンを減少させることを目的とする場合には、目的とする金属イオンが10重量%程度以上減少するまで電解を行えばよいが、通常、亜鉛イオンと鉄イオンの両方を含むめっき液については、それぞれのイオン濃度が、処理前の濃度の10重量%程度以上減少するまで電解を行えばよい。この程度の電解処理を行うと、亜鉛イオンを30〜50mg/l程度含む無電解ニッケルめっき液を処理対象とする場合には、液中の亜鉛イオン濃度が5〜20mg/l程度減少し、鉄イオンを50〜100mg/l程度含む無電解ニッケルめっき液を処理対象とする場合についても、液中の鉄イオン濃度が5〜20mg/l程度減少する。これは、一般に、亜鉛置換皮膜を形成したアルミニウム系材料又は鉄鋼系材料を被めっき物として1ターンの無電解ニッケルめっき処理を行った場合に、蓄積する亜鉛イオン量又は鉄イオン量に相当する量である。   The electrolytic treatment may be performed until the zinc ions and iron ions in the electroless nickel plating solution supplied to the electrolytic treatment tank are reduced to the target concentration, but if the electrolytic treatment is performed for a long time, only zinc ions and iron ions are performed. In addition, active ingredients such as nickel ions and stabilizers are also reduced. For this reason, in a single electrolytic treatment, the concentration of metal ions intended to be reduced is reduced by about 10% by weight or more of the concentration before treatment, and the reduction rate of the nickel ion concentration is equal to the concentration before treatment. It is appropriate to conduct the electrolysis up to a level not exceeding about 30% by weight. In this case, when the purpose is to reduce one of the zinc ions and iron ions, electrolysis may be performed until the target metal ions are reduced by about 10% by weight or more. For the plating solution containing both zinc ions and iron ions, electrolysis may be performed until the respective ion concentrations are reduced by about 10% by weight or more of the concentration before treatment. When this level of electrolytic treatment is performed, when an electroless nickel plating solution containing about 30 to 50 mg / l of zinc ions is to be treated, the zinc ion concentration in the solution decreases by about 5 to 20 mg / l, and iron Even in the case where an electroless nickel plating solution containing about 50 to 100 mg / l of ions is treated, the iron ion concentration in the solution is decreased by about 5 to 20 mg / l. In general, this is an amount corresponding to the amount of zinc ions or iron ions accumulated when one turn of electroless nickel plating treatment is performed using an aluminum-based material or a steel-based material on which a zinc replacement film is formed as an object to be plated. It is.

この様にして亜鉛イオン濃度及び/又は鉄イオン濃度が減少した無電解ニッケルめっき液について、必要に応じて、各種成分を補給して液組成を調整し、更に、pHを所定の範囲とすることによって、無電解ニッケルめっき液として再利用できる。   For the electroless nickel plating solution in which the zinc ion concentration and / or iron ion concentration is reduced in this way, various components are replenished as necessary to adjust the solution composition, and the pH is set within a predetermined range. Can be reused as an electroless nickel plating solution.

処理後の無電解ニッケルめっき液を用いて形成される無電解ニッケルめっき皮膜は、亜鉛イオンが存在することによる弊害である外観や密着性の低下や、鉄イオンが存在することによる弊害である外観や耐食性の低下のない良好なめっき皮膜となる。   The electroless nickel plating film formed by using the electroless nickel plating solution after treatment has a negative appearance due to the presence of zinc ions, a decrease in adhesion, and a negative appearance due to the presence of iron ions. And a good plating film with no decrease in corrosion resistance.

本願第二方法
本願第二方法は、処理対象の無電解ニッケルめっき液を電解処理槽に供給し、PRパルス電流を通電して電解を行う方法である。PRパルス電流を通電して電解を行うことによって、ニッケルの析出を抑制して、亜鉛及び鉄を優先的に陰極上に析出させることができる。
Second method of the present application The second method of the present application is a method of performing electrolysis by supplying an electroless nickel plating solution to be treated to an electrolytic treatment tank and supplying a PR pulse current. By conducting electrolysis by applying a PR pulse current, it is possible to suppress the precipitation of nickel and preferentially deposit zinc and iron on the cathode.

PRパルス電流の条件としては、特に限定的ではないが、正電解の電流密度が高過ぎるとニッケルイオンの析出割合が多くなり、低すぎると亜鉛イオン及び鉄イオンの析出量が不足する傾向がある。また逆電解の電流密度については、高すぎても低すぎても、亜鉛イオン及び鉄イオンの析出量が不足する傾向がある。正電解時間については、長すぎても短すぎても亜鉛イオン及び鉄イオンの析出量が少なくなる。逆電解時間については、長すぎると亜鉛イオン及び鉄イオンの析出量が少なくなり、短すぎるとニッケルイオンの析出割合が多くなる。これらの点を考慮して適切な電解条件を決めればよいが、通常、正電解の電流密度を1〜9A/dm程度、逆電解の電流密度を3.5〜20A/dm程度とし、正電解時間を4.5〜20m秒程度、逆電解時間を0.2〜0.9m秒程度とすることが好ましい。この場合、正電解時間と逆電解時間の比率は、正電解時間:逆電解時間=1:0.01〜0.1程度とすることが好ましい。 The condition of the PR pulse current is not particularly limited, but if the current density of positive electrolysis is too high, the deposition rate of nickel ions increases, and if it is too low, the deposition amount of zinc ions and iron ions tends to be insufficient. . Moreover, about the current density of reverse electrolysis, even if it is too high or too low, the precipitation amount of zinc ions and iron ions tends to be insufficient. About positive electrolysis time, the precipitation amount of zinc ion and iron ion will decrease if it is too long or too short. As for the reverse electrolysis time, if it is too long, the amount of zinc ions and iron ions deposited will decrease, and if it is too short, the proportion of nickel ions deposited will increase. It is sufficient to determine appropriate electrolysis conditions in consideration of these points. Usually, the current density of forward electrolysis is about 1 to 9 A / dm 2 , and the current density of reverse electrolysis is about 3.5 to 20 A / dm 2 , The normal electrolysis time is preferably about 4.5 to 20 msec, and the reverse electrolysis time is preferably about 0.2 to 0.9 msec. In this case, the ratio of the normal electrolysis time and the reverse electrolysis time is preferably about normal electrolysis time: reverse electrolysis time = 1: 0.01 to 0.1.

本願第二方法は、亜鉛イオン及び鉄イオンからなる群から選ばれた少なくとも一種の金属イオンを含有する無電解ニッケルめっき液であれば、特に限定なく処理対象とすることができるが、特に、亜鉛イオンを含有する無電解ニッケルめっき液を処理対象物とする場合に、効率よく亜鉛イオンを選択的に除去することができる。   The second method of the present application can be an object to be treated without particular limitation as long as it is an electroless nickel plating solution containing at least one metal ion selected from the group consisting of zinc ions and iron ions. When an electroless nickel plating solution containing ions is used as a processing object, zinc ions can be selectively removed efficiently.

本願第二方法では、上記した電解条件を採用すること以外は、電解装置などについては特に限定はなく、処理対象の無電解ニッケルめっき液の液量に応じた容量の電解処理槽を用いればよい。陰極板及び陽極板についても、特に限定はなく、例えば、本願第一方法と同様の陰極板と陽極板を用いることができる。電解時の液温についても、本願第一方法と同様でよい。   In the second method of the present application, there is no particular limitation on the electrolysis apparatus and the like except that the above-described electrolysis conditions are adopted, and an electrolytic treatment tank having a capacity corresponding to the amount of the electroless nickel plating solution to be treated may be used. . The cathode plate and the anode plate are not particularly limited, and for example, the same cathode plate and anode plate as in the first method of the present application can be used. The liquid temperature during electrolysis may be the same as in the first method of the present application.

電解処理の方法についても、本願第一方法と同様にバッチ式で電解処理を行っても良く、或いは、めっき液貯蔵槽と電解処理槽との間を連続的に循環させながら電解処理を行っても良い。   As for the method of electrolytic treatment, the electrolytic treatment may be performed batchwise as in the first method of the present application, or the electrolytic treatment is performed while continuously circulating between the plating solution storage tank and the electrolytic treatment tank. Also good.

また、一回の電解処理についても、処理対象の無電解ニッケルめっき液において、濃度を低減させること目的とする亜鉛イオン濃度及び/又は鉄イオン濃度が、処理前の濃度の10重量%程度以上減少し、かつニッケルイオン濃度の減少割合が、処理前の濃度の30重量%程度を超えない程度まで行えばよい。   In addition, even in a single electrolytic treatment, in the electroless nickel plating solution to be treated, the zinc ion concentration and / or iron ion concentration intended to reduce the concentration is reduced by about 10% by weight or more of the concentration before the treatment. In addition, the reduction ratio of the nickel ion concentration may be performed so as not to exceed about 30% by weight of the concentration before the treatment.

本願第三方法
本願第三方法は、カチオン交換膜によって陰極室と陽極室とに分離された電解処理槽を用い、処理対象とする無電解ニッケルめっき液を陰極室に供給し、導電性を有する水溶液を陽極室に供給して、PRパルス電流を通電して電解処理を行う方法である。
Third method of the present application The third method of the present application uses an electrolytic treatment tank separated into a cathode chamber and an anode chamber by a cation exchange membrane, supplies an electroless nickel plating solution to be treated to the cathode chamber, and has conductivity. In this method, an aqueous solution is supplied to the anode chamber, and a PR pulse current is applied to perform electrolytic treatment.

この方法は、本願第一方法と本願第二方法を組み合わせた方法であり、使用するカチオン交換膜、陰極板、陽極板、導電性を有する水溶液などは、本願第一方法と同様でよく、PRパルス電解の条件については、本願第二方法と同様でよい。   This method is a method combining the first method of the present application and the second method of the present application, and the cation exchange membrane, the cathode plate, the anode plate, the aqueous solution having conductivity, etc. used may be the same as the first method of the present application. The conditions for pulse electrolysis may be the same as in the second method of the present application.

本願第三方法は、特に、ニッケルの析出を抑制する効果が大きく、陰極に析出する亜鉛及び鉄の割合を高くすることができる。例えば、ニッケルイオンの減少率を10重量%程度に抑えながら、亜鉛イオンの30重量%程度及び鉄イオンの30重量%程度を除去することが可能である。このため、処理後に無電解ニッケルめっき液を再利用する際に、ニッケル化合物の補給量を大幅に減少させることができ、経済的に非常に有利な方法である。   The third method of the present application is particularly effective in suppressing nickel deposition and can increase the ratio of zinc and iron deposited on the cathode. For example, it is possible to remove about 30% by weight of zinc ions and about 30% by weight of iron ions while suppressing the decrease rate of nickel ions to about 10% by weight. For this reason, when the electroless nickel plating solution is reused after the treatment, the replenishment amount of the nickel compound can be greatly reduced, which is an economically advantageous method.

上記した本願第一方法〜第三方法によれば、ニッケルイオン濃度を大きく低下させることなく、亜鉛イオン及び鉄イオンからなる群から選ばれた少なくとも一種の金属イオンを効率よく除去することができる。従って、本発明によれば、有効成分であるニッケルイオンの損失量を抑えて、めっき液の寿命を大きく延長することが可能となる。   According to the first to third methods of the present application described above, at least one metal ion selected from the group consisting of zinc ions and iron ions can be efficiently removed without greatly reducing the nickel ion concentration. Therefore, according to the present invention, it is possible to greatly extend the life of the plating solution by suppressing the loss of nickel ions which are active ingredients.

更に、本願第一方法〜第三方法による電解処理前又は電解処理後に、電気透析を行うことによって、無電解ニッケルめっき液中に含まれる還元剤の酸化生成物を選択的に分離することができる。具体的には、例えば、陽極と陰極の間に陽イオン交換膜と陰イオン交換膜を交互に配列した電気透析槽を用い、処理対象の無電解ニッケルめっき液を該電気透析槽の脱塩室に供給して電気透析を行えば良い。この様に、亜鉛イオン及び鉄イオンからなる群から選ばれた少なくとも一種の金属イオンを除去するための電解処理と電気透析処理を併用することによって、亜鉛イオン及び鉄イオンからなる群から選ばれた少なくとも一種の金属イオンの他に、無電解ニッケルめっき皮膜の物性や析出速度に悪影響を及ぼす還元剤の酸化生成物などを除去することが可能であり、その後、必要に応じて各成分を補給することによって、めっき皮膜の析出性や耐食性を更に改善して、無電解ニッケルめっき液の寿命を著しく延長することができる。   Furthermore, the oxidation product of the reducing agent contained in the electroless nickel plating solution can be selectively separated by performing electrodialysis before or after the electrolytic treatment by the first method to the third method of the present application. . Specifically, for example, using an electrodialysis tank in which a cation exchange membrane and an anion exchange membrane are alternately arranged between an anode and a cathode, an electroless nickel plating solution to be treated is desalted in the electrodialysis tank. And may be electrodialyzed. In this way, the electrodialysis treatment and the electrodialysis treatment for removing at least one metal ion selected from the group consisting of zinc ions and iron ions were used in combination, and the zinc ions and iron ions were selected. In addition to at least one metal ion, it is possible to remove oxidation products of reducing agents that adversely affect the physical properties and deposition rate of the electroless nickel plating film, and then replenish each component as necessary. As a result, the deposition properties and corrosion resistance of the plating film can be further improved, and the life of the electroless nickel plating solution can be significantly extended.

電気透析の条件については、特に限定はなく、例えば、特公平5−83635号公報に記載されている方法に従って電気透析を行えばよい。例えば、陽イオン交換膜としては、陽イオン交換基としてスルホン酸基又はカルボン酸基を有し、イオン交換容量が1〜3meq/g(乾燥樹脂)程度、膜抵抗が0.1〜4Ω・cm程度の膜を用い、陰イオン交換膜としては、イオン交換容量が1〜4meq/g(乾燥樹脂)程度、膜抵抗が0.1〜4Ω・cm程度であって、4mol/lのNaCl水溶液に対する25℃における拡散定数が1×10−6〜5×10−5cm/秒程度の膜を用いて、電流密度0.1〜10A/dm程度、液温60℃程度以下で電気透析を行うことによって、還元剤の酸化生成物である亜リン酸塩を効率よく除去することができる。 The electrodialysis conditions are not particularly limited. For example, electrodialysis may be performed according to the method described in Japanese Patent Publication No. 5-83635. For example, the cation exchange membrane has a sulfonic acid group or a carboxylic acid group as a cation exchange group, an ion exchange capacity of about 1 to 3 meq / g (dry resin), and a membrane resistance of 0.1 to 4 Ω · cm. An anion exchange membrane having an ion exchange capacity of about 1 to 4 meq / g (dry resin), a membrane resistance of about 0.1 to 4 Ω · cm 2 , and 4 mol / l NaCl. Electrodialysis using a membrane having a diffusion constant of about 1 × 10 −6 to 5 × 10 −5 cm / sec at 25 ° C. with respect to an aqueous solution at a current density of about 0.1 to 10 A / dm 2 and a liquid temperature of about 60 ° C. or less. By performing the above, it is possible to efficiently remove the phosphite which is the oxidation product of the reducing agent.

本発明の無電解ニッケルめっき液の処理方法によれば、亜鉛イオン及びは鉄イオンからなる群から選ばれた少なくとも一種の金属イオンが蓄積した無電解ニッケルめっき液について、ニッケルイオンの損失を抑えて、蓄積した金属イオンを選択的に効率良く除去することができる。   According to the method for treating an electroless nickel plating solution of the present invention, with respect to the electroless nickel plating solution in which at least one metal ion selected from the group consisting of zinc ions and iron ions is accumulated, loss of nickel ions is suppressed. The accumulated metal ions can be selectively and efficiently removed.

処理後の無電解ニッケルめっき液は、液組成を調整することによって、亜鉛イオンが含まれることによる弊害である外観や密着性の低下や、鉄イオンが含まれることによる弊害である外観や耐食性の低下のない良好なめっき皮膜を形成することが可能であり、液寿命が大きく延長される。   After the treatment, the electroless nickel plating solution has an appearance and corrosion resistance that are harmful due to the inclusion of zinc ions, and the appearance and corrosion resistance that are harmful due to the inclusion of iron ions. It is possible to form a good plating film without deterioration, and the liquid life is greatly extended.

更に、本発明の電解処理法と電気透析法を併用することにより、亜鉛イオン及び/又は鉄イオンと同時に還元剤の酸化生成物等も除去することができ、めっき皮膜の析出性や耐食性を更に改善して、無電解ニッケルめっき液の寿命を著しく延長することができる。   Furthermore, by using the electrolytic treatment method and the electrodialysis method of the present invention in combination, the oxidation product of the reducing agent can be removed simultaneously with the zinc ions and / or iron ions, and the deposition properties and corrosion resistance of the plating film are further improved. Improvements can be made to significantly extend the life of the electroless nickel plating solution.

以下、実施例を挙げて本発明を更に詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

実施例1
亜鉛置換皮膜を形成したアルミニウム材料を被めっき物として、3ターンのめっき処理を行った無電解ニッケルめっき液を処理対象として、下記の方法で電解処理を行った。電解処理前の無電解ニッケルめっき液の組成は、下記の通りである。
Example 1
Electrolytic treatment was performed by the following method using an electroless nickel plating solution subjected to a 3-turn plating treatment as an object to be plated with an aluminum material on which a zinc-substituted film was formed. The composition of the electroless nickel plating solution before the electrolytic treatment is as follows.

金属ニッケル 5.0 g/l
次亜リン酸ナトリウム 25.0 g/l
亜リン酸ナトリウム 150.0 g/l
錯化剤 55.0 g/l
(リンゴ酸 40.0 g/l)
(コハク酸 15.0 g/l)
硫酸ナトリウム 60.0 g/l
鉛イオン 0.8mg/l
亜鉛イオン 50.0mg/l
pH 5.0

電解処理槽としては、(株)アストム製の表面積0.5mのカチオン交換膜(商標名:ネオセプタCM−2、乾燥膜重量当たりのイオン交換容量1.6〜2.2meq/g、0.5mol/l NaCl中での電気抵抗2.0〜3.0Ω・cm)を隔膜として用いて、容量120mlの陰極室と容量120mlの陽極室とに分離された塩化ビニル製容器を用いた。
Metallic nickel 5.0 g / l
Sodium hypophosphite 25.0 g / l
Sodium phosphite 150.0 g / l
Complexing agent 55.0 g / l
(Malic acid 40.0 g / l)
(Succinic acid 15.0 g / l)
Sodium sulfate 60.0 g / l
Lead ion 0.8mg / l
Zinc ion 50.0mg / l
pH 5.0

As an electrolytic treatment tank, a cation exchange membrane having a surface area of 0.5 m 2 (trade name: Neocepta CM-2, manufactured by Astom Co., Ltd., ion exchange capacity per dry membrane weight of 1.6 to 2.2 meq / g, 0. A container made of vinyl chloride separated into a cathode chamber with a capacity of 120 ml and an anode chamber with a capacity of 120 ml was used using an electric resistance of 2.0 to 3.0 Ω · cm 2 in 5 mol / l NaCl as a diaphragm.

該電解槽の陰極室には表面積1dmのステンレス陰極を設置し、陽極室には表面積1dmのチタン−白金陽極を設置し、両極の極間距離は、2.5cmとした。 A stainless steel cathode having a surface area of 1 dm 2 was installed in the cathode chamber of the electrolytic cell, a titanium-platinum anode having a surface area of 1 dm 2 was installed in the anode chamber, and the distance between the electrodes was 2.5 cm.

この電解処理槽の陰極室に処理対象の無電解ニッケルめっき液100mlを供給し、陽極室に0.5mol/lの硫酸水溶液100mlを供給して、直流安定化電源を用いて、2Aの直流電流を1時間通電して電解処理を行った。電解処理時の無電解ニッケルめっき液の液温は、25℃とした。   100 ml of the electroless nickel plating solution to be treated is supplied to the cathode chamber of this electrolytic treatment tank, and 100 ml of 0.5 mol / l sulfuric acid aqueous solution is supplied to the anode chamber. Was energized for 1 hour to conduct electrolytic treatment. The liquid temperature of the electroless nickel plating solution during the electrolytic treatment was 25 ° C.

一方、比較試験として、容量120mlの塩化ビニル製容器に、隔膜を設置することなく、表面積1dmのステンレス陰極と、表面積1dmのチタン−白金陽極を極間距離2.5cmで設置した電解処理槽を用いて、該電解処理槽に処理対象の無電解ニッケルめっき液100mlを供給して、液温25℃で、2Aの直流電流を1時間通電して電解処理を行った。 On the other hand, as a comparison test, a vinyl container made chloride capacity 120 ml, without installing a diaphragm, and a stainless cathode surface area 1 dm 2, the titanium surface area 1 dm 2 - electrolytic treatment were placed platinum anode in interelectrode distance 2.5cm Using the bath, 100 ml of the electroless nickel plating solution to be treated was supplied to the electrolytic treatment bath, and a 2 A direct current was applied for 1 hour at a liquid temperature of 25 ° C. to perform the electrolytic treatment.

電解処理後の無電解ニッケルめっき液中のニッケルイオン濃度と亜鉛イオン濃度、pHを下記表1に示す。   The nickel ion concentration, zinc ion concentration, and pH in the electroless nickel plating solution after electrolytic treatment are shown in Table 1 below.

Figure 2005344208
Figure 2005344208

表1から明らかなように、カチオン交換膜によって陰極室と陽極室とに分離された電解処理槽を用いた場合には、亜鉛イオン濃度を35mg/lまで低下させた際のニッケルイオン濃度は4g/l(Ni減少率20%)となり、pHが4.8となったのに対して、カチオン交換膜を設置していない電解処理槽を用いた場合には、亜鉛イオン濃度を35mg/lまで低下させた際のニッケルイオン濃度は3g/l(Ni減少率40%)となり、pHは4.6まで低下した。   As is apparent from Table 1, when an electrolytic treatment tank separated into a cathode chamber and an anode chamber by a cation exchange membrane was used, the nickel ion concentration when the zinc ion concentration was reduced to 35 mg / l was 4 g. / L (Ni reduction rate 20%) and pH was 4.8, whereas when an electrolytic treatment tank without a cation exchange membrane was used, the zinc ion concentration was reduced to 35 mg / l. The nickel ion concentration when lowered was 3 g / l (Ni reduction rate 40%), and the pH was lowered to 4.6.

この結果から、カチオン交換膜を設置した電解処理槽を用いて電解処理を行うことによって、ニッケルイオンの析出を抑制して、亜鉛イオンを効率良く除去できることが確認できた。   From this result, it was confirmed that by performing electrolytic treatment using an electrolytic treatment tank provided with a cation exchange membrane, precipitation of nickel ions can be suppressed and zinc ions can be efficiently removed.

更に、カチオン交換膜を設置した電解処理槽を用いて電解処理を行った無電解ニッケルめっき液100mlについて、硫酸ニッケルを添加してニッケルイオン濃度を5g/lとし、水酸化ナトリウムを添加してpHを5.0に調整した。その後、亜鉛置換皮膜を形成したアルミニウム合金板(合金番号5052、表面積:0.1dm)を被めっき物として、液温90℃で30分間無電解ニッケルめっき処理を行った。 Furthermore, about 100 ml of the electroless nickel plating solution which electrolyzed using the electrolytic treatment tank which installed the cation exchange membrane, nickel sulfate was added to make nickel ion density | concentration 5g / l, and sodium hydroxide was added and pH. Was adjusted to 5.0. Thereafter, an electroless nickel plating treatment was performed at a liquid temperature of 90 ° C. for 30 minutes using an aluminum alloy plate (alloy number 5052, surface area: 0.1 dm 2 ) on which a zinc-substituted film was formed as an object to be plated.

