JP2011190690A - 電池制御装置および車載用電源装置 - Google Patents
電池制御装置および車載用電源装置 Download PDFInfo
- Publication number
- JP2011190690A JP2011190690A JP2010054954A JP2010054954A JP2011190690A JP 2011190690 A JP2011190690 A JP 2011190690A JP 2010054954 A JP2010054954 A JP 2010054954A JP 2010054954 A JP2010054954 A JP 2010054954A JP 2011190690 A JP2011190690 A JP 2011190690A
- Authority
- JP
- Japan
- Prior art keywords
- battery
- vehicle
- engine
- control device
- started
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
Landscapes
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
【課題】二次電池を用いた車両駆動用組電池の電力によりモータ・ジェネレータを駆動してエンジンの起動を行う構成において、エンジン起動をより確実に行うことができる電池制御装置の提供。
【解決手段】電池制御装置は、車両のイグニッションオン操作が行われると、複数の二次電池11から成る車両駆動用組電池(二次電池モジュール22)の電力によりモータ・ジェネレータ24を駆動して、エンジン25の起動動作を行うものであって、制御部23は、イグニッションオン操作に伴うエンジン起動動作によりエンジン25が起動したか否かを判定する。さらに、制御部23は、起動していないと判定した場合に、車載の放電回路26を用いて二次電池モジュール22を放電させて電池温度を上昇させた後、起動動作を再び行わせる。その結果、エンジン起動の確実性が向上する。
【選択図】図1
【解決手段】電池制御装置は、車両のイグニッションオン操作が行われると、複数の二次電池11から成る車両駆動用組電池(二次電池モジュール22)の電力によりモータ・ジェネレータ24を駆動して、エンジン25の起動動作を行うものであって、制御部23は、イグニッションオン操作に伴うエンジン起動動作によりエンジン25が起動したか否かを判定する。さらに、制御部23は、起動していないと判定した場合に、車載の放電回路26を用いて二次電池モジュール22を放電させて電池温度を上昇させた後、起動動作を再び行わせる。その結果、エンジン起動の確実性が向上する。
【選択図】図1
Description
本発明は、車両に搭載された二次電池の制御を行う電池制御装置、および車載用電源装置に関する。
地球温暖化や燃料枯渇の問題から、駆動の一部を電気モータで補助するハイブリッド電気自動車(HEV)が開発されてきており、電気モータの電源として高容量で高出力な二次電池が求められるようになってきた。このような要求に合致する電源として、高電圧を有する非水溶液系のリチウム二次電池が注目されている。
現在、エンジンの起動には鉛蓄電池が電源として多く使用されているが、HEVにおいてはHEV用電源として二次電池を搭載している。そのため、今後HEVを小型軽量化していく上で、この二次電池がエンジンの起動用電源としての役割を担うことが求められる。
一方、二次電池は入出力特性に温度依存性があり、低温時には出力が低下する傾向にある。このため、電池の放電による発熱を利用して出力を向上させる技術が提案されている(例えば、特許文献1参照)。
ところで、低温環境下で車両を起動する場合、上述したように二次電池の出力が低下して充分な出力が得られない場合がある。また、起動に必要な出力が得られるか否かは、電池温度だけでなく、電池の充電レベルや電池の劣化状態によっても変化し、さらに、車両停止から車両起動までの間においても変化する。そのため、車両停止時の状態で起動可能か否かを判別するのは難しかった。
本発明は、車両のイグニッションオン操作が行われると、複数の二次電池から成る車両駆動用組電池の電力によりモータ・ジェネレータを駆動して、エンジンの起動動作を行う電池制御装置であって、イグニッションオン操作に伴うエンジン起動動作によりエンジンが起動したか否かを判定する起動判定手段と、起動判定手段により起動していないと判定された場合に、車載の放電負荷を用いて車両駆動用組電池を放電させた後、起動動作を再び行わせる再起動手段と、を備えたことを特徴とする。
本発明による車載用電源装置は、複数の二次電池から成る車両駆動用組電池と、上述の電池制御装置と、を備えたことを特徴とする。
本発明による車載用電源装置は、複数の二次電池から成る車両駆動用組電池と、上述の電池制御装置と、を備えたことを特徴とする。
本発明によれば、二次電池を用いた車両駆動用組電池の電力によりモータ・ジェネレータを駆動してエンジンの起動を行う構成において、エンジン起動をより確実に行うことができる。
