JP2011189287A - Monitoring control system for water purification membrane filtration - Google Patents

Monitoring control system for water purification membrane filtration Download PDF

Info

Publication number
JP2011189287A
JP2011189287A JP2010058125A JP2010058125A JP2011189287A JP 2011189287 A JP2011189287 A JP 2011189287A JP 2010058125 A JP2010058125 A JP 2010058125A JP 2010058125 A JP2010058125 A JP 2010058125A JP 2011189287 A JP2011189287 A JP 2011189287A
Authority
JP
Japan
Prior art keywords
water
membrane
supply
water tank
membrane module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010058125A
Other languages
Japanese (ja)
Other versions
JP5349378B2 (en
Inventor
Katsuya Yokogawa
勝也 横川
Takeshi Matsushiro
武士 松代
Osamu Yamanaka
理 山中
Takahiro Soma
孝浩 相馬
Hideji Seki
秀司 関
Kazuhiko Noda
和彦 納田
Kazuhiko Kimijima
和彦 君島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2010058125A priority Critical patent/JP5349378B2/en
Publication of JP2011189287A publication Critical patent/JP2011189287A/en
Application granted granted Critical
Publication of JP5349378B2 publication Critical patent/JP5349378B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To effectively design and operate an entire system by simulating a designing specification and an operating condition beforehand. <P>SOLUTION: A monitoring control system for water purification membrane filtration which separates and removes a muddy content in water includes: a supply water tank 1 for supplying raw water; a coagulant injection device for injecting a coagulant into the supply water tank; an activated carbon injection device 8 for injecting an activated carbon into the supply water tank; a membrane module 11 arranged in downstream side of the supply tank for filtering the pretreatment water; a treated water tank arranged in downstream side of the membrane module; a heated water supply device 14 for supplying heated water to the membrane module; an absorption spectrometer 5 for measuring the absorbancy of the raw water; a current measure 9 for measuring the current of the raw water which is supplied from the supply water tank to the membrane module; and a control part 19 for controlling the coagulant injection ratio from the coagulant injection device using an online streaming current value which is electrically connected to a liquid measure and the coagulant injection device and measured by the current measure as an index. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、河川水・地下水・雨水貯水・湖沼水等の淡水、雨水貯水・産業廃水・下水などの汚水、バラスト水等の海水などの原水中の濁質分を分離する膜ろ過処理技術を用いた浄水膜ろ過監視制御システムに関する。   The present invention provides a membrane filtration technology that separates turbid components in raw water such as fresh water such as river water, groundwater, rainwater storage, lake water, sewage such as rainwater storage, industrial wastewater and sewage, and seawater such as ballast water. It is related with the used water purification membrane filtration monitoring control system.

周知の如く、膜ろ過法は、除濁・除菌を効率良く行えること、運転管理が容易なことから、浄水場への導入が進んでいるが、原水中の微小で粘着性の高い懸濁物によって、ファウリング(目詰まり)が生じることがある。従って、膜は洗浄を繰り返しながら運転する必要があり、一般的に二種類の洗浄方法がある。ろ過水を透過側(2次側)から流す逆圧洗浄を代表例とする物理洗浄と、薬品による薬品洗浄である。   As is well known, the membrane filtration method can efficiently remove sterilization and sterilization, and is easy to manage. Therefore, it has been introduced into water purification plants. Depending on the object, fouling (clogging) may occur. Therefore, it is necessary to operate the membrane while repeating cleaning, and there are generally two types of cleaning methods. These are physical cleaning and backwashing with chemicals as representative examples of back-pressure cleaning in which filtered water flows from the permeate side (secondary side).

物理洗浄は定期的に(30分〜1時間に1回程度)自動で行ない、膜表面あるいは内部への付着物のうち可逆的なものを除去できる。但し、物理洗浄では膜細孔などに付着したファウリング物質を完全に除去しきれず膜間差圧は上昇を続けるので、ある程度膜間差圧が上昇したら薬品洗浄を実施しなければならない。そして、薬品洗浄を行っても、膜表面や内部等の付着物が取り除けなくなり、膜差圧の回復が認められなくなった場合、あるいは、膜の使用期間がある一定期間を超えた場合には、膜が寿命に達したと判断して交換を行っている。   The physical cleaning is automatically performed regularly (about once every 30 minutes to 1 hour), and reversible substances on the film surface or inside can be removed. However, the physical cleaning cannot completely remove the fouling substances adhering to the membrane pores and the pressure difference between the membranes continues to increase. Therefore, the chemical cleaning must be performed if the membrane pressure difference increases to some extent. And even if chemical cleaning is performed, it is impossible to remove deposits such as the membrane surface and inside, and recovery of the membrane differential pressure is not recognized, or when the usage period of the membrane exceeds a certain period, The membrane is replaced when it is judged that it has reached the end of its life.

このように、薬品洗浄の頻度が多いと、薬品洗浄排水処理による環境負荷やコストの増大につながること、薬品洗浄、ろ過膜の交換等を行なうごとに、膜ろ過処理を停止しなければならないこと、物理洗浄間隔が多すぎると、不必要な処理水を排水すること(回収率の減少)などの観点から、薬品洗浄の頻度やろ過膜の交換頻度をなるべく少なくし、膜ろ過システムの稼働率を高くするとともに、薬品洗浄や膜交換に要するコストを低減する必要がある。   As described above, if the frequency of chemical cleaning is high, the environmental load and cost of chemical cleaning wastewater treatment increase, and the membrane filtration processing must be stopped each time chemical cleaning, filtration membrane replacement, etc. are performed. If there are too many physical cleaning intervals, the frequency of chemical cleaning and the replacement frequency of filtration membranes will be reduced as much as possible from the viewpoint of draining unnecessary treated water (reducing the recovery rate), and the operating rate of the membrane filtration system It is necessary to reduce the cost required for chemical cleaning and membrane replacement.

薬品洗浄頻度を少なくするための技術として、以下が知られている。
(1)温水洗浄の導入(特許文献1)
物理洗浄(30分から1時間に1回)と薬品洗浄(半年〜1年に1回)の間に温水を用いて洗浄する工程(1日に1回)を用いることによって、極力薬品洗浄する期間を延長化する。膜細孔などに目詰まりしたファウリング物質は、温水での洗浄によりある程度剥離することが知られている。なお、膜ろ過処理水をヒートポンプによって25℃〜60℃まで加熱して温水を生成する。
The following are known as techniques for reducing the frequency of chemical cleaning.
(1) Introduction of warm water cleaning (Patent Document 1)
Period of chemical cleaning as much as possible by using a process of cleaning with warm water (once a day) between physical cleaning (once every 30 minutes to once per hour) and chemical cleaning (once every six months to once a year) Is extended. It is known that fouling substances clogged in membrane pores and the like are separated to some extent by washing with warm water. In addition, warm water is produced | generated by heating a membrane filtration process water to 25 to 60 degreeC with a heat pump.