形成されためっき皮膜について、目視によって外観を評価し、さらにJIS H8504記載のめっきの密着性試験(18.曲げ試験方法)により、密着性を評価した。   The appearance of the formed plating film was visually evaluated, and the adhesion was further evaluated by a plating adhesion test described in JIS H8504 (18. bending test method).

比較試験として、電解処理前の無電解ニッケルめっき液を用いて同様の条件で無電解ニッケルめっき処理を行い、外観及び密着性を評価した。   As a comparative test, electroless nickel plating treatment was performed under the same conditions using an electroless nickel plating solution before electrolytic treatment, and the appearance and adhesion were evaluated.

その結果、電解処理前の無電解ニッケルめっき液では、形成されためっき皮膜は、外観及び密着性が何れも不良であったのに対して、カチオン交換膜を設置した電解処理槽を用いて電解処理を行った無電解ニッケルめっき液によれば、外観及び密着性の良好な無電解ニッケルめっき皮膜を形成できた。   As a result, in the electroless nickel plating solution before the electrolytic treatment, the formed plating film was poor in both appearance and adhesion, whereas it was electrolyzed using an electrolytic treatment tank in which a cation exchange membrane was installed. According to the treated electroless nickel plating solution, an electroless nickel plating film with good appearance and adhesion could be formed.

更に、上記した方法で電解処理後、ニッケルイオン濃度5g/l、pH5.0に調整しためっき液を用いて、無電解ニッケルめっき処理を引き続き行った。このめっき液について、1ターンのめっき処理終了後、上記方法と同様にして電解処理によって亜鉛イオンを減少させ、次いで、電気透析処理を行った。   Further, after the electrolytic treatment by the above-described method, the electroless nickel plating treatment was continuously performed using a plating solution adjusted to a nickel ion concentration of 5 g / l and pH 5.0. With respect to this plating solution, after one turn of plating treatment, zinc ions were reduced by electrolytic treatment in the same manner as described above, and then electrodialysis treatment was performed.

電気透析処理は、(株)アストム製の透析槽[カチオン交換膜:CM−2(乾燥膜重量当たりのイオン交換容量1.6〜2.2meq/g、0.5mol/lNaCl中での電気抵抗2.0〜3.0Ω・cm)、アニオン交換膜:AM−1(乾燥膜重量当たりのイオン交換容量1.8〜2.2meq/g、0.5mol/lNaCl中での電気抵抗1.3〜2.0Ω・cm)、それぞれ1dm×5対]を用い、電流3Aで2.5時間通電することによって行い、1ターンのめっき処理によって蓄積する量に相当する亜リン酸イオンを除去した。尚、透析槽の容量が2.5リットルであったので、電解処理を行った無電解ニッケルめっき液の液量が2.5リットルとなった段階で一括して電気透析処理を行った。 The electrodialysis treatment was performed using a dialysis tank manufactured by Astom Co., Ltd. [cation exchange membrane: CM-2 (ion exchange capacity per dry membrane weight: 1.6 to 2.2 meq / g, electric resistance in 0.5 mol / l NaCl] 2.0-3.0 Ω · cm 2 ), anion exchange membrane: AM-1 (ion exchange capacity per dry membrane weight 1.8-2.2 meq / g, electrical resistance in 0.5 mol / l NaCl 1. 3 to 2.0 Ω · cm 2 ), 1 dm 2 × 5 pairs each], and by conducting current for 2.5 hours at a current of 3 A, phosphite ions corresponding to the amount accumulated by one turn of plating treatment Removed. In addition, since the capacity | capacitance of the dialysis tank was 2.5 liters, when the liquid volume of the electroless nickel plating solution which performed electrolysis was 2.5 liters, the electrodialysis process was collectively performed.

この様にして、亜鉛イオン除去のための電解処理と亜リン酸イオンの除去のための電気透析処理を行った無電解ニッケルめっき液について、建浴時のめっき液組成と同様の組成となるように、各成分を添加して液組成を調整した。この無電解ニッケルめっき液を用いて、引き続きめっき処理を行い、1ターンのめっき処理毎に、電解処理と電気透析処理を行い、液組成を調整することを繰り返し、処理量が10ターンとなるまで無電解ニッケルめっき処理を行った。10ターンのめっき処理終了後、電解処理と電気透析処理を行い、液組成を調整した無電解ニッケルめっき液100mlを用いて、亜鉛置換皮膜を形成したアルミニウム合金板(合金番号5052、表面積:0.1dm)を被めっき物として液温90℃で30分間無電解ニッケルめっき処理を行った。その結果、形成された無電解ニッケルめっき皮膜は、外観及び密着性が良好であった。 In this way, the electroless nickel plating solution that has been subjected to the electrolytic treatment for removing zinc ions and the electrodialysis treatment for removing phosphite ions will have the same composition as the plating solution composition during bathing. In addition, each component was added to adjust the liquid composition. Using this electroless nickel plating solution, the plating process is continued, and for each turn of the plating process, the electrolytic process and the electrodialysis process are repeated, and the liquid composition is adjusted repeatedly until the processing amount reaches 10 turns. An electroless nickel plating process was performed. After the completion of the 10-turn plating treatment, an aluminum alloy plate (alloy number 5052, surface area: 0. 10 mm) on which a zinc substitution film was formed using 100 ml of an electroless nickel plating solution that was subjected to electrolytic treatment and electrodialysis treatment and whose liquid composition was adjusted. 1 dm 2 ) as an object to be plated, electroless nickel plating treatment was performed at a liquid temperature of 90 ° C. for 30 minutes. As a result, the formed electroless nickel plating film had good appearance and adhesion.

この結果から、カチオン交換膜によって陰極室と陽極室に分離された電解処理槽を用いた電解処理と、電気透析処理を組み合わせて行うことによって、無電解ニッケルめっき液の寿命を大きく延長できることが確認できた。   From this result, it is confirmed that the life of the electroless nickel plating solution can be greatly extended by combining the electrodialysis process with the electrolysis process using the electrolytic treatment tank separated into the cathode chamber and the anode chamber by the cation exchange membrane. did it.

実施例2
実施例1における処理対象と同様の組成の無電解ニッケルめっき液について、下記の方法で電解処理を行った。
Example 2
The electroless nickel plating solution having the same composition as that of the treatment target in Example 1 was subjected to electrolytic treatment by the following method.

容量120mlの塩化ビニル製容器に、隔膜を設置することなく、表面積1dmのステンレス陰極と表面積1dmのチタン−白金陽極を、極間距離2.5cmで設置して電解処理槽を作製した。この電解処理槽に処理対象の無電解ニッケルめっき液100mlを入れ、液温25℃で、(株)中央製作所製の高速PRパルス電源装置:PPS−050−100を用いて、下記表2に示す条件でPRパルス電流を通電して、1時間の電解処理を行った。 Vinyl vessel made chloride capacity 120 ml, without installing a diaphragm, titanium stainless cathode and a surface area 1 dm 2 of surface area 1 dm 2 - platinum anode was fabricated electrolytic cell installed in interelectrode distance 2.5 cm. In this electrolytic treatment tank, 100 ml of the electroless nickel plating solution to be treated is placed, and at a liquid temperature of 25 ° C., it is shown in Table 2 below using a high-speed PR pulse power supply device: PPS-050-100 manufactured by Chuo Seisakusho Co., Ltd. A PR pulse current was applied under conditions, and an electrolytic treatment was performed for 1 hour.

電解処理後の無電解ニッケルめっき液中のNi濃度とZn濃度を下記表2に示す。   Table 2 below shows the Ni concentration and the Zn concentration in the electroless nickel plating solution after the electrolytic treatment.

Figure 2005344208
Figure 2005344208

表2から明らかなように、PRパルス電流を用いて無電解ニッケルめっき液の電解処理を行うことにより、ニッケルイオンの析出を抑制して、亜鉛イオンを優先的に除去できることが判る。   As is apparent from Table 2, it can be seen that by performing the electrolysis treatment of the electroless nickel plating solution using the PR pulse current, the precipitation of nickel ions can be suppressed and the zinc ions can be preferentially removed.