以下、図を参照して本発明を実施するための形態について説明する。図1は、HEVに搭載された電池制御装置を説明するためのブロック図である。エンジン25を起動する際には、モータ・ジェネレータ24によって起動トルクが与えられる。二次電池モジュール22はHEV用電源として搭載されているものであるが、エンジン起動時のモータ・ジェネレータ駆動用電源としても用いられる。二次電池モジュール22は、複数の二次電池11を直列接続または並列接続または並列と直列とを組み合わせて接続することによって構成されている。
二次電池モジュール22には、各二次電池11の温度を検出する温度センサ221と、各二次電池11の電圧を検出する電圧センサ222とを備えている。ここでは、温度センサ221は各二次電池11の温度を検出するものとしているが、二次電池モジュール22内の所定箇所の温度を計測する温度センサであっても良い。温度センサ221で検出された電池温度T1および電池電圧Vは、制御部23に送信される。
制御部23は、二次電池モジュール22の状態(電池温度、電池電圧)を監視するとともに、二次電池モジュール22、モータ・ジェネレータ24およびアラーム装置27の制御を行う。また、制御装置23は、電池温度T1、電池電圧Vおよび外気温センサ28から入力される外気温T2を記録保持する。さらに、制御部23は、検出された電池電圧(開回路電圧)Vに基づいて二次電池11のSOC(State Of Charge)を演算し、その演算結果を保持する。なお、SOC演算に必要なデータは制御部23に予め記憶されている。
制御部23は、イグニッションオン等の起動信号が車両側から入力されると、エンジン25に対して起動トルクを付与するように、モータ・ジェネレータ24に制御信号を出力する。モータ・ジェネレータ24はエンジン25の起動に必要なトルクを短時間与え、エンジン25を起動させる。エンジン25は、起動情報(例えば、回転信号)を制御部23に出力する。エンジン起動ができなかった場合には、制御部23は警報信号をアラーム装置27へ出力する。警報信号を受信したアラーム装置27は、ランプや音等を用いて、エンジン25が起動できないことを車両搭乗者に報知する。放電回路26は二次電池モジュール22の強制放電を行うための回路であり、放電時には二次電池モジュール22が抵抗(不図示)を介して短絡される。後述するように、この放電回路26による二次電池モジュール22の放電により、二次電池11の温度を上昇させる。
図2,3は二次電池11の構成を説明する図である。二次電池11には、例えば、高容量で高出力なリチウム二次電池が用いられる。図2は、車両用二次電池の1つである円筒形リチウムイオン二次電池の断面図である。図3は、円筒形リチウムイオン二次電池の分解斜視図である。
図2に示すように、二次電池11は、有底円筒形の電池容器1内に樹脂製の軸芯7の周囲に捲回された電極群8と、電解液とを収納し、上蓋3と上蓋ケース4とから成る電導性の上蓋部を電池容器1の開口部に取りつけて密封したものである。電池容器1と上蓋ケース4との間にはガスケット2が設けられており、このガスケット2により電池容器1と上蓋ケース4との間が密封されるとともに、電池容器1と上蓋ケース4とが電気的に絶縁される。
電極群8には正極および負極の集電部品5,6が取り付けられている。負極の電極は負極集電部品6に溶接等で接続され、負極のリード10を介して電池容器1に電気的に接続されている。リード10は、電池容器1の底部に溶接されている。一方、正極集電部品5には正極リード9の一方が溶接され、正極リード9の他方は上蓋ケース4に溶接されている。これにより、上蓋部と電極群8の正極とが電気的に接続される。
図3に示すように、電極群8は、正極電極14と負極電極15とを、樹脂製の軸芯7の周囲に多孔質で絶縁性を有するセパレータ18を介して捲回し、最外周の負極電極15を覆うセパレータ18をテープ18aで止めたものである。正極電極14はアルミニウム等の金属薄膜であり、両面に正極合剤16が塗布されている。正極電極14の図中上方の長辺部には、正極タブ12が複数設けられている。負極電極15は銅等の金属薄膜であり、両面に負極合剤17が塗布されている。負極電極15の図中下方の長辺部には、負極タブ13が複数設けられている。
正極合剤16は、正極活物質と、正極導電材と、正極バインダとを有する。正極活物質は、リチウム酸化物が好ましい。例として、コバルト酸リチウム、マンガン酸リチウム、ニッケル酸リチウム、リン酸鉄リチウム、リチウム複合酸化物(コバルト、ニッケル、マンガンから選ばれる2種類以上を含むリチウム酸化物)、などが挙げられる。正極導電材は、正極合剤中におけるリチウムイオンの吸蔵放出反応で生じた電子の正極電極への伝達を補助できる物質であれば制限はない。
正極導電材の例として、黒鉛やアセチレンブラックなどが挙げられる。正極バインダは、正極活物質と正極導電材、及び正極合剤と正極集電体、を結着させることが可能であり、非水電解液との接触により、大幅に劣化しなければ特に制限はない。正極バインダの例としてポリフッ化ビニリデン(PVDF)やフッ素ゴムなどが挙げられる。
正極合剤16の形成方法は、正極電極14上に正極合剤16が形成される方法であれば制限はない。正極合剤16の形成方法の一例としては、正極合剤16の構成物質の分散溶液を正極電極14上に塗布する方法が挙げられる。塗布方法の例として、ロール塗工法、スリットダイ塗工法、などが挙げられる。分散溶液の溶媒例として、N−メチルピロリドン(NMP)や水が挙げられる。
負極合剤17は、負極活物質と、負極バインダと、増粘剤とを有する。なお、負極合剤17は、アセチレンブラックなどの負極導電材を有しても良い。負極活物質として、黒鉛炭素を用いることが好ましい。黒鉛炭素を用いることにより、大容量が要求されるプラグインハイブリッド自動車や電気自動車向けのリチウムイオン二次電池が作製できる。
負極合剤17の形成方法は、負極電極15上に負極合剤17が形成される方法であれば制限はない。負極合剤17の形成方法の一例としては、負極合剤17の構成物質の分散溶液を負極電極15上に塗工する方法が挙げられる。塗工方法の例として、ロール塗工法、スリットダイ塗工法、などが挙げられる。
非水電解液は、リチウム塩がカーボネート系溶媒に溶解した溶液を用いることが好ましい。リチウム塩の例としては、フッ化リン酸リチウム(LiPF6)、フッ化ホウ酸リチウム(LiBF6)、などが挙げられる。また、カーボネート系溶媒の例としては、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、プロピレンカーボネート(PC)、メチルエチルカーボネート(MEC)、或いは上記溶媒の1種類以上から選ばれる溶媒を混合したもの、が挙げられる。
前述したように、二次電池は入出力特性に温度依存性があり、低温時には出力が低下する傾向にある。そのため、低温環境下で車両を起動する場合、二次電池の出力低下によりモータ・ジェネレータ24でエンジン25を起動できない場合がある。
図4は、リチウム二次電池の出力(放電可能出力)特性の概略を示す図である。図4に示す放電可能出力は、放電前の開回路電圧(OCV)と5C電流A1で放電中の10秒目電圧V1とを使用し、式(1)に基づいて算出したものである。なお、式(1)の下限電圧Vminは、システムの構成やモータの仕様、二次電池の仕様等に応じて設定される下限電圧であり、システムはこの下限電圧Vmin以上で動作するように設定されている。
放電可能出力 = Vmin × (OCV − Vmin) / [(OCV − V1) / A1] …(1)
放電可能出力 = Vmin × (OCV − Vmin) / [(OCV − V1) / A1] …(1)
図4において、横軸はSOCを表しており、L1は電池温度が−30℃の場合、L2は電池温度が−20℃の場合、L3は電池温度が−10℃の場合、L4は電池温度が0℃の場合を示す。図4に示すように、電池温度が低くなると放電可能出力も低下する。また、放電可能出力はSOCが小さくなるにつれて低下するが、その低下の度合いは電池温度が高くなるほど大きくなる。例えば、SOCが60%から50%に減少したとき、電池温度が−20℃の場合の出力変化は20W程度であるが、0℃の場合には約70W変化する。なお、放電可能出力は電池の劣化状態によっても変化するが、ここでは劣化の影響は考慮していない。
なお、SOCは充放電容量の積算値からも求めることが出来るが、ハイブリッド自動車では大電流の充放電が頻繁に行われることが多く、電流および充放電時間の誤差が積算されるため、積算で求めたSOCは誤差を含み易い。そのため、予め開回路電圧(OCV)とSOCの関係を取得しておきOCVから求める方法、およびこれらを併用する方法などで求められている。
二次電池の放電可能出力がエンジン25の起動に必要な電力を超えていれば起動が可能であるが、起動に必要な電力を下回っている場合には起動できないことになる。例えば、エンジン25を起動させるために必要な電力が二次電池当り200Wであると仮定したとき、電池温度が0℃(曲線L4)であった場合には、SOCがほぼ35%を超えていれば起動が可能であるが、SOC<30%であった場合には起動不能となる。一方、電池温度が−20℃(曲線L2)、−30℃(曲線L1)である場合には、SOCが80%であっても起動することができない。
そこで、本実施の形態では、イグニッションオン時の起動によりエンジン25が起動できなかった場合には、図1の放電回路26を用いて二次電池11を強制放電させ、電池温度を上昇させて二次電池11の出力改善を図った後に再度起動動作を行うようにした。
図5は、放電による電池温度の上昇を示したものである。二次電池11の内部抵抗は電池温度が低くなるほど大きくなるため、同一電流を流した場合には電池温度が低いほど発生する熱も大きくなる。図5では、5CA(定格容量を1時間率で除した電流値の5倍の電流値)で放電したときの、SOC変化と電池温度変化との関係を示した。曲線L11は電池温度が−30℃の場合、L12は−20℃の場合、L13は−10℃の場合を示す。上述したように電池温度が低下すると内部抵抗が増加するため、例えば、SOCの低下が同じ20%であっても、電池温度が−10℃のときの温度上昇は約7℃であるが、−20℃の場合の温度上昇は約11℃となり、−30℃の場合には約16.5℃となる。
このように、放電によって二次電池11の電池温度を上昇させることができる。一方、図4に示すように、二次電池11の放電可能出力は電池温度が高いほど全体的に大きくなる。そのため、イグニッションオン時の起動によりエンジン25が起動できなかった場合でも、二次電池11を強制放電させて電池温度を上昇させ、二次電池11の出力向上を図り、エンジン25が起動可能なトルクを得られるようにすることができる。
図4の矢印で示す変化は、放電によって電池温度を10℃上昇させたときの二次電池11の状態の変化を示したものである。図4では、電池温度を−30℃から−20℃に変化させたB1の場合、−20℃から−10℃へ変化させたB2の場合、−10℃から0℃へ変化させたB3の場合を示す。このような変化を調べるためには、図5を用いて、電池温度を10℃上昇させるために必要なSOC変化を求める。電池温度−10℃(曲線L1)の場合には、約33%のSOC変化が必要となる。一方、電池温度が−20℃の場合に必要なSOC変化は約18%で、電池温度が−30度の場合に必要なSOC変化は約12%となる。
図4に示すように、各電池温度における放電前のSOCが70%の場合を考えると、放電前の電池温度が−30℃であった場合には、矢印B1で示すように電池温度が−20℃でSOCが58%(=70−12)の状態へと電池状態が変化する。同様に、放電前の電池温度が−20℃の場合には、矢印B2で示すように電池温度−10℃およびSOC=52%の電池状態へと変化し、放電前の電池温度が−10℃の場合には、矢印B3で示すように電池温度0℃およびSOC=37%の電池状態へと変化する。
放電後の二次電池11の出力を比較すると、B1およびB2の場合には出力が向上するが、電池温度の比較的高いB3の場合には、温度上昇に必要なSOCが大きいため出力が低下してしまうことになる。すなわち、放電による出力向上の効果は、電池温度がある程度低くならないと期待できないことがわかる。
例えば、エンジン起動に必要なトルクが二次電池当り出力=200Wに相当すると仮定した場合、B3の放電前状態(電池温度−10℃、SOC=70%)ならば起動が可能であるが、B1,B2の放電を行う前の電池状態では、エンジンを起動させることができない。B2の放電を行うと、二次電池11の出力は200Wよりも大きくなるので、放電後はエンジン起動が可能となる。また、電池状態が温度−30℃、SOC=70%の場合には、B1の放電を行ってもエンジン起動可能な電池状態とならないが、再度の放電を行ったり、B1の放電よりもSOC変化がより大きな放電を行ったりすることで、エンジン起動が可能となる。例えば、SOC変化が26%の放電を行えば、温度変化は20℃なので、図4を参照すると放電後の出力は200Wを超えることになる。
また、電池温度が−10℃であってもSOCが35%を超えていれば、放電を行わなくてもエンジン起動が可能であるので、放電による電池状態の変化がB3のような場合であっても、エンジン起動に対する影響はほとんどない。
図6は、起動時における制御部23の動作の一例を示すフローチャートである。ステップS1では、制御部23は車両側からの起動信号を受信したか否かを判定する。運転者が車両をイグニッションオンすると、車両側から起動信号が制御部23に入力されるので、ステップS1で肯定判定されてステップS2へ進む。ステップS2において、制御部23は、起動信号が入力されると、エンジン25を起動すべく制御信号をモータ・ジェネレータ24に送信し、エンジン25に起動トルクが与えられるようにモータ・ジェネレータ24を駆動する。モータ・ジェネレータ24は、二次電池モジュール22の電力により短時間駆動される。
ステップS3では、制御部23は、エンジン25の起動情報(例えば回転信号)に基づいて、エンジン25が起動できたか否かを判定する。ステップS3でエンジン25が起動できたと判定された場合には、起動処理に関する一連の処理を終了する。一方、ステップS3でエンジン25が起動できなかったと判定された場合にはステップS4へ進み、上述したような二次電池11の強制放電を行う。
例えば、エンジン25の起動トルクが二次電池11の200Wに相当し、二次電池11の電池温度が−20℃、SOC=70%であった場合を考える。この場合、図4に示すように、二次電池11の放電可能な出力は約170Wであるため、ステップS2においてエンジン25を起動することができない。そのため、ステップS3からステップS4へ進み二次電池11の強制放電を行う。ここで、上述したように約18%のSOC変化に相当する放電を行って電池温度を−20℃へ上昇させると、二次電池11の出力は約270Wとなり、エンジン起動が可能となる。
なお、強制放電の放電量(Ah)に関しては、予め電池温度に応じて設定していても良いし、電池温度に関係なく所定の放電量に設定しても良い。例えば、前述したように、SOC変化で26%の放電を行えば、電池温度−30℃、SOC=70%の場合でも放電後は出力が200Wを超えるので、所定放電量をSOC変化=26%に相当する放電量に設定すれば、電池温度が−20℃の場合でも−30℃の場合でも起動できることになる。
ステップS4では、放電電流値と時間との積を積算し、その積算値が所定放電量となったならば強制放電を停止する。なお、電池温度が−20℃となったことを見て強制放電を停止するようにしても良い。
ステップS4の強制放電により電池温度を上昇させたならば、ステップS5へ進んで再度モータ・ジェネレータ24に制御信号を与えてエンジン25の起動を行い、一連の起動動作を終了する。
(変形例1)
図7は、図6に示した制御の変形例を示すフローチャートであり、図6のフローチャートにステップS21,S22の処理を追加したものである。
図7は、図6に示した制御の変形例を示すフローチャートであり、図6のフローチャートにステップS21,S22の処理を追加したものである。
ステップS3でエンジン起動ができなかったと判定された場合には、ステップS21へ進んで電池温度が所定の閾値以下か否かを判定する。なお、ここでは計測された電池温度を用いて判定を行っているが、停止時間が長ければ電池温度は外気温とほぼ同一となっているので、電池温度の代わりに外気温を用いて判定しても良い。
また、ステップS21における閾値としては、例えば、車両が正常な状態であればエンジン起動が可能な電池温度が採用される。図4に示すような出力特性の場合、電池温度の閾値を−10℃に設定する。そのため、ステップS21でNOと判定されるような電池温度の場合、二次電池11のSOCが33%を下回っていない限り200W以上の出力が可能なので、ステップS2においてエンジン25が起動され、ステップS3からステップS21に進むようなことはない。
ステップS21で閾値以下と判定された場合には、すなわち電池温度が低くてエンジン起動できなかった場合には、ステップS4へ進み、上述した実施の形態と同様に、強制放電を行った後にステップS5においてエンジンを再起動する。
一方、SOCが33%よりも小さい場合や、モータ・ジェネレータ24に不具合が生じてエンジン起動できない等の、電池温度低下以外の要因でエンジンが起動できず、ステップS3からステップS21に進んだ場合には、ステップS21で電池温度が閾値を超えている(NO)と判定され、ステップS22へ進む。
ステップS22では、電池温度以外の要因でエンジン25の起動が不能であることを知らせる警報信号をアラーム装置27へ出力する。警報信号を受信したアラーム装置27は音やランプ等により警報する。このようにステップS21の処理を設けたことにより、起動不能の原因が電池温度なのか、その他の要因なのかを知ることができる。さらに、電池温度以外の要因が原因で起動不能な場合には再起度が行われないので、電池温度が閾値以上の場合の不要な放電を防止でき、無駄な電力消費を避けることができる。
(変形例2)
図7に示した制御例では、エンジン25が起動しなかった場合に電池温度または外気温が閾値以下の場合に強制放電を行った。第2の変形例では、二次電池11または二次電池モジュール22の電圧(開放電圧)またはSOCが閾値以上の場合に強制放電を行うようにした。
図7に示した制御例では、エンジン25が起動しなかった場合に電池温度または外気温が閾値以下の場合に強制放電を行った。第2の変形例では、二次電池11または二次電池モジュール22の電圧(開放電圧)またはSOCが閾値以上の場合に強制放電を行うようにした。
図8は起動制御の第2の変形例を示すフローチャートであり、図7のフローチャートにステップS31,S32の処理を追加したものである。変形例2では、起動信号を受信してステップS1でyesと判定された場合、次のステップS31において、各二次電池11または二次電池モジュール22に関する電池データの取得を開始する。ここでは、二次電池11または二次電池モジュール22に関する電池データは、上述した開回路電圧やSOC、またはSOCを特定するために必要なデータである。
その後、ステップS2でエンジン25を起動する。そして、ステップS3で起動していないと判定され、かつ、ステップS21で電池温度が閾値以下であると判定された場合には、ステップS32に進んで、二次電池11のSOCが閾値以上であるか否かを判定する。ステップS32でyesと判定されると、ステップS4へ進み、二次電池11の強制放電を行う。
なお、ステップS32における二次電池11の充電状態を表す指標として、SOCの代わりに二次電池11の電圧(開回路電圧)や二次電池モジュール22の電圧(総電圧)を用いても良い。前述したように二次電池11の開放電圧とSOCとの間には所定の関係があり、一方が求まれば、他方はその関係式から演算することができる。
このように、電池温度が閾値以下と判定されただけでなく、SOCが閾値以上の場合にのみ強制放電を行うのは次のような理由からである。図4からも分かるように、低いSOC(すなわち、低い開回路電圧)から強制放電を行っても大幅な出力向上が見込めず、逆に、強制放電後の発熱分が放熱した後にはSOC減少(電圧減少)のデメリットが大きく現れる。そのようなことを防止するために、変形例2では、図8に示すステップS32の処理を追加した。
なお、図8に示す例では、変形例1で導入したステップS21の処理をそのまま残しているが、ステップS21を削除し、強制放電処理(S4)の前にステップS32の処理のみを行うようにしても良い。すなわち図4では、SOCが20%以下になると、電池温度が0℃であっても起動する可能性がないので、強制放電およびステップS5のエンジン起動動作を行わないようにして、二次電池11の過放電を防止する。
(変形例3)
図9は起動制御の第3の変形例を示すフローチャートであり、図8のフローチャートにステップS5の後に、ステップS41〜43の処理を追加したものである。ステップS5におけるエンジン再起動の処理が終了したならば、ステップS41においてエンジン25が起動したか否かを判定する。ステップS5で再度の起動を行ったにも関わらず、ステップS41において起動できなかったと判定された場合には、エンジン25の起動が困難と判断し、ステップS42へ進んでシステムロック処理、すなわち、運転者が再びイグニッションオン操作をしても、その指令を受け入れずエンジン起動が行われないような処理を施す。
図9は起動制御の第3の変形例を示すフローチャートであり、図8のフローチャートにステップS5の後に、ステップS41〜43の処理を追加したものである。ステップS5におけるエンジン再起動の処理が終了したならば、ステップS41においてエンジン25が起動したか否かを判定する。ステップS5で再度の起動を行ったにも関わらず、ステップS41において起動できなかったと判定された場合には、エンジン25の起動が困難と判断し、ステップS42へ進んでシステムロック処理、すなわち、運転者が再びイグニッションオン操作をしても、その指令を受け入れずエンジン起動が行われないような処理を施す。
電池温度はステップS4の放電処理直後が最も高く、再度イグニッションオン操作された時点では放熱により電池温度が若干下がっている。そのため、放電可能出力はステップS4の放電処理直後よりも低下しており、さらに、強制放電によりSOCが低下するため、SOC低下による出力低下も生じる。その結果、再度のエンジン起動を行っても、起動する可能性が殆ど無いことから、上述のようなシステムロック処理を行うようにした。
続くステップS43では、システムロック処理に関する警報信号をアラーム装置27へ出力する。アラーム装置27は、運転者に対してシステムロック処理が行われたことを示す警報を発生する。なお、その後、外部からの加熱(外気温上昇も含む)による温度の上昇、二次電池モジュール22の充電または交換によるSOCの上昇、または外部からの電源供給等があった場合には、システムロックを解除するようにしても良い。このようなシステムロック処理を行うことにより、二次電池11が過放電等の異常状態になることを防止することができる。
なお、上述した変形例2および変形例3では、エンジン起動前からシーケンス終了後までの電池データを取得して記憶するようにしているが、必ずしもシーケンス中の全てのデータである必要はなく、起動前の状態、放電直後の状態等、特定状態のデータのみでも良い。また、ステップS41〜ステップS43の処理は、図6,7のフローチャートにも適用できる。
上述したように、本実施の形態の電池制御装置は、車両のイグニッションオン操作が行われると、複数の二次電池11から成る車両駆動用組電池(二次電池モジュール22)の電力によりモータ・ジェネレータ24を駆動して、エンジン25の起動動作を行うものであって、制御部23は、イグニッションオン操作に伴うエンジン起動動作によりエンジン25が起動したか否かを判定する。さらに、制御部23は、起動していないと判定した場合に、車載の放電回路26を用いて二次電池モジュール22を放電させて電池温度を上昇させた後、起動動作を再び行わせる。その結果、エンジン起動の確実性が向上する。
また、二次電池モジュール22の温度または外気温を検出する温度センサ221,28をさらに備え、制御部23は、起動していないと判定し、かつ、温度センサにより検出された温度が所定温度以下の場合に、車載の放電回路26を用いて二次電池モジュール22を放電させて電池温度を上昇させた後、起動動作を再び行わせる。検出温度が所定温度より高い場合には電池温度以外の要因が起動不能の原因となっている可能性があり、そのような場合には再起動を行わないことで、無駄な再起動が避けられる。
また、制御部23が二次電池モジュール22の充電状態を検出し、起動していないと判定するとともに、充電状態(開回路電圧やSOC)が所定値以上の場合に、二次電池モジュール22の放電およびエンジン25の起動動作を再び行わせるようにすることで、二次電池モジュール22が過放電状態になるのを避けることができる。さらに、温度センサ221,28により検出された電池温度または外気温が所定温度以下、かつ、上記充電状態が所定値以上の場合に、二次電池モジュール22の放電およびエンジン25の起動動作を再び行わせるようにするようにしても良い。それによって、無駄な再起動を確実に防止できる。
なお、放電回路26により二次電池モジュール22の放電を行う代わりに、モータ・ジェネレータ24を空転駆動することによって放電を行うようにしても良い。その結果、放電回路26を省略することができ、コスト低減を図ることができる。その場合、エンジン25とモータ・ジェネレータ24との接続を解除し、モータ・ジェネレータ24のみを空転させる。
また、制御部23は、放電後の再起動の結果、エンジン25が起動しなかった場合に、イグニッションオン操作によるエンジン起動を不可とする。そうすることで、イグニッションオン操作が行われて再度の起動動作することによって二次電池モジュール22が過放電状態となるのを、防止することができる。さらに、エンジン起動不可であることを車両搭乗者に報知するアラーム装置27を備えることで、車両搭乗者が車両状態を正しく認識することができる。
なお、上述した実施の形態ではリチウムイオン二次電池を例に説明したが、図4,5のような特性を有する二次電池で構成される車両駆動用組電池であれば、同様に適用することができる。
上述した各実施形態はそれぞれ単独に、あるいは組み合わせて用いても良い。それぞれの実施形態での効果を単独あるいは相乗して奏することができるからである。また、本発明の特徴を損なわない限り、本発明は上記実施の形態に何ら限定されるものではない。
1:電池容器、2:ガスケット、3:上蓋、4:上蓋ケース、5:正極集電部品、6:負極集電部品、7:軸芯、8:電極群、9:正極リード、10:負極リード、11:二次電池、14:正極電極、15:負極電極、16:正極合剤、17:負極合剤、18:セパレータ、22:二次電池モジュール、23:制御部、24:モータ・ジェネレータ、25:エンジン、26:放電回路、27:アラーム装置、28:外気温センサ、221:温度センサ、222:電圧センサ
Claims (8)
- 車両のイグニッションオン操作が行われると、複数の二次電池から成る車両駆動用組電池の電力によりモータ・ジェネレータを駆動して、エンジンの起動動作を行う電池制御装置であって、
前記イグニッションオン操作に伴うエンジン起動動作によりエンジンが起動したか否かを判定する起動判定手段と、
前記起動判定手段により起動していないと判定された場合に、車載の放電負荷を用いて前記車両駆動用組電池を放電させた後、前記起動動作を再び行わせる再起動手段と、を備えたことを特徴とする電池制御装置。 - 請求項1に記載の電池制御装置において、
前記車両駆動用組電池の温度または外気温を検出する温度センサをさらに備え、
前記再起動手段は、前記起動判定手段により起動していないと判定され、かつ、前記温度センサにより検出された温度が所定温度以下の場合に、車載の放電負荷を用いて前記車両駆動用組電池を放電させた後、前記起動動作を再び行わせることを特徴とする電池制御装置。 - 請求項1に記載の電池制御装置において、
前記車両駆動用組電池の充電状態を検出する充電状態検出手段をさらに備え、
前記再起動手段は、前記起動判定手段により起動していないと判定されるとともに、前記充電状態検出手段により検出された充電状態が所定値以上の場合に、車載の放電負荷を用いて前記車両駆動用組電池を放電させた後、前記起動動作を再び行わせることを特徴とする電池制御装置。 - 請求項2に記載の電池制御装置において、
前記車両駆動用組電池の充電状態を検出する充電状態検出手段をさらに備え、
前記再起動手段は、前記起動判定手段により起動していないと判定されるとともに、前記温度センサにより検出された温度が所定温度以下、かつ、前記充電状態検出手段により検出された充電状態が所定値以上の場合に、車載の放電負荷を用いて前記車両駆動用組電池を放電させた後、前記起動動作を再び行わせることを特徴とする電池制御装置。 - 請求項1〜4のいずれか一項に記載の電池制御装置において、
前記放電負荷は前記モータ・ジェネレータであって、
前記再起動手段は、前記モータ・ジェネレータを用いて前記車両駆動用組電池を放電させる際に、前記エンジンとの接続を解除して前記モータ・ジェネレータを駆動することを特徴とする電池制御装置。 - 請求項1〜5のいずれか一項に記載の電池制御装置において、
前記再起動手段による起動動作によりエンジンが起動したか否かを判定する再起動判定手段と、
前記再起動判定手段により起動していないと判定された場合に、イグニッションオン操作によるエンジン起動を不可とする起動拒否手段と、をさらに備えたことを特徴とする電池制御装置。 - 請求項6に記載の電池制御装置において、
前記起動拒否手段によりイグニッションオン操作によるエンジン起動が不可とされた場合に、エンジン起動不可であることを車両搭乗者に報知するアラーム装置を備えたことを特徴とする電池制御装置。 - 複数の二次電池から成る車両駆動用組電池と、
請求項1〜7のいずれか一項に記載の電池制御装置と、を備えた車載用電源装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010054954A JP2011190690A (ja) | 2010-03-11 | 2010-03-11 | 電池制御装置および車載用電源装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010054954A JP2011190690A (ja) | 2010-03-11 | 2010-03-11 | 電池制御装置および車載用電源装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011190690A true JP2011190690A (ja) | 2011-09-29 |
Family
ID=44795871
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010054954A Withdrawn JP2011190690A (ja) | 2010-03-11 | 2010-03-11 | 電池制御装置および車載用電源装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011190690A (ja) |
-
2010
- 2010-03-11 JP JP2010054954A patent/JP2011190690A/ja not_active Withdrawn
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111542759B (zh) | 二次电池的异常检测装置、异常检测方法以及程序 | |
JP5235959B2 (ja) | 電池コントローラ及び電圧異常検出方法 | |
JP5537521B2 (ja) | リチウムイオン二次電池制御システムおよび組電池制御システム | |
US8384345B2 (en) | Control method for lithium ion secondary battery, and lithium ion secondary battery system | |
US8674659B2 (en) | Charge control device and vehicle equipped with the same | |
WO2011007805A1 (ja) | リチウムイオン二次電池監視システム及びリチウムイオン二次電池監視方法 | |
US10971767B2 (en) | Charge voltage controller for energy storage device, energy storage apparatus, battery charger for energy storage device, and charging method for energy storage device | |
US9350186B2 (en) | Battery pack | |
EP2291669B1 (en) | Method of diagnosing a malfunction in an abnormal voltage detecting apparatus, secondary battery system, and hybrid vehicle | |
US20220255081A1 (en) | Secondary battery, electronic device, and power tool | |
WO2017086400A1 (ja) | 蓄電池システム、蓄電池装置及び方法 | |
JP2013254664A (ja) | 二次電池の制御装置 | |
JP2012016109A (ja) | リチウムイオン電池の充電方法および充電装置 | |
US9728819B2 (en) | Non-aqueous electrolyte secondary battery system | |
JP2016129103A (ja) | 蓄電システム | |
JP7087960B2 (ja) | 充電システム | |
JP5779914B2 (ja) | 非水電解液型二次電池システムおよび車両 | |
JP2011190690A (ja) | 電池制御装置および車載用電源装置 | |
JP2016117413A (ja) | 蓄電システム | |
JP4513917B2 (ja) | 二次電池システム | |
JP7359154B2 (ja) | 検出装置、検出認識方法及び蓄電装置 | |
JP2009176602A (ja) | 電池システム、及び、自動車 | |
US12061239B2 (en) | Battery system, vehicle including the same, and method for monitoring secondary battery | |
JP2014060009A (ja) | 非水電解質電池の製造方法、電池パックの製造方法および非水電解質電池の使用方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20130604 |