(2)前処理としての凝集剤注入
微小で粘着性の高い懸濁物質を膜処理の前段である程度の大きさ(マイクロフロック)にしてから膜処理を実施する方法が知られている。この方法は、膜の細孔に目詰まりしにくい大きさまでフロックを成長させることで、物理洗浄で剥離しやすくすることを目的としている。
(2) Coagulant injection as pretreatment
There has been known a method for carrying out a membrane treatment after a fine suspended substance having a high stickiness is made to have a certain size (micro floc) before the membrane treatment. The purpose of this method is to facilitate flaking by physical cleaning by growing flocs to a size that does not easily clog the pores of the membrane.

(3)前処理としての活性炭注入
物理洗浄で剥離しない成分である有機物の低減を目的として粉末の活性炭注入を行う。ただし、この場合は、活性炭そのものが膜のファウリング成分になる可能性もあるため、上記(2)の凝集剤注入との併用が必須である。
(3) Activated carbon injection as pretreatment
Powdered activated carbon is injected for the purpose of reducing organic substances that are components that do not peel off by physical cleaning. However, in this case, since the activated carbon itself may become a fouling component of the membrane, the combined use with the flocculant injection of the above (2) is essential.

特開2005−324151号公報JP-A-2005-324151

上述した(1)〜(3)それぞれに関しては、その効果が十分知られている。しかし、膜モジュールの性能だけでなく、対象とする原水水質の違い、前処理などの周辺プロセスの違い、温水洗浄などの運転方法の違いに応じて、将来の膜差圧上昇が大きく変動するため、適切な前処理運転および洗浄条件を決定する必要がある。一般に、適切な運転とは、膜差圧上昇を抑制できることを示す。凝集剤注入や活性炭注入を前処理で行うと、物理洗浄で剥離しやすい物質を生成できるが、定速ろ過の場合、物理洗浄を実施するまでに必要なポンプ動力が増加する傾向がある。そのため、膜ろ過中の全期間で必要なポンプ動力コストなども含めたトータルでのシステム設計・評価技術が要求される。   For each of the above (1) to (3), the effect is sufficiently known. However, the increase in membrane differential pressure in the future varies greatly depending not only on the performance of the membrane module but also on the quality of the target raw water, the surrounding processes such as pretreatment, and the operating method such as hot water cleaning. Appropriate pretreatment operation and cleaning conditions need to be determined. In general, an appropriate operation indicates that an increase in membrane differential pressure can be suppressed. When the flocculant injection or the activated carbon injection is performed in the pretreatment, a substance that is easily peeled off by physical cleaning can be generated. However, in the case of constant-speed filtration, the pump power required until the physical cleaning tends to increase. Therefore, total system design / evaluation technology is required, including pump power costs required for the entire period during membrane filtration.

本発明はこうした事情を考慮してなされたもので、浄水処理で利用されている水中の濁質分を分離する膜ろ過装置において、前処理により膜に堆積する膜差圧上昇の原因となるファウリング成分を除去しやすくし、設計仕様や運転条件を事前にシミュレーションすることによって、全体システムを効率的に設計・運転する浄水膜ろ過監視制御システムを提供することを目的とする。   The present invention has been made in consideration of such circumstances, and in a membrane filtration apparatus for separating turbid components in water used in water purification treatment, a fau that causes an increase in the differential pressure of the membrane deposited on the membrane by pretreatment. It is an object of the present invention to provide a water purification membrane filtration monitoring and control system that makes it easy to remove ring components and simulates design specifications and operating conditions in advance to efficiently design and operate the entire system.

本発明に係る浄水膜ろ過監視制御システムは、水中の濁質分を分離除去する浄水膜ろ過監視制御システムにおいて、原水が供給される供給水槽と、この供給水槽に凝集剤を注入する凝集剤注入装置と、前記供給水槽に活性炭を注入する活性炭注入装置と、前記供給水槽の下流側に配置された,前処理水をろ過する膜モジュールと、この膜モジュールの下流側に配置された処理水槽と、前記膜モジュールに温水を供給する温水供給装置と、前記供給水槽に供給される原水の吸光度を計測する吸光度計と、前記供給水槽から膜モジュールに供給される原水の電流を計測する電流計測計と、前記流動計測計,凝集剤注入装置に電気的に接続され,前記電流計測計で計測されるオンラインの流動電流値を指標として、凝集剤注入装置からの凝集剤注入率を制御する制御部とを具備したことを特徴とする。   The water purification membrane filtration monitoring control system according to the present invention is a water purification membrane filtration monitoring control system for separating and removing turbid components in water, a feed water tank to which raw water is supplied, and a flocculant injection for injecting a flocculant into the feed water tank An apparatus, an activated carbon injection device for injecting activated carbon into the supply water tank, a membrane module for filtering pretreatment water, disposed downstream of the supply water tank, and a treatment water tank disposed downstream of the membrane module; A hot water supply device for supplying hot water to the membrane module, an absorbance meter for measuring the absorbance of raw water supplied to the supply water tank, and a current measuring meter for measuring the current of raw water supplied from the supply water tank to the membrane module And the flocculant injection device from the flocculant injection device using the on-line flow current value measured by the current meter as an index. Characterized by comprising a control unit for controlling.

本発明によれば、前処理により膜に堆積する膜差圧上昇の原因となるファウリング成分を除去しやすくし、設計仕様や運転条件を事前にシミュレーションすることによって、全体システムを効率的に設計・運転する浄水膜ろ過監視制御システムを提供できる。   According to the present invention, it is easy to remove fouling components that cause an increase in the differential pressure of the film deposited on the film by pretreatment, and the entire system is designed efficiently by simulating design specifications and operating conditions in advance.・ Provide a clean water membrane filtration monitoring and control system.

本発明の一実施例に係る浄水膜ろ過監視制御システムの概略的な説明図。BRIEF DESCRIPTION OF THE DRAWINGS Schematic explanatory drawing of the water purification membrane filtration monitoring control system which concerns on one Example of this invention. 図1の監視制御システムにおける、凝集剤注入率と流動電流値,沈殿上澄濁度との関係を示す特性図。The characteristic view which shows the relationship between the coagulant | flocculant injection rate, a flow electric current value, and a sediment supernatant turbidity in the monitoring control system of FIG. 図1の監視制御システムにおける,膜ろ過水流量と膜間差圧上昇との関係を示す特性図。The characteristic view which shows the relationship between the membrane filtrate water flow rate and the transmembrane differential pressure | voltage rise in the monitoring control system of FIG. 図1の監視制御システムにおいて、凝集剤注入によるケーキ層の前後での抵抗の変化を示すための説明図。In the monitoring control system of FIG. 1, explanatory drawing for showing the change of the resistance before and behind the cake layer by flocculant injection. 図1の監視制御システムにおいて、膜ろ過設備導入時のように運転実績データがない場合に、パラメータα、βを求めるための特性図。FIG. 2 is a characteristic diagram for obtaining parameters α and β when there is no operation record data as in the introduction of the membrane filtration equipment in the monitoring control system of FIG. 1. 図1の監視制御システムにおいて、累積濁質量除去率の指標である調整パラメータが所定の値の時の逆洗流量と累積濁質除去率との関係を示す特性図。FIG. 2 is a characteristic diagram showing a relationship between a backwash flow rate and a cumulative turbidity removal rate when an adjustment parameter that is an index of the cumulative turbid mass removal rate is a predetermined value in the monitoring control system of FIG. 1.

以下に、本発明の実施形態に係る浄水膜ろ過監視制御システムについて図1を参照して説明する。
図中の符番1は、原水が供給される供給水槽を示す。この供給水槽1に原水を供給する配管2aには、原水ポンプ3,ストレーナ4及び原水吸光度計5が介装されている。ここで、ストレーナ4は原水中の夾雑物を除去する機能を有し、原水吸光度計5は原水の吸光度を連続的に測定する機能を有する。供給水槽1には、pH調整剤注入設備6,凝集剤注入設備7及び活性炭注入設備8が接続され、pH調整剤,凝集剤及び活性炭が夫々注入できるようになっている。
Below, the water purification membrane filtration monitoring control system which concerns on embodiment of this invention is demonstrated with reference to FIG.
Reference numeral 1 in the figure indicates a supply water tank to which raw water is supplied. A raw water pump 3, a strainer 4, and a raw water absorbance meter 5 are interposed in a pipe 2 a that supplies raw water to the supply water tank 1. Here, the strainer 4 has a function of removing impurities in the raw water, and the raw water absorbance meter 5 has a function of continuously measuring the absorbance of the raw water. A pH adjusting agent injection facility 6, a flocculant injection facility 7, and an activated carbon injection facility 8 are connected to the supply water tank 1, so that a pH adjusting agent, a flocculant, and activated carbon can be injected, respectively.

供給水槽1には、流動電流計9,前処理ポンプ10を介装した配管2bを介して複数系列の膜モジュール11が接続されている。ここで、流動電流計9とは、マイナスに帯電している原水の粒子が凝集剤添加によって荷電が中和されファンデルワールス力で凝集する特性を利用して、懸濁粒子表面の荷電状態を間接的に測定する計量器であり、凝集剤注入の過不足を判断する指標となる。   A plurality of series of membrane modules 11 are connected to the feed water tank 1 via a pipe 2b having a flow ammeter 9 and a pretreatment pump 10 interposed therebetween. Here, the flow ammeter 9 uses the characteristic that the negatively charged raw water particles are neutralized by the addition of the flocculant and aggregated by van der Waals force, and the charged state of the suspended particle surface is determined. It is a measuring instrument that indirectly measures, and serves as an index for judging the excess or deficiency of the flocculant injection.

前記前処理ポンプ10は、加圧全量ろ過方式で膜モジュール11への前処理水のろ過を行う機能を有する。前処理ポンプ10では、ポンプ回転数のインバータ制御により処理流量一定制御が行なわれる。膜モジュール11は、逆圧水洗浄(物理洗浄)を行う機能を有する。この逆圧水洗浄では、膜の2次側から処理水を供給する定期的な逆圧水方式(エアスクラビング併用)と、低頻度で膜の2次側から処理水を加温した温水を供給する逆圧水方式の両方の逆圧水洗浄を併用する。温水の生成には、後述するヒートポンプ式給湯装置を使用する。   The pretreatment pump 10 has a function of filtering the pretreated water to the membrane module 11 by a pressurized total amount filtration method. In the pretreatment pump 10, a constant treatment flow rate control is performed by inverter control of the pump rotation speed. The membrane module 11 has a function of performing reverse pressure water cleaning (physical cleaning). In this reverse pressure water cleaning, a regular reverse pressure water system (with air scrubbing) that supplies treated water from the secondary side of the membrane, and hot water that warms the treated water from the secondary side of the membrane are supplied at a low frequency. Use both counter pressure water cleaning of the counter pressure water method. A heat pump type hot water supply device to be described later is used for generating hot water.

前記膜モジュール11には、所定の径の細孔をもつ膜が多数収容されており、膜のふるい作用により細孔よりも大きな物質を補足するようになっている。膜モジュール11には、配管2cを介して処理水槽12が接続されている。膜モジュール11には、コンプレッサ13,及びヒートポンプ14aを備えた給湯装置(温水供給装置)14が夫々接続されている。コンプレッサ13により、圧縮空気が原水側から膜モジュール11に送られて物理洗浄が行なわれるようになっている。配管2cの途中と処理水槽12を接続する分岐管15には膜の洗浄時に使用されるポンプ16が介装され、処理水槽12と給湯装置14を接続する配管2dには膜の洗浄時に使用されるポンプ17が接続されている。処理水槽12の下流側には、処理水の吸光度を測定するための処理水吸光度計18を介装した配管2eが接続されている。   The membrane module 11 contains a large number of membranes having pores of a predetermined diameter, and supplements substances larger than the pores by the sieving action of the membrane. A treated water tank 12 is connected to the membrane module 11 via a pipe 2c. A hot water supply device (hot water supply device) 14 including a compressor 13 and a heat pump 14 a is connected to the membrane module 11. The compressor 13 sends compressed air from the raw water side to the membrane module 11 to perform physical cleaning. The branch pipe 15 connecting the middle of the pipe 2c and the treated water tank 12 is provided with a pump 16 used for cleaning the membrane, and the pipe 2d connecting the treated water tank 12 and the hot water supply device 14 is used for cleaning the film. A pump 17 is connected. A downstream side of the treated water tank 12 is connected to a pipe 2e that includes a treated water absorbance meter 18 for measuring the absorbance of treated water.

前記凝集剤注入装置7及び流動電流計9には、制御部19が電気的に接続されている。   A controller 19 is electrically connected to the flocculant injection device 7 and the flow ammeter 9.

また、制御部19は、図示しないが、pH調整剤注入装置6、活性炭注入装置8、原水吸光度計5、流動電流計9、処理水吸光度計18及び温水供給装置14等とも電気的に接続されている。更に、図示しないが、制御部19は、膜モジュール11における将来の膜差圧上昇の予測値ΔPを求める膜差圧予測手段を備えている。ここで、膜差圧予測手段は、システム設計段階で、物理洗浄条件(逆洗流量や逆洗時間など)、温水洗浄条件(温水洗浄温度など)、ろ過流束、凝集剤注入率などの運転条件を決定するために必要な概念である。 Although not shown, the control unit 19 is also electrically connected to the pH adjuster injection device 6, the activated carbon injection device 8, the raw water absorbance meter 5, the flow current meter 9, the treated water absorbance meter 18, the hot water supply device 14, and the like. ing. Further, although not shown, the control unit 19 includes a membrane differential pressure predicting unit for obtaining a predicted value ΔP of a future increase in the membrane differential pressure in the membrane module 11. Here, the means for predicting the membrane differential pressure is the operation of physical washing conditions (such as backwash flow rate and backwash time), hot water washing conditions (such as hot water washing temperature), filtration flux, and coagulant injection rate at the system design stage. This is a concept necessary for determining conditions.

前記予測値は、物理洗浄による場合の第1の予測値に温水洗浄による場合の第2の予測値を加えた値として表される。ここで、第1の予測値は、原水の粘性係数、ろ過流量、原水の濁度、洗浄による物質剥離量、凝集剤や活性炭によるケーク抵抗の蓄積量に基づく値である。第2の予測値は、原水の粘性係数、ろ過流量、濁度、温水による物質剥離量、凝集剤や活性炭によるケーク抵抗の蓄積量、有機物の濃度、凝集剤や活性炭による膜抵抗量に基づく値である。   The predicted value is expressed as a value obtained by adding the second predicted value in the case of hot water cleaning to the first predicted value in the case of physical cleaning. Here, the first predicted value is a value based on the viscosity coefficient of the raw water, the filtration flow rate, the turbidity of the raw water, the amount of material separation due to cleaning, and the amount of cake resistance accumulated by a flocculant or activated carbon. The second predicted value is a value based on the viscosity coefficient of raw water, filtration flow rate, turbidity, amount of material stripped by hot water, accumulated amount of cake resistance by flocculant or activated carbon, concentration of organic matter, membrane resistance by flocculant or activated carbon It is.

上記浄水膜ろ過監視制御システムのろ過時及び洗浄時の作用は、次のようになる。
(ろ過時)
原水は原水ポンプ3により供給水槽1に導かれる。供給水槽1に導かれる途中の配管2aではストレーナ4により原水中の夾雑物が取り除かれるとともに、原水吸光度計5により原水の吸光度が測定される。供給水槽1には、凝集剤注入設備7より凝集剤が注入され、活性炭注入設備8より活性炭が注入される。原水は、前処理ポンプ10により膜モジュール11へ導入され、膜モジュール11を透過した処理水は処理水槽12へ流入される。供給水槽1の下流側の配管2bでは流動電流計9により原水の流動電流値が測定され、処理水槽12の下流側の配管2eでは処理水吸光度計18により処理水の吸光度が連続的に測定される。
The operation of the water purification membrane filtration monitoring control system during filtration and washing is as follows.
(When filtering)
The raw water is guided to the supply water tank 1 by the raw water pump 3. In the pipe 2 a on the way to the supply water tank 1, impurities in the raw water are removed by the strainer 4, and the absorbance of the raw water is measured by the raw water absorptiometer 5. A flocculant is injected into the feed water tank 1 from the flocculant injection facility 7, and activated carbon is injected from the activated carbon injection facility 8. The raw water is introduced into the membrane module 11 by the pretreatment pump 10, and the treated water that has passed through the membrane module 11 flows into the treated water tank 12. In the pipe 2b on the downstream side of the feed water tank 1, the flow current value of the raw water is measured by the flow current meter 9, and in the pipe 2e on the downstream side of the treated water tank 12, the absorbance of the treated water is continuously measured by the treated water absorbance meter 18. The

(洗浄時)
原水を連続して通水することによって、膜モジュール11の膜面に原水中のファウリング物質が堆積してろ過抵抗が増加し、膜差圧が高くなる。従って、膜差圧が所定の値を示した時点で、膜の2次側からろ過された処理水を供給する逆圧水洗浄をしたり、あるいはコンプレッサ13による圧縮空気を原水側から送る。更には、低頻度で膜の2次側から処理水を加温した温水を給湯装置14により供給する。給湯装置14からの温水は、例えば40〜80℃とする。
(When washing)
By continuously passing the raw water, fouling substances in the raw water are deposited on the membrane surface of the membrane module 11, the filtration resistance is increased, and the membrane differential pressure is increased. Therefore, when the membrane differential pressure shows a predetermined value, reverse pressure water cleaning is performed to supply treated water filtered from the secondary side of the membrane, or compressed air from the compressor 13 is sent from the raw water side. Further, hot water obtained by heating the treated water from the secondary side of the membrane is supplied by the hot water supply device 14 at a low frequency. The hot water from the hot water supply device 14 is set to 40 to 80 ° C., for example.

次に、具体的な実施例について説明する。
(実施例1)
図1を参照する。本実施例1は、電流計測計9で計測されるオンラインの流動電流値を指標として、膜モジュール11の上流側に配置された凝集剤注入装置7からの凝集剤注入率を常時変更しながら運転することを特徴としている。
Next, specific examples will be described.
Example 1
Please refer to FIG. The present Example 1 is operated while constantly changing the coagulant injection rate from the coagulant injection device 7 arranged on the upstream side of the membrane module 11 using the online flowing current value measured by the current meter 9 as an index. It is characterized by doing.

凝集剤注入率は、例えば図2のようにして最適な値とする。ここで、図2は、凝集剤注入率と、流動電流値(無単位),沈殿上澄濁度(度)との関係を示している。即ち、通常の凝集沈殿を行う浄水プラントの場合には、流動電流値が0である凝集剤注入率(ここでは約60mg/L)が最適な凝集剤注入率となる。しかし、本願で対象とするプロセスのように、供給水槽の後段で膜ろ過処理がある場合には、それよりも少ない凝集剤注入率(ここでは約30mg/L)が最適となる可能性がある。なお、ここでの「最適」とは、物理洗浄および温水洗浄後の膜差圧の上昇が最も少ないことをいう。従って、流動電流値の目標値の決め方が膜差圧上昇に関連するため、例えば図3に示す試験結果を得ることで、最適な流動電流値目標値を例えば−2.0〜−3.5に設定することができる。なお、図3は温水洗浄を行う場合と行わない場合とで異なったものになるが、ここでは温水洗浄を行なった場合を示している。   The coagulant injection rate is set to an optimum value as shown in FIG. Here, FIG. 2 shows the relationship between the flocculant injection rate, the flowing current value (no unit), and the sediment supernatant turbidity (degree). That is, in the case of a water purification plant that performs normal coagulation sedimentation, the coagulant injection rate with a flow current value of 0 (here, about 60 mg / L) is the optimum coagulant injection rate. However, if there is a membrane filtration process after the feed water tank as in the process targeted in the present application, a smaller coagulant injection rate (about 30 mg / L in this case) may be optimal. . Here, “optimum” means that the increase in the membrane differential pressure after physical cleaning and hot water cleaning is the smallest. Therefore, since the method of determining the target value of the flowing current value is related to the increase in the membrane differential pressure, the optimum flowing current value target value is set to, for example, -2.0 to -3.5 by obtaining the test result shown in FIG. Can be set to Note that FIG. 3 differs depending on whether the hot water cleaning is performed or not. Here, the case where the hot water cleaning is performed is shown.

