JP2011187920A - Method for producing compound semiconductor thin film, solar cell, and device for producing compound semiconductor thin film - Google Patents

Method for producing compound semiconductor thin film, solar cell, and device for producing compound semiconductor thin film Download PDF

Info

Publication number
JP2011187920A
JP2011187920A JP2010198000A JP2010198000A JP2011187920A JP 2011187920 A JP2011187920 A JP 2011187920A JP 2010198000 A JP2010198000 A JP 2010198000A JP 2010198000 A JP2010198000 A JP 2010198000A JP 2011187920 A JP2011187920 A JP 2011187920A
Authority
JP
Japan
Prior art keywords
thin film
compound semiconductor
group
semiconductor thin
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010198000A
Other languages
Japanese (ja)
Inventor
Takahiro Wada
隆博 和田
Seiji Yamazoe
誠司 山添
Akira Yamada
山田  明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Ryukoku University
Original Assignee
Tokyo Institute of Technology NUC
Ryukoku University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC, Ryukoku University filed Critical Tokyo Institute of Technology NUC
Priority to JP2010198000A priority Critical patent/JP2011187920A/en
Publication of JP2011187920A publication Critical patent/JP2011187920A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compound semiconductor thin film, such as a CIGS thin film, which is fine, has excellent surface smoothness, and is ideal for use in a solar cell, and which is produced readily at a low cost and with good productivity in a non-vacuum process. <P>SOLUTION: A method for producing the compound semiconductor thin film containing a group IB element, group IIIB element, and group VIB element comprises: a step for preparing an application agent containing a group IB element, group IIIB element, and group VIB element; a step for forming an application film by applying the application agent to a substrate; and a step for baking under pressure in which the application film is heated and sintered while pressure is mechanically applied. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、化合物半導体薄膜の製造方法、太陽電池および化合物半導体薄膜製造装置に関する。   The present invention relates to a method for manufacturing a compound semiconductor thin film, a solar cell, and a compound semiconductor thin film manufacturing apparatus.

Cu(In,Ga)Se(以下、CIGSともいう)は、太陽光の吸収に対して最適なバンドギャップと高い光吸収係数を持つため、高効率薄膜太陽電池の光吸収層として有望な半導体薄膜形成材料である。現在、日本および欧米でセレン化法や蒸着法を用いて、太陽電池に用いるCIGS薄膜の製造が行われている。セレン化法では、金属プレカーサをスパッタ法で形成し、その金属プレカーサをHSeガスでセレン化する。蒸着法ではCIGS光吸収層を各構成元素から物理蒸着する。しかし、CIGS太陽電池のさらなる低コスト化のために、セレン化法や蒸着法とは異なり、真空を用いないCIGS薄膜の製造プロセスが望まれ、検討されている(例えば、特許文献1参照)。非真空での製造プロセスとしては、酸化物粒子を含んだインクを基板上に印刷し、得られた酸化物膜を水素ガスで還元して金属膜に転換した後、HSeガスでセレン化してCIGS薄膜を得る方法がある。また、CIGS粉末を用いてインクを調製し、スクリーン印刷法で前記インクを塗布した後、常圧下・不活性雰囲気での熱処理によりCIGS粉末を焼結させてCIGS薄膜を得る方法もある(例えば、非特許文献1参照)。しかし、この方法で作製したCIGS薄膜は、内部に空孔が生じており、緻密な薄膜を作製することは困難であった。また、スクリーン印刷法でインクを塗布した膜には、スクリーンメッシュの跡が残り、表面の平滑な膜を得ることは困難であった。さらに、焼結工程において、薄膜からSeの蒸散が起こりやすく、多数のCIGS薄膜を均一な条件で一度に焼結させることは困難であった。 Cu (In, Ga) Se 2 (hereinafter also referred to as CIGS) has an optimum band gap and high light absorption coefficient for the absorption of sunlight, and therefore is a promising semiconductor as a light absorption layer of a high-efficiency thin film solar cell. It is a thin film forming material. Currently, CIGS thin films used for solar cells are manufactured in Japan, Europe and America using a selenization method or a vapor deposition method. In the selenization method, a metal precursor is formed by sputtering, and the metal precursor is selenized with H 2 Se gas. In the vapor deposition method, the CIGS light absorption layer is physically vapor-deposited from each constituent element. However, in order to further reduce the cost of CIGS solar cells, a CIGS thin film manufacturing process that does not use vacuum is desired and studied, unlike selenization and vapor deposition (see, for example, Patent Document 1). As a non-vacuum manufacturing process, an ink containing oxide particles is printed on a substrate, and the obtained oxide film is reduced with hydrogen gas to be converted into a metal film, and then selenized with H 2 Se gas. There is a method of obtaining a CIGS thin film. There is also a method of preparing a CIGS thin film by preparing an ink using CIGS powder, applying the ink by a screen printing method, and then sintering the CIGS powder by heat treatment under normal pressure and in an inert atmosphere (for example, Non-patent document 1). However, the CIGS thin film produced by this method has voids inside, and it is difficult to produce a dense thin film. In addition, a screen mesh mark remains on the film coated with ink by the screen printing method, and it is difficult to obtain a film having a smooth surface. Furthermore, in the sintering process, Se is likely to evaporate from the thin film, and it has been difficult to sinter many CIGS thin films at once under uniform conditions.

特表2008−537640号公報Special table 2008-537640

和田隆博著「プリンタブル・エレクトロニクス技術開発最前線〜材料開発・応用技術編〜」(株)技術情報協会、2008年1月31日、p.239−245Takahiro Wada, “The Frontiers of Printable Electronics Technology Development-Materials Development and Applied Technology-” Technical Information Association, Inc., January 31, 2008, p. 239-245

そこで、本発明は、緻密で表面平滑性に優れた、太陽電池に好適に使用できるCIGS薄膜等の化合物半導体薄膜を、非真空プロセスにおいて、生産性よく、容易に低コストで提供することを目的とする。   Accordingly, an object of the present invention is to provide a compound semiconductor thin film such as a CIGS thin film which is dense and excellent in surface smoothness and can be suitably used for a solar cell with high productivity and low cost easily in a non-vacuum process. And

前記目的を達成するために、本発明の化合物半導体薄膜の製造方法は、ΙB族元素、ΙΙΙB族元素およびVΙB族元素を含む化合物半導体薄膜の製造方法であって、ΙB族元素、ΙΙΙB族元素およびVΙB族元素を含有する塗布剤を調製する工程と、前記塗布剤を基板に塗布して塗布膜を形成する工程と、前記塗布膜を、機械的に圧力を加えた条件下で加熱して焼結させる加圧焼成工程とを含むことを特徴とする。   In order to achieve the above object, a method for producing a compound semiconductor thin film of the present invention is a method for producing a compound semiconductor thin film containing a group B element, a group B element, and a group V element, and includes a group B element, a group B element, A step of preparing a coating agent containing a VΙB group element, a step of coating the coating agent on a substrate to form a coating film, and heating and baking the coating film under a mechanically pressurized condition. And a pressure firing step for binding.

本発明の太陽電池は、化合物半導体薄膜を有する太陽電池であって、前記化合物半導体薄膜が、前記本発明の化合物半導体薄膜の製造方法によって製造されたことを特徴とする。   The solar cell of the present invention is a solar cell having a compound semiconductor thin film, wherein the compound semiconductor thin film is manufactured by the method for manufacturing a compound semiconductor thin film of the present invention.

本発明の化合物半導体薄膜製造装置は、前記本発明の化合物半導体薄膜の製造方法において使用される装置であって、少なくとも押圧手段と加熱手段とを備えることを特徴とする。   The compound semiconductor thin film manufacturing apparatus of the present invention is an apparatus used in the compound semiconductor thin film manufacturing method of the present invention, and includes at least a pressing means and a heating means.

本発明によると、緻密で表面平滑性に優れた、太陽電池に好適に使用できるCIGS薄膜等の化合物半導体薄膜を、非真空プロセスにおいて、生産性よく、容易に低コストで提供することができる。   According to the present invention, a compound semiconductor thin film such as a CIGS thin film, which is dense and excellent in surface smoothness and can be suitably used for a solar cell, can be provided easily and at low cost with high productivity in a non-vacuum process.

図1は、本発明の化合物半導体薄膜の製造方法を示す模式断面図である。FIG. 1 is a schematic cross-sectional view showing a method for producing a compound semiconductor thin film of the present invention. 図2は、実施例1で得られた化合物半導体薄膜のX線回折図形である。FIG. 2 is an X-ray diffraction pattern of the compound semiconductor thin film obtained in Example 1. 図3は、実施例1で得られた化合物半導体薄膜の表面および断面の走査電子顕微鏡(SEM)像である。3 is a scanning electron microscope (SEM) image of the surface and cross section of the compound semiconductor thin film obtained in Example 1. FIG. 図4は、実施例1で得られた化合物半導体薄膜の光透過率を示すグラフである。FIG. 4 is a graph showing the light transmittance of the compound semiconductor thin film obtained in Example 1. 図5は、実施例2で得られた化合物半導体薄膜の表面および断面のSEM像である。5 is an SEM image of the surface and cross section of the compound semiconductor thin film obtained in Example 2. FIG. 図6は、実施例3で得られた化合物半導体薄膜の表面のSEM像である。6 is an SEM image of the surface of the compound semiconductor thin film obtained in Example 3. FIG. 図7は、実施例4における化合物半導体の製造方法を示す模式断面図である。FIG. 7 is a schematic cross-sectional view illustrating the method for manufacturing the compound semiconductor in Example 4. 図8は、実施例4で得られた化合物半導体薄膜の表面のSEM像である。FIG. 8 is an SEM image of the surface of the compound semiconductor thin film obtained in Example 4. 図9は、実施例5で得られた化合物半導体薄膜の表面のSEM像である。FIG. 9 is an SEM image of the surface of the compound semiconductor thin film obtained in Example 5. 図10は、実施例6で得られた化合物半導体薄膜のX線回折図形である。FIG. 10 is an X-ray diffraction pattern of the compound semiconductor thin film obtained in Example 6. 図11は、実施例6で得られた化合物半導体薄膜の表面のSEM像である。FIG. 11 is an SEM image of the surface of the compound semiconductor thin film obtained in Example 6. 図12は、比較例1で得られた化合物半導体薄膜の表面および断面のSEM像である。12 is an SEM image of the surface and cross section of the compound semiconductor thin film obtained in Comparative Example 1. FIG. 図13は、本発明の化合物半導体薄膜製造装置の構成の一例を示す模式図である。FIG. 13 is a schematic diagram showing an example of the configuration of the compound semiconductor thin film manufacturing apparatus of the present invention. 図14は、サブストレイト型構造の太陽電池のデバイス構造の模式断面図である。FIG. 14 is a schematic cross-sectional view of a device structure of a solar cell having a substrate type structure. 図15は、実施例7で得られた化合物半導体薄膜の表面および断面のSEM像である。FIG. 15 is an SEM image of the surface and cross section of the compound semiconductor thin film obtained in Example 7. 図16は、実施例7で得られた化合物半導体薄膜の光透過率を示すグラフである。FIG. 16 is a graph showing the light transmittance of the compound semiconductor thin film obtained in Example 7. 図17は、実施例8で得られた化合物半導体薄膜の表面および断面のSEM像である。FIG. 17 is an SEM image of the surface and cross section of the compound semiconductor thin film obtained in Example 8. 図18(a)は、実施例8で得られた化合物半導体(CIGS)薄膜の断面の透過電子顕微鏡(TEM)像である。図18(b)は、図18(a)中に矢印で示した部分を、エネルギー分散X線分光法(EDX)で分析した特性X線の強度を示すチャートである。FIG. 18A is a transmission electron microscope (TEM) image of a cross section of the compound semiconductor (CIGS) thin film obtained in Example 8. FIG. FIG. 18B is a chart showing the intensity of characteristic X-rays obtained by analyzing the portion indicated by the arrow in FIG. 18A by energy dispersive X-ray spectroscopy (EDX). 図19(a)は、前記化合物半導体(CIGS)薄膜の断面におけるCIGS層とMo層との界面の微構造のTEM像である。図19(b)は、図19(a)中に矢印で示した部分を、EDXで分析した特性X線の強度を示すチャートである。FIG. 19A is a TEM image of the microstructure of the interface between the CIGS layer and the Mo layer in the cross section of the compound semiconductor (CIGS) thin film. FIG. 19B is a chart showing the intensity of characteristic X-rays obtained by analyzing the portion indicated by the arrow in FIG. 19A by EDX. 図20(a)は、実施例8で試作したCIGS太陽電池の写真である。図20(b)は、前記CIGS太陽電池の断面のSEM像である。FIG. 20A is a photograph of the CIGS solar cell prototyped in Example 8. FIG. FIG. 20B is an SEM image of a cross section of the CIGS solar cell. 図21は、実施例8で試作したCIGS太陽電池の特性のグラフである。FIG. 21 is a graph of the characteristics of the CIGS solar cell prototyped in Example 8. 図22は、実施例9で得られた化合物半導体薄膜の表面および断面のSEM像である。FIG. 22 is an SEM image of the surface and cross section of the compound semiconductor thin film obtained in Example 9. 図23は、実施例10で得られた化合物半導体薄膜の表面および断面のSEM像である。FIG. 23 is an SEM image of the surface and cross section of the compound semiconductor thin film obtained in Example 10. 図24は、実施例11で得られた化合物半導体薄膜の表面および断面のSEM像である。24 is a SEM image of the surface and cross section of the compound semiconductor thin film obtained in Example 11. FIG. 図25(a)は、実施例12で得られた化合物半導体薄膜の光透過率を示すグラフである。図25(b)、(c)および(d)は、実施例12で得られた化合物半導体薄膜の禁制帯幅を求めるグラフである。FIG. 25A is a graph showing the light transmittance of the compound semiconductor thin film obtained in Example 12. FIG. 25B, 25C and 25D are graphs for obtaining the forbidden band width of the compound semiconductor thin film obtained in Example 12. FIG. 図26は、実施例13で得られた化合物半導体薄膜のX線回折図形である。FIG. 26 is an X-ray diffraction pattern of the compound semiconductor thin film obtained in Example 13. 図27は、実施例13で得られた化合物半導体薄膜の表面および断面のSEM像である。27 is an SEM image of the surface and cross section of the compound semiconductor thin film obtained in Example 13. FIG. 図28(a)は、実施例13で得られた化合物半導体薄膜の光透過率を示すグラフである。図28(b)は、実施例13で得られた化合物半導体薄膜の禁制帯幅を求めるグラフである。FIG. 28A is a graph showing the light transmittance of the compound semiconductor thin film obtained in Example 13. FIG. FIG. 28B is a graph for obtaining the forbidden band width of the compound semiconductor thin film obtained in Example 13.