特に、正電解電流密度1〜9A/dm、逆電解電流密度3.5〜20A/dm、正電解時間4.5〜20m秒、逆電解時間0.2〜0.9m秒とする場合には、ニッケルイオンの除去率を30重量%以下に抑えながら、亜鉛イオンの10重量%以上除去することができ、処理後の無電解ニッケルめっき液へのニッケルイオンの補給量を大幅に減少できることが判る。 In particular, when the positive electrolysis current density is 1 to 9 A / dm 2 , the reverse electrolysis current density is 3.5 to 20 A / dm 2 , the normal electrolysis time is 4.5 to 20 msec, and the reverse electrolysis time is 0.2 to 0.9 msec. Can remove 10% by weight or more of zinc ions while suppressing the removal rate of nickel ions to 30% by weight or less, and can greatly reduce the replenishment amount of nickel ions to the electroless nickel plating solution after treatment. I understand.

また、正電解電流密度5A/dm、逆電解電流密度10A/dm、正電解時間10m秒、逆電解時間0.5m秒の電解処理条件で処理された無電解ニッケルめっき液100mlについて、硫酸ニッケルを添加してニッケルイオン濃度を5g/lとし、水酸化ナトリウムを添加してpHを5.0に調整した後、亜鉛置換皮膜を形成したアルミニウム合金板(合金番号5052、表面積:0.1dm)を被めっき物として、液温90℃で30分間無電解ニッケルめっき処理を行い、実施例1と同様にして外観及び密着性を評価した。その結果、形成されためっき皮は、外観及び密着性がともに良好であった。 Further, about 100 ml of electroless nickel plating solution treated under electrolytic treatment conditions of a positive electrolysis current density of 5 A / dm 2 , a reverse electrolysis current density of 10 A / dm 2 , a forward electrolysis time of 10 milliseconds, and a reverse electrolysis time of 0.5 milliseconds, Nickel was added to adjust the nickel ion concentration to 5 g / l, sodium hydroxide was added to adjust the pH to 5.0, and then an aluminum alloy plate (alloy number 5052, surface area: 0.1 dm) on which a zinc-substituted film was formed. 2 ) was subjected to electroless nickel plating at a liquid temperature of 90 ° C. for 30 minutes, and the appearance and adhesion were evaluated in the same manner as in Example 1. As a result, the formed plating skin was good in both appearance and adhesion.

更に、この方法で得られた無電解ニッケルめっき液について、実施例1と同様にして1ターンのめっき処理毎に、PRパルス電解による電解処理と電気透析処理を繰り返し行い、液組成を調整して、処理量が10ターンとなるまで無電解ニッケルめっき処理を行った。10ターン処理後の無電解ニッケルめっき液について、PRパルス電解処理と電気透析処理を行い、液組成を調整した。その後、このめっき液100mlを用いて、亜鉛置換皮膜を形成したアルミニウム合金板(合金番号5052、表面積:0.1dm)を被めっき物として、液温90℃で30分間無電解ニッケルめっき処理を行ったところ、形成された無電解ニッケルめっき皮膜の外観及び密着性は良好であった。この結果から、PRパルス電解処理と、電気透析処理を組み合わせて行うことによって、無電解ニッケルめっき液の寿命を大きく延長できることが確認できた。 Further, for the electroless nickel plating solution obtained by this method, the electrolytic composition by electrolysis and electrodialysis treatment by PR pulse electrolysis was repeated for each turn of the plating treatment in the same manner as in Example 1 to adjust the liquid composition. The electroless nickel plating treatment was performed until the treatment amount reached 10 turns. The electroless nickel plating solution after 10 turns was subjected to PR pulse electrolysis and electrodialysis to adjust the solution composition. Thereafter, using 100 ml of the plating solution, an aluminum alloy plate (alloy number 5052, surface area: 0.1 dm 2 ) on which a zinc replacement film is formed is subjected to electroless nickel plating treatment at a liquid temperature of 90 ° C. for 30 minutes. As a result, the appearance and adhesion of the formed electroless nickel plating film were good. From this result, it was confirmed that the life of the electroless nickel plating solution can be greatly extended by performing a combination of PR pulse electrolysis and electrodialysis.

実施例3
実施例1で用いたものと同様のカチオン交換膜で陰極室と陽極室に分離された電解処理槽を用い、直流電流で電解処理することに代えて、PRパルス電源を用いて、正電解電流5A、逆電解電流10A、正電解時間10m秒、逆電解時間0.5m秒、総電解時間1時間で、PRパルス電流による電解処理を行った。
Example 3
Using a cation exchange membrane similar to that used in Example 1, an electrolytic treatment tank separated into a cathode chamber and an anode chamber, and using a PR pulse power source instead of electrolytic treatment with a direct current, a positive electrolytic current The electrolysis was performed with a PR pulse current at 5 A, reverse electrolysis current 10 A, forward electrolysis time 10 ms, reverse electrolysis time 0.5 ms, and total electrolysis time 1 hour.

その結果、電解処理後の無電解ニッケルめっき液中の亜鉛イオン濃度は35mg/l(除去率30%)、ニッケルイオン濃度は4.5g/l(減少率10%)であり、直流電流を通電する場合と比べて、ニッケルの析出をより一層抑制できることが確認できた。   As a result, the zinc ion concentration in the electroless nickel plating solution after electrolytic treatment is 35 mg / l (removal rate 30%), the nickel ion concentration is 4.5 g / l (reduction rate 10%), and direct current is applied. It was confirmed that nickel deposition can be further suppressed as compared with the case where it is performed.

この方法では、正電解電流密度1〜9A/dm、逆電解電流密度3.5〜20A/dm、正電解時間4.5〜20m秒、逆電解時間0.2〜0.9m秒の範囲でパルス条件を各種変更した場合にも、ニッケルイオンの除去率を10重量%程度に抑えながら、亜鉛イオンの30重量%程度を除去することが可能であった。 In this method, a positive electrolysis current density of 1 to 9 A / dm 2 , a reverse electrolysis current density of 3.5 to 20 A / dm 2 , a normal electrolysis time of 4.5 to 20 msec, and a reverse electrolysis time of 0.2 to 0.9 msec. Even when various pulse conditions were changed in the range, it was possible to remove about 30% by weight of zinc ions while suppressing the removal rate of nickel ions to about 10% by weight.

また、正電解電流密度5A/dm、逆電解電流密度10A/dm、正電解時間10m秒、逆電解時間0.5m秒での電解処理条件で処理された無電解ニッケルめっき液について、硫酸ニッケルを添加してニッケルイオン濃度を5g/lとし、また水酸化ナトリウムを添加してpHを5.0に調整した。その後、このめっき液100mlを用いて、亜鉛置換皮膜を形成したアルミニウム合金板(合金番号5052、表面積:0.1dm)を被めっき物として、液温90℃で30分間無電解ニッケルめっき処理を行い、実施例1と同様にして外観及び密着性を評価した。その結果、形成されためっき皮は、外観及び密着性がともに良好であった。 Further, regarding an electroless nickel plating solution treated under electrolytic treatment conditions of a positive electrolysis current density of 5 A / dm 2 , a reverse electrolysis current density of 10 A / dm 2 , a forward electrolysis time of 10 milliseconds, and a reverse electrolysis time of 0.5 milliseconds, Nickel was added to adjust the nickel ion concentration to 5 g / l, and sodium hydroxide was added to adjust the pH to 5.0. Thereafter, using 100 ml of the plating solution, an aluminum alloy plate (alloy number 5052, surface area: 0.1 dm 2 ) on which a zinc replacement film is formed is subjected to electroless nickel plating treatment at a liquid temperature of 90 ° C. for 30 minutes. The appearance and adhesion were evaluated in the same manner as in Example 1. As a result, the formed plating skin was good in both appearance and adhesion.

更に、この方法で得られた無電解ニッケルめっき液について、実施例1と同様にして、1ターンのめっき処理毎に、PRパルス電解による電解処理と電気透析処理を繰り返し行い、液組成を調整して、10ターンとなるまで無電解ニッケルめっき処理を行った。10ターン処理後の無電解ニッケルめっき液について、PRパルス電解処理と電気透析処理を行い、液組成を調整した。その後、このめっき液100mlについて、亜鉛置換皮膜を形成したアルミニウム合金板(合金番号5052、表面積:0.1dm)を被めっき物として、液温90℃で30分間無電解ニッケルめっき処理を行ったところ、形成された無電解ニッケルめっき皮膜の外観及び密着性は良好であった。この結果から、カチオン交換膜で陰極室と陽極室に分離された電解処理槽を用いたPRパルス電解処理と、電気透析処理を組み合わせて行うことによって、無電解ニッケルめっき液の寿命を大きく延長できることが確認できた。 Further, for the electroless nickel plating solution obtained by this method, the electrolytic composition by electrolysis and electrodialysis treatment by PR pulse electrolysis was repeated for each turn of the plating treatment in the same manner as in Example 1 to adjust the liquid composition. Then, electroless nickel plating treatment was performed until 10 turns. The electroless nickel plating solution after 10 turns was subjected to PR pulse electrolysis and electrodialysis to adjust the solution composition. Then, about 100 ml of this plating solution, an electroless nickel plating process was performed at a liquid temperature of 90 ° C. for 30 minutes using an aluminum alloy plate (alloy number 5052, surface area: 0.1 dm 2 ) on which a zinc-substituted film was formed as an object to be plated. However, the appearance and adhesion of the formed electroless nickel plating film were good. From this result, the life of the electroless nickel plating solution can be greatly extended by performing a combination of PR pulse electrolytic treatment using an electrolytic treatment tank separated into a cathode chamber and an anode chamber by a cation exchange membrane and electrodialysis treatment. Was confirmed.

実施例4
冷間圧延鋼板(JIS G3141番号SPCC、表面積:0.1dm)を被めっき物として3ターンのめっき処理を行った無電解ニッケルめっき液を処理対象として、実施例1と同様の方法で電解処理を行った。電解処理前の無電解ニッケルめっき液の組成は、下記の通りである。
Example 4
Electrolytic treatment is performed in the same manner as in Example 1 using an electroless nickel plating solution that has been plated for 3 turns using a cold-rolled steel plate (JIS G3141 number SPCC, surface area: 0.1 dm 2 ) as an object to be plated. Went. The composition of the electroless nickel plating solution before the electrolytic treatment is as follows.

金属ニッケル 5.0 g/l
次亜リン酸ナトリウム 25.0 g/l
亜リン酸ナトリウム 150.0 g/l
錯化剤 55.0 g/l
(リンゴ酸 40.0 g/l)
(コハク酸 15.0 g/l)
硫酸ナトリウム 60.0 g/l
鉛イオン 0.8mg/l
鉄イオン 50.0mg/l
pH 5.0
一方、比較試験として、容量120mlの塩化ビニル製容器に、隔膜を設置することなく、表面積1dmのステンレス陰極と、表面積1dmのチタン−白金陽極を極間距離2.5cmで設置した電解処理槽を用いて、該電解処理槽に処理対象の無電解ニッケルめっき液100mlを供給して、液温25℃で、2Aの直流電流を1時間通電して電解処理を行った。
Metallic nickel 5.0 g / l
Sodium hypophosphite 25.0 g / l
Sodium phosphite 150.0 g / l
Complexing agent 55.0 g / l
(Malic acid 40.0 g / l)
(Succinic acid 15.0 g / l)
Sodium sulfate 60.0 g / l
Lead ion 0.8mg / l
Iron ion 50.0mg / l
pH 5.0
On the other hand, as a comparison test, a vinyl container made chloride capacity 120 ml, without installing a diaphragm, and a stainless cathode surface area 1 dm 2, the titanium surface area 1 dm 2 - electrolytic treatment were placed platinum anode in interelectrode distance 2.5cm Using the bath, 100 ml of the electroless nickel plating solution to be treated was supplied to the electrolytic treatment bath, and a 2 A direct current was applied for 1 hour at a liquid temperature of 25 ° C. to perform the electrolytic treatment.

電解処理後の無電解ニッケルめっき液中のニッケルイオン濃度と鉄イオン濃度、pHを下記表1に示す。   Table 1 below shows the nickel ion concentration, iron ion concentration, and pH in the electroless nickel plating solution after electrolytic treatment.

Figure 2005344208
Figure 2005344208

表1から明らかなように、カチオン交換膜によって陰極室と陽極室とに分離された電解処理槽を用いた場合には、鉄イオン濃度を35mg/lまで低下させた際のニッケルイオン濃度は4g/l(Ni減少率20%)でpHが4.8となったのに対して、カチオン交換膜を設置していない電解処理槽を用いた場合には、鉄イオン濃度を35mg/lまで低下させた際のニッケルイオン濃度は3g/l(Ni減少率40%)でpHが4.6まで低下した。   As is apparent from Table 1, when an electrolytic treatment tank separated into a cathode chamber and an anode chamber by a cation exchange membrane was used, the nickel ion concentration when the iron ion concentration was reduced to 35 mg / l was 4 g. / L (Ni reduction rate 20%), the pH became 4.8, but when an electrolytic treatment tank without a cation exchange membrane was used, the iron ion concentration was reduced to 35 mg / l. The nickel ion concentration during the treatment was 3 g / l (Ni reduction rate 40%), and the pH decreased to 4.6.

この結果から、カチオン交換膜を設置した電解処理槽を用いて電解処理を行うことによって、ニッケルイオンの析出を抑制して、鉄イオンを効率良く除去できることが確認できた。   From this result, it was confirmed that by performing electrolytic treatment using an electrolytic treatment tank provided with a cation exchange membrane, precipitation of nickel ions can be suppressed and iron ions can be efficiently removed.

更に、上記した方法でカチオン電解膜を設置した電解処理槽を用いて電解処理を行った後、硫酸ニッケルを添加してニッケルイオン濃度を5g/lとし、水酸化ナトリウムを添加してpHを5.0に調整しためっき液を用いて、冷間圧延鋼板(JIS G3141番号SPCC、表面積:0.1dm)を被めっき物として無電解ニッケルめっき処理を引き続き行った。このめっき液について、1ターンのめっき処理終了後、上記方法と同様にして電解処理によって鉄イオンを減少させ、次いで、電気透析処理を行った。 Furthermore, after performing an electrolytic treatment using the electrolytic treatment tank in which the cation electrolytic membrane is installed by the above-described method, nickel sulfate is added to make the nickel ion concentration 5 g / l, and sodium hydroxide is added to adjust the pH to 5 Using a plating solution adjusted to 0.0, an electroless nickel plating process was continuously performed using a cold-rolled steel plate (JIS G3141 number SPCC, surface area: 0.1 dm 2 ) as an object to be plated. With respect to this plating solution, after one turn of plating treatment was completed, iron ions were reduced by electrolytic treatment in the same manner as described above, and then electrodialysis treatment was performed.

電気透析処理は、(株)アストム製の透析槽[カチオン交換膜:CM−2(乾燥膜重量当たりのイオン交換容量1.6〜2.2meq/g、0.5mol/lNaCl中での電気抵抗2.0〜3.0Ω・cm)、アニオン交換膜:AM−1(乾燥膜重量当たりのイオン交換容量1.8〜2.2meq/g、0.5mol/lNaCl中での電気抵抗1.3〜2.0Ω・cm)、それぞれ1dm×5対]を用いて、電流3Aで2.5時間の条件で処理し、無電解ニッケルめっき液中に蓄積した亜リン酸イオンの1ターン分を除去した。尚、透析槽の容量が2.5リットルであったので、電解処理を行った無電解ニッケルめっき液の液量が2.5リットルとなった段階で一括して電気透析処理を行った。 The electrodialysis treatment was performed using a dialysis tank manufactured by Astom Co., Ltd. [cation exchange membrane: CM-2 (ion exchange capacity per dry membrane weight: 1.6 to 2.2 meq / g, electric resistance in 0.5 mol / l NaCl] 2.0-3.0 Ω · cm 2 ), anion exchange membrane: AM-1 (ion exchange capacity per dry membrane weight 1.8-2.2 meq / g, electrical resistance in 0.5 mol / l NaCl 1. 3 to 2.0 Ω · cm 2 ), each of 1 dm 2 × 5 pairs], 1 turn of phosphite ions accumulated in the electroless nickel plating solution treated at a current of 3 A for 2.5 hours Minutes removed. In addition, since the capacity | capacitance of the dialysis tank was 2.5 liters, when the liquid volume of the electroless nickel plating solution which performed electrolysis was 2.5 liters, the electrodialysis process was collectively performed.