上記実施例1によれば、電流計測計9で計測されるオンラインの流動電流値を指標として、膜モジュール11の上流側に配置された凝集剤注入装置7からの凝集剤注入率を常時変更しながら運転することにより、膜ファウリングを抑制でき、ポンプ動力コストを含めたトータルでのシステム設計・運転が可能となる。   According to the first embodiment, the flocculant injection rate from the flocculant injection device 7 arranged on the upstream side of the membrane module 11 is constantly changed using the online flow current value measured by the current meter 9 as an index. By operating while operating, membrane fouling can be suppressed, and total system design and operation including pump power costs becomes possible.

(実施例2)
図1を参照する。本実施例2は、膜モジュール11の前段で、凝集剤注入設備7より凝集剤を供給水槽1に供給するとともに、活性炭注入設備8より活性炭を供給水槽1に供給する例を示す。本実施例では、流動電流計9で計測されるオンラインの流動電流値を指標として、凝集剤注入設備7からの凝集剤注入率を常時変更しながら運転するとともに、原水吸光度計5の吸光度に基づいて活性炭注入率を制御している。即ち、凝集剤の注入だけではフロックしにくい、微小な有機物を活性炭により吸着させた後に凝集剤を添加することでマイクロフロック化し、物理洗浄で剥離できる大きさのファウリング成分に変化させている。
(Example 2)
Please refer to FIG. The present Example 2 shows an example in which the flocculant is supplied from the flocculant injection facility 7 to the supply water tank 1 and the activated carbon is supplied from the activated carbon injection equipment 8 to the supply water tank 1 before the membrane module 11. In this embodiment, the on-line flow current value measured by the flow ammeter 9 is used as an index to operate while constantly changing the flocculant injection rate from the flocculant injection facility 7 and based on the absorbance of the raw water absorptiometer 5. The activated carbon injection rate is controlled. That is, it is difficult to flock only by injecting the flocculant, and after microscopic organic substances are adsorbed by activated carbon, the flocculant is added to form a micro floc, which is changed to a fouling component that can be peeled off by physical cleaning.

活性炭注入率は、例えば以下の注入率式に基づいて行う。
活性炭注入率=a×原水吸光度+b
ここで、符号a,bはパラメータであり、膜ろ過処理後の処理水吸光度計18による指示値および過去に実施した実験結果に基づいて調整することが可能である。
実施例2によれば、凝集剤及び活性炭の供給水槽1への供給により、供給実施例1と比べ膜差圧上昇をいっそう抑制できる。
The activated carbon injection rate is performed based on the following injection rate formula, for example.
Activated carbon injection rate = a × raw water absorbance + b
Here, the symbols a and b are parameters, and can be adjusted based on the indicated value by the treated water absorbance meter 18 after membrane filtration and the results of experiments conducted in the past.
According to Example 2, by supplying the flocculant and activated carbon to the supply water tank 1, an increase in the membrane differential pressure can be further suppressed as compared with Supply Example 1.

(実施例3)
前処理を実施しない場合(凝集剤も活性炭も注入しない場合)、物理洗浄によるファウリング成分の剥離率が高まる効果がある一方で、物理洗浄するまでの膜差圧上昇が大きくなることが懸念される。物理洗浄するまでの膜差圧上昇が大きいことは、ポンプ動力が増大することにもなるため、これらを考慮した上で薬品注入率を決定することが望ましい。
(Example 3)
When pretreatment is not carried out (when neither flocculant nor activated carbon is injected), there is a concern that the fouling component peeling rate by physical cleaning is increased, but the increase in the differential pressure until physical cleaning is increased. The A large increase in the membrane differential pressure until the physical cleaning results in an increase in pump power. Therefore, it is desirable to determine the chemical injection rate in consideration of these factors.

本実施例3は、これまでの洗浄条件や薬品注入率で運転を継続した場合の膜差圧を予測することが求められるので、ろ過中におけるファウリングの蓄積による膜差圧上昇の予測値ΔPを求めて薬品洗浄時期を予測し、薬品洗浄コストとポンプ動力コスト、薬品コスト夫々トータルでのコスト評価するものである。   Since this Example 3 is required to predict the membrane differential pressure when the operation is continued under the conventional cleaning conditions and chemical injection rate, the predicted value ΔP of the membrane differential pressure increase due to fouling accumulation during filtration. Therefore, the chemical cleaning time is predicted, and the chemical cleaning cost, pump power cost, and chemical cost are evaluated in total.

膜差圧上昇の予測値ΔPは、次のようにして求める。
まず、前記予測値ΔP[Pa]は、下記[式1]により表される。ここで、[式1]の1項目中のRrは下記[式2]により表され、[式1]の2項目中のRirは下記[式3]により表される。
The predicted value ΔP for the increase in the membrane differential pressure is obtained as follows.
First, the predicted value ΔP [Pa] is expressed by the following [Equation 1]. Here, Rr in one item of [Formula 1] is represented by the following [Formula 2], and Rir in two items of [Formula 1] is represented by the following [Formula 3].

式1Formula 1

Figure 2011189287
Figure 2011189287

式2Formula 2

Figure 2011189287
Figure 2011189287

式3Formula 3

Figure 2011189287
(a) ろ過中におけるファウリングの蓄積による膜差圧上昇の予測値ΔP[Pa]は、上記式(1)で表される。即ち、膜差圧上昇は、抵抗Rr(物理洗浄で低減可能)と抵抗Rir(温水洗浄である程度低減可能)によるものと定義でき、ケーク抵抗Rrと膜モジュールの細孔の閉塞による抵抗Rirとも定義できる。模式的に示せば、図4の符号P1から符号P2までの抵抗がRr、符号P2から符号P3までの抵抗がRirとなる。なお、図4中、符番21はファウリング物質が蓄積されたケーキ層を、符番22は膜モジュール11の膜を示す。
Figure 2011189287
(a) The predicted value ΔP [Pa] of the increase in membrane differential pressure due to accumulation of fouling during filtration is expressed by the above formula (1). That is, the increase in the differential pressure of the membrane can be defined as a resistance Rr (which can be reduced by physical cleaning) and a resistance Rir (which can be reduced to some extent by hot water cleaning), and is also defined as a resistance Rir due to clogging of the cake resistance Rr and the pores of the membrane module. it can. If it shows typically, the resistance from the code | symbol P1 of FIG. 4 to the code | symbol P2 will be Rr, and the resistance from the code | symbol P2 to the code | symbol P3 will be Rir. In FIG. 4, reference numeral 21 indicates a cake layer in which fouling substances are accumulated, and reference numeral 22 indicates a membrane of the membrane module 11.

(b) 上記式(1)中のRrは濁質の堆積x(積算値)と物理洗浄、凝集剤・活性炭注入の関数であり、上記式(1)で表される。また、Rirは有機物の堆積y(積算値)と温水洗浄・凝集剤・活性炭注入の関数と仮定して、上記式(3)で表される。
式中のパラメータα,β,K,n,yは、過去の運転実績データがある場合には、例えば最小二乗法により同定することができる。また、膜ろ過設備導入など運転実績データがない場合には、例えば図5(A),(B)に示す実験結果などにより決定することができる。ここで、図5(A)は、上記式(4)によるパラメータnが2のときのファウリング物質の堆積量と膜差圧との関係を示す特性図を示す。図5(B)は、時間と膜差圧との関係を示す特性図を示す。例えば、図5(B)中の傾きαはろ過抵抗を、傾きβは傾きαをマクロ的に見たもので、所定の原水のろ過圧力、ろ過量、ろ過差圧等を試験した定圧ろ過試験結果から得られる。
(b) Rr in the above formula (1) is a function of turbidity accumulation x (integrated value), physical cleaning, and flocculant / activated carbon injection, and is represented by the above formula (1). Further, Rir is expressed by the above equation (3) on the assumption that the organic substance deposition y (integrated value) is a function of hot water cleaning / flocculating agent / activated carbon injection.
The parameters α, β, K, n, and y in the equation can be identified by, for example, the least square method when there is past operation record data. Further, when there is no operation record data such as introduction of membrane filtration equipment, it can be determined by the experimental results shown in FIGS. 5 (A) and 5 (B), for example. Here, FIG. 5A is a characteristic diagram showing the relationship between the deposition amount of the fouling material and the film differential pressure when the parameter n according to the equation (4) is 2. FIG. 5B is a characteristic diagram showing the relationship between time and membrane differential pressure. For example, the slope α in FIG. 5B is a filtration resistance, the slope β is a macro view of the slope α, and a constant pressure filtration test that tests the filtration pressure, filtration amount, filtration differential pressure, etc. of a given raw water. Obtained from the results.

また、Rrの定義により、物理洗浄時はRr=0とするべきであるが、物理洗浄流量や洗浄周期によっては十分な洗浄ができないケースも表現できるモデル式である必要がある。即ち、物理洗浄による物質の剥離量waは係数kを用いて以下のように定義する。つまり、逆洗時の洗浄効果は、累積濁質量の減少として捉え、以下の式(6)で定義した。
Pr(n)=(1−k)Rr(n−1) …(6)
但し、kは累積濁質量除去率を表し、0.0≦k≦1.0である。この除去率kは、以下の式(7),(8)で表される。
=exp(−h/Qb)(但し、flag=1) …(7)
=0(但し、flag=0) …(8)
なお、flag(判定フラグ)が「1」とは物理洗浄中を示し、flagが「0」とは洗浄していないときを示す。また、式(7)中の符号Qbは物理洗浄流量[m/h]、hは調整パラメータを示す。図6は、h=0.001時の逆洗流量と累積濁質除去率を示す特性図である。図6より、逆洗流量がある値(約2m/h)以上になると、累積濁質除去率が1となることがわかる。
Further, according to the definition of Rr, Rr = 0 should be set at the time of physical cleaning, but it needs to be a model expression that can express a case where sufficient cleaning cannot be performed depending on the physical cleaning flow rate and the cleaning cycle. That is, the peeling amount wa substances by physical washing is defined as follows using the coefficients k 1. That is, the cleaning effect at the time of backwashing was regarded as a decrease in accumulated turbid mass, and was defined by the following formula (6).
Pr (n) = (1-k 1 ) Rr (n-1) (6)
However, k 1 represents a cumulative turbidity mass removal rate is 0.0 ≦ k 1 ≦ 1.0. This removal rate k 1 is expressed by the following equations (7) and (8).
k 1 = exp (−h 1 / Qb) (however, flag = 1) (7)
k 1 = 0 (however, flag = 0) (8)
The flag (determination flag) “1” indicates that physical cleaning is being performed, and the flag “0” indicates that the cleaning is not being performed. In addition, the symbol Qb in the equation (7) indicates a physical cleaning flow rate [m 3 / h], and h 1 indicates an adjustment parameter. FIG. 6 is a characteristic diagram showing the backwash flow rate and cumulative turbidity removal rate when h 1 = 0.001. FIG. 6 shows that the cumulative turbidity removal rate becomes 1 when the backwash flow rate exceeds a certain value (about 2 m 3 / h).

また、温水洗浄時の基本的な考え方は、物理洗浄による可逆ファウリングの剥離と同様である。但し、剥離するのは膜細孔の閉塞による抵抗Rirであり、その除去率は温水洗浄流量、温水洗浄周期、温水水温で決まる。
上記のように、式(2)〜(5)によりRr,Rirを求め、これらの値を式(1)に導入して膜差圧上昇の予測値ΔPを求める。
Further, the basic idea at the time of hot water cleaning is the same as that of reversible fouling peeling by physical cleaning. However, the peeling is the resistance Rir due to the blockage of the membrane pores, and the removal rate is determined by the hot water cleaning flow rate, the hot water cleaning cycle, and the hot water temperature.
As described above, Rr and Rir are obtained from the equations (2) to (5), and these values are introduced into the equation (1) to obtain the predicted value ΔP of the increase in the membrane differential pressure.

実施例3によれば、ろ過中におけるファウリングの蓄積による膜差圧上昇の予測値ΔPを求めて薬品洗浄時期を予測できるので、薬品洗浄コストとポンプ動力コスト、薬品コスト夫々トータルでのコスト評価することができる。   According to Example 3, since it is possible to predict the chemical cleaning time by obtaining the predicted value ΔP of the increase in the membrane differential pressure due to the accumulation of fouling during filtration, it is possible to estimate the chemical cleaning cost, the pump power cost, and the chemical cost in total. can do.

なお、本発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施形態に亘る構成要素を適宜組み合せてもよい。具体的には、例えば、流動電流値の指標に加え、所定のタイミングで温水洗浄を実施することで得られる膜ファウリング成分の除去率を指標として凝集剤注入率を制御することにより、膜等に目詰まりしたファウリング物質をいっそう剥離することができる。また、供給水槽にpH調整剤を注入するためのpH調整剤注入設備を接続させ、原水中のpHを調整するようにしてもよい。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Further, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, you may combine suitably the component covering different embodiment. Specifically, for example, by controlling the flocculant injection rate using the removal rate of the membrane fouling component obtained by carrying out warm water cleaning at a predetermined timing in addition to the flow current value index, the film etc. The clogged fouling material can be further peeled off. Moreover, you may make it connect the pH adjuster injection | pouring equipment for inject | pouring a pH adjuster into a supply water tank, and adjust pH in raw | natural water.

1…供給水槽、2a〜2e…配管、3…原水ポンプ、4…ストレーナ、5…原水吸光度計、6…pH調整剤注入設備、7…凝集剤注入設備、8…活性炭注入設備、9…流動電流計、10…前処理ポンプ、11…膜モジュール、12…処理水槽、13…コンプレッサ、14…給湯装置(温水供給装置)、18…処理水吸光度計、19…制御部。   DESCRIPTION OF SYMBOLS 1 ... Supply tank, 2a-2e ... Piping, 3 ... Raw water pump, 4 ... Strainer, 5 ... Raw water absorptiometer, 6 ... pH adjuster injection equipment, 7 ... Flocculant injection equipment, 8 ... Activated carbon injection equipment, 9 ... Flow Ammeter, 10 ... pretreatment pump, 11 ... membrane module, 12 ... treated water tank, 13 ... compressor, 14 ... hot water supply device (hot water supply device), 18 ... treated water absorbance meter, 19 ... control unit.

Claims (3)

水中の濁質分を分離除去する浄水膜ろ過監視制御システムにおいて、
原水が供給される供給水槽と、
この供給水槽に凝集剤を注入する凝集剤注入装置と、
前記供給水槽に活性炭を注入する活性炭注入装置と、
前記供給水槽の下流側に配置された,前処理水をろ過する膜モジュールと、
この膜モジュールの下流側に配置された処理水槽と、
前記膜モジュールに温水を供給する温水供給装置と、
前記供給水槽に供給される原水の吸光度を計測する吸光度計と、
前記供給水槽から膜モジュールに供給される原水の電流を計測する電流計測計と、
前記流動計測計,凝集剤注入装置に夫々電気的に接続され,前記電流計測計で計測されるオンラインの流動電流値を指標として、凝集剤注入装置からの凝集剤注入率を制御する制御部とを具備したことを特徴とする浄水膜ろ過監視制御システム。
In a water purification membrane filtration monitoring and control system that separates and removes turbid components in water,
A supply tank to which raw water is supplied;
A flocculant injecting device for injecting the flocculant into the supply water tank;
An activated carbon injection device for injecting activated carbon into the supply water tank;
A membrane module that is disposed downstream of the feed water tank and filters pretreated water;
A treated water tank disposed downstream of the membrane module;
A hot water supply device for supplying hot water to the membrane module;
An absorptiometer for measuring the absorbance of the raw water supplied to the feed water tank;
A current meter for measuring the current of raw water supplied to the membrane module from the supply water tank;
A controller that is electrically connected to each of the flow meter and the flocculant injection device, and that controls the flocculant injection rate from the flocculant injection device using an on-line flow current value measured by the current meter as an index; A water purification membrane filtration monitoring control system characterized by comprising:
流動電流値の指標に加え、所定のタイミングで温水洗浄を実施することで得られる膜ファウリング成分の除去率を指標として凝集剤注入率を制御することを特徴とする請求項1記載の浄水膜ろ過監視制御システム。   2. The water purification membrane according to claim 1, wherein the flocculant injection rate is controlled using the removal rate of the membrane fouling component obtained by performing warm water cleaning at a predetermined timing in addition to the index of the flowing current value. Filtration monitoring and control system. 前記供給水槽にpH調整剤を注入するpH調整剤注入設備を備えていることを特徴とする請求項1もしくは2記載の浄水膜ろ過監視制御システム。   The water purification membrane filtration monitoring control system according to claim 1 or 2, further comprising a pH adjusting agent injection facility for injecting a pH adjusting agent into the water supply tank.
JP2010058125A 2010-03-15 2010-03-15 Water purification membrane filtration monitoring and control system Active JP5349378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010058125A JP5349378B2 (en) 2010-03-15 2010-03-15 Water purification membrane filtration monitoring and control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010058125A JP5349378B2 (en) 2010-03-15 2010-03-15 Water purification membrane filtration monitoring and control system

Publications (2)

Publication Number Publication Date
JP2011189287A true JP2011189287A (en) 2011-09-29
JP5349378B2 JP5349378B2 (en) 2013-11-20

Family

ID=44794779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010058125A Active JP5349378B2 (en) 2010-03-15 2010-03-15 Water purification membrane filtration monitoring and control system

Country Status (1)

Country Link
JP (1) JP5349378B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012192325A (en) * 2011-03-15 2012-10-11 Toshiba Corp Membrane filtering device
JP2013193013A (en) * 2012-03-19 2013-09-30 Toshiba Corp Seawater desalination device
JP2014054603A (en) * 2012-09-13 2014-03-27 Toshiba Corp Flocculant injection control method and flocculant injection control system
JP2014198322A (en) * 2013-03-29 2014-10-23 ヤンマー産業株式会社 Wastewater treatment apparatus
JP2016043327A (en) * 2014-08-25 2016-04-04 株式会社東芝 Water treatment system, control device, and water treatment method
JP2016172213A (en) * 2015-03-16 2016-09-29 メタウォーター株式会社 Timing adjustment method and timing adjustment device
JP2017000960A (en) * 2015-06-10 2017-01-05 オルガノ株式会社 Membrane cleaning method
WO2017221984A1 (en) * 2016-06-21 2017-12-28 東レ株式会社 Fault determination program and fault determination device for fresh water generation systems, and recording medium
WO2018026020A1 (en) * 2016-08-05 2018-02-08 東レ株式会社 Computer-readable recording medium on which clogging location specification program for separation membrane module is recorded, water production system, and water production method
CN108680340A (en) * 2018-05-21 2018-10-19 中国科学院地理科学与资源研究所 A kind of analogue experiment installation and method accelerating the formation of reclaimed land fresh groundwater
JP2019162583A (en) * 2018-03-19 2019-09-26 東芝インフラシステムズ株式会社 Water treatment system and water treatment method
WO2021200752A1 (en) * 2020-03-30 2021-10-07 東レ株式会社 Method and program for determining cleaning trouble in fresh water generator
JP7472070B2 (en) 2021-04-19 2024-04-22 水ing株式会社 Method for predicting membrane clogging rate of filtration membrane for water purification treatment and membrane filtration treatment method for raw water for water purification treatment

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104118952B (en) * 2014-07-08 2015-12-09 清华大学 Synchronous coagulation-absorption-membrane concentration resource utilization the pretreatment unit of sewage and method thereof
WO2023015112A1 (en) 2021-08-06 2023-02-09 Dupont Safety & Construction, Inc. Method for dosing coagulant and adsorbent in a membrane filtration system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10137755A (en) * 1996-11-15 1998-05-26 Tohoku Electric Power Co Inc Membrane treating device of waste water
JP2002001331A (en) * 2000-06-26 2002-01-08 Kuraray Co Ltd Production method of purified water
JP2002239307A (en) * 2001-02-21 2002-08-27 Nishihara Watertech Corp Ltd Apparatus for automatically injecting flocculant for water cleaning based on streaming current value
JP2003200175A (en) * 2002-01-08 2003-07-15 Toshiba Corp Flocculant injection control method and flocculant injection control system
JP2007117947A (en) * 2005-10-31 2007-05-17 Hitachi Ltd Water purifying facilities and its operation method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10137755A (en) * 1996-11-15 1998-05-26 Tohoku Electric Power Co Inc Membrane treating device of waste water
JP2002001331A (en) * 2000-06-26 2002-01-08 Kuraray Co Ltd Production method of purified water
JP2002239307A (en) * 2001-02-21 2002-08-27 Nishihara Watertech Corp Ltd Apparatus for automatically injecting flocculant for water cleaning based on streaming current value
JP2003200175A (en) * 2002-01-08 2003-07-15 Toshiba Corp Flocculant injection control method and flocculant injection control system
JP2007117947A (en) * 2005-10-31 2007-05-17 Hitachi Ltd Water purifying facilities and its operation method

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012192325A (en) * 2011-03-15 2012-10-11 Toshiba Corp Membrane filtering device
JP2013193013A (en) * 2012-03-19 2013-09-30 Toshiba Corp Seawater desalination device
JP2014054603A (en) * 2012-09-13 2014-03-27 Toshiba Corp Flocculant injection control method and flocculant injection control system
JP2014198322A (en) * 2013-03-29 2014-10-23 ヤンマー産業株式会社 Wastewater treatment apparatus
JP2016043327A (en) * 2014-08-25 2016-04-04 株式会社東芝 Water treatment system, control device, and water treatment method
JP2016172213A (en) * 2015-03-16 2016-09-29 メタウォーター株式会社 Timing adjustment method and timing adjustment device
JP2017000960A (en) * 2015-06-10 2017-01-05 オルガノ株式会社 Membrane cleaning method
CN109311704A (en) * 2016-06-21 2019-02-05 东丽株式会社 Making water system, whether there is or not breakdown judge program and failure judgment device and recording mediums
WO2017221984A1 (en) * 2016-06-21 2017-12-28 東レ株式会社 Fault determination program and fault determination device for fresh water generation systems, and recording medium
JP7306826B2 (en) 2016-06-21 2023-07-11 東レ株式会社 Physical cleaning process trouble determination program for fresh water generation system, physical cleaning process trouble determination device, and recording medium
JPWO2017221984A1 (en) * 2016-06-21 2019-04-11 東レ株式会社 Trouble determination program, trouble determination device, and recording medium for fresh water generation system
JPWO2018026020A1 (en) * 2016-08-05 2019-01-31 東レ株式会社 Computer-readable recording medium recording a clogging site identification program for a separation membrane module, fresh water generation system, and fresh water generation method
CN109562965A (en) * 2016-08-05 2019-04-02 东丽株式会社 The blocking position for being stored with separating film module determines the computer-readable recording medium of program, makes water system and method for making water
US11141701B2 (en) 2016-08-05 2021-10-12 Toray Industries, Inc. Computer-readable recording medium on which clogging location specification program for separation membrane module is recorded, water production system, and water production method
WO2018026020A1 (en) * 2016-08-05 2018-02-08 東レ株式会社 Computer-readable recording medium on which clogging location specification program for separation membrane module is recorded, water production system, and water production method
JP2019162583A (en) * 2018-03-19 2019-09-26 東芝インフラシステムズ株式会社 Water treatment system and water treatment method
JP7086658B2 (en) 2018-03-19 2022-06-20 東芝インフラシステムズ株式会社 Water treatment system and water treatment method
CN108680340A (en) * 2018-05-21 2018-10-19 中国科学院地理科学与资源研究所 A kind of analogue experiment installation and method accelerating the formation of reclaimed land fresh groundwater
CN108680340B (en) * 2018-05-21 2024-04-12 中国科学院地理科学与资源研究所 Simulation experiment device and method for accelerating formation of underground fresh water in hydraulic reclamation land area
WO2021200752A1 (en) * 2020-03-30 2021-10-07 東レ株式会社 Method and program for determining cleaning trouble in fresh water generator
JPWO2021200752A1 (en) * 2020-03-30 2021-10-07
JP7103526B2 (en) 2020-03-30 2022-07-20 東レ株式会社 Cleaning trouble judgment method and cleaning trouble judgment program of water production equipment
JP7472070B2 (en) 2021-04-19 2024-04-22 水ing株式会社 Method for predicting membrane clogging rate of filtration membrane for water purification treatment and membrane filtration treatment method for raw water for water purification treatment

Also Published As

Publication number Publication date
JP5349378B2 (en) 2013-11-20

Similar Documents

Publication Publication Date Title
JP5349378B2 (en) Water purification membrane filtration monitoring and control system
Leiknes et al. Removal of natural organic matter (NOM) in drinking water treatment by coagulation–microfiltration using metal membranes
Zhu et al. Characterization of membrane fouling in a microfiltration ceramic membrane system treating secondary effluent
Chew et al. Practical performance analysis of an industrial-scale ultrafiltration membrane water treatment plant
JP2012223723A (en) Control device and control method of seawater desalination system
JP3924919B2 (en) Water filtration equipment
KR20100016080A (en) Method for the filtration of a fluid
Brover et al. Optimization of ultrafiltration as pre-treatment for seawater RO desalination
JPWO2008096585A1 (en) Filtration apparatus and water treatment method
Li et al. Seawater ultrafiltration fouling control: Backwashing with demineralized water/SWRO permeate
FR2909903A1 (en) Optimized control of a filtration membrane unit comprises injecting a dose of coagulant reagent in an upstream of the membrane, measuring a temperature of the effluent, measuring a flow of filtration, and measuring a transmembrane pressure
JP2007000727A (en) Method for operating membrane separation activated sludge treatment apparatus
JP7021461B2 (en) Water treatment method, water treatment equipment and control method of addition of cake layer forming substance to raw water
JP4885512B2 (en) Water purification equipment and operation method thereof
Seo et al. The fouling characterization and control in the high concentration PAC membrane bioreactor HCPAC-MBR
JP2012024735A (en) Washing method and apparatus of oxygenation applying boiler
KR101693100B1 (en) Smart Membrane-Filteration Water Treating System
Fayaz et al. Correlations between silt density index, turbidity and oxidation-reduction potential parameters in seawater reverse osmosis desalination
AU2017344850B2 (en) Device for treating an effluent and method for treating an effluent
US20170296975A1 (en) Raw water filtration treatment system, and method for cleaning filtration device
JPH11169851A (en) Water filter and its operation
JP6616593B2 (en) Membrane cleaning method
CA2682057C (en) Method for reducing fouling in microfiltration systems
JP4079082B2 (en) Backwashing method for membrane filtration water treatment equipment
JP2016010737A (en) Seawater desalination process control method and seawater desalination system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130820

R151 Written notification of patent or utility model registration

Ref document number: 5349378

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151