本発明の化合物半導体薄膜の製造方法において、前記ΙB族元素、ΙΙΙB族元素およびVΙB族元素を含む塗布剤として、ΙB族元素、ΙΙΙB族元素およびVΙB族元素から選ばれる少なくとも2種類の族の元素を含む化合物粒子を含有する塗布剤を用いることが好ましい。   In the method for producing a compound semiconductor thin film of the present invention, the coating agent containing the ΙB group element, ΙΙΙB group element, and VΙB group element is an element of at least two kinds selected from ΙB group element, ΙΙΙB group element, and V 元素 B group element. It is preferable to use a coating agent containing compound particles containing.

前記ΙB族元素、ΙΙΙB族元素およびVΙB族元素を含む塗布剤として、ΙΙΙB族元素およびVΙB族元素を含む化合物粒子と、ΙB族元素粉末と、VΙB族元素粉末とを含有する塗布剤を用いることも好ましい。   As a coating agent containing the ΙB group element, お よ び B group element and VΙB group element, a coating agent containing ΙΙΙB group element and VΙB group element, ΙB group element powder, and VΙB group element powder is used. Is also preferable.

前記ΙB族元素、ΙΙΙB族元素およびVΙB族元素を含む塗布剤として、ΙB族元素、ΙΙΙB族元素およびVΙB族元素を含む化合物粒子を含有する塗布剤を用いることも好ましい。   As the coating agent containing the ΙB group element, the ΙΙΙB group element and the VΙB group element, it is also preferable to use a coating agent containing compound particles containing the ΙB group element, the ΙΙΙB group element and the VΙB group element.

前記化合物粒子として、メカノケミカルプロセスを行って得られた化合物粒子を用いることが好ましい。   As the compound particles, it is preferable to use compound particles obtained by performing a mechanochemical process.

本発明の化合物半導体薄膜の製造方法において、ΙB族元素が、CuおよびAgから選ばれる少なくとも一つの元素であることが好ましい。   In the method for producing a compound semiconductor thin film of the present invention, the group B element is preferably at least one element selected from Cu and Ag.

本発明の化合物半導体薄膜の製造方法において、ΙΙΙB族元素が、In、Ga、およびAlから選ばれる少なくとも一つの元素であることが好ましい。   In the method for producing a compound semiconductor thin film of the present invention, the group B element is preferably at least one element selected from In, Ga, and Al.

本発明の化合物半導体薄膜の製造方法において、VΙB族元素が、S、SeおよびTeから選ばれる少なくとも一つの元素であることが好ましい。   In the method for producing a compound semiconductor thin film of the present invention, the V 好 ま し い B group element is preferably at least one element selected from S, Se, and Te.

本発明の化合物半導体薄膜の製造方法において、前記塗布剤が、さらにSbを含んでいることが好ましい。   In the method for producing a compound semiconductor thin film of the present invention, it is preferable that the coating agent further contains Sb.

本発明の化合物半導体薄膜の製造方法において、さらに前記塗布膜を乾燥させる乾燥工程を、前記加圧焼成工程の前に行うことが好ましい。   In the method for producing a compound semiconductor thin film of the present invention, it is preferable that a drying step of drying the coating film is further performed before the pressure baking step.

本発明の化合物半導体薄膜の製造方法において、前記加圧焼成工程における機械的に加える圧力が、0Paを超え100MPa以下の範囲にあることが好ましい。   In the method for producing a compound semiconductor thin film of the present invention, it is preferable that a mechanically applied pressure in the pressure firing step is in a range of more than 0 Pa and 100 MPa or less.

本発明の化合物半導体薄膜の製造方法において、前記加圧焼成工程が、300℃〜650℃の範囲内の温度で行われることが好ましい。   In the method for producing a compound semiconductor thin film of the present invention, it is preferable that the pressure firing step is performed at a temperature within a range of 300 ° C to 650 ° C.

本発明の化合物半導体薄膜の製造方法において、前記加圧焼成工程が、常圧から1MPaの範囲の圧力の雰囲気下で行われることが好ましい。   In the method for producing a compound semiconductor thin film of the present invention, it is preferable that the pressure firing step is performed in an atmosphere having a pressure in the range of normal pressure to 1 MPa.

本発明の化合物半導体薄膜の製造方法において、前記加圧焼成工程の後に、さらに常圧から1MPaの範囲の圧力の雰囲気下で加熱する熱処理工程を行うことが好ましい。   In the method for producing a compound semiconductor thin film of the present invention, it is preferable that a heat treatment step of heating in an atmosphere having a pressure in the range of normal pressure to 1 MPa is further performed after the pressure firing step.

本発明の化合物半導体薄膜の製造方法において、前記熱処理工程が、前記加圧焼成工程における温度よりも高い温度で行われることが好ましい。   In the method for producing a compound semiconductor thin film of the present invention, the heat treatment step is preferably performed at a temperature higher than the temperature in the pressure firing step.

本発明の化合物半導体薄膜の製造方法において、前記塗布剤を基板に塗布する工程が、スクリーン印刷によって行われることが好ましい。   In the method for producing a compound semiconductor thin film of the present invention, it is preferable that the step of applying the coating agent on a substrate is performed by screen printing.

本発明の化合物半導体薄膜の製造方法において、前記加圧焼成工程において、前記塗布膜が形成された基板を複数枚重ねた状態で加圧焼成することが好ましい。   In the method for producing a compound semiconductor thin film of the present invention, it is preferable that in the pressure baking step, pressure baking is performed in a state where a plurality of substrates on which the coating film is formed are stacked.

前記複数枚重ねた基板の間には、スペーサーを設けて加圧焼成することが好ましい。   It is preferable to provide a spacer between the plurality of stacked substrates and perform pressure firing.

また、前記スペーサーとして、金属、ガラスおよびセラミックスからなる群から選ばれるスペーサーを用いることが好ましい。   The spacer is preferably a spacer selected from the group consisting of metal, glass and ceramics.

本発明の化合物半導体薄膜の製造方法において、前記ΙΙΙB族元素に加え、もしくは代えて、ΙΙB族元素とΙVB族元素とを組み合わせて用いることもできる。   In the method for producing a compound semiconductor thin film of the present invention, a group B element and a group VB element can be used in combination in place of or in place of the group B element.

つぎに、本発明について詳細に説明する。ただし、本発明は、以下の記載により制限されない。   Next, the present invention will be described in detail. However, the present invention is not limited by the following description.

本発明は、従来は真空プロセスで行われていたΙB族元素、ΙΙΙB族元素およびVΙB族元素を含む、CIGS等の化合物半導体薄膜の製造を、非真空プロセスにより行うことが特徴である。非真空プロセスにおいては、ΙB族元素、ΙΙΙB族元素およびVΙB族元素を含有する塗布剤を調製しておき、この塗布剤を基板に塗布し、加熱、焼結させることでΙB族元素、ΙΙΙB族元素およびVΙB族元素を含む化合物半導体薄膜を製造する。そして、加熱、焼結をさせる際に、機械的な圧力を加えた状態での加圧焼成をすることが大きな特徴である。   The present invention is characterized in that a compound semiconductor thin film such as CIGS containing a group B element, a group B element and a group VB element, which has been conventionally performed by a vacuum process, is manufactured by a non-vacuum process. In the non-vacuum process, a coating agent containing a group B element, a group B element, and a group V element is prepared, and this coating agent is applied to a substrate, heated, and sintered to form a group B element and group B. A compound semiconductor thin film containing an element and a VΙB group element is manufactured. And when heating and sintering, it is a great feature that pressure firing is performed in a state where mechanical pressure is applied.

ΙB族元素は、CuおよびAgから選ばれる少なくとも一つの元素であることが好ましい。化合物半導体薄膜に要求されるバンドギャップの設計値に応じて、前記元素を適宜選択することができ、例えば、Agを使用すると、バンドギャップを広げることができる。   The group B element is preferably at least one element selected from Cu and Ag. The element can be appropriately selected according to the design value of the band gap required for the compound semiconductor thin film. For example, when Ag is used, the band gap can be widened.

ΙΙΙB族元素としては、In、Ga、およびAlから選ばれる少なくとも一つの元素であることが好ましい。例えば、GaやAlを使用すると、バンドギャップを広げることができる。ΙB族元素としてCuを含み、ΙΙΙB族元素としてInを含む化合物半導体薄膜の場合、前記薄膜中のCu/Inの元素比率は、0.95〜0.7が理想値である。しかし、薄膜形成後にKCN水溶液によるエッチングで容易に過剰のCuを除去することができるので、Cu過剰の比率でもよい。前記比率は0.95〜0.4程度でもよい。   The group B element is preferably at least one element selected from In, Ga, and Al. For example, when Ga or Al is used, the band gap can be widened. In the case of a compound semiconductor thin film containing Cu as a group B element and In as a group B element, the ideal element ratio of Cu / In in the thin film is 0.95 to 0.7. However, since excessive Cu can be easily removed by etching with an aqueous KCN solution after forming a thin film, the ratio of excess Cu may be used. The ratio may be about 0.95 to 0.4.

VΙB族元素は、S、SeおよびTeから選ばれる少なくとも一つの元素であることが好ましい。硫黄(S)は、真空プロセスにおける化合物半導体薄膜の製造においては使用されるが、蒸気圧が高いため、従来の加熱、焼結により前記薄膜の製造を行うプロセスの主成分として含有することは好ましくなかった。しかし、本発明の製造方法においては、加圧下で加熱焼結させるので、蒸気圧の高さは大きな問題にはならない。硫黄の存在はCIGSの結晶粒界の特性改善が期待できるので、少量の添加物として用いることも好ましい。   The VΙB group element is preferably at least one element selected from S, Se and Te. Sulfur (S) is used in the production of a compound semiconductor thin film in a vacuum process, but since it has a high vapor pressure, it is preferably contained as a main component of the process for producing the thin film by conventional heating and sintering. There wasn't. However, in the production method of the present invention, since the heat sintering is performed under pressure, the high vapor pressure is not a big problem. Since the presence of sulfur can be expected to improve the characteristics of CIGS grain boundaries, it is also preferable to use it as a small amount of additive.

前記ΙB族元素、ΙΙΙB族元素およびVΙB族元素から選ばれる少なくとも2種類の族の元素を含む化合物粒子としては、ΙB族元素およびVΙB族元素を含む化合物粒子やΙΙΙB族元素およびVΙB族元素を含む化合物粒子を用いることができる。本発明において用いる塗布剤は、2種類の族の元素を含む粒子と、前記粒子に含まれない族の元素粉末とを混合して用いてもよいし、少なくとも2種類の族の元素を含む粒子を複数種類用いて、ΙB族元素、ΙΙΙB族元素およびVΙB族元素のすべてを含むように調製してもよい。前記ΙB族元素およびVΙB族元素を含む化合物粒子は、CuSeであることが好ましい。前記ΙΙΙB族元素およびVΙB族元素を含む化合物粒子として(In1−XGaSeを用いる場合、CuSeとの反応で、Cu(In1−XGa)Seを容易に得ることができる。従来、使用されているCuSeやAgSeでは、加熱しても短時間でのΙΙΙB族元素およびVΙB族元素を含む化合物粒子との反応が進行し難い。これに対して、CuSeの場合には、523℃以上で、高濃度のCuを含んだ液相のSeと少量のCu2−ZSe(固体)とに分解する。このCu2−ZSeは、Zが0〜0.2程度の値を取り得る不定比化合物の形で存在する。生成した液相のSeはΙΙΙB族元素およびVΙB族元素を含む化合物粒子と活発に反応する。同時に生成したCu2−ZSeは、反応を阻害するが、反応系内に微過剰のSeを添加することにより、Cu2−ZSeをSe融液中に溶解させることができ、均質なCu−Se融液が得られる。均質なCu−Se融液であれば、上記反応を良好に進めることができ、好ましい。 The compound particles containing at least two kinds of elements selected from the group B elements, group B elements, and group V elements include compound particles containing group B elements and group V elements, group B elements, and group elements V and B. Compound particles can be used. The coating agent used in the present invention may be a mixture of particles containing two types of elements and group element powders not included in the particles, or particles containing at least two types of elements. May be prepared so as to contain all of the group B element, the group B element, and the group V element. The compound particles containing the group B element and the group V group B are preferably CuSe. When using the ΙΙΙB group element and a compound particle comprising VΙB group elements (In 1-X Ga X) 2 Se 3, by reaction with CuSe, Cu (In 1-X Ga X) easily getting Se 2 Can do. Conventionally, Cu 2 Se and Ag 2 Se that have been used hardly react with compound particles containing a group B element and a group V element in a short time even when heated. On the other hand, in the case of CuSe, it decomposes into liquid phase Se containing a high concentration of Cu and a small amount of Cu 2-Z Se (solid) at 523 ° C. or higher. This Cu 2 -Z Se exists in the form of a non-stoichiometric compound in which Z can take a value of about 0 to 0.2. The generated Se in the liquid phase reacts actively with the compound particles containing the ΙΙΙB group element and the VΙB group element. Although Cu 2-Z Se produced at the same time inhibits the reaction, Cu 2-Z Se can be dissolved in the Se melt by adding a slight excess of Se to the reaction system. -Se melt is obtained. A homogeneous Cu—Se melt is preferable because the above reaction can proceed well.

上記において、前記ΙB族元素、ΙΙΙB族元素およびVΙB族元素を含む塗布剤として、ΙΙΙB族元素およびVΙB族元素を含む化合物粒子と、ΙB族元素粉末と、VΙB族元素粉末とを含有する塗布剤を用いることが好ましい。さらに、ΙΙΙB族元素およびVΙB族元素を含む化合物粒子が、ΙΙΙBVΙB族化合物であることがより好ましい。例えば、CuInSeの結晶構造において、最近の発明者らの理論計算によると、Cu−Se間結合は、In−Se間結合に比べて、非常に弱いことがわかった。それで、蒸着法においてCuInSe薄膜を作製する場合、まず、InSe薄膜を作製して、その薄膜にCuとSeを拡散させ、InSe薄膜の配向性を変化させることで高品質のCuInSe薄膜が得られる。本発明の化合物半導体薄膜の製造方法においても、ΙΙΙB族元素およびVΙB族元素を含む化合物粒子と、ΙB族元素粉末と、VΙB族元素粉末とを含有する塗布剤を用いることで、高品質の薄膜を得ることができる。前記ΙΙΙB族元素およびVΙB族元素を含む化合物粒子は、(In1−XGaSeおよび(In1−XGa)Seから選ばれる少なくとも一種であることが好ましい。(In1−XGa)Seを用いる場合には、Se量が(In1−XGaSeを用いる場合と比較して少なくなる。それで、(In1−XGaSeを用いる場合と同じ組成比にするためには、1molの(In1−XGa)Seに対し0.5molのSeを加えて調製する。また、化合物半導体薄膜中のGa/(In+Ga)比率である前記化学式中のXは、0〜0.6の範囲にあることが好ましく、0.2〜0.4の範囲にあることがより好ましい。太陽電池として化合物半導体薄膜を用いる場合、バンドギャップは1.4eV程度あることが最も好ましい。バンドギャップの観点からは、Gaを前記比率で0.6程度含有させるとよいが、変換効率の観点からは0.2〜0.4の範囲にあることがより好ましい。 In the above, as the coating agent containing the group B element, group B element and group V element, the coating agent containing compound particles containing group B element and group V element, group B element powder, and group group V powder. Is preferably used. Furthermore, it is more preferable that the compound particle containing a ΙΙΙB group element and a VΙB group element is a ΙΙΙB 2 VΙB 3 group compound. For example, in the crystal structure of CuInSe 2 , according to recent theoretical calculations by the inventors, it has been found that the Cu—Se bond is much weaker than the In—Se bond. Therefore, when a CuInSe 2 thin film is produced by the vapor deposition method, first, an In 2 Se 3 thin film is produced, Cu and Se are diffused in the thin film, and the orientation of the In 2 Se 3 thin film is changed. CuInSe 2 thin film is obtained. Also in the method for producing a compound semiconductor thin film of the present invention, a high-quality thin film is obtained by using a coating agent containing a compound particle containing a Group B element and a Group V element, a Group B element powder, and a Group V element powder. Can be obtained. Compound particles containing the ΙΙΙB group element and VΙB group elements is preferably at least one selected from (In 1-X Ga X) 2 Se 3 and (In 1-X Ga X) Se. When (In 1-X Ga X ) Se is used, the Se amount is smaller than when (In 1-X Ga X ) 2 Se 3 is used. Therefore, in order to obtain the same composition ratio as in the case of using (In 1-X Ga X ) 2 Se 3 , 0.5 mol of Se is added to 1 mol of (In 1-X Ga X ) Se. Further, X in the chemical formula, which is a Ga / (In + Ga) ratio in the compound semiconductor thin film, is preferably in the range of 0 to 0.6, and more preferably in the range of 0.2 to 0.4. . When a compound semiconductor thin film is used as a solar cell, the band gap is most preferably about 1.4 eV. From the viewpoint of the band gap, it is preferable that Ga is contained in an amount of about 0.6, but from the viewpoint of conversion efficiency, it is more preferably in the range of 0.2 to 0.4.

前記化合物粒子の粒子径は、それら化合物粒子が反応して目的とする化合物半導体が生成するので、小さいほど反応性が高くなり望ましい。前記粒子径は、1μm以下にあることが好ましく、0.1μm以下にあることがより好ましい。   As the particle diameter of the compound particles reacts with the compound particles to produce a target compound semiconductor, the smaller the particle diameter, the higher the reactivity and the more desirable. The particle diameter is preferably 1 μm or less, and more preferably 0.1 μm or less.

前記化合物粒子は、ΙB族元素およびVΙB族元素を含む化合物粒子、ΙΙΙB族元素およびVΙB族元素を含む化合物粒子を各々準備してもよいが、それぞれの元素単体を準備し、所望の比率で単体を混合した混合物を用い、メカノケミカルプロセスによって各化合物粒子を得ることもできる。この方法を用いることにより、化合物粒子の組成を自在に設計することが容易となる。   The compound particles may be prepared as a compound particle containing a group B element and a group VB element, or a compound particle containing a group B element and a group VB element, but each elemental element is prepared in a desired ratio. Each compound particle can also be obtained by a mechanochemical process using a mixture of the above. By using this method, it becomes easy to freely design the composition of the compound particles.

物質を粉砕する過程において、微粒子化した物質に衝撃、せん断、ずり応力、摩擦などの機械エネルギーを与えると、前記機械エネルギーの一部が微粒子内に蓄積され、物質粒子の活性や反応性が高まる。活性・反応が高まった前記粒子が、周囲の物質と化学反応を起こす現象を利用して、複合化粒子を合成するプロセスをメカノケミカルプロセスという。メカノケミカルプロセスは、高いエネルギー効率、高い生産性および短いサイクルタイムという特徴を有している。   When mechanical energy such as impact, shear, shear stress, and friction is applied to a finely divided material in the process of pulverizing the material, a part of the mechanical energy is accumulated in the fine particle, thereby increasing the activity and reactivity of the material particle. . The process of synthesizing composite particles by utilizing the phenomenon that the particles having increased activity and reaction cause a chemical reaction with surrounding substances is called a mechanochemical process. The mechanochemical process is characterized by high energy efficiency, high productivity and short cycle time.

本発明において、メカノケミカルプロセスを行うための手段としては、Cu、Se、In、Gaの各単体からCuSeや(In,Ga)−Se化合物を得るメカノケミカル反応が進行するのに、十分な機械的エネルギーを加えることができる装置であれば特に制限されるものではない。装置としては、例えば、遊星型ボールミル、ボールミル、ジェットミル、アトライターミル、ロッドミル、ロールミル、クラッシャーミル等が挙げられる。これらの中でも重力加速度の数倍の衝撃が得られる遊星型ボールミルが好ましい。   In the present invention, as a means for performing a mechanochemical process, a sufficient machine is sufficient for a mechanochemical reaction to obtain CuSe or (In, Ga) -Se compound from each of Cu, Se, In, and Ga. The apparatus is not particularly limited as long as it is a device capable of applying a dynamic energy. Examples of the apparatus include a planetary ball mill, a ball mill, a jet mill, an attritor mill, a rod mill, a roll mill, and a crusher mill. Among these, a planetary ball mill capable of obtaining an impact several times the gravitational acceleration is preferable.

前記ボールミルとは、多数の球体により被処理物質を粉砕処理するものである。具体的には、回転力、遊星運動、振動等の機械的エネルギーを利用して球体(ボール)によって被処理物質を粉砕する転動ボールミル、遊星ボールミル、振動ボールミル等がある。なお、ボールの材質は、特に限定されるものではないが、不純物混入の観点から、ジルコニア、アルミナ、窒化珪素、タングステンカーバイド、メノウ等が好ましい。   The said ball mill grind | pulverizes a to-be-processed substance with many spheres. Specifically, there are a rolling ball mill, a planetary ball mill, a vibrating ball mill, and the like that pulverize a material to be treated by a sphere (ball) using mechanical energy such as rotational force, planetary motion, and vibration. The material of the ball is not particularly limited, but zirconia, alumina, silicon nitride, tungsten carbide, agate and the like are preferable from the viewpoint of contamination with impurities.

本発明において、メカノケミカルプロセスを行う際のボールミルの回転数や容器の大きさ、用いるボールの径や量については、反応を促進することができれば特に制限されるものではない。   In the present invention, the number of rotations of the ball mill, the size of the container, and the diameter and amount of the balls used when performing the mechanochemical process are not particularly limited as long as the reaction can be promoted.

塗布剤における、ΙB族元素、ΙΙΙB族元素およびVΙB族元素の含有割合は、目的とする化合物半導体薄膜の組成となるような比で加えるとよい。塗布後の加熱(焼成)工程で化合物から揮発しやすいSeのような元素が含まれている場合、その元素の単体をあらかじめ塗布剤中に過剰に混合しておくことも好ましい。あるいは、揮発しやすい前記元素の単体を、反応容器中に共存させておくと、焼成時に、薄膜からの前記元素の揮発を防ぐことができ、好ましい。   The content ratio of the ΙB group element, the ΙB group element, and the VΙB group element in the coating agent is preferably added in such a ratio that the composition of the target compound semiconductor thin film is obtained. When an element such as Se that easily volatilizes from a compound is contained in the heating (baking) step after coating, it is also preferable that the element alone is excessively mixed in advance in the coating agent. Alternatively, it is preferable that a single element of the element that is likely to volatilize coexist in the reaction vessel because the element can be prevented from volatilizing from the thin film during firing.

塗布剤は、溶媒を含んでいることも好ましい。溶媒としては、水系溶媒であっても、有機溶媒等の非水系溶媒であってもよい。有機溶媒には、アクリラート、アルコール(ブチル、エチル、イソプロピルまたはメチル)、アルデヒド、ベンゼン、ジブロモメタン、クロロホルム、ジクロロメタン、ジクロロエタン、トリクロロエタン、シクロ化合物(例えば、シクロペンタノン、シクロヘキサノン)、エステル(例えば、ブチルアセテート、エチルアセテート)、エーテル、グリコール(エチレングリコール、プロピレングリコールなど)、ヘキサン、ヘプタン、脂肪族炭化水素、芳香族炭化水素、ケトン(例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン)、天然油、テルペン、テルピノール、トルエンがある。塗布剤をスクリーン印刷等の方法で基板に塗布する場合には、溶媒はターピネオールやエチレングリコールモノフェニルエーテル等のような高沸点、高粘度のものが塗布性や塗布時の作業性の点から好ましい。水系溶媒は、環境負荷は少ないが、表面張力が有機溶媒より相対的に大きいという欠点があり、基板に塗布する場合には、はじきが生じやすい。基板への塗布性を改善するために、界面活性剤を添加することで塗布剤の表面張力を小さくしてもよい。溶媒の添加量は、塗布剤の塗布方法に応じて最適な粘度範囲となるように調整して加えるとよい。   It is also preferable that the coating agent contains a solvent. The solvent may be an aqueous solvent or a non-aqueous solvent such as an organic solvent. Organic solvents include acrylates, alcohols (butyl, ethyl, isopropyl or methyl), aldehydes, benzene, dibromomethane, chloroform, dichloromethane, dichloroethane, trichloroethane, cyclo compounds (eg, cyclopentanone, cyclohexanone), esters (eg, butyl) Acetate, ethyl acetate), ether, glycol (ethylene glycol, propylene glycol, etc.), hexane, heptane, aliphatic hydrocarbon, aromatic hydrocarbon, ketone (eg, acetone, methyl ethyl ketone, methyl isobutyl ketone), natural oil, terpene, There are terpinol and toluene. When the coating agent is applied to the substrate by a method such as screen printing, a solvent having a high boiling point and high viscosity such as terpineol or ethylene glycol monophenyl ether is preferable from the viewpoint of coating property and workability during coating. . Although the aqueous solvent has a small environmental load, it has a drawback that the surface tension is relatively larger than that of the organic solvent, and repelling is likely to occur when it is applied to a substrate. In order to improve the coating property to the substrate, the surface tension of the coating agent may be reduced by adding a surfactant. The amount of the solvent added may be adjusted so as to be in the optimum viscosity range according to the coating method of the coating agent.

前記塗布剤には、必要に応じて、性能を損なわない範囲で、顔料、充填剤、分散剤、可塑剤、紫外線吸収剤、界面活性剤、結合剤、乳化剤、消泡剤、乾燥剤、レベリング剤、腐食防止剤、酸化防止剤、チクソトロピー化剤等を添加してもよい。これらの添加剤は一種類を単独で使用してもよく、また二種類以上併用してもよい。なお、前記塗布剤には、NaFを添加することで、基板との密着性を向上させることができるので、好ましい。   For the coating agent, pigments, fillers, dispersants, plasticizers, UV absorbers, surfactants, binders, emulsifiers, antifoaming agents, desiccants, and leveling may be used as long as they do not impair performance. An agent, corrosion inhibitor, antioxidant, thixotropic agent, etc. may be added. These additives may be used alone or in combination of two or more. In addition, since the adhesiveness with a board | substrate can be improved by adding NaF to the said coating agent, it is preferable.

前記塗布剤は、さらにSbを含んでいることが好ましい。Sbは、焼結助剤として作用するものと考えられ、添加によってCIGS薄膜の焼結が促進され、より緻密な薄膜が得られることがわかった。Sbの添加量は、得られる化合物半導体の性能を保持できる範囲で設定することができるが、0.25〜5mol%程度であることが好ましい。この範囲において、Sbの添加量が増えるほど、緻密な薄膜が得られる。   It is preferable that the coating agent further contains Sb. Sb is considered to act as a sintering aid, and it was found that the addition of the CIGS thin film promotes the sintering, and a denser thin film is obtained. Although the addition amount of Sb can be set in a range in which the performance of the obtained compound semiconductor can be maintained, it is preferably about 0.25 to 5 mol%. Within this range, a dense thin film can be obtained as the amount of Sb added increases.

前記塗布剤は、メカノケミカルプロセスを行うための手段と同様の、例えば、ボールミル等の手段で調製することができる。所望の塗布剤が低粘度である場合には、ボールミル等を使用せずに、攪拌することで得ることもできる。前記ボールミルのように被処理物質を粉砕処理する手段を用いる場合、一般には、粉砕処理時間(攪拌時間)を長くすることによって、塗布剤中の粒子の粒径を小さくすることができる。本発明における塗布剤調製工程においては、粉砕処理時間は30分〜24時間時間の範囲が好ましく、所望の塗布剤物性に応じて、適宜設定することができる。   The coating agent can be prepared by means similar to the means for performing a mechanochemical process, such as a ball mill. When the desired coating agent has a low viscosity, it can also be obtained by stirring without using a ball mill or the like. When using a means for pulverizing the material to be treated such as the ball mill, generally, the particle size of the particles in the coating agent can be reduced by increasing the pulverization time (stirring time). In the coating agent preparation step in the present invention, the pulverization time is preferably in the range of 30 minutes to 24 hours, and can be appropriately set according to the desired physical properties of the coating agent.

前記塗布剤を基板に塗布する方法としては、例えば、スクリーン印刷法、ファンテンコート法、ダイコート法、スピンコート法、スプレーコート法、グラビアコート法、ロールコート法、バーコート法等の塗布法を用いることができる。   Examples of methods for applying the coating agent to the substrate include screen printing methods, phantom coating methods, die coating methods, spin coating methods, spray coating methods, gravure coating methods, roll coating methods, and bar coating methods. Can be used.

前記塗布剤を塗布する基板としては、ソーダライムガラスを用いることが好ましい。ソーダライムガラスにはNaが含まれるが、含有されるNaが基板上に形成された化合物半導体薄膜層に拡散することにより、化合物半導体薄膜の電気物性によい影響を与えることができる場合がある。特に、前記化合物半導体薄膜を太陽電池として使用する場合には好ましい。本発明の化合物半導体薄膜の製造方法は、塗布工程により基板上に薄膜を形成するので、蒸着法等に比べ、基板の選択の幅を広げることができる。前記ソーダライムガラスのような堅い基板以外にも、例えば、金属箔やプラスチックフィルムのようなフレキシブルな基板を使用することもできる。フレキシブルな基板を使用する場合には、ロール・ツー・ロール方式といった量産性の高いプロセスにも適用可能である。   As the substrate on which the coating agent is applied, soda lime glass is preferably used. The soda lime glass contains Na, but the contained Na may diffuse into the compound semiconductor thin film layer formed on the substrate, so that the electrical properties of the compound semiconductor thin film may be positively affected. In particular, it is preferable when the compound semiconductor thin film is used as a solar cell. In the method for producing a compound semiconductor thin film of the present invention, a thin film is formed on a substrate by a coating process, so that the selection range of the substrate can be widened as compared with vapor deposition. In addition to the hard substrate such as soda lime glass, for example, a flexible substrate such as a metal foil or a plastic film can be used. When a flexible substrate is used, it can also be applied to a mass-productive process such as a roll-to-roll method.

本発明の化合物半導体薄膜の製造方法において、前記塗布剤を基板に塗布して塗布膜を形成する工程と、前記塗布膜を機械的に圧力を加えた加圧条件下で加熱して化合物半導体を焼結させる加圧焼成工程との間に、塗布剤の乾燥工程を含むことも好ましい。塗布膜中に溶媒が多く含まれる状態で高温に加熱すると、溶媒が一気に蒸発すること等に起因して膜にボイドが発生するおそれがある。また、機械的に加圧した状態での加熱となるため、溶媒が蒸発しきらず、膜中に残留してしまうおそれもある。そのため、加圧焼成工程前に、ある程度の溶媒を除去して塗布膜を乾燥させる工程を設けることは好ましい。   In the method for producing a compound semiconductor thin film of the present invention, the step of applying the coating agent to a substrate to form a coating film, and heating the coating film under pressure under mechanical pressure, the compound semiconductor It is also preferable to include a coating agent drying step between the sintering step. When the coating film is heated to a high temperature in a state where a large amount of solvent is contained, voids may be generated in the film due to evaporation of the solvent all at once. In addition, since the heating is performed in a mechanically pressurized state, the solvent may not be evaporated and may remain in the film. Therefore, it is preferable to provide a step of removing a certain amount of solvent and drying the coating film before the pressure firing step.

前記塗布膜を乾燥する工程は、例えば、自然乾燥でもよいし、風を吹きつけての風乾であってもよいし、加熱乾燥や減圧乾燥であってもよい。また、これらを組み合わせた方法であってもよい。前記塗布膜の厚みは、好ましくは、10〜0.1μmの範囲であり、より好ましくは、3〜0.3μmの範囲である。   The step of drying the coating film may be, for example, natural drying, air drying by blowing air, heat drying or vacuum drying. Moreover, the method which combined these may be used. The thickness of the coating film is preferably in the range of 10 to 0.1 μm, and more preferably in the range of 3 to 0.3 μm.

本発明における加圧焼成工程は、前記塗布膜が形成された基板を、上下から押し板で挟み込んで加圧し、その状態で加熱することで(ホットプレス)、前記塗布剤に含まれるΙB族元素、ΙΙΙB族元素およびVΙB族元素を焼結させて化合物半導体薄膜を製造する工程である。本工程は、以下に述べる押圧手段と加熱手段とを備える装置を使用して実施することができる。   In the press firing process in the present invention, the substrate on which the coating film is formed is sandwiched between press plates from above and below, pressed, and heated in that state (hot pressing), so that the group B element contained in the coating agent In this step, the compound semiconductor thin film is manufactured by sintering the group B element and the group V group B element. This step can be performed using an apparatus including a pressing unit and a heating unit described below.

図13に、本発明の化合物半導体薄膜製造装置の構成の一例を示す。図示のとおり、この製造装置130は、チャンバー131、加熱槽132、ヒーター133、押し棒134、134’を主要な構成部材として有する。   In FIG. 13, an example of a structure of the compound semiconductor thin film manufacturing apparatus of this invention is shown. As illustrated, the manufacturing apparatus 130 includes a chamber 131, a heating tank 132, a heater 133, and push rods 134 and 134 'as main components.

チャンバー131内には、加熱槽132および一組の押し棒134、134’が配置されており、前記一組の押し棒134、134’は本発明における押圧手段であり、加熱槽132に上下方向に対向して洞貫されている。前記加熱槽132内には、ヒーター133が設置されている。前記チャンバー131には、真空ポンプやガス供給手段(図示せず)が接続されていてもよい。真空ポンプにより前記チャンバー131内を減圧し、ガス供給手段から例えば窒素等のガスをチャンバー内に供給することで、チャンバー内の空気を置換することができる。前記ガス供給手段は、ガスボンベに接続されており、これにより、適度な圧力のガスを、前記チャンバー131内に供給することが可能となっている。前記ヒーター133は、加熱槽132内の温度制御をする手段である。本例においては、ヒーター133は加熱槽132内に設置されているが、これに限定されない。前記ヒーター133が加熱槽132内にある態様では、前記ヒーター133は、ヒーターが石英管内に封入されている石英管ヒーターであることが好ましい。加熱により、塗布層からSe等が蒸発し、加熱槽内がSe雰囲気になることがあるが、ヒーターが剥き出しの場合、ヒーター自体とSe等が反応してしまうからである。温度制御手段は、ヒーターに限定されず、通電加熱や放電プラズマ焼結機によるものであってもよい。   In the chamber 131, a heating tank 132 and a set of push rods 134, 134 'are arranged. The set of push bars 134, 134' is a pressing means in the present invention, and the heating tank 132 has a vertical direction. It is pierced opposite. A heater 133 is installed in the heating tank 132. A vacuum pump or a gas supply means (not shown) may be connected to the chamber 131. By reducing the pressure in the chamber 131 with a vacuum pump and supplying a gas such as nitrogen from the gas supply means into the chamber, the air in the chamber can be replaced. The gas supply means is connected to a gas cylinder, whereby a gas having an appropriate pressure can be supplied into the chamber 131. The heater 133 is a means for controlling the temperature in the heating tank 132. In this example, the heater 133 is installed in the heating tank 132, but is not limited thereto. In an embodiment in which the heater 133 is in the heating tank 132, the heater 133 is preferably a quartz tube heater in which the heater is enclosed in a quartz tube. This is because Se and the like may evaporate from the coating layer due to heating, and the inside of the heating tank may become a Se atmosphere, but when the heater is exposed, Se and the like react with each other. The temperature control means is not limited to a heater, and may be a current heating or a discharge plasma sintering machine.

本発明の製造方法においては、前記一組の押し棒134、134’の間に前記塗布膜が形成された基板を設置した後に、前記一組の押し棒134、134’を、その間隔を狭める方向に動かすことにより、前記基板に機械的な圧力を加える。前記基板に圧力を加える際には、前記基板全体に均等に加圧がされるようにするため、前記基板と同程度の大きさの押し板を用意し、前記基板を挟み込むように配置することが好ましい。前記押し板の材料としては、窒化珪素製セラミックス、アルミナ、ジルコニア等を好適に用いることができる。また、前記押し板と前記基板との間には、基板の破損を防止するために緩衝材としての役割を果たす第二の押し板をさらに設置してもよい。前記第二の押し板としては、グラファイトシート、テフロン(登録商標)シート等を使用することができる。   In the manufacturing method of the present invention, after the substrate on which the coating film is formed is installed between the pair of push rods 134 and 134 ', the interval between the pair of push rods 134 and 134' is reduced. By moving in the direction, mechanical pressure is applied to the substrate. When applying pressure to the substrate, a pressing plate having the same size as the substrate is prepared so that the entire substrate is pressurized, and the substrate is arranged so as to sandwich the substrate. Is preferred. As the material of the pressing plate, silicon nitride ceramics, alumina, zirconia, or the like can be suitably used. In addition, a second push plate that serves as a cushioning material may be further provided between the push plate and the substrate in order to prevent damage to the substrate. As the second push plate, a graphite sheet, a Teflon (registered trademark) sheet, or the like can be used.

前記基板の前記塗布膜が形成された面には、スペーサーが配置されることが好ましい。前記スペーサーは、前記塗布膜の押し板への付着を防止するために用いる。前記スペーサーとしては、塗布膜に含有される化合物半導体を構成する元素と反応せず、基板からの塗布膜の転写が起こりにくく、加圧によって過度に変形しない材料を用いるとよい。スペーサーとしては、金属、ガラス、セラミックス等が好ましく、アルミニウム箔、ホウ珪酸ガラス等を使用することができる。また、押し板表面にスペーサーとなり得る材料をコーティングしておいてもよい。   It is preferable that a spacer is disposed on the surface of the substrate on which the coating film is formed. The spacer is used to prevent the coating film from adhering to the pressing plate. As the spacer, it is preferable to use a material that does not react with an element constituting the compound semiconductor contained in the coating film, hardly transfers the coating film from the substrate, and does not deform excessively by pressurization. As the spacer, metal, glass, ceramics and the like are preferable, and aluminum foil, borosilicate glass and the like can be used. Further, a material that can serve as a spacer may be coated on the surface of the pressing plate.

たとえば、化合物半導体薄膜として、CuInSeを製造する場合、Seの蒸発によって、平衡反応が次の方向に進んでしまう。
2CuInSe→CuSe+InSe+Se
本発明の製造方法では、塗布面をプレスするためにSeが蒸発しにくく、そのため、上記式は反対方向(2CuInSe←CuSe+InSe+Se)に進むので、好ましい。
For example, when producing CuInSe 2 as a compound semiconductor thin film, the equilibrium reaction proceeds in the following direction due to the evaporation of Se.
2CuInSe 2 → Cu 2 Se + In 2 Se + Se 2
In the manufacturing method of the present invention, Se is difficult to evaporate in order to press the coated surface, and therefore, the above formula proceeds in the opposite direction (2CuInSe 2 ← Cu 2 Se + In 2 Se + Se 2 ), which is preferable.

本発明における加圧焼成工程では、前記塗布膜が形成された基板を複数枚重ねた状態で加圧焼成することもできる。一般に、加圧焼成のプロセスは、バッチプロセスになる点で生産性が低くなる場合が多いが、本発明においては、基板を複数枚重ねて同時に処理をすることができるので、生産効率を大幅に向上させることができる。この場合、複数の前記塗布膜が形成された基板間には、前記スペーサーを挿入しておくとよい。   In the pressure baking process in the present invention, pressure baking can be performed in a state where a plurality of substrates on which the coating film is formed are stacked. In general, the pressure firing process is often low in productivity because it becomes a batch process. However, in the present invention, since a plurality of substrates can be processed simultaneously, the production efficiency is greatly improved. Can be improved. In this case, the spacer may be inserted between the substrates on which a plurality of the coating films are formed.

前記加圧は、機械的に加えた圧力が0Paを超え100MPa以下の範囲にあることが好ましい。この範囲の圧力を加えることにより、加熱により周囲が液相となった化合物半導体の結晶粒が、隣接する結晶粒と結合しやすくなることから、粒成長が促進される。また、圧力を加えた状態では、緻密な、結晶粒と結晶粒との接触面積が大きい状態で、反応焼結や粒成長をさせることができるため、緻密な薄膜を作製することができる。従来のプロセスで加圧せずに焼結させる場合、焼結は三次元のプロセスで進行するため、塗布膜が形成された状態から上下方向にも左右方向にも収縮が起こり、寸法精度が得られず、また、薄膜には空孔が多数存在し、緻密化が困難であった。また、水平方向の膜の収縮によって、膜にひび割れが生じることも問題であった。本発明の製造方法は、これらの問題点を改善したものである。   The pressurization is preferably in the range where the mechanically applied pressure exceeds 0 Pa and is 100 MPa or less. By applying a pressure within this range, the crystal grains of the compound semiconductor whose surroundings are in a liquid phase by heating are easily bonded to the adjacent crystal grains, so that the grain growth is promoted. In addition, in a state where pressure is applied, reaction sintering and grain growth can be performed in a state where the contact area between the crystal grains and the crystal grains is large, so that a dense thin film can be manufactured. When sintering without pressure in the conventional process, the sintering proceeds in a three-dimensional process, so shrinkage occurs in the vertical and horizontal directions from the state in which the coating film is formed, and dimensional accuracy is obtained. In addition, the thin film had many vacancies and was difficult to be densified. Another problem is that the film is cracked by the contraction of the film in the horizontal direction. The production method of the present invention improves these problems.

前記加圧焼成工程での加熱温度は、300℃〜650℃の範囲内の温度で行われることが好ましく、より好ましくは350℃〜550℃の範囲内である。また、雰囲気としては、常圧から1MPaの範囲の圧力雰囲気下であることが好ましい。前記塗布膜が形成された基板を室温常圧中でチャンバー内にセットした後、CIGS膜からのSeの蒸発を最小限に抑えるために、密閉したチャンバー内で加圧焼成する場合には、温度上昇とともにチャンバー内部の雰囲気圧力が高くなる。しかし、1MPaを超えると、装置の材質や構造に要求されるスペックが高度になり、汎用性や安全性の点からも実用性が低くなる。本発明の製造方法では、加圧せずに焼結をさせる場合に比べて、低温の条件下で化合物半導体薄膜を製造することができる。本発明の製造方法によると、従来に比べ、加熱温度が低温でも結晶粒が成長する。   The heating temperature in the pressure firing step is preferably performed at a temperature in the range of 300 ° C to 650 ° C, more preferably in the range of 350 ° C to 550 ° C. The atmosphere is preferably a pressure atmosphere in the range of normal pressure to 1 MPa. In order to minimize the evaporation of Se from the CIGS film after setting the substrate on which the coating film has been formed in the chamber at room temperature and normal pressure, when the pressure baking is performed in a sealed chamber, the temperature As the temperature rises, the atmospheric pressure inside the chamber increases. However, if it exceeds 1 MPa, the specifications required for the material and structure of the device become high, and the practicality is low from the viewpoint of versatility and safety. In the production method of the present invention, the compound semiconductor thin film can be produced under a low temperature condition as compared with the case of sintering without applying pressure. According to the production method of the present invention, crystal grains grow even at a lower heating temperature than in the conventional method.

前記加圧焼成工程の後に、さらに常圧から1MPaの範囲の圧力の雰囲気下で加熱する熱処理工程を行うことも好ましい。前記熱処理工程を行うことによって、結晶粒径には変化がなくとも、太陽電池としたときの特性が向上する。前記熱処理工程における加熱温度は、前記加熱処理工程における温度よりも高い温度で行われると効果的であり、好ましくは400℃〜650℃の範囲内であり、より好ましくは450℃〜600℃の範囲内である。   After the pressure firing step, it is also preferable to perform a heat treatment step of heating in an atmosphere having a pressure in the range of normal pressure to 1 MPa. By performing the heat treatment step, the characteristics of a solar cell are improved even if the crystal grain size does not change. The heating temperature in the heat treatment step is effective when performed at a temperature higher than the temperature in the heat treatment step, preferably in the range of 400 ° C to 650 ° C, more preferably in the range of 450 ° C to 600 ° C. Is within.

前記熱処理工程は、Seを蒸着しながら行うことも好ましい。Seを蒸着しながら熱処理を行うことにより、CIGS薄膜の分解を防ぎ、太陽電池としたときの特性が向上する。この場合も、加圧焼成工程での加熱温度における温度よりも高い温度で行われると効果的であり、好ましくは400℃〜650℃の範囲内であり、より好ましくは450℃〜600℃の範囲内である。   The heat treatment step is also preferably performed while depositing Se. By performing the heat treatment while depositing Se, the CIGS thin film is prevented from being decomposed, and the characteristics of the solar cell are improved. Also in this case, it is effective when carried out at a temperature higher than the temperature at the heating temperature in the pressure firing step, preferably in the range of 400 ° C to 650 ° C, more preferably in the range of 450 ° C to 600 ° C. Is within.

以上において、ΙB族元素、ΙΙΙB族元素およびVΙB族元素を含む化合物半導体薄膜の製造方法について詳述したが、本発明においては、前記ΙΙΙB族元素に加え、もしくは代えて、ΙΙB族元素とΙVB族元素とを組み合わせて用いることで、化合物半導体薄膜を製造することもできる。前記ΙΙΙB族元素に代えて、ΙΙB族元素とΙVB族元素とを組み合わせて用いると、ΙB族元素、ΙΙB族元素、ΙVB族元素およびVΙB族元素を含む化合物半導体薄膜を製造することができる。ΙΙΙB族元素であるInやGa等の希少金属は、資源的な制約がある。そのため、Inを、ΙΙB族元素であるZnおよびΙVB族元素であるSnに置き換えて用いることもできる。ΙΙB族元素としてはZnを、ΙVB族元素としては、SnやGeを好適に用いることができる。   In the above, the manufacturing method of the compound semiconductor thin film containing the ΙB group element, the ΙΙΙB group element and the VΙB group element has been described in detail. In the present invention, in addition to or instead of the ΙΙΙB group element, the ΙΙB group element and the ΙVB group. A compound semiconductor thin film can also be manufactured by using it in combination with an element. When a ΙΙB group element and a ΙVB group element are used in combination instead of the ΙΙΙB group element, a compound semiconductor thin film containing a ΙB group element, a ΙΙB group element, a ΙVB group element, and a VΙB group element can be produced. Rare metals such as In and Ga, which are group B elements, have resource limitations. Therefore, In can be used in place of Zn which is a ΙΙB group element and Sn which is a ΙVB group element. Zn can be suitably used as the ΙΙB group element, and Sn or Ge can be suitably used as the ΙVB group element.

本発明の化合物半導体薄膜の製造方法によって製造された化合物半導体薄膜は、太陽電池に好適に使用することができる。前記太陽電池の構造の一例としては、サブストレイト型構造が挙げられる。サブストレイト型構造の太陽電池のデバイス構造の模式断面図の一例を、図14に示す。基板141上に裏面電極142があり、その上に化合物半導体薄膜による光吸収層143、バッファー層144、透明電極145、取り出し電極146という構成である。例えば、基板141としてはソーダライムガラス、裏面電極142にはMo、バッファー層144にはZnO/CdS、透明電極145にはZnO:AlやZnO:B、取り出し電極146としてAl/Niが用いられる。太陽光は、透明電極145側から入射する。透明電極145上には、必要に応じて反射防止膜147を設けてもよい。   The compound semiconductor thin film produced by the method for producing a compound semiconductor thin film of the present invention can be suitably used for a solar cell. An example of the structure of the solar cell is a substrate type structure. An example of a schematic cross-sectional view of the device structure of a solar cell having a substrate type structure is shown in FIG. A back electrode 142 is provided on a substrate 141, and a light absorption layer 143 made of a compound semiconductor thin film, a buffer layer 144, a transparent electrode 145, and an extraction electrode 146 are formed thereon. For example, soda lime glass is used for the substrate 141, Mo is used for the back electrode 142, ZnO / CdS is used for the buffer layer 144, ZnO: Al or ZnO: B is used for the transparent electrode 145, and Al / Ni is used for the extraction electrode 146. Sunlight enters from the transparent electrode 145 side. An antireflection film 147 may be provided on the transparent electrode 145 as necessary.

前記化合物半導体薄膜を太陽電池に用いる場合、薄膜の厚みは1μm以上あれば、太陽光の吸収に十分である。さらに、裏面で光を反射させることで、光吸収層内での光路長を長くすることができ、1μm以下の薄膜でも太陽光を十分に吸収することができるようになる。また、低コスト太陽電池に用いることを考えると、薄膜の厚みは10μm以下が望ましい。また、蒸着法で作製したCIGS膜の結晶粒は大きく、粒径は膜厚程度まで成長している。しかし、結晶粒径がそれほど大きくなくても高い変換効率が得られる場合もある。重要な点は、結晶粒子が十分に焼結して緻密であることである。   When the compound semiconductor thin film is used for a solar cell, a thickness of the thin film of 1 μm or more is sufficient for absorbing sunlight. Furthermore, by reflecting light on the back surface, the optical path length in the light absorption layer can be increased, and even a thin film of 1 μm or less can sufficiently absorb sunlight. In consideration of use in low-cost solar cells, the thickness of the thin film is desirably 10 μm or less. Moreover, the crystal grain of the CIGS film produced by the vapor deposition method is large, and the grain size has grown to about the film thickness. However, high conversion efficiency may be obtained even if the crystal grain size is not so large. The important point is that the crystal grains are sufficiently sintered and dense.

つぎに、本発明の実施例について説明する。なお、本発明は、下記の実施例によってなんら限定ないし制限されない。また、各実施例および各比較例における各種特性および物性の測定および評価は、下記の方法により実施した。   Next, examples of the present invention will be described. The present invention is not limited or restricted by the following examples. In addition, various properties and physical properties in each example and each comparative example were measured and evaluated by the following methods.

(表面形状観察)
化合物半導体薄膜は、走査型電子顕微鏡((株)キーエンス製、商品名「リアルサーフェイス顕微鏡 VE−9800SP2199」)を用いて表面形状の観察を行った。
(Surface shape observation)
The surface of the compound semiconductor thin film was observed using a scanning electron microscope (manufactured by Keyence Corporation, trade name “Real Surface Microscope VE-9800SP2199”).

(結晶構造解析)
化合物半導体薄膜は、X線回折装置((株)リガク製、商品名「自動X線回折装置 RINT2400」)を用いて分析を行った。Cuターゲットを用い、管電圧は40kV、管電流は100mAでX線を発生した。測定は2θ/θ法で行った。
(Crystal structure analysis)
The compound semiconductor thin film was analyzed using an X-ray diffractometer (manufactured by Rigaku Corporation, trade name “automatic X-ray diffractometer RINT2400”). Using a Cu target, X-rays were generated at a tube voltage of 40 kV and a tube current of 100 mA. The measurement was performed by the 2θ / θ method.

(光透過率)
ガラス基板上に形成した化合物半導体薄膜は、マルチチャンネル分光器(浜松ホトニクス(株)製、商品名「マルチチャンネル分光器 PMA−12」)を用いて吸収スペクトルの測定を行い、光透過率の算出を行った。光検出素子は感度波長範囲が900nm〜1650nmのInGaAsリニアイメージセンサ C10028−01を用いた。
(Light transmittance)
The compound semiconductor thin film formed on the glass substrate is measured for absorption spectrum using a multi-channel spectrometer (trade name “Multi-channel spectrometer PMA-12” manufactured by Hamamatsu Photonics Co., Ltd.), and light transmittance is calculated. Went. As the light detection element, an InGaAs linear image sensor C10028-01 having a sensitivity wavelength range of 900 nm to 1650 nm was used.

[実施例1]
(原料粉末の調製)
元素粉末Cu、In、Ga、SeをCu1.02(In1−XGa)Se2.1の比(X=0.005、0.1、0.2)となるように秤量後、そこにNaFを0.5mol%(Cu1.02(In1−XGa)Se2.1が1molに対して0.005molに相当)添加した。遊星ボールミル(フリッチュ社製、商品名「遊星型ボールミル premium line P−7」)用のジルコニア製45cc容器に秤量した粉末20gと、3mm径のジルコニア製玉石40gとを入れ、窒素雰囲気下で、800rpm、20分間攪拌した。攪拌により、メカノケミカル反応が起こり、Cu(In1−XGa)Se(CIGS)を主成分とする粉末が得られた。ここで、X=0.005、0.1、0.2の3水準である。得られた粉末の主成分がカルコパイライト型の結晶構造を有する結晶性の良いCIGSであることを粉末X線回折により確認した。
[Example 1]
(Preparation of raw material powder)
After weighing the element powders Cu, In, Ga, Se so as to have a ratio of Cu 1.02 (In 1-X Ga X ) Se 2.1 (X = 0.005, 0.1, 0.2), Thereto was added 0.5 mol% of NaF (Cu 1.02 (In 1-X Ga X ) Se 2.1 corresponds to 0.005 mol with respect to 1 mol). 20 g of powder weighed in a 45 cc container made of zirconia for a planetary ball mill (trade name “Planet type ball mill premium line P-7” manufactured by Fritsch) and 40 g of 3 mm diameter zirconia cobblestone were placed at 800 rpm in a nitrogen atmosphere. For 20 minutes. By agitation, it occurs mechanochemical reaction, powder based on Cu (In 1-X Ga X ) Se 2 (CIGS) was obtained. Here, there are three levels of X = 0.005, 0.1, and 0.2. It was confirmed by powder X-ray diffraction that the main component of the obtained powder was CIGS having a chalcopyrite type crystal structure and good crystallinity.

(塗布剤の調製)
前記CIGSを主成分とする粉末の入ったジルコニア製容器に、それぞれエチレングリコールモノフェニルエーテルを4ml加え、容器内を窒素雰囲気にして、700rpm、120分間攪拌し、塗布剤であるインクを3種類得た。
(Preparation of coating agent)
Add 4 ml of ethylene glycol monophenyl ether to each of the zirconia containers containing the above-mentioned CIGS as a main component, make the container a nitrogen atmosphere, and stir at 700 rpm for 120 minutes to obtain three types of inks as coating agents. It was.

(塗布)
基板として、5cm□のソーダライムガラス(厚み2mm)を用意した。得られたインクを、スクリーン印刷(400メッシュ)により塗布し、塗布層を形成した。
(Application)
As a substrate, 5 cm □ soda lime glass (thickness 2 mm) was prepared. The obtained ink was applied by screen printing (400 mesh) to form a coating layer.

(乾燥)
前記塗布層を形成した基板を、窒素雰囲気下で、145℃、7分間乾燥した。
(Dry)
The substrate on which the coating layer was formed was dried at 145 ° C. for 7 minutes in a nitrogen atmosphere.

(加圧焼成)
図1に模式断面図を示したように、本発明の化合物半導体薄膜製造装置を用い、以下のとおり前記乾燥後の基板を加圧焼成し、塗布膜を焼結させてCIGS薄膜を作製した。CIGS塗布膜1を形成した基板2を押し板5の上に配置した。そして、CIGS塗布膜1に直接接触させてスペーサー3を載せ、さらに押し板5’を載せた。この2枚の押し板5および5’を一対の押し棒4、4’で、機械的に加圧しながら焼結を行った。スペーサー3としてアルミニウム箔(厚み7μm)、押し棒4、4’としてφ40mmの円柱状ジルコニア製セラミックス、押し板5、5’として60mm角の窒化珪素製セラミックス板を用いた。このような装置を用いて、窒素雰囲気下、450℃で、機械的な圧力を2MPa加えた状態で、30分間、加圧焼成して、焼結CIGS薄膜を得た。加熱は、チャンバーを密閉した後、窒素雰囲気下、常圧で開始し、200℃に達したところで、押し板で機械的な圧力(プレス)を加えた。加圧状態のまま所定の450℃まで加熱し、450℃で30分間保持した後、押し板での加圧を解除して常圧に戻した。常温まで冷却した後、チャンバーを開放して焼結させた薄膜付きの基板を取り出した。
(Pressurized firing)
As shown in the schematic cross-sectional view of FIG. 1, using the compound semiconductor thin film manufacturing apparatus of the present invention, the dried substrate was pressure fired as follows, and the coated film was sintered to produce a CIGS thin film. The substrate 2 on which the CIGS coating film 1 was formed was placed on the pressing plate 5. Then, the spacer 3 was placed in direct contact with the CIGS coating film 1, and a push plate 5 'was placed thereon. The two pressing plates 5 and 5 ′ were sintered while being mechanically pressed by a pair of pressing rods 4 and 4 ′. The spacer 3 was an aluminum foil (thickness 7 μm), the push rods 4 and 4 ′ were cylindrical zirconia ceramics having a diameter of 40 mm, and the push plates 5 and 5 ′ were 60 mm square silicon nitride ceramic plates. Using such an apparatus, under a nitrogen atmosphere at 450 ° C. with a mechanical pressure of 2 MPa applied, pressure firing was performed for 30 minutes to obtain a sintered CIGS thin film. Heating was started at normal pressure in a nitrogen atmosphere after the chamber was sealed, and when the temperature reached 200 ° C., mechanical pressure (press) was applied with a pressing plate. After heating to a predetermined 450 ° C. in a pressurized state and holding at 450 ° C. for 30 minutes, the pressure on the pressing plate was released and the pressure was returned to normal pressure. After cooling to room temperature, the chamber was opened and the sintered substrate with a thin film was taken out.

(薄膜の特性)
実施例1で得られた3種類のCIGS薄膜(X=0.005、0.1、0.2)をX線回折(XRD)で分析した。得られたX線回折図形を図2に示す。これらのX線回折図形は、基本的にCuInSeの結晶構造解析データ(ICSD:Inorganic Crystal Structure Database #70051)に基づくシミュレーションによるX線回折図形と一致し、カルコパイライト型構造を持つCIGS薄膜が合成されていることがわかった。このX線回折図形から、本実施例のCIGS薄膜が不純物を含まない単一相であること、Xの増加とともに回折ピークが高角度側にシフトして、Gaの固溶量が増加していることが確認できる。
(Thin film characteristics)
Three types of CIGS thin films (X = 0.005, 0.1, 0.2) obtained in Example 1 were analyzed by X-ray diffraction (XRD). The obtained X-ray diffraction pattern is shown in FIG. These X-ray diffraction patterns basically correspond to the X-ray diffraction patterns obtained by simulation based on the crystal structure analysis data (ICSD: Inorganic Crystal Structure Database # 70051) of CuInSe 2 , and a CIGS thin film having a chalcopyrite structure is synthesized. I found out. From this X-ray diffraction pattern, the CIGS thin film of the present example is a single phase that does not contain impurities, and as the X increases, the diffraction peak shifts to the high angle side, and the solid solution amount of Ga increases. Can be confirmed.

過剰のSeは焼結過程で蒸散すると考えられる。従って、過剰に加えるSe量を、条件によって適時調節する必要がある。一般に、焼成温度が高いとSeの蒸散が激しいので最適な過剰Se量も多くなる。また、過剰に加えたCuはSeと反応してCuSeになり、それがCIGSの焼結助剤として働くと考えられる。CuSeは焼成後にはCu−Se系不純物としてCIGS薄膜中に残留する。このCu−Se不純物はKCN水溶液によるエッチングによって容易に除去することができる。   Excess Se is believed to evaporate during the sintering process. Therefore, it is necessary to adjust the amount of Se added excessively according to conditions. In general, when the firing temperature is high, Se transpiration is severe, and the optimum amount of excess Se also increases. Moreover, Cu added excessively reacts with Se to form CuSe, which is considered to work as a sintering aid for CIGS. CuSe remains in the CIGS thin film as Cu—Se impurities after firing. This Cu—Se impurity can be easily removed by etching with an aqueous KCN solution.

得られた薄膜の表面および断面微構造を走査電子顕微鏡(SEM)で観察した。それらの写真を図3に示す。これらの写真から、CIGSの結晶粒成長と緻密化が認められ、本実施例の方法によって、緻密なCIGS薄膜が得られることが確認できる。特に、薄膜の表面が非常に平滑なことが特徴である。   The surface and cross-sectional microstructure of the obtained thin film were observed with a scanning electron microscope (SEM). Those photographs are shown in FIG. From these photographs, CIGS crystal grain growth and densification are recognized, and it can be confirmed that a dense CIGS thin film can be obtained by the method of this example. In particular, the surface of the thin film is very smooth.

実施例1で作製したCIGS薄膜の光吸収スペクトルを、波長が900nm〜1600nmの範囲で測定した。図4に、作製したCIGS薄膜の光透過率のグラフを示す。この図からX(Gaの固溶量)の増加とともに、CIGS薄膜を透過する光の最短波長が短波長側にシフトすることがわかる。これは、Gaの固溶量の増加とともにCIGS薄膜の禁制帯幅が広くなり、CIGS薄膜の吸収端が短波長側にシフトするためである。この光透過率をもとに求めたCIGS薄膜の禁制帯幅は、X=0.005でEg=1.00eV、X=0.1でEg=1.06eV、X=0.2でEg=1.10eVであった。これらの値は文献値と一致する。 The light absorption spectrum of the CIGS thin film produced in Example 1 was measured in the wavelength range of 900 nm to 1600 nm. In FIG. 4, the graph of the light transmittance of the produced CIGS thin film is shown. This figure shows that the shortest wavelength of the light which permeate | transmits a CIGS thin film shifts to the short wavelength side with increase of X (Ga solid solution amount). This is because the forbidden band width of the CIGS thin film becomes wider as the amount of Ga dissolved increases, and the absorption edge of the CIGS thin film shifts to the short wavelength side. The forbidden band width of the CIGS thin film obtained based on this light transmittance is as follows: X = 0.005, Eg = 1.00 eV, X = 0.1, Eg = 1.06 eV, X = 0.2, Eg = 1.10 eV. These values are consistent with literature values.

[実施例2]
(原料粉末の調製)
元素粉末Cu、In、Ga、SeをCu1.02(In0.995Ga0.005)Se2.1の比となるように秤量後、そこにNaFを0.5mol%添加した。実施例1と同様に遊星ボールミル用のジルコニア製45cc容器に秤量した粉末20gと、3mm径のジルコニア製玉石40gとを入れ、窒素雰囲気下で、800rpm、20分間攪拌した。攪拌により、メカノケミカル反応が起こり、Cu(In0.995Ga0.005)Seを主成分とする粉末が得られた。
[Example 2]
(Preparation of raw material powder)
The element powders Cu, In, Ga, and Se were weighed so as to have a ratio of Cu 1.02 (In 0.995 Ga 0.005 ) Se 2.1 , and then 0.5 mol% of NaF was added thereto. In the same manner as in Example 1, 20 g of the weighed powder and 40 g of 3 mm diameter zirconia cobblestone were placed in a zirconia 45 cc container for a planetary ball mill, and stirred at 800 rpm for 20 minutes in a nitrogen atmosphere. By stirring, a mechanochemical reaction occurred, and a powder containing Cu (In 0.995 Ga 0.005 ) Se 2 as a main component was obtained.

(塗布剤の調製)
前記Cu(In0.995Ga0.005)Seを主成分とする原料粉末の入ったジルコニア製容器に、エチレングリコールモノフェニルエーテルを4ml加え、実施例1と同様の条件で攪拌し、塗布剤であるインクを得た。
(Preparation of coating agent)
4 ml of ethylene glycol monophenyl ether was added to a container made of zirconia containing the raw material powder containing Cu (In 0.995 Ga 0.005 ) Se 2 as a main component, and the mixture was stirred and applied under the same conditions as in Example 1. An ink as an agent was obtained.

(塗布)
基板として、5cm□のソーダライムガラス(厚み2mm)を用意した。得られたインクを、実施例1と同じ条件でスクリーン印刷により塗布し、塗布層を形成した。
(Application)
As a substrate, 5 cm □ soda lime glass (thickness 2 mm) was prepared. The obtained ink was applied by screen printing under the same conditions as in Example 1 to form a coating layer.

(乾燥)
前記塗布層を形成した基板を、実施例1と同じ条件で乾燥した。
(Dry)
The substrate on which the coating layer was formed was dried under the same conditions as in Example 1.

(加圧焼成)
焼結条件を、400℃×30分、450℃×30分、450℃×60分、500℃×10分の4水準について行ったほかは、実施例1と同様に加圧焼成し、焼結CIGS薄膜を得た。
(Pressurized firing)
Sintering was performed in the same manner as in Example 1 except that the sintering conditions were four levels of 400 ° C. × 30 minutes, 450 ° C. × 30 minutes, 450 ° C. × 60 minutes, and 500 ° C. × 10 minutes. A CIGS thin film was obtained.

(薄膜の特性)
上記で得られた4種類のCIGS薄膜の、表面および断面微構造をSEMで観察した。それらの写真を図5に示す。図5のように、本実施例のCIGS薄膜は結晶粒成長と緻密化が認められ、本実施例の方法によって、緻密なCIGS薄膜が得られることが確認できた。
(Thin film characteristics)
The surface and cross-sectional microstructures of the four types of CIGS thin films obtained above were observed with an SEM. These photographs are shown in FIG. As shown in FIG. 5, the CIGS thin film of this example showed crystal grain growth and densification, and it was confirmed that a dense CIGS thin film was obtained by the method of this example.

[実施例3]
(原料粉末および塗布剤の調製)
実施例2と同様に、Cu(In0.995Ga0.005)Seを主成分とする粉末を得て、塗布剤であるインクを調製した。
[Example 3]
(Preparation of raw material powder and coating agent)
In the same manner as in Example 2, a powder containing Cu (In 0.995 Ga 0.005 ) Se 2 as a main component was obtained, and an ink as a coating agent was prepared.

(塗布と乾燥)
基板として、5cm□のソーダライムガラス(厚み2mm)にMo電極を形成したものを用意した。得られたインクを、実施例1と同じ条件で前記基板に塗布して、塗布層を形成し、その後、前記塗布層を形成した基板を実施例1と同じ条件で乾燥した。
(Coating and drying)
A substrate was prepared by forming a Mo electrode on 5 cm square soda lime glass (thickness 2 mm). The obtained ink was applied to the substrate under the same conditions as in Example 1 to form a coating layer, and then the substrate on which the coating layer was formed was dried under the same conditions as in Example 1.

(加圧焼成)
スペーサーとして、実施例1と同様のアルミニウム箔(厚み7μm)、ホウ珪酸ガラス板(厚み2mm)の2種類をそれぞれ用いて行ったほかは、実施例1と同様に加圧焼成し、2水準の焼結CIGS薄膜を得た。
(Pressurized firing)
As the spacer, two types of aluminum foil (thickness: 7 μm) and borosilicate glass plate (thickness: 2 mm) similar to those in Example 1 were used, respectively. A sintered CIGS thin film was obtained.

(熱処理)
前記加圧焼成で得られた焼結CIGS薄膜をそれぞれ、窒素雰囲気下で、550℃、10分間加熱処理した。このとき、基板は石英ガラス製のシャーレに入れ、シャーレ内にSeを入れた。
(Heat treatment)
The sintered CIGS thin films obtained by the pressure firing were each heat-treated at 550 ° C. for 10 minutes in a nitrogen atmosphere. At this time, the substrate was put in a petri dish made of quartz glass, and Se was put in the petri dish.

(エッチング処理)
前記熱処理したCIGS薄膜をそれぞれ、10wt%のKCN水溶液に室温で3分間浸漬し、Cu−Se系不純物を溶解除去した。
(Etching process)
Each of the heat-treated CIGS thin films was immersed in a 10 wt% KCN aqueous solution at room temperature for 3 minutes to dissolve and remove Cu—Se impurities.

(膜の特性)
前記加圧焼成後、前記熱処理後、前記エッチング処理後のそれぞれの状態でのCIGS薄膜の表面微構造を、SEMで観察した。それらの写真を図6に示した。これらの写真から、いずれの試料においても結晶粒成長と緻密化が認められた。加圧焼成で焼結させた後の熱処理は、過剰に存在しているSeを蒸散させるとともに、CIGS薄膜の結晶性の向上、結晶粒成長と緻密化のために有効な手段であった。また、エッチング処理によって、熱処理後のCIGS薄膜表面に観察されたCu−Se系不純物(図6の写真中丸印で囲んだ部分)を除去できることがわかる。
(Membrane characteristics)
The surface microstructure of the CIGS thin film in each state after the pressure firing, after the heat treatment, and after the etching treatment was observed with an SEM. These photographs are shown in FIG. From these photographs, crystal grain growth and densification were observed in all samples. The heat treatment after sintering by pressure firing was an effective means for evaporating excess Se and improving the crystallinity of the CIGS thin film, crystal grain growth and densification. It can also be seen that the Cu—Se impurities (the part surrounded by a circle in the photograph of FIG. 6) observed on the CIGS thin film surface after the heat treatment can be removed by the etching process.

[実施例4]
(原料粉末の調製)
元素粉末Cu、In、Ga、SeをCu1.02(In1−XGa)Se2.1の比(X=0.05、0.1、0.2)となるように秤量後、実施例1と同様にして、Cu(In1−XGa)Seを主成分とする粉末を得た。ここで、X=0.005、0.1、0.2の3水準である。
[Example 4]
(Preparation of raw material powder)
After weighing the element powders Cu, In, Ga, Se so as to have a ratio of Cu 1.02 (In 1-X Ga X ) Se 2.1 (X = 0.05, 0.1, 0.2), in the same manner as in example 1 to obtain a powder mainly composed of Cu (in 1-X Ga X ) Se 2. Here, there are three levels of X = 0.005, 0.1, and 0.2.

(塗布剤の調製)
前記Cu(In1−XGa)Seを主成分とする原料粉末の入ったジルコニア製容器に、それぞれエチレングリコールモノフェニルエーテル4.5ml加えたほかは、実施例1と同様の条件で攪拌し、塗布剤であるインクを3種類得た。
(Preparation of coating agent)
The Cu (In 1-X Ga X ) zirconia container of Se 2 containing the raw material powder whose main component, except that by adding each 4.5ml ethylene glycol monophenyl ether, stirred under the same conditions as in Example 1 As a result, three types of inks as coating agents were obtained.

(塗布と乾燥)
基板として、5cm□のソーダライムガラス(厚み2mm)にMo電極を形成したものを用意した。得られたインクを、実施例1と同じ条件で前記基板に塗布、乾燥して、塗布層を形成し、その後、前記塗布層を形成した基板を実施例1と同じ条件で乾燥した。
(Coating and drying)
A substrate was prepared by forming a Mo electrode on 5 cm square soda lime glass (thickness 2 mm). The obtained ink was applied to the substrate under the same conditions as in Example 1 and dried to form a coating layer, and then the substrate on which the coating layer was formed was dried under the same conditions as in Example 1.

(加圧焼成)
図7に示すように、前記3種類のインクをそれぞれ塗布した3枚の基板を、同時に加圧焼成し、塗布層を焼結させてCIGS薄膜を作製した。CIGS塗布膜11を形成した基板12を押し板5の上に第二の押し板6を介して配置した。そして、CIGS塗布膜11に直接接触させてスペーサー13を載せた。スペーサー13の上に中押し板17を載せ、CIGS塗布膜21を形成した基板22を配置した。さらに、CIGS塗布膜21に直接接触させてスペーサー23を載せた。スペーサー23の上に中押し板27を載せ、CIGS塗布膜31を形成した基板32を配置した。CIGS塗布膜31に直接接触させてスペーサー33を載せ、さらに中押し板37、第二の押し板6’、押し板5’をこの順に載せた。この2枚の押し板5および5’を一対の押し棒4、4’で、機械的に加圧しながら焼結を行った。スペーサー13、23、33としてアルミニウム箔(厚み7μm)、押し棒4、4’としてφ40mmの円柱状ジルコニア製セラミックス、押し板5、5’として50mm角の窒化珪素製セラミックス板を用いた。押し板5、5’の押圧面側に設けた第二の押し板6、6’は、押し板と基板との間の緩衝材としての役割を果たすものであり、ここでは、それぞれグラファイトシート(厚み0.4mm)を用いた。中押し板17、27、37としては、ホウ珪酸ガラス板(厚み2mm)を用いた。図7のように基板をセットして、窒素雰囲気下、450℃で、機械的な圧力を2MPa加えた状態で、30分間、加圧焼成して、焼結CIGS薄膜を得た。加熱は、チャンバーを密閉した後、窒素雰囲気下、常圧で開始し、200℃に達したところで、押し板で機械的な圧力(プレス)を加えた。加圧状態のまま所定の450℃まで加熱し、450℃で30分間保持した後、押し板での加圧を解除して常圧に戻した。常温まで冷却した後、チャンバーを開放して焼結させた薄膜付きの基板を取り出した。
(Pressurized firing)
As shown in FIG. 7, the three substrates coated with the three kinds of inks were simultaneously fired under pressure, and the coating layer was sintered to produce a CIGS thin film. The substrate 12 on which the CIGS coating film 11 was formed was disposed on the pressing plate 5 via the second pressing plate 6. The spacer 13 was placed in direct contact with the CIGS coating film 11. The intermediate pressing plate 17 was placed on the spacer 13 and the substrate 22 on which the CIGS coating film 21 was formed was disposed. Further, the spacer 23 was placed in direct contact with the CIGS coating film 21. An intermediate pressing plate 27 was placed on the spacer 23, and a substrate 32 on which a CIGS coating film 31 was formed was disposed. The spacer 33 was placed in direct contact with the CIGS coating film 31, and the intermediate push plate 37, the second push plate 6 ′, and the push plate 5 ′ were placed in this order. The two pressing plates 5 and 5 ′ were sintered while being mechanically pressed by a pair of pressing rods 4 and 4 ′. Aluminum spacers (thickness 7 μm) were used as the spacers 13, 23 and 33, cylindrical zirconia ceramics having a diameter of 40 mm were used as the push rods 4 and 4 ′, and 50 mm square silicon nitride ceramic plates were used as the push plates 5 and 5 ′. The second pressing plates 6 and 6 ′ provided on the pressing surface side of the pressing plates 5 and 5 ′ serve as a cushioning material between the pressing plate and the substrate. Here, graphite sheets ( A thickness of 0.4 mm) was used. As the intermediate pressing plates 17, 27 and 37, borosilicate glass plates (thickness 2 mm) were used. The substrate was set as shown in FIG. 7, and the sintered CIGS thin film was obtained by pressurizing and firing for 30 minutes in a nitrogen atmosphere at 450 ° C. with a mechanical pressure of 2 MPa. Heating was started at normal pressure in a nitrogen atmosphere after the chamber was sealed, and when the temperature reached 200 ° C., mechanical pressure (press) was applied with a pressing plate. After heating to a predetermined 450 ° C. in a pressurized state and holding at 450 ° C. for 30 minutes, the pressure on the pressing plate was released and the pressure was returned to normal pressure. After cooling to room temperature, the chamber was opened and the sintered substrate with a thin film was taken out.

(熱処理)
前記加圧焼成で得られた焼結CIGS薄膜を、それぞれ窒素雰囲気下で、550℃、10分間加熱処理した。このとき、基板は石英ガラス製のシャーレに入れ、シャーレ内にSeを入れた。
(Heat treatment)
The sintered CIGS thin films obtained by the pressure firing were each heat-treated at 550 ° C. for 10 minutes in a nitrogen atmosphere. At this time, the substrate was put in a petri dish made of quartz glass, and Se was put in the petri dish.

(エッチング処理)
前記熱処理したCIGS薄膜をそれぞれ、10wt%のKCN水溶液に室温で3分間浸漬し、Cu−Se系不純物を溶解除去した。
(Etching process)
Each of the heat-treated CIGS thin films was immersed in a 10 wt% KCN aqueous solution at room temperature for 3 minutes to dissolve and remove Cu—Se impurities.

(膜の特性)
得られた膜の表面微構造を、SEMで観察した。それらの写真を図8に示した。これらの写真から、CIGSの結晶粒成長と緻密化が認められ、本実施例の方法によって、緻密なCIGS薄膜が得られることが確認できた。特に、膜の表面が非常に平滑なことが特徴である。本実施例においては、一度に複数枚のCIGS薄膜を加圧焼成しているが、実施例1から3において示したような1枚ずつ処理したときと同様に、表面が非常に平滑で緻密なCIGS薄膜を作製することができた。
(Membrane characteristics)
The surface microstructure of the obtained film was observed by SEM. These photographs are shown in FIG. From these photographs, CIGS crystal grain growth and densification were observed, and it was confirmed that a dense CIGS thin film was obtained by the method of this example. In particular, the surface of the film is very smooth. In this example, a plurality of CIGS thin films are pressure-fired at a time, but the surface is very smooth and dense as in the case of processing one by one as shown in Examples 1 to 3. A CIGS thin film could be produced.

(太陽電池の試作)
これらのCIGS薄膜を用いて、図14に示すような構造を有する、Al/n−ZnO:B/i−ZnO/CdS/CIGS/Mo/ソーダライムガラス構造の太陽電池を試作した。太陽電池は以下のプロセスで作製した。
(1) CIGS薄膜上143に、硫酸カドミウムCdSOを用いた溶液成長(CBD)法によりCdSバッファー層144aを形成する。
(2) 有機金属気相成長(MOCVD)法によりi‐ZnO層144b及びZnO:B(B添加ZnO)窓層145を堆積する。Znの原料にはジエチルジンク(Zn(C)を用い、酸化剤として純水(HO)を用いる。また、n型ドーピングガスとして1%水素希釈したジボラン(B)を用いた。
(3) 櫛型Al電極146を真空蒸着法によって形成した。
このプロセスで試作した本実施例のCIGS太陽電池は、いずれも太陽電池特性を示し、本発明が太陽電池用化合物半導体の薄膜作製に有効なことを確認できた。
(Prototype solar cell)
Using these CIGS thin films, a solar cell having an Al / n-ZnO: B / i-ZnO / CdS / CIGS / Mo / soda lime glass structure having a structure as shown in FIG. The solar cell was produced by the following process.
(1) A CdS buffer layer 144a is formed on the CIGS thin film 143 by a solution growth (CBD) method using cadmium sulfate CdSO 4 .
(2) The i-ZnO layer 144b and the ZnO: B (B-doped ZnO) window layer 145 are deposited by metal organic chemical vapor deposition (MOCVD). Diethyl zinc (Zn (C 2 H 5 ) 2 ) is used as a raw material for Zn, and pure water (H 2 O) is used as an oxidizing agent. Further, diborane (B 2 H 6 ) diluted with 1% hydrogen was used as the n-type doping gas.
(3) A comb-shaped Al electrode 146 was formed by a vacuum deposition method.
The CIGS solar cells of this example, which were experimentally produced by this process, all showed solar cell characteristics, and it was confirmed that the present invention was effective for producing a thin film of a compound semiconductor for solar cells.

[実施例5]
(原料粉末の調製)
元素粉末Cu、In、Ga、SeをCu1+Y(In0.995Ga0.005)Se2.1の化学量論比(Y=0.01、0.00、−0.005)となるように秤量後、実施例1と同様にして、Cu(In0.995Ga0.005)Seを主成分とする原料粉末を得た。
[Example 5]
(Preparation of raw material powder)
The element powders Cu, In, Ga, and Se have a stoichiometric ratio of Cu 1 + Y (In 0.995 Ga 0.005 ) Se 2.1 (Y = 0.01, 0.00, −0.005). Then, in the same manner as in Example 1, a raw material powder containing Cu (In 0.995 Ga 0.005 ) Se 2 as a main component was obtained.

(塗布剤の調製)
前記Cu(In0.995Ga0.005)Seを主成分とする原料粉末の入ったジルコニア製容器に、エチレングリコールモノフェニルエーテル4.5ml加えたほかは、実施例1と同様の条件で攪拌し、塗布剤であるインクを3種類得た。
(Preparation of coating agent)
Under the same conditions as in Example 1, except that 4.5 ml of ethylene glycol monophenyl ether was added to a container made of zirconia containing the raw material powder mainly containing Cu (In 0.995 Ga 0.005 ) Se 2. The mixture was stirred to obtain three types of inks as coating agents.

(塗布と乾燥)
基板として、5cm□のソーダライムガラス(厚み2mm)にMo電極を形成したものを用意した。得られたインクを、実施例1と同じ条件で前記基板に塗布して、塗布層を形成し、その後、前記塗布層を形成した基板を実施例1と同じ条件で乾燥した。
(Coating and drying)
A substrate was prepared by forming a Mo electrode on 5 cm square soda lime glass (thickness 2 mm). The obtained ink was applied to the substrate under the same conditions as in Example 1 to form a coating layer, and then the substrate on which the coating layer was formed was dried under the same conditions as in Example 1.

(加圧焼成)
実施例4と同様にして、これらの基板を同時に加圧焼成し、塗布層を焼結させてCIGS薄膜を作製した。加圧焼成の条件は実施例4と同じである。
(Pressurized firing)
In the same manner as in Example 4, these substrates were simultaneously fired under pressure, and the coating layer was sintered to produce a CIGS thin film. The conditions for pressure firing are the same as in Example 4.

(熱処理)
前記加圧焼成で得られた焼結CIGS薄膜を、それぞれ窒素雰囲気下で、600℃、10分間加熱処理した。このとき、基板は石英ガラス製のシャーレに入れ、シャーレ内にSeを入れた。
(Heat treatment)
The sintered CIGS thin films obtained by the pressure firing were each heat-treated at 600 ° C. for 10 minutes in a nitrogen atmosphere. At this time, the substrate was put in a petri dish made of quartz glass, and Se was put in the petri dish.

(エッチング処理)
前記熱処理したCIGS薄膜をそれぞれ、10wt%のKCN水溶液に3分間浸漬し、Cu−Se系不純物を溶解除去した。
(Etching process)
Each of the heat-treated CIGS thin films was immersed in a 10 wt% KCN aqueous solution for 3 minutes to dissolve and remove Cu—Se impurities.

(膜の特性)
得られた膜の表面微構造を、SEMで観察した。それらの写真を図9に示した。比較例と比べて、いずれのCIGS薄膜においても緻密化が認められた。特に、Yの値が大きい組成のCIGS薄膜は緻密な微構造を有し、結晶粒も大きいことがわかる。
(Membrane characteristics)
The surface microstructure of the obtained film was observed by SEM. Those photographs are shown in FIG. Compared with the comparative example, densification was observed in any CIGS thin film. In particular, it can be seen that a CIGS thin film having a composition with a large Y value has a dense microstructure and large crystal grains.

[実施例6]
(CuSe粉末の調製)
Cu粉末とSe粉末を1:1のモル比で秤量した。遊星ボールミル(フリッチュ社製、商品名「遊星型ボールミル P−5/2」)用のジルコニア製80cc容器に秤量した粉末100gと、3mm径のジルコニア製玉石200gとを入れ、容器内を窒素雰囲気にして、370rpm、120分間攪拌した。攪拌により、メカノケミカル反応が起こり、CuSe粉末が得られた。得られたCuSeは結晶性の良いCuSeであることを粉末X線回折により確認した。
[Example 6]
(Preparation of CuSe powder)
Cu powder and Se powder were weighed at a molar ratio of 1: 1. 100 g of powder weighed in an 80 cc container made of zirconia for a planetary ball mill (product name “Planet Ball Mill P-5 / 2” manufactured by Fritsch) and 200 g of 3 mm diameter zirconia cobblestone are put into a nitrogen atmosphere. And stirred at 370 rpm for 120 minutes. By stirring, a mechanochemical reaction occurred and CuSe powder was obtained. It was confirmed by powder X-ray diffraction that the obtained CuSe was a highly crystalline CuSe.

((In1−XGaSe粉末の調製)
In粉末、Ga粉末およびSe粉末を(2−2X):2X:3のモル比で秤量した。ここで、X=0.005、0.1、0.2の3種類である。遊星ボールミル(フリッチュ社製、商品名「遊星型ボールミル premium line P−7」)用のジルコニア製45cc容器に秤量した粉末と、3mm径のジルコニア製玉石40gとを入れた。容器への粉末の充填量は、塗布剤の調製の際にCuSeを加えて20gになるように調整した。それらを、窒素雰囲気下で、800rpm、20分間攪拌し、(In1−XGaSeの組成比を有する粉末を得た。
((In 1-X Ga X ) 2 Se 3 powder preparation of)
In powder, Ga powder and Se powder were weighed at a molar ratio of (2-2X): 2X: 3. Here, there are three types of X = 0.005, 0.1, and 0.2. A powder weighed in a 45 cc container made of zirconia for a planetary ball mill (trade name “Planet type ball mill premium line P-7” manufactured by Fritsch Co., Ltd.) and 40 g of 3 mm diameter zirconia cobblestone were placed. The filling amount of the powder in the container was adjusted to 20 g by adding CuSe during the preparation of the coating agent. They were stirred at 800 rpm for 20 minutes under a nitrogen atmosphere to obtain a powder having a composition ratio of (In 1-X Ga X ) 2 Se 3 .

(塗布剤の調製)
前記(In1−XGaSeの組成比を有する粉末の調製に用いたジルコニア製容器に、Cu1.02(In1−XGa)Se2.51の比になるようにCuSe粉末を加えた。さらに、そこに0.5mol%のNaF(Cu1.02(In1−XGa)Se1molに対して0.005molに相当)を入れた。さらに溶媒としてターピネオールを7ml加え、容器内を窒素雰囲気にして、500rpm、120分間攪拌し、塗布剤であるインクを得た。
(Preparation of coating agent)
In a container made of zirconia used for preparation of the powder having the composition ratio of (In 1-X Ga X ) 2 Se 3 , the ratio of Cu 1.02 (In 1-X Ga X ) Se 2.51 is set. CuSe powder was added. Furthermore, 0.5 mol% of NaF (corresponding to 0.005 mol with respect to 1 mol of Cu 1.02 (In 1-X Ga X ) Se 2 ) was added thereto. Further, 7 ml of terpineol was added as a solvent, the inside of the container was placed in a nitrogen atmosphere, and the mixture was stirred at 500 rpm for 120 minutes to obtain an ink as a coating agent.

(塗布)
基板として、5cm□のソーダライムガラス(厚み2mm)を用意した。得られたインクを、スクリーン印刷(400メッシュ)により塗布し、塗布層を形成した。
(Application)
As a substrate, 5 cm □ soda lime glass (thickness 2 mm) was prepared. The obtained ink was applied by screen printing (400 mesh) to form a coating layer.

(乾燥)
前記塗布層を形成した基板を、窒素雰囲気下で、145℃、5分間乾燥した。
(Dry)
The substrate on which the coating layer was formed was dried at 145 ° C. for 5 minutes in a nitrogen atmosphere.

(加圧焼成)
実施例4と同様にして、これらの基板を同時に加圧焼成し、塗布層を焼結させてCIGS薄膜を作製した。加圧焼成の条件は実施例4と同じである。
(Pressurized firing)
In the same manner as in Example 4, these substrates were simultaneously fired under pressure, and the coating layer was sintered to produce a CIGS thin film. The conditions for pressure firing are the same as in Example 4.

(熱処理)
前記加圧焼成で得られた焼結CIGS薄膜をそれぞれ、窒素雰囲気下で、600℃、10分間加熱処理した。このとき、基板は石英ガラス製のシャーレに入れ、シャーレ内にSeを入れた。
(Heat treatment)
The sintered CIGS thin films obtained by the pressure firing were each heat-treated at 600 ° C. for 10 minutes in a nitrogen atmosphere. At this time, the substrate was put in a petri dish made of quartz glass, and Se was put in the petri dish.

(膜の特性)
実施例6で得られた3種類のCIGS薄膜(X=0.005、0.1、0.2)をXRD分析した。その結果を図10に示した。X線回折図形は、結晶構造解析データ(ICSD:Inorganic Crystal Structure Database #70051)に基づくシミュレーションによるX線回折図形と一致し、カルコパイライト型構造を持つCIGS薄膜が合成されていることがわかった。このX線回折図形から、実施例1の場合と同様に本実施例のCIGS薄膜が不純物を含まない単一相であること、Xの増加とともに回折ピークが高角度側にシフトして、Gaの固溶量が増加していることが確認できる。また、得られた薄膜の表面微構造をSEMで観察した。その結果を図11に示す。これらのSEM写真から、いずれの試料においても結晶粒成長と緻密化が認められることがわかる。
(Membrane characteristics)
Three types of CIGS thin films (X = 0.005, 0.1, 0.2) obtained in Example 6 were subjected to XRD analysis. The results are shown in FIG. The X-ray diffraction pattern coincides with the X-ray diffraction pattern obtained by simulation based on crystal structure analysis data (ICSD: Inorganic Crystal Structure Database # 70051), and it was found that a CIGS thin film having a chalcopyrite structure was synthesized. From this X-ray diffraction pattern, as in Example 1, the CIGS thin film of this example is a single phase containing no impurities, the diffraction peak shifts to the high angle side as X increases, It can be confirmed that the amount of solid solution increases. Moreover, the surface microstructure of the obtained thin film was observed with SEM. The result is shown in FIG. From these SEM photographs, it can be seen that crystal grain growth and densification are observed in any sample.

[比較例]
実施例1と同様に、Cu1.02(In0.995Ga0.005)Se2.1組成の原料粉末の調製、塗布剤の調製、塗布、乾燥を行った。乾燥後の膜の表面および断面微構造のSEM像を図12に示した。この図から、乾燥後の段階のCIGS薄膜は、非常に微細な粒子の集合体であることがわかる。前記乾燥後の薄膜を、実施例1と同様の装置を用いて、機械的な加圧はせずに窒素雰囲気下、450℃で、30分間熱処理を行った。熱処理後のCIGS薄膜の表面および断面微構造のSEM像も、あわせて同図に示した。これらの図から、機械的な加圧を行わないで熱処理した場合では、ほとんど緻密化していないことがわかる。
[Comparative example]
In the same manner as in Example 1, preparation of a raw material powder having a composition of Cu 1.02 (In 0.995 Ga 0.005 ) Se 2.1 , preparation of a coating agent, coating, and drying were performed. The SEM image of the surface of the film after drying and the cross-sectional microstructure is shown in FIG. From this figure, it can be seen that the CIGS thin film at the stage after drying is an aggregate of very fine particles. The dried thin film was heat-treated at 450 ° C. for 30 minutes in a nitrogen atmosphere without mechanical pressurization using the same apparatus as in Example 1. The SEM image of the surface and cross-sectional microstructure of the CIGS thin film after heat treatment is also shown in FIG. From these figures, it can be seen that when heat treatment is performed without mechanical pressurization, the material is hardly densified.

[実施例7]
(原料粉末の調製)
元素粉末Cu、In、Ga、SeをCu1.02(In0.995Ga0.005)Se2.1の比となるように秤量後、そこにNaFを0.5mol%添加した。実施例1と同様に遊星ボールミル用のジルコニア製45cc容器に秤量した粉末20gと、1mm径のジルコニア製玉石40gとを入れ、窒素雰囲気下で、800rpm、20分間攪拌した。攪拌により、メカノケミカル反応が起こり、Cu(In0.995Ga0.005)Seを主成分とする粉末が得られた。
[Example 7]
(Preparation of raw material powder)
The element powders Cu, In, Ga, and Se were weighed so as to have a ratio of Cu 1.02 (In 0.995 Ga 0.005 ) Se 2.1 , and then 0.5 mol% of NaF was added thereto. In the same manner as in Example 1, 20 g of the weighed powder and 40 g of 1 mm diameter zirconia cobblestone were placed in a zirconia 45 cc container for a planetary ball mill, and stirred at 800 rpm for 20 minutes in a nitrogen atmosphere. By stirring, a mechanochemical reaction occurred, and a powder containing Cu (In 0.995 Ga 0.005 ) Se 2 as a main component was obtained.

(塗布剤の調製)
前記Cu(In0.995Ga0.005)Seを主成分とする原料粉末の入ったジルコニア製容器に、エチレングリコールモノフェニルエーテルを8ml加え、容器内を窒素雰囲気にして、700rpmで所定時間の攪拌を行った。前記攪拌時間は、2時間、5時間、10時間の3水準行い、塗布剤であるインクを3種類得た。ここで、一般的に粉砕(攪拌)時間を増やすことによって粉末の粒径は小さくなり、表面積が大きくなるため、インクの粘性が高くなる。そのため、攪拌時間を10時間としたインクは、スクリーン印刷に適切な粘度とするために、溶剤を0.5ml追加した。
(Preparation of coating agent)
8 ml of ethylene glycol monophenyl ether is added to a container made of zirconia containing the raw material powder containing Cu (In 0.995 Ga 0.005 ) Se 2 as a main component, and the inside of the container is placed in a nitrogen atmosphere, and at 700 rpm for a predetermined time. Was stirred. The stirring time was three levels of 2 hours, 5 hours, and 10 hours, and three types of inks as coating agents were obtained. Here, in general, increasing the pulverization (stirring) time decreases the particle size of the powder and increases the surface area, so that the viscosity of the ink increases. Therefore, 0.5 ml of the solvent was added to the ink whose stirring time was 10 hours in order to obtain a viscosity suitable for screen printing.

(塗布)
基板として、5cm□のソーダライムガラス(厚み2mm)を用意した。得られたインクを、スクリーン印刷(500メッシュ)により塗布し、塗布層を形成した。
(Application)
As a substrate, 5 cm □ soda lime glass (thickness 2 mm) was prepared. The obtained ink was applied by screen printing (500 mesh) to form an application layer.

(乾燥)
前記塗布層を形成した基板を、実施例1と同じ条件で乾燥した。
(Dry)
The substrate on which the coating layer was formed was dried under the same conditions as in Example 1.

(加圧焼成)
実施例1と同じ条件で加圧焼成し、焼結CIGS薄膜を得た。
(Pressurized firing)
Under pressure and firing under the same conditions as in Example 1, a sintered CIGS thin film was obtained.

(薄膜の特性)
上記で得られた3種類のCIGS薄膜の、表面および断面微構造をSEMで観察した。それらの写真を図15に示す。図15のように、本実施例のCIGS薄膜は結晶粒成長と緻密化が認められ、本実施例の方法によって、緻密なCIGS薄膜が得られることが確認できた。また、得られたCIGS薄膜の膜厚は、攪拌時間が2時間のインクを使用したものは2.3μm、攪拌時間が5時間のインクを使用したものは1.3μm、攪拌時間が10時間のインクを使用したものは0.8μmであった。
(Thin film characteristics)
The surface and cross-sectional microstructures of the three types of CIGS thin films obtained above were observed with an SEM. Those photographs are shown in FIG. As shown in FIG. 15, in the CIGS thin film of this example, crystal grain growth and densification were observed, and it was confirmed that a dense CIGS thin film was obtained by the method of this example. The thickness of the CIGS thin film obtained was 2.3 μm for the ink using the stirring time of 2 hours, 1.3 μm for the ink using the stirring time of 5 hours, and the stirring time of 10 hours. The one using ink was