このようにして、鉄イオン除去のための電解処理と亜リン酸イオンの除去のための電気透析処理を行った無電解ニッケルめっき液について、建浴時のめっき液組成と同様の組成となるように、各成分を添加して液組成を調整した。この無電解ニッケルめっき液を用いて、引き続きめっき処理を行い、1ターンのめっき処理毎に、電解処理と電気透析処理を行い、液組成を調整することを繰り返し、処理量が10ターンとなるまで無電解ニッケルめっき処理を行った。10ターンのめっき処理終了後、電解処理と電気透析処理を行い、硫酸ニッケルを添加してニッケルイオン濃度を5g/lとし、水酸化ナトリウムを添加してpHを5.0に調整した無電解ニッケルめっき液100mlを用いて、冷間圧延鋼板(JIS G3141番号SPCC、表面積:0.1dm)を被めっき物として、液温90℃で30分間無電解ニッケルめっき処理を行った。 In this way, the electroless nickel plating solution that has been subjected to the electrolytic treatment for removing iron ions and the electrodialysis treatment for removing phosphite ions has the same composition as the plating solution composition at the time of building bath. In addition, each component was added to adjust the liquid composition. Using this electroless nickel plating solution, the plating process is continued, and for each turn of the plating process, the electrolytic process and the electrodialysis process are repeated, and the liquid composition is adjusted repeatedly until the processing amount reaches 10 turns. An electroless nickel plating process was performed. After 10 turns of plating treatment, electrolysis treatment and electrodialysis treatment were performed, nickel sulfate was added to make nickel ion concentration 5 g / l, and sodium hydroxide was added to adjust pH to 5.0. Using 100 ml of the plating solution, an electroless nickel plating treatment was performed at a liquid temperature of 90 ° C. for 30 minutes using a cold-rolled steel plate (JIS G3141 number SPCC, surface area: 0.1 dm 2 ) as an object to be plated.

形成されためっき皮膜について、目視によって外観を評価し、さらにJIS Z2371記載のめっきの耐食性試験(塩水噴霧試験方法)のレイティングナンバー法により、耐食性を評価した。   About the formed plating film, the external appearance was evaluated by visual observation, and the corrosion resistance was further evaluated by the rating number method of the plating corrosion resistance test (salt water spray test method) described in JIS Z2371.

比較試験として、上記した方法で10ターンのめっき処理終了後、電解処理を行う前の無電解ニッケルめっき液を用いて、同様の条件で無電解ニッケルめっき処理を行い、外観及び耐食性を評価した。   As a comparative test, the electroless nickel plating solution was subjected to the same conditions using the electroless nickel plating solution before the electrolytic treatment after the completion of 10 turns of plating by the above-described method, and the appearance and corrosion resistance were evaluated.

電解処理前の無電解ニッケルめっき液、電解処理後の無電解ニッケルめっき液、電解処理後に電気透析処理された無電解ニッケルめっき液の各めっき液について、液中の鉄イオン濃度と上記した方法で行った外観及び耐食性の評価結果を下記表4に示す。尚、外観及び耐食性については、各めっき液のニッケルイオン濃度を5g/l、pHを5.0に調整して評価した。   For each of the electroless nickel plating solution before electrolytic treatment, the electroless nickel plating solution after electrolytic treatment, and the electroless nickel plating solution electrodialyzed after electrolytic treatment, the concentration of iron ions in the solution and the method described above Table 4 below shows the evaluation results of appearance and corrosion resistance. The appearance and corrosion resistance were evaluated by adjusting the nickel ion concentration of each plating solution to 5 g / l and the pH to 5.0.

Figure 2005344208
Figure 2005344208

表4の結果から明らかなように、10ターンの無電解ニッケルめっきを行った後、電解処理を行った無電解ニッケルめっき液、及びその後更に電気透析処理を行った無電解ニッケルめっき液を用いた場合には、形成されためっき皮膜の外観は良好であった。また、耐食性試験結果については、電解処理を行っためっき液では、塩水噴霧試験によるレイティングナンバーが9.8であり、その後更に電気透析処理を行っためっき液では、レイティングナンバーが9.9であり、いずれも良好な耐食性を示すものであった。   As is clear from the results in Table 4, after electroless nickel plating for 10 turns was performed, an electroless nickel plating solution subjected to electrolytic treatment and an electroless nickel plating solution subjected to further electrodialysis treatment were used. In some cases, the appearance of the formed plating film was good. As for the corrosion resistance test results, the plating solution subjected to the electrolytic treatment has a rating number of 9.8 by the salt spray test, and the plating solution subjected to further electrodialysis treatment has a rating number of 9.9. All showed good corrosion resistance.

これに対して、10ターンの無電解ニッケルめっき処理後、電解処理を行っていない無電解ニッケルめっき液を用いた場合には、形成されためっき皮膜は、ムラが発生し、耐食性も劣るものであった。   On the other hand, when an electroless nickel plating solution not subjected to electrolytic treatment is used after 10 turns of electroless nickel plating treatment, the formed plating film is uneven and has poor corrosion resistance. there were.

この結果から、カチオン交換膜によって陰極室と陽極室に分離された電解処理槽を用いた電解処理と、電気透析処理を組み合わせて行うことによって、無電解ニッケルめっき液の寿命を大きく延長できることが確認できた。   From this result, it is confirmed that the life of the electroless nickel plating solution can be greatly extended by combining the electrodialysis process with the electrolysis process using the electrolytic treatment tank separated into the cathode chamber and the anode chamber by the cation exchange membrane. did it.

カチオン交換膜によって陰極室と陽極室とに分離された電解処理槽の概略図。The schematic diagram of the electrolytic treatment tank isolate | separated into the cathode chamber and the anode chamber by the cation exchange membrane.

Claims (5)

カチオン交換膜によって陰極室と陽極室に分離された電解処理槽を用い、亜鉛イオン及び鉄イオンからなる群から選ばれた少なくとも一種の金属イオンを含有する無電解ニッケルめっき液を陰極室に供給し、導電性を有する水溶液を陽極室に供給して、直流電流を通電して電解処理を行うことを特徴とする無電解ニッケルめっき液の処理方法。 Using an electrolytic treatment tank separated into a cathode chamber and an anode chamber by a cation exchange membrane, an electroless nickel plating solution containing at least one metal ion selected from the group consisting of zinc ions and iron ions is supplied to the cathode chamber. A method for treating an electroless nickel plating solution, wherein an electrolytic solution is supplied by supplying a conductive aqueous solution to the anode chamber and passing a direct current. 亜鉛イオン及び鉄イオンからなる群から選ばれた少なくとも一種の金属イオンを含有する無電解ニッケルめっき液を被処理物として、PRパルス電流を通電して電解処理を行うことを特徴とする無電解ニッケルめっき液の処理方法。 Electroless nickel characterized in that an electroless nickel plating solution containing at least one metal ion selected from the group consisting of zinc ions and iron ions is used as an object to be electrolyzed by applying a PR pulse current. Treatment method for plating solution. カチオン交換膜によって陰極室と陽極室に分離された電解処理槽を用い、亜鉛イオン及び鉄イオンからなる群から選ばれた少なくとも一種の金属イオンを含有する無電解ニッケルめっき液を陰極室に供給し、導電性を有する水溶液を陽極室に供給して、PRパルス電流を通電して電解処理を行うことを特徴とする無電解ニッケルめっき液の処理方法。 Using an electrolytic treatment tank separated into a cathode chamber and an anode chamber by a cation exchange membrane, an electroless nickel plating solution containing at least one metal ion selected from the group consisting of zinc ions and iron ions is supplied to the cathode chamber. A method for treating an electroless nickel plating solution, comprising conducting an electrolytic treatment by supplying an aqueous solution having conductivity to an anode chamber and supplying a PR pulse current. 正電解電流密度:1〜9A/dm、逆電解電流密度:3.5〜20A/dm、正電解時間:4.5〜20m秒、逆電解時間:0.2〜0.9m秒の条件でPRパルス電流を通電して電解処理を行うことを特徴とする請求項2又は3に記載の無電解ニッケルめっき液の処理方法。 Positive electrolysis current density: 1-9 A / dm 2 , reverse electrolysis current density: 3.5-20 A / dm 2 , normal electrolysis time: 4.5-20 msec, reverse electrolysis time: 0.2-0.9 msec 4. The method for treating an electroless nickel plating solution according to claim 2, wherein the electrolytic treatment is performed by applying a PR pulse current under conditions. 請求項1〜4のいずれかに記載の無電解ニッケルめっき液の処理方法であって、更に、電解処理を行う前又は電解処理を行った後、陽極と陰極の間に陽イオン交換膜と陰イオン交換膜を交互に配列した電気透析槽を用いて処理対象の無電解ニッケルめっき液を該電気透析槽の脱塩室に供給して電気透析を行うことを特徴とする無電解ニッケルめっき液の処理方法。 The method for treating an electroless nickel plating solution according to any one of claims 1 to 4, further comprising a cation exchange membrane and an anion between the anode and the cathode before the electrolytic treatment or after the electrolytic treatment. An electroless nickel plating solution characterized in that electrodialysis is performed by supplying an electroless nickel plating solution to be treated to a desalting chamber of the electrodialysis vessel using an electrodialysis vessel in which ion exchange membranes are alternately arranged. Processing method.
JP2004269132A 2004-05-06 2004-09-16 Treatment method of electroless nickel plating solution Expired - Fee Related JP4517177B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004269132A JP4517177B2 (en) 2004-05-06 2004-09-16 Treatment method of electroless nickel plating solution

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004137185 2004-05-06
JP2004269132A JP4517177B2 (en) 2004-05-06 2004-09-16 Treatment method of electroless nickel plating solution

Publications (2)

Publication Number Publication Date
JP2005344208A true JP2005344208A (en) 2005-12-15
JP4517177B2 JP4517177B2 (en) 2010-08-04

Family

ID=35496852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004269132A Expired - Fee Related JP4517177B2 (en) 2004-05-06 2004-09-16 Treatment method of electroless nickel plating solution

Country Status (1)

Country Link
JP (1) JP4517177B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009185338A (en) * 2008-02-06 2009-08-20 Okuno Chem Ind Co Ltd Treatment method for electroless nickel plating solution
JP2010022970A (en) * 2008-07-22 2010-02-04 Canon Inc Electrodialyzer
WO2014030779A1 (en) * 2012-08-22 2014-02-27 한양대학교 에리카산학협력단 Formation method for copper material formed so as to have nano-bicrystal structure, and copper material produced thereby

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59120290A (en) * 1982-12-27 1984-07-11 Daido Chem Eng Kk Regeneration of sulfuric acid plating liquid waste
JPS63303078A (en) * 1987-06-01 1988-12-09 Tokuyama Soda Co Ltd Treatment of chemical nickel plating solution
JPH06299364A (en) * 1993-04-09 1994-10-25 Yasuhiko Ito Device for treating waste liquid of electroless nickel plating
JPH11124679A (en) * 1997-10-17 1999-05-11 Kunimitsu Mekki Kogyo Kk Method for electrolyzing electroless nickel plating waste solution
JP2003201572A (en) * 2001-12-31 2003-07-18 Takaaki Adachi Recycling system for catalyst treatment solution
JP2004052029A (en) * 2002-07-18 2004-02-19 Okuno Chem Ind Co Ltd Treatment method and treatment apparatus for electroless nickel-plating liquid
JP2004131775A (en) * 2002-10-09 2004-04-30 Nihon Kagaku Sangyo Co Ltd Method for treating aged electroless nickel plating solution

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59120290A (en) * 1982-12-27 1984-07-11 Daido Chem Eng Kk Regeneration of sulfuric acid plating liquid waste
JPS63303078A (en) * 1987-06-01 1988-12-09 Tokuyama Soda Co Ltd Treatment of chemical nickel plating solution
JPH0583635B2 (en) * 1987-06-01 1993-11-26 Tokuyama Sooda Kk
JPH06299364A (en) * 1993-04-09 1994-10-25 Yasuhiko Ito Device for treating waste liquid of electroless nickel plating
JPH11124679A (en) * 1997-10-17 1999-05-11 Kunimitsu Mekki Kogyo Kk Method for electrolyzing electroless nickel plating waste solution
JP2003201572A (en) * 2001-12-31 2003-07-18 Takaaki Adachi Recycling system for catalyst treatment solution
JP2004052029A (en) * 2002-07-18 2004-02-19 Okuno Chem Ind Co Ltd Treatment method and treatment apparatus for electroless nickel-plating liquid
JP2004131775A (en) * 2002-10-09 2004-04-30 Nihon Kagaku Sangyo Co Ltd Method for treating aged electroless nickel plating solution

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009185338A (en) * 2008-02-06 2009-08-20 Okuno Chem Ind Co Ltd Treatment method for electroless nickel plating solution
JP2010022970A (en) * 2008-07-22 2010-02-04 Canon Inc Electrodialyzer
WO2014030779A1 (en) * 2012-08-22 2014-02-27 한양대학교 에리카산학협력단 Formation method for copper material formed so as to have nano-bicrystal structure, and copper material produced thereby

Also Published As

Publication number Publication date
JP4517177B2 (en) 2010-08-04

Similar Documents

Publication Publication Date Title
US20160024683A1 (en) Apparatus and method for electrolytic deposition of metal layers on workpieces
JP5158634B2 (en) Treatment method of electroless nickel plating solution
US20120279869A1 (en) Chromium plating method
WO2010061766A1 (en) Method for producing active cathode for electrolysis
JP6142408B2 (en) Electrolytic stripper for jigs
JPH0841679A (en) Electrogalvannealed steel sheet having excellent appearance
JP4517177B2 (en) Treatment method of electroless nickel plating solution
US11946152B2 (en) Method and system for depositing a zinc-nickel alloy on a substrate
US20040031694A1 (en) Commercial process for electroplating nickel-phosphorus coatings
JPH06158397A (en) Method for electroplating metal
JP6029202B2 (en) Method of electroplating pure iron on aluminum or aluminum alloy material
JP6517501B2 (en) Strike copper plating solution and strike copper plating method
JP2006213956A (en) Fe-W ALLOY ELECTROPLATING DEVICE USING CATION EXCHANGE MEMBRANE, CONTINUOUS PLATING METHOD USING THE DEVICE AND COATING FILM
JPS5854200B2 (en) Method of supplying metal ions in electroplating bath
JP2003105581A (en) Method and apparatus for electrolytic deposition of tin alloy
JP6969688B2 (en) Electroplating bath, manufacturing method of electroplating products, and electroplating equipment
JPH0853799A (en) Reducing method of concentration of metal in electroplating solution
JP3334579B2 (en) Method for producing galvanized steel sheet with excellent appearance
US8801916B2 (en) Recovery method of nickel from spent electroless nickel plating solutions by electrolysis
JPS61163292A (en) One-side electroplating method
WO2023104999A1 (en) Aqueous stripping composition for electrolytically removing a metal deposit from a substrate
JPS5861294A (en) Preventing method for discoloration of steel plate electroplated on one side
JP2010150606A (en) Electrolytic regeneration type electroless tin plating method
JPS59126800A (en) Electrolytic removing method of plating film
JPH08134682A (en) Platinum strike plating bath and its method and strike plated article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100427

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4517177

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees