JP2011194137A - Optical fiber unit and endoscope - Google Patents

Optical fiber unit and endoscope Download PDF

Info

Publication number
JP2011194137A
JP2011194137A JP2010066371A JP2010066371A JP2011194137A JP 2011194137 A JP2011194137 A JP 2011194137A JP 2010066371 A JP2010066371 A JP 2010066371A JP 2010066371 A JP2010066371 A JP 2010066371A JP 2011194137 A JP2011194137 A JP 2011194137A
Authority
JP
Japan
Prior art keywords
optical fiber
tube
metal protective
bending
fiber bundle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010066371A
Other languages
Japanese (ja)
Other versions
JP5390445B2 (en
Inventor
Yuya Morimoto
雄矢 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2010066371A priority Critical patent/JP5390445B2/en
Priority to CN201110032824.3A priority patent/CN102197988B/en
Publication of JP2011194137A publication Critical patent/JP2011194137A/en
Application granted granted Critical
Publication of JP5390445B2 publication Critical patent/JP5390445B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To prevent optical fibers from being damaged due to movement of an optical fiber bundle or the optical fibers in a metal-made protective tube, and to enhance manufacturing suitability.SOLUTION: A light guide 34 includes: the bundle 40 of the optical fibers 40a; a cap 35 into which the distal end part of the optical fiber bundle 40 is fitted; a spiral tube 36 as the metal-made protective tube; and a heat contraction tube 37. The spiral tube 36 is arranged around the outer periphery of the optical fiber bundle 40 in the curved part 12 of an inserting part 3. The heat contraction tube 37 has a first part 37a for covering the outer peripheral part of the spiral tube 36; and a second part 37b extending rearward from the rear end of the spiral tube 36 and covering the optical fiber bundle 40. The heat contraction tube 37 is thermally shrunk in the radial direction, so that the inner diameter Dof the second part 37b is formed smaller than the inner diameter Dof the spiral tube 36 near the border between the first part 37a and the second part 37b.

Description

本発明は、内視鏡の挿入部に挿通される光学繊維ユニット、及びこれを備えた内視鏡に関する。   The present invention relates to an optical fiber unit that is inserted into an insertion portion of an endoscope, and an endoscope including the same.

内視鏡の挿入部には、光源装置からの照明光を導光するライトガイドなどの光学繊維ユニットが挿通されている。この光学繊維ユニットは、複数の光学繊維を束ねた光学繊維束等から構成される。光学繊維束を形成する個々の光学繊維は圧迫に対して脆弱な部材であり、外部からの圧迫等によって折損するおそれがある。通常、挿入部内には、光学繊維ユニットの他に、鉗子その他の処置具のガイド部材としての処置具挿通チャンネル等が挿通されている関係から、これら他の内蔵物と衝当して圧迫されるおそれがあり、このために光学繊維を断線から保護しなければならない。とりわけ、挿入部を構成する湾曲部は、湾曲する角度が大きいため、他の内蔵物により光学繊維が折損することがある。光学繊維が折損すると、照明光の光量が落ちたり、折損箇所が黒い斑点として内視鏡画像に映り込んだりして、場合によっては観察が不可能になる。   An optical fiber unit such as a light guide that guides illumination light from the light source device is inserted through the insertion portion of the endoscope. This optical fiber unit includes an optical fiber bundle obtained by bundling a plurality of optical fibers. The individual optical fibers forming the optical fiber bundle are members that are vulnerable to compression, and may be broken by external compression or the like. Usually, in the insertion portion, in addition to the optical fiber unit, a treatment instrument insertion channel as a guide member for forceps and other treatment instruments is inserted, so that they are pressed against these other built-in objects. For this reason, the optical fiber must be protected from disconnection. In particular, since the bending portion constituting the insertion portion has a large bending angle, the optical fiber may be broken by another built-in object. When the optical fiber is broken, the amount of illumination light is reduced, or the broken portion is reflected in the endoscopic image as a black spot, and in some cases, observation becomes impossible.

上記の問題を解決するために、特許文献1記載のライトガイドまたはイメージガイドでは、湾曲部内における光学繊維束の外周に弾性力を持つシリコンチューブを被覆し、このシリコンチューブの基端部、すなわち湾曲部と、湾曲部に連設される軟性部との境界付近を熱収縮チューブで被覆している。このように湾曲部内ではシリコンチューブで被覆することにより、他の内蔵物からの圧迫をシリコンチューブの弾性力で吸収している。   In order to solve the above problem, in the light guide or the image guide described in Patent Document 1, a silicon tube having elasticity is coated on the outer periphery of the optical fiber bundle in the bending portion, and the base end portion of this silicon tube, that is, the bending The vicinity of the boundary between the portion and the soft portion provided continuously with the bending portion is covered with a heat shrinkable tube. Thus, by covering the inside of the bending portion with the silicon tube, the pressure from other built-in objects is absorbed by the elastic force of the silicon tube.

一方、特許文献2では、湾曲部内における光学繊維束の外周に、金属製の螺旋管を被覆し、螺旋管及び光学繊維束の外周にシリコン製の可撓性チューブを被覆している。螺旋管によって保護することにより、光学繊維が他の内蔵部からの圧迫によって折損することを防止している。また、特許文献3では、金属細線を編組して形成された網状管を光学繊維束の外周に被覆し、網状管を合成樹脂製の可撓性チューブで被覆しており、光学繊維束を網状管によって保護する構成が記載されている。   On the other hand, in Patent Document 2, the outer periphery of the optical fiber bundle in the bending portion is covered with a metal spiral tube, and the outer periphery of the spiral tube and the optical fiber bundle is covered with a silicon flexible tube. By protecting with a spiral tube, the optical fiber is prevented from being broken by compression from other built-in portions. In Patent Document 3, a mesh tube formed by braiding metal wires is coated on the outer periphery of an optical fiber bundle, the mesh tube is coated with a flexible tube made of synthetic resin, and the optical fiber bundle is meshed. An arrangement for protection by a tube is described.

上述したように、光学繊維束の外周に螺旋管または網状管などの金属製保護チューブを被覆し、さらに金属製保護チューブの外周に可撓性チューブを被覆する場合、可撓性チューブの内径よりも外径の大きい金属製保護チューブを使用し、この金属製保護チューブを捩るなどの作業によって径を小さくさせた状態で光学繊維束の外周に被せ、次いで、可撓性チューブを金属保護製チューブの外周に被せている。このように被覆することで、金属製保護チューブがその付勢力によって可撓性チューブの内面にくい込むので、金属製保護チューブと可撓性チューブが密着するとともに、金属製保護チューブと光学繊維束との間には隙間ができるため、金属製保護チューブが光学繊維束を圧迫することがない。   As described above, when the outer periphery of the optical fiber bundle is covered with a metal protective tube such as a spiral tube or a mesh tube, and the outer periphery of the metal protective tube is further covered with a flexible tube, the inner diameter of the flexible tube Use a metal protective tube with a large outer diameter, and cover the outer periphery of the optical fiber bundle with the diameter reduced by an operation such as twisting the metal protective tube. It is put on the outer periphery. By covering in this way, the metal protective tube is hard to be inserted into the inner surface of the flexible tube by its urging force, so that the metal protective tube and the flexible tube are in close contact, and the metal protective tube and the optical fiber bundle are Since there is a gap between them, the metal protective tube does not press the optical fiber bundle.

特開2004−298449号公報JP 2004-298449 A 特許第2978295号公報Japanese Patent No. 2978295 特開2004−89265号公報JP 2004-89265 A

近年では、経鼻内視鏡など、経口内視鏡や下部内視鏡と比べて挿入部を細径化した内視鏡が開発されており、挿入部の細径化が進んでいる。ところが、上記特許文献1記載のライトガイドまたはイメージガイドでは、挿入部の細径化を考慮してシリコンチューブを薄くすると、圧迫を吸収できずに光学繊維を破損させてしまうことになり、圧迫に対して十分な厚みを有するシリコンチューブを被覆した場合、挿入部の細径化の妨げとなってしまう。   In recent years, endoscopes such as transnasal endoscopes in which the diameter of the insertion portion is made smaller than those of oral endoscopes and lower endoscopes have been developed, and the diameter of the insertion portion has been reduced. However, in the light guide or the image guide described in Patent Document 1, if the silicon tube is made thin in consideration of the reduction in the diameter of the insertion portion, the optical fiber is damaged without being able to absorb the pressure, and the pressure is reduced. On the other hand, when a silicon tube having a sufficient thickness is covered, it is an obstacle to reducing the diameter of the insertion portion.

一方、上記特許文献2,3の構成では、細径化を考慮して肉厚の薄い金属製保護チューブを使用しても十分に光学繊維を保護することができるが、金属製保護チューブの外周を被覆している可撓性チューブの剛性が低い場合、挿入部内で光学繊維があばれる(大きく移動する)ことがあり、このとき、他の内蔵物からの圧迫を受けて光学繊維を折損させてしまうおそれがある。   On the other hand, in the configurations of Patent Documents 2 and 3 described above, the optical fiber can be sufficiently protected even when a thin metal protective tube is used in consideration of the reduction in diameter. When the rigidity of the flexible tube covering the optical fiber is low, the optical fiber may be blown (moves greatly) in the insertion portion. At this time, the optical fiber is broken by receiving pressure from other built-in components. There is a risk that.

なお、光学繊維ユニットの剛性を向上させるため、特許文献2,3記載の可撓性チューブの代わりに特許文献1記載の熱収縮チューブを用いて金属製保護チューブの外周を被覆する構成とすることが考えられるが、この場合、熱収縮チューブは、シリコン製の可撓性チューブ等よりは剛性を有するため、光学繊維束全体のあばれを抑制することはできるが、光学繊維束を圧迫しないように、螺旋管と光学繊維束には隙間を有する必要があり、この隙間内で移動した光学繊維束が金属製保護チューブ内径後端の内周縁に当たり、光学繊維が折損するおそれがある。   In order to improve the rigidity of the optical fiber unit, the outer periphery of the metal protective tube is covered with the heat shrinkable tube described in Patent Document 1 instead of the flexible tube described in Patent Documents 2 and 3. However, in this case, the heat-shrinkable tube is more rigid than the flexible tube made of silicon, etc., so that the entire optical fiber bundle can be suppressed, but the optical fiber bundle should not be compressed. There is a need to have a gap between the spiral tube and the optical fiber bundle, and the optical fiber bundle moved in this gap may hit the inner peripheral edge of the rear end of the inner diameter of the metal protective tube, and the optical fiber may be broken.

また、特許文献2,3記載のように金属保護製チューブの外周に可撓性チューブを被覆する場合、可撓性チューブの内面に金属製保護チューブを食い込ませて密着させるため、金属製保護チューブを捩って径を小さくした状態で被覆する工程が面倒であり、且つ時間が掛かかるため製造適正が良くなかった。   In addition, as described in Patent Documents 2 and 3, when a flexible tube is coated on the outer periphery of a metal protective tube, the metal protective tube bites into and adheres to the inner surface of the flexible tube. The process of coating in a state in which the diameter is reduced by twisting is troublesome and takes time, and the manufacturing suitability is not good.

本発明は、上記課題を鑑みてなされたものであり、金属製保護チューブ内で光学繊維束または光学繊維が移動して、光学繊維が折損することを防止するとともに、製造適正を向上させることを目的とする。   The present invention has been made in view of the above problems, and prevents the optical fiber bundle or the optical fiber from moving in the metal protective tube to break the optical fiber, and improves the manufacturing suitability. Objective.

本発明の光学繊維ユニットは、先端部の向きを変化させるために湾曲する湾曲部及び可撓性を有する軟性部が先端側から順に連設された内視鏡の挿入部内に挿通され、光学繊維を束ねた光学繊維束または光学繊維と、記湾曲部内において前記光学繊維束または前記光学繊維の外周に配設された金属製保護チューブと、前記金属製保護チューブの外周を被覆する第1部分と、前記金属製保護チューブの後端から後方に延びて前記光学繊維束または前記光学繊維を被覆する第2部分とを有する熱収縮チューブとを備えており、前記熱収縮チューブは、少なくとも第1部分と第2部分の境界付近において第2部分の内径が、前記金属製保護チューブの内径よりも小さいことを特徴とする。   The optical fiber unit of the present invention is inserted into an insertion portion of an endoscope in which a bending portion that bends in order to change the direction of the distal end portion and a flexible soft portion are sequentially provided from the distal end side. An optical fiber bundle or optical fiber bundled, a metal protective tube disposed on an outer periphery of the optical fiber bundle or the optical fiber in the bending portion, and a first portion covering the outer periphery of the metal protective tube; A heat shrinkable tube extending rearward from a rear end of the metal protective tube and having a second portion covering the optical fiber bundle or the optical fiber, wherein the heat shrinkable tube is at least a first portion. In the vicinity of the boundary between the second portion and the second portion, the inner diameter of the second portion is smaller than the inner diameter of the metal protective tube.

前記金属製保護チューブは、帯状片を巻き回して形成された螺旋管であることが好ましい。あるいは、前記金属製保護チューブは、細線を編組して形成された網状管であることが好ましい。   The metal protective tube is preferably a spiral tube formed by winding a strip. Alternatively, the metal protective tube is preferably a reticulated tube formed by braiding fine wires.

前記光学繊維が屈曲可能な最小半径をRとし、前記金属製保護チューブの後端と、前記熱収縮チューブの第2部分の前端との間隔をLとしたとき、L≦2Rであることが好ましい。 The minimum optical fibers bendable radius and R M, when the rear end of the metal protective tube, the distance between the front end of the second portion of the heat shrinkable tube is L, it is L ≦ 2R M Is preferred.

前記金属製保護チューブの内周半径と、前記第2部分における前記熱収縮チューブの内周半径との段差をdとしたとき、L≦√(d(4R−d))の条件を満たすことが好ましい。 When the step between the inner peripheral radius of the metal protective tube and the inner peripheral radius of the heat-shrinkable tube in the second portion is d, the condition of L ≦ √ (d (4R M −d)) is satisfied. Is preferred.

前記第1部分及び第2部分の境界付近において、前記湾曲部及び前記軟性部が最小半径となるように湾曲したときに、前記熱収縮チューブが屈曲する屈曲半径をRとすると、前記熱収縮チューブは、屈曲半径がR以上となるように屈曲した場合、キンク耐性を有することが好ましい。なお、キンク耐性とは、熱収縮チューブを所定の屈曲半径に屈曲させてもキンク(屈曲したまま元に復元しない状態)が発生しない特性を示す。なお、前記熱収縮チューブは、ポリオレフィン、またはPTFEからなることが好ましい。 When the bending radius at which the heat-shrinkable tube is bent when the bending portion and the flexible portion are bent to have a minimum radius in the vicinity of the boundary between the first portion and the second portion is R C , The tube preferably has kink resistance when bent so that the bending radius is equal to or greater than RC . The kink resistance refers to a characteristic that does not cause kink (a state in which the heat-shrinkable tube is bent and not restored) even when the heat-shrinkable tube is bent to a predetermined bending radius. The heat shrinkable tube is preferably made of polyolefin or PTFE.

本発明の内視鏡は、前記挿入部と、前記湾曲部を湾曲させるための操作手段と、前記挿入部の基端側に設けられ、前記操作手段が組み込まれた本体操作部と、前記光学繊維ユニットとを備えたことを特徴とする。   The endoscope according to the present invention includes the insertion portion, an operation means for bending the bending portion, a main body operation portion provided on a proximal end side of the insertion portion and incorporating the operation means, and the optical And a fiber unit.

本発明によれば、金属製保護チューブの後端から後方に延びて光学繊維束または光学繊維を被覆する熱収縮チューブの第2部分の内径が、金属製保護チューブの内径よりも小さいので、金属製保護チューブ内での光学繊維束または光学繊維の移動を抑制し、光学繊維が金属製保護チューブの内周縁に接触することを防止することができる。よって、光学繊維の折損を防ぐことが可能になる。また、金属製保護チューブを熱収縮チューブで容易に被覆することができるため、製造適正が向上する。   According to the present invention, the inner diameter of the second portion of the heat shrinkable tube that extends backward from the rear end of the metal protective tube and covers the optical fiber bundle or optical fiber is smaller than the inner diameter of the metal protective tube. The movement of the optical fiber bundle or the optical fiber in the protective tube can be suppressed, and the optical fiber can be prevented from coming into contact with the inner peripheral edge of the metal protective tube. Therefore, breakage of the optical fiber can be prevented. In addition, since the metal protective tube can be easily covered with the heat-shrinkable tube, the manufacturing suitability is improved.

本発明の内視鏡の外観図である。It is an external view of the endoscope of the present invention. 挿入部の先端部の端面を示す平面図である。It is a top view which shows the end surface of the front-end | tip part of an insertion part. 挿入部の構成を示す要部断面図である。It is principal part sectional drawing which shows the structure of an insertion part. 本発明の光学繊維ユニットとしてのライトガイドの構成を示す要部断面図である。It is principal part sectional drawing which shows the structure of the light guide as an optical fiber unit of this invention. 螺旋管の内周縁に光学繊維束が接触しない状態(A)及び接触する状態(B)の一例を示す説明図である。It is explanatory drawing which shows an example of the state (A) in which an optical fiber bundle does not contact the inner periphery of a spiral tube, and the state (B) which contacts. 螺旋管の内周縁に光学繊維束が接触しない別の一例を示す説明図である。It is explanatory drawing which shows another example in which an optical fiber bundle does not contact the inner periphery of a spiral tube. 熱収縮チューブが最小の屈曲範囲に屈曲した状態(A)、及び熱収縮チューブがキンクした状態(B)を示す説明図である。It is explanatory drawing which shows the state (A) in which the heat-shrinkable tube was bent to the minimum bending range, and the state (B) in which the heat-shrinkable tube was kinked.

図1において、本発明の内視鏡2は、体腔内に挿入される挿入部3と、挿入部3の基端部分に連設された操作部5と、プロセッサ装置や光源装置に接続されるコネクタ部6と、操作部5、及びコネクタ部6間を繋ぐユニバーサルコード7とを備えている。   In FIG. 1, an endoscope 2 according to the present invention is connected to an insertion portion 3 to be inserted into a body cavity, an operation portion 5 connected to a proximal end portion of the insertion portion 3, and a processor device or a light source device. The connector part 6, the operation part 5, and the universal cord 7 which connects between the connector parts 6 are provided.

挿入部3は、管状に形成されており、先端から順に、先端部11、複数の湾曲駒を連結した湾曲部12、及び可撓性を有する軟性部13とで構成されている。操作部5には、湾曲部12を上下左右方向に湾曲して先端部11の向きを変化させるためのアングルノブ21,22、処置具が挿通される鉗子挿入口23等が設けられている。   The insertion portion 3 is formed in a tubular shape, and is composed of a distal end portion 11, a bending portion 12 connecting a plurality of bending pieces, and a flexible flexible portion 13 in order from the distal end. The operation unit 5 is provided with angle knobs 21 and 22 for bending the bending portion 12 in the vertical and horizontal directions to change the direction of the distal end portion 11, a forceps insertion port 23 through which the treatment tool is inserted, and the like.

図2および図3に示すように、先端部11の端面11aは円形であり、観察窓30、照明窓31、鉗子出口32、及び送気・送水用ノズル33が設けられている。観察窓30は、端面11aの中央上部に配置されている。   As shown in FIGS. 2 and 3, the end surface 11 a of the distal end portion 11 is circular, and an observation window 30, an illumination window 31, a forceps outlet 32, and an air / water supply nozzle 33 are provided. The observation window 30 is disposed at the upper center of the end surface 11a.

照明窓31は、観察窓30に関して対称な位置に二個配されている。照明窓31の背後には、光源装置からの照明光を導くライトガイド34の出射端が配されている。照明窓31は、ライトガイド34で導かれた照明光を、体腔内の被観察部位に照射する。ライトガイド34は、その先端に固定された円筒状の口金35を介して、先端部11に穿たれた穴14bに嵌合して取り付けられている。   Two illumination windows 31 are arranged at symmetrical positions with respect to the observation window 30. Behind the illumination window 31, an exit end of a light guide 34 for guiding illumination light from the light source device is disposed. The illumination window 31 irradiates the observation site in the body cavity with the illumination light guided by the light guide 34. The light guide 34 is fitted and attached to a hole 14b formed in the distal end portion 11 through a cylindrical base 35 fixed to the distal end.

観察窓30の奥には、撮影光学系、及びCCDなどの固体撮像素子(図示せず)が設けられている。固体撮像素子は、観察窓30を通して撮影光学系により結像された体腔内の像光を撮像する。固体撮像素子で得られた撮像信号は、挿入部3及び操作部5に挿通された信号線を介して、ユニバーサルコード7に接続されたプロセッサ装置に送られ、モニタに内視鏡画像として表示される。鉗子出口32は、挿入部3内に配設された鉗子チャンネル38に接続され、鉗子挿入口23に連通している。鉗子挿入口23に挿通された処置具の先端は、鉗子出口32から露呈される。   In the back of the observation window 30, a photographing optical system and a solid-state image sensor (not shown) such as a CCD are provided. The solid-state imaging device captures image light in the body cavity imaged by the imaging optical system through the observation window 30. An imaging signal obtained by the solid-state imaging device is sent to a processor device connected to the universal cord 7 via a signal line inserted through the insertion unit 3 and the operation unit 5 and displayed as an endoscopic image on a monitor. The The forceps outlet 32 is connected to a forceps channel 38 disposed in the insertion portion 3 and communicates with the forceps insertion port 23. The distal end of the treatment instrument inserted through the forceps insertion opening 23 is exposed from the forceps outlet 32.

図4に示すように、本発明の光学繊維ユニットとしてのライトガイド34は、複数の光学繊維40aの束40と、この光学繊維束40の先端部が嵌め込まれた口金35と、金属製保護チューブとしての螺旋管36と、熱収縮チューブ37とから構成される。光学繊維40aとしては例えば石英製光ファイバを用いる。螺旋管36は、ステンレスなど金属製の帯状片を巻き回して形成され、挿入部3の湾曲部12内において光学繊維束40の外周に配設される。この螺旋管36は先端部が口金35の後端部外周に、例えば接着剤や糸巻き等で固定されている。   As shown in FIG. 4, a light guide 34 as an optical fiber unit of the present invention includes a bundle 40 of a plurality of optical fibers 40a, a base 35 into which a tip portion of the optical fiber bundle 40 is fitted, and a metal protective tube. As a helical tube 36 and a heat shrinkable tube 37. For example, a quartz optical fiber is used as the optical fiber 40a. The spiral tube 36 is formed by winding a strip made of metal such as stainless steel, and is disposed on the outer periphery of the optical fiber bundle 40 in the bending portion 12 of the insertion portion 3. The front end of the helical tube 36 is fixed to the outer periphery of the rear end of the base 35 with, for example, an adhesive or a spool.

熱収縮チューブ37は、加熱することにより収縮する周知の熱収縮チューブであり、例えば、ポリオレフィン、またはPTFEからなる。この熱収縮チューブ37は、口金35の後端部から軟性部13内の位置まで連続する長さを有する。さらに具体的には、熱収縮チューブ37は、螺旋管36の外周を被覆する第1部分37aと、螺旋管36の後端から後方に伸びて光学繊維束40を被覆する第2部分37bとを有する。   The heat-shrinkable tube 37 is a well-known heat-shrinkable tube that shrinks when heated, and is made of, for example, polyolefin or PTFE. The heat-shrinkable tube 37 has a length that continues from the rear end portion of the base 35 to a position in the soft portion 13. More specifically, the heat-shrinkable tube 37 includes a first portion 37a that covers the outer periphery of the helical tube 36, and a second portion 37b that extends rearward from the rear end of the helical tube 36 and covers the optical fiber bundle 40. Have.

熱収縮チューブ37は、加熱することにより、特に直径方向が縮む(細くなる)。本発明では、この特性を利用して製造適正を向上させる。すなわち、螺旋管36及び熱収縮チューブ37で光学繊維束40を被覆する場合、熱収縮する前の熱収縮チューブ37として、螺旋管36の外径よりも内径の大きいものを使用する。よって、螺旋管36及び熱収縮チューブ37の被覆工程では、螺旋管36を捩って径を縮めたり、熱収縮チューブ37の径を拡げたりする必要がなく、通常状態の螺旋管36で光学繊維束40を覆い、さらに螺旋管36の外周を熱収縮前の熱収縮チューブ37で覆う作業を容易に行うことができる。そして、被覆工程後に、加熱して直径方向に縮ませる熱収縮工程を行うことによって熱収縮チューブ37と螺旋管36とを密着させるようにすればよい。なお、このとき、光学繊維束40への圧迫を防ぐため、螺旋管36と、光学繊維束40とが隙間を有する程度に熱収縮チューブ37を熱収縮させる。   The heat shrinkable tube 37 is contracted (thinned) particularly in the diameter direction by heating. In the present invention, this property is used to improve manufacturing suitability. In other words, when the optical fiber bundle 40 is covered with the spiral tube 36 and the heat shrinkable tube 37, the heat shrinkable tube 37 before the heat shrinkage has a larger inner diameter than the outer diameter of the spiral tube 36. Therefore, in the coating process of the helical tube 36 and the heat shrinkable tube 37, it is not necessary to twist the helical tube 36 to reduce its diameter or to increase the diameter of the heat shrinkable tube 37, and the optical fiber is formed by the helical tube 36 in the normal state. The operation of covering the bundle 40 and further covering the outer periphery of the spiral tube 36 with the heat-shrinkable tube 37 before heat-shrinking can be easily performed. Then, after the covering step, the heat shrinkable tube 37 and the spiral tube 36 may be brought into close contact with each other by performing a heat shrinking step of heating and shrinking in the diameter direction. At this time, in order to prevent the optical fiber bundle 40 from being compressed, the heat shrinkable tube 37 is thermally contracted to such an extent that the spiral tube 36 and the optical fiber bundle 40 have a gap.

熱収縮チューブ37は、熱収縮して直径方向に縮ませることにより、第1部分37a及び第2部分37bの境界付近において、第2部分37bの内径Dが、螺旋管36の内径Dより小さく形成されている。熱収縮チューブ37をこのように形成することで、螺旋管36の内部における光学繊維束40の移動を抑制し、螺旋管36後端の内周縁36aに光学繊維束40が接触しないようにすることができる。これにより、光学繊維束40の折損を防止することができる。 The heat shrinkable tube 37, by contracting the diameter direction and thermal shrinkage in the vicinity of the boundary between the first portion 37a and second portion 37b, the inner diameter D T of the second portion 37b is, than the inner diameter D S of the spiral tube 36 It is formed small. By forming the heat-shrinkable tube 37 in this manner, the movement of the optical fiber bundle 40 inside the spiral tube 36 is suppressed, and the optical fiber bundle 40 is prevented from contacting the inner peripheral edge 36a at the rear end of the spiral tube 36. Can do. Thereby, breakage of the optical fiber bundle 40 can be prevented.

上述したように、熱収縮チューブ37の第2部分37bの内径Dを、螺旋管36の内径Dより小さくすることにより、螺旋管36の内周縁36aと光学繊維束40との接触を減らすことができる。しかし、光学繊維束40は、湾曲部12の湾曲に応じて、繰り返し屈曲される。さらに、光学繊維束40は、複数の光学繊維40aが一つに束ねられていることから、個々の光学繊維40aが様々な状態に屈曲する。以下では、個々の光学繊維40aが屈曲する可能性のある状態で、螺旋管36の内周縁36aに接触しない条件を示す。 As described above, the inner diameter D T of the second portion 37b of the heat shrinkable tube 37, by less than the inside diameter D S of the spiral tube 36, reducing the contact between the inner peripheral edge 36a and an optical fiber bundle 40 of the spiral tube 36 be able to. However, the optical fiber bundle 40 is repeatedly bent according to the bending of the bending portion 12. Furthermore, since the optical fiber bundle 40 includes a plurality of optical fibers 40a bundled together, the individual optical fibers 40a bend in various states. In the following, a condition in which the individual optical fibers 40a are not in contact with the inner peripheral edge 36a of the spiral tube 36 in a state where the optical fibers 40a may be bent will be described.

図5に示す光学繊維40aの屈曲状態は、螺旋管36の内周面と略平行に位置する先端側部分41と、第2部分37bの内周面と略平行に位置する基端側部分42との間に屈曲部分43を有している。屈曲部分43は、第1部分37aの後端部、且つ第2部分37bの前端部付近に位置しており、外側から内側に向かって屈曲する第1屈曲部分43aと、内側から外側に屈曲している第2屈曲部分43bとが繋がっており、光学繊維40aは先端側部分41が、基端側部分42よりも外側に位置している。これにより、光学繊維40aの先端側部分41が螺旋管36の内周縁36aに接触しやすくなっている。光学繊維40aは、螺旋管36に比べて脆弱な部材であるため、内周縁36aに接触すると折損してしまう。   The bending state of the optical fiber 40a shown in FIG. 5 includes a distal end side portion 41 positioned substantially parallel to the inner peripheral surface of the helical tube 36 and a proximal end portion 42 positioned substantially parallel to the inner peripheral surface of the second portion 37b. Between the two, a bent portion 43 is provided. The bent portion 43 is located near the rear end portion of the first portion 37a and the front end portion of the second portion 37b. The bent portion 43b bends from the outside to the inside, and bends from the inside to the outside. The second bent portion 43b is connected, and the optical fiber 40a has the distal end portion 41 positioned outside the proximal end portion 42. Thereby, the front end side portion 41 of the optical fiber 40a is easily brought into contact with the inner peripheral edge 36a of the spiral tube 36. Since the optical fiber 40a is a fragile member compared to the spiral tube 36, the optical fiber 40a is broken when it comes into contact with the inner peripheral edge 36a.

そこで、このような屈曲状態になった場合に、光学繊維40aが螺旋管36の内周縁36aに接触しないようにするには、螺旋管36の後端36bと、熱収縮チューブ37の第2部分37bの前端の間隔Lを狭めればよい。ここで、光学繊維40aが屈曲可能な最小半径をRとすると、上述した屈曲部分43は2つの四半円弧(第1及び第2屈曲部分43a,43b)を繋げた形状なので、軸方向における長さは少なくとも2Rとなる。屈曲部分43は、上述したように第1部分37aの後端部且つ第2部分37bの前端部付近で屈曲している。よって、図5(A)に示すように、螺旋管36の後端36bが、屈曲部分43の前端よりも後方に位置していればよい。以上のことから、螺旋管36の内周縁36aが光学繊維40aに接触しない条件は、間隔L≦2Rとなる。 Therefore, in order to prevent the optical fiber 40a from coming into contact with the inner peripheral edge 36a of the helical tube 36 in such a bent state, the rear end 36b of the helical tube 36 and the second portion of the heat shrinkable tube 37 are used. What is necessary is just to narrow the space | interval L of the front end of 37b. Here, when the optical fiber 40a to the minimum radius a bendable and R M, the bent portion 43 described above is two quarter arcs (first and second bent portions 43a, 43 b) so shape connecting the long in the axial direction It is is at least 2R M. As described above, the bent portion 43 is bent in the vicinity of the rear end portion of the first portion 37a and the front end portion of the second portion 37b. Therefore, as shown in FIG. 5A, the rear end 36 b of the spiral tube 36 only needs to be positioned behind the front end of the bent portion 43. From the above, it conditions the inner circumferential edge 36a of the helical tube 36 does not contact the optical fiber 40a is a distance L ≦ 2R M.

なお、上述した螺旋管36の内周縁36aが光学繊維40aに接触しない条件である間隔L≦2Rを満たすためには、光学繊維40aの特性(屈曲可能な最小半径)、及び熱収縮チューブ37の特性(加熱前後の収縮率)から、熱収縮チューブの肉厚、熱収縮工程における加熱条件(温度、時間)などを適宜決定すればよい。あるいは、熱収縮工程を行う際、螺旋管36の後方に位置する熱収縮チューブ37を挟み込む治具を使用し、この治具により熱収縮チューブ37を螺旋管36の後端へ向かって押さえ付けるようにすることで、間隔Lを狭めるようにしてもよい。 In order to the inner peripheral edge 36a of the spiral tube 36 as described above satisfies the distance L ≦ 2R M is a condition that does not contact the optical fiber 40a, the characteristic of the optical fiber 40a (minimum possible bend radius), and the heat shrinkable tube 37 From the above characteristics (shrinkage rate before and after heating), the thickness of the heat-shrinkable tube, the heating conditions (temperature, time) in the heat-shrinking process, and the like may be appropriately determined. Alternatively, when performing the heat shrinking process, a jig for sandwiching the heat shrinkable tube 37 located behind the spiral tube 36 is used, and the heat shrinkable tube 37 is pressed toward the rear end of the spiral tube 36 by this jig. By doing so, the interval L may be narrowed.

なお、上述した条件(L≦2R)を満たさない場合、図5(B)に示すように、螺旋管36の後端36bが屈曲部分43の前端より前方に位置しているので、螺旋管36の内周縁36aが光学繊維40aの先端側部分41に接触し、折損するおそれがある。 If the above-described condition (L ≦ 2R M ) is not satisfied, the spiral tube 36 has a rear end 36b located in front of the front end of the bent portion 43 as shown in FIG. There is a possibility that the inner peripheral edge 36a of the 36 will contact the tip end portion 41 of the optical fiber 40a and break.

上述した条件(L≦2R)下で、さらに螺旋管36の内周縁36aが光学繊維40aに接触しやすい屈曲状態を図6に示す。図6に示す例では、螺旋管36の内周半径Rと、熱収縮チューブ37の第2部分37bの内周半径Rとの段差dが小さい。この場合、光学繊維40aの先端側部分41と基端側部分42とを繋ぐ屈曲部分45は、内周半径の段差dの範囲内で屈曲するため、屈曲部分45の径方向における変位(先端側部分41と基端側部分42との位置のずれ)は、内周半径の段差dに等しくなる。よって、光学繊維40aの屈曲部分45は、四半円弧より短い円弧の第1屈曲部分45a及び第2屈曲部分45bが互いの接点同士で繋がった形状となっている。この屈曲状態で、螺旋管36の内周縁36aに光学繊維40aが接触しないようにするには、螺旋管36の後端36bと、熱収縮チューブ37の第2部分37bの前端との間隔Lが、屈曲部分45の軸方向における長さlよりも小さければよい。 FIG. 6 shows a bent state in which the inner peripheral edge 36a of the spiral tube 36 is more likely to come into contact with the optical fiber 40a under the above-described conditions (L ≦ 2R M ). In the example shown in FIG. 6, the step d between the inner peripheral radius R S of the spiral tube 36 and the inner peripheral radius R T of the second portion 37 b of the heat shrinkable tube 37 is small. In this case, the bent portion 45 that connects the distal end side portion 41 and the proximal end portion 42 of the optical fiber 40a bends within the range of the step d of the inner peripheral radius. The positional deviation between the portion 41 and the base end side portion 42) is equal to the step d of the inner radius. Therefore, the bent portion 45 of the optical fiber 40a has a shape in which the first bent portion 45a and the second bent portion 45b having an arc shorter than the quarter arc are connected to each other at the contact points. In order to prevent the optical fiber 40a from coming into contact with the inner peripheral edge 36a of the spiral tube 36 in this bent state, the distance L between the rear end 36b of the spiral tube 36 and the front end of the second portion 37b of the heat shrinkable tube 37 is set. The bent portion 45 may be smaller than the length l in the axial direction.

ここで、屈曲部分45の軸方向における長さlは、上述した内周半径の段差d及び光学繊維40aの最小曲げ半径Rによって決まる。すなわち、内周半径の段差dの中で第1屈曲部分45a及び第2屈曲部分45bが屈曲可能な屈曲角度をθとすると(θ≦90°)、内周半径の段差d=2R(1−cosθ)、屈曲部分45の軸方向における長さl=2Rsinθと表すことができる。これらを三角関数の公式sinθ+cosθ=1に当てはめると、(1−d/2R+(l/2R=1となり、この式からl=√(d(4R−d))と導かれる。螺旋管36の後端36bが、屈曲部分45の前端よりも後方に位置していればよい(すなわち、間隔L≦屈曲部分45の軸方向の長さl)ことから、螺旋管36の内周縁36aが光学繊維40aに接触しない条件は、L≦√(d(4R−d))となる。 The length l in the axial direction of the bending portion 45 is determined by the minimum bend radius R M of the inner radius of the step d and the optical fibers 40a as described above. That is, assuming that the bending angle at which the first bent portion 45a and the second bent portion 45b can be bent in the step d of the inner peripheral radius is θ (θ ≦ 90 °), the step d = 2R M (1 −cos θ), the length l in the axial direction of the bent portion 45 can be expressed as 2 = 2 R M sin θ. When these are applied to the trigonometric formula sin 2 θ + cos 2 θ = 1, (1−d / 2R M ) 2 + (l / 2R M ) 2 = 1, and from this equation, l = √ (d (4R M − d)). Since the rear end 36b of the spiral tube 36 only needs to be located behind the front end of the bent portion 45 (that is, the interval L ≦ the length l in the axial direction of the bent portion 45), the inner peripheral edge of the spiral tube 36 The condition in which 36a does not contact the optical fiber 40a is L ≦ √ (d (4R M −d)).

また、螺旋管36の内周縁36aと、光学繊維40aとが接触しない条件としては、上記の他に熱収縮チューブ37のキンク耐性が上げられる。このキンク耐性とは、熱収縮チューブ37を所定の屈曲半径に屈曲させてもキンク(屈曲したまま元に復元しない状態)が発生しない特性を示す。本発明では、図7(A)に示すように、第1部分37a及び第2部分37bの境界付近において、湾曲部12及び軟性部13が最小半径となるように湾曲した場合に、熱収縮チューブ37にキンクが発生しないキンク耐性を有することが条件となる。ここで、湾曲部12及び軟性部13が最小半径となるように湾曲したときに、熱収縮チューブ37が屈曲する屈曲半径をRとすると、熱収縮チューブ37は、この屈曲半径R以上で屈曲する場合は、キンクが発生しないキンク耐性を有することが条件となる。 Further, as a condition that the inner peripheral edge 36a of the spiral tube 36 and the optical fiber 40a are not in contact with each other, the kink resistance of the heat shrinkable tube 37 can be increased. The kink resistance indicates a characteristic in which kinks (a state in which the heat-shrinkable tube 37 is bent and not restored) are not generated even when the heat-shrinkable tube 37 is bent to a predetermined bending radius. In the present invention, as shown in FIG. 7A, when the curved portion 12 and the flexible portion 13 are curved so as to have a minimum radius in the vicinity of the boundary between the first portion 37a and the second portion 37b, the heat-shrinkable tube is used. 37 has a kink resistance that does not generate kink. Here, when the bending radius at which the heat-shrinkable tube 37 bends when the bending portion 12 and the flexible portion 13 are bent to have a minimum radius is RC , the heat-shrinkable tube 37 has a bending radius RC or more. In the case of bending, it is necessary to have kink resistance that does not generate kink.

もし、熱収縮チューブ37が屈曲半径R以上でキンクが発生してしまい、元に戻らなくなると、図7(B)に示すように、熱収縮チューブ37の内周面のうち、屈曲の中心に近い側のキンク発生部分37cが光学繊維束40を圧迫する。特に、熱収縮チューブ37の第2部分37bの中でも螺旋管36に近い位置でキンクが発生すると、キンク発生部分37cが光学繊維束40を反対側(屈曲の中心から外側へ向かう方向)へ圧迫するため、光学繊維束40を螺旋管36の内周縁36aへ押し付けて折損させるおそれがある。よって、これを防止するために、上述のキンク耐性を有することが必要となる。また、このようなキンク耐性を有するためには、熱収縮チューブの特性、及び屈曲半径Rから、熱収縮チューブの肉厚、加熱条件などを適宜決定すればよい。 If the heat shrinkable tube 37 is kinked at the bending radius RC or more and cannot be restored to its original state, as shown in FIG. The kink generating portion 37c on the side closer to the side presses the optical fiber bundle 40. In particular, when a kink is generated at a position close to the helical tube 36 in the second portion 37b of the heat shrinkable tube 37, the kink generating portion 37c presses the optical fiber bundle 40 to the opposite side (the direction from the center of bending toward the outside). Therefore, the optical fiber bundle 40 may be pressed against the inner peripheral edge 36a of the spiral tube 36 and broken. Therefore, in order to prevent this, it is necessary to have the kink resistance described above. In order to have such kink resistance, the thickness of the heat-shrinkable tube, heating conditions, and the like may be appropriately determined from the characteristics of the heat-shrinkable tube and the bending radius RC .

以上のように、構成された内視鏡2で患者の体腔内を観察する際、術者は、内視鏡2とプロセッサ装置、光源装置とを繋げ、挿入部3を体腔内に挿入する。そして、適宜アングルノブ21,22を操作して、湾曲部12を湾曲させて先端部11を所望の方向に向けさせる等の手技を行いつつ、光源装置からの照明光で体腔内を照明しながら、固体撮像素子による体腔内の内視鏡画像をモニタで観察する。   As described above, when observing the inside of a patient's body cavity with the configured endoscope 2, the operator connects the endoscope 2, the processor device, and the light source device, and inserts the insertion portion 3 into the body cavity. Then, by appropriately manipulating the angle knobs 21 and 22 to perform a procedure such as bending the bending portion 12 and directing the distal end portion 11 in a desired direction, while illuminating the body cavity with illumination light from the light source device The endoscopic image in the body cavity by the solid-state imaging device is observed on the monitor.

挿入部3を体腔内に挿入しているときや、湾曲部12を湾曲させたときには、ライトガイド34、鉗子チャンネル38、信号線等の内蔵物が相互に接触し、圧迫し合う。湾曲部12内においては、ライトガイド34以外の内蔵物からの圧迫力は、螺旋管36によって保護されるため、内部の光学繊維束40には及ばない。一方、湾曲部12の湾曲を繰り返すことで、螺旋管36及び熱収縮チューブ37の内部で光学繊維束40が移動しようとするが、上述したように、熱収縮チューブ37の第2部分37bの内径Dが、螺旋管36の内径Dより小さく形成されているので、螺旋管36内における光学繊維束40の移動を抑制し、光学繊維束40の折損を防止することができる。また、光学繊維束40を構成する個々の光学繊維40aが様々な状態に屈曲しようとするが、上記の条件(L≦2R、L≦√(d(4R−d))を満たすように、螺旋管36の後端36bと、熱収縮チューブ37の第2部分37bの前端との間隔Lを狭めており、また、熱収縮チューブ37が屈曲半径R以上でキンク耐性を有しているため、螺旋管36の内周縁36aと光学繊維40aとの接触を防いで光学繊維40aの折損を防ぐことができる。 When the insertion portion 3 is inserted into the body cavity or when the bending portion 12 is bent, built-in objects such as the light guide 34, the forceps channel 38, and the signal line come into contact with each other and are pressed against each other. In the bending portion 12, the compression force from a built-in object other than the light guide 34 is protected by the spiral tube 36, and therefore does not reach the optical fiber bundle 40 inside. On the other hand, by repeating the bending of the bending portion 12, the optical fiber bundle 40 tries to move inside the spiral tube 36 and the heat shrinkable tube 37. As described above, the inner diameter of the second portion 37b of the heat shrinkable tube 37 is increased. D T is because it is smaller than the inner diameter D S of the spiral tube 36, to suppress the movement of the optical fiber bundle 40 in the helical tube 36, it is possible to prevent breakage of the optical fiber bundle 40. Further, the individual optical fibers 40a constituting the optical fiber bundle 40 tend to bend in various states, but satisfy the above conditions (L ≦ 2R M , L ≦ √ (d (4R M −d)). The space L between the rear end 36b of the helical tube 36 and the front end of the second portion 37b of the heat shrinkable tube 37 is narrowed, and the heat shrinkable tube 37 has kink resistance at a bending radius RC or more. Therefore, the contact between the inner peripheral edge 36a of the spiral tube 36 and the optical fiber 40a can be prevented, and the optical fiber 40a can be prevented from being broken.

なお、上記実施形態では、光学繊維束40を被覆する金属製保護チューブとして螺旋管36を用いているが、本発明はこれに限るものではなく、上記構成の螺旋管36に代えて、例えばステンレス、タングステン等の金属細線を編組した網状管を金属製保護チューブとして用いてもよい。   In the above embodiment, the spiral tube 36 is used as a metal protective tube that covers the optical fiber bundle 40. However, the present invention is not limited to this, and instead of the spiral tube 36 having the above configuration, for example, stainless steel is used. A net-like tube braided with fine metal wires such as tungsten may be used as a metal protective tube.

また、上記実施形態では、光学繊維束40と螺旋管36との間には何も介さず、光学繊維束40の外周を螺旋管36で覆う構成を示しているが、本発明はこれに限らず、光学繊維束40の外周面を、例えばシリコンチューブなどの可撓性チューブで被覆し、この可撓性チューブを介して螺旋管36を光学繊維束40の外周に配するようにしてもよい。   Moreover, in the said embodiment, although nothing is interposed between the optical fiber bundle 40 and the spiral tube 36, the structure which covers the outer periphery of the optical fiber bundle 40 with the spiral tube 36 is shown, but this invention is not limited to this. Instead, the outer peripheral surface of the optical fiber bundle 40 may be covered with a flexible tube such as a silicon tube, and the spiral tube 36 may be arranged on the outer periphery of the optical fiber bundle 40 via the flexible tube. .

上記実施形態では、複数の光学繊維を束ねた光学繊維束を備えた光学繊維ユニットを例に上げて説明しているが、光学繊維束に代えて単線の光学繊維からなる光学繊維ユニットに適用してもよい。あるいは、上記実施形態では、光学繊維として石英製光ファイバを用いているがこれに限定されるものではなく、例えばプラスチック製光ファイバなど他の光学繊維を用いてもよい。   In the above embodiment, an optical fiber unit including an optical fiber bundle in which a plurality of optical fibers are bundled is described as an example. However, the optical fiber unit is applied to an optical fiber unit made of a single optical fiber instead of the optical fiber bundle. May be. Alternatively, in the above embodiment, a quartz optical fiber is used as the optical fiber, but the present invention is not limited to this, and other optical fibers such as a plastic optical fiber may be used.

上記実施形態においては、固体撮像素子を用いて体腔内を撮像した画像を観察する電子内視鏡を例に上げて説明しているが、本発明はこれに限るものではなく、光学的イメージガイドを採用して体腔内を観察する内視鏡にも適用することができる。この場合、光学的イメージガイドに本発明の光学繊維ユニットを適用し、光学的イメージガイドを構成する光学繊維束または光学繊維に、上記実施形態と同じ構成の金属製保護チューブ及び熱収縮チューブが被覆される。   In the above embodiment, an electronic endoscope for observing an image obtained by imaging a body cavity using a solid-state image sensor has been described as an example. However, the present invention is not limited to this, and an optical image guide is used. The present invention can also be applied to an endoscope that observes the inside of a body cavity. In this case, the optical fiber unit of the present invention is applied to the optical image guide, and the optical fiber bundle or the optical fiber constituting the optical image guide is covered with the metal protective tube and the heat shrinkable tube having the same configuration as the above embodiment. Is done.

2 内視鏡
3 挿入部
5 操作部
11 先端部
12 湾曲部
13 軟性部
34 ライトガイド(光学繊維ユニット)
36 螺旋管
36a 内周縁
36b 後端
37 熱収縮チューブ
37a 第1部分
37b 第2部分
40 光学繊維束
40a 光学繊維
d 段差
L 間隔
屈曲半径
最小半径
DESCRIPTION OF SYMBOLS 2 Endoscope 3 Insertion part 5 Operation part 11 Tip part 12 Bending part 13 Soft part 34 Light guide (optical fiber unit)
36 spiral tube 36a inner peripheral edge 36b rear end 37 heat shrinkable tube 37a first part 37b second part 40 optical fiber bundle 40a optical fiber d step L interval R C bending radius RM minimum radius

Claims (8)

先端部の向きを変化させるために湾曲する湾曲部及び可撓性を有する軟性部が先端側から順に連設された内視鏡の挿入部内に挿通され、光学繊維を束ねた光学繊維束または光学繊維と、
前記湾曲部内において前記光学繊維束または前記光学繊維の外周に配設された金属製保護チューブと、
前記金属製保護チューブの外周を被覆する第1部分と、前記金属製保護チューブの後端から後方に延びて前記光学繊維束または前記光学繊維を被覆する第2部分とを有する熱収縮チューブとを備えており、
前記熱収縮チューブは、少なくとも第1部分と第2部分の境界付近において第2部分の内径が、前記金属製保護チューブの内径よりも小さいことを特徴とする光学繊維ユニット。
An optical fiber bundle or an optical fiber in which a bending portion and a flexible flexible portion that are bent to change the direction of the distal end portion are inserted into an insertion portion of an endoscope that is sequentially arranged from the distal end side, and optical fibers are bundled. Fiber,
A metal protective tube disposed on an outer periphery of the optical fiber bundle or the optical fiber in the curved portion;
A heat shrinkable tube having a first portion covering the outer periphery of the metal protective tube and a second portion extending backward from the rear end of the metal protective tube and covering the optical fiber bundle or the optical fiber. Has
The optical fiber unit, wherein the heat shrinkable tube has an inner diameter of the second portion smaller than an inner diameter of the metal protective tube at least near the boundary between the first portion and the second portion.
前記金属製保護チューブは、帯状片を巻き回して形成された螺旋管であることを特徴とする請求項1記載の光学繊維ユニット。   The optical fiber unit according to claim 1, wherein the metal protective tube is a spiral tube formed by winding a strip. 前記金属製保護チューブは、細線を編組して形成された網状管であることを特徴とする請求項1記載の光学繊維ユニット。   2. The optical fiber unit according to claim 1, wherein the metal protective tube is a mesh tube formed by braiding fine wires. 前記光学繊維が屈曲可能な最小半径をRとし、前記金属製保護チューブの後端と、前記熱収縮チューブの第2部分の前端との間隔をLとしたとき、L≦2Rであることを特徴とする請求項1ないし3記載の光学繊維ユニット。 The minimum optical fibers bendable radius and R M, when the rear end of the metal protective tube, the distance between the front end of the second portion of the heat shrinkable tube is L, it is L ≦ 2R M The optical fiber unit according to any one of claims 1 to 3. 前記金属製保護チューブの内周半径と、前記第2部分における前記熱収縮チューブの内周半径との段差をdとしたとき、L≦√(d(4R−d))の条件を満たすことを特徴とする請求項4記載の光学繊維ユニット。 When the step between the inner peripheral radius of the metal protective tube and the inner peripheral radius of the heat-shrinkable tube in the second portion is d, the condition of L ≦ √ (d (4R M −d)) is satisfied. The optical fiber unit according to claim 4. 前記第1部分及び第2部分の境界付近において、前記湾曲部及び前記軟性部が最小半径となるように湾曲したときに、前記熱収縮チューブが屈曲する屈曲半径をRとすると、前記熱収縮チューブは、屈曲半径がR以上となるように屈曲した場合、キンク耐性を有すること特徴とする請求項1ないし5いずれか1項記載の光学繊維ユニット。 When the bending radius at which the heat-shrinkable tube is bent when the bending portion and the flexible portion are bent to have a minimum radius in the vicinity of the boundary between the first portion and the second portion is R C , The optical fiber unit according to any one of claims 1 to 5, wherein the tube has kink resistance when bent so that a bending radius is equal to or greater than RC . 前記熱収縮チューブは、ポリオレフィン、またはPTFEからなることを特徴とする請求項1ないし6いずれか1項記載の光学繊維ユニット。   The optical fiber unit according to any one of claims 1 to 6, wherein the heat shrinkable tube is made of polyolefin or PTFE. 前記挿入部と、前記湾曲部を湾曲させるための操作手段と、前記挿入部の基端側に設けられ、前記操作手段が組み込まれた本体操作部と、請求項1ないし7いずれか1項記載の前記光学繊維ユニットとを備えたことを特徴とする内視鏡。   The said insertion part, the operation means for bending the said bending part, the main body operation part provided in the base end side of the said insertion part, and the said operation means was integrated, The any one of Claim 1 thru | or 7 An endoscope comprising the optical fiber unit.
JP2010066371A 2010-03-23 2010-03-23 Optical fiber unit and endoscope Expired - Fee Related JP5390445B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010066371A JP5390445B2 (en) 2010-03-23 2010-03-23 Optical fiber unit and endoscope
CN201110032824.3A CN102197988B (en) 2010-03-23 2011-01-26 Optical fiber unit and endoscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010066371A JP5390445B2 (en) 2010-03-23 2010-03-23 Optical fiber unit and endoscope

Publications (2)

Publication Number Publication Date
JP2011194137A true JP2011194137A (en) 2011-10-06
JP5390445B2 JP5390445B2 (en) 2014-01-15

Family

ID=44659159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010066371A Expired - Fee Related JP5390445B2 (en) 2010-03-23 2010-03-23 Optical fiber unit and endoscope

Country Status (2)

Country Link
JP (1) JP5390445B2 (en)
CN (1) CN102197988B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5792417B2 (en) * 2013-06-26 2015-10-14 オリンパス株式会社 Spiral unit and introduction device
JP6045536B2 (en) * 2014-08-01 2016-12-14 富士フイルム株式会社 Endoscope device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6341820A (en) * 1986-08-08 1988-02-23 Olympus Optical Co Ltd Endoscope
JPH04291312A (en) * 1991-03-20 1992-10-15 Olympus Optical Co Ltd Endoscope
JPH04347816A (en) * 1991-05-24 1992-12-03 Asahi Optical Co Ltd Optical fiber flux for endoscope
JPH06105798A (en) * 1992-09-30 1994-04-19 Terumo Corp Catheter tube
JP2004089265A (en) * 2002-08-29 2004-03-25 Pentax Corp Protection device for optical fiber bundle for endoscope
JP2004298449A (en) * 2003-03-31 2004-10-28 Fuji Photo Optical Co Ltd Endoscope
JP2004329857A (en) * 2003-03-13 2004-11-25 Olympus Corp Flexible tube for endoscope and its manufacturing method
JP2007296141A (en) * 2006-04-28 2007-11-15 Olympus Corp Method of manufacturing flexible tube for endoscope and flexible tube for endoscope

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04271307A (en) * 1991-02-27 1992-09-28 Sumitomo Electric Ind Ltd Reinforcing member for optical coupler and method for reinforcing optical coupler
JP3085671B1 (en) * 1999-05-12 2000-09-11 株式会社ナカニシ Dental handpiece and method of forming optical path unit
CN1310285C (en) * 2003-05-12 2007-04-11 东京毅力科创株式会社 Processing device
GB0520166D0 (en) * 2005-10-05 2005-11-09 Tyco Electronics Raychem Nv Optical fibre connection devices

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6341820A (en) * 1986-08-08 1988-02-23 Olympus Optical Co Ltd Endoscope
JPH04291312A (en) * 1991-03-20 1992-10-15 Olympus Optical Co Ltd Endoscope
JPH04347816A (en) * 1991-05-24 1992-12-03 Asahi Optical Co Ltd Optical fiber flux for endoscope
JPH06105798A (en) * 1992-09-30 1994-04-19 Terumo Corp Catheter tube
JP2004089265A (en) * 2002-08-29 2004-03-25 Pentax Corp Protection device for optical fiber bundle for endoscope
JP2004329857A (en) * 2003-03-13 2004-11-25 Olympus Corp Flexible tube for endoscope and its manufacturing method
JP2004298449A (en) * 2003-03-31 2004-10-28 Fuji Photo Optical Co Ltd Endoscope
JP2007296141A (en) * 2006-04-28 2007-11-15 Olympus Corp Method of manufacturing flexible tube for endoscope and flexible tube for endoscope

Also Published As

Publication number Publication date
CN102197988A (en) 2011-09-28
CN102197988B (en) 2014-10-29
JP5390445B2 (en) 2014-01-15

Similar Documents

Publication Publication Date Title
JP5390048B1 (en) Endoscope system
US20160007832A1 (en) Endoscope
JP6010268B1 (en) Endoscope bending and endoscope
JP2012231886A (en) Flexible tube part of endoscope and endoscope having the flexible tube part
JP2008212309A (en) Tip part of ultrathin endoscope
US20130150666A1 (en) Endoscope
US20090299139A1 (en) Endoscope
JP5390445B2 (en) Optical fiber unit and endoscope
JP2006055659A (en) Endoscope
JP5810037B2 (en) Endoscope system
JP2004298449A (en) Endoscope
JP6949774B2 (en) Endoscope
JP3189645B2 (en) Angle section of endoscope
JP2011224115A (en) Endoscope
JP3590199B2 (en) Endoscope
JP5412061B2 (en) MEDICAL SCOPE, AND METHOD FOR CONNECTING TIP UNIT IN MEDICAL SCOPE
JP5390446B2 (en) Optical fiber unit and endoscope
JP5977613B2 (en) Insertion equipment
JP5073627B2 (en) Endoscope
JP4206239B2 (en) Endoscope optical fiber bundle protector
JP2001000390A (en) Endoscope device
JP2006263234A (en) Endoscope
JP3973631B2 (en) Endoscope
JP2017209235A (en) Endoscope
JP6257854B2 (en) Endoscope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131010

R150 Certificate of patent or registration of utility model

Ref document number: 5390445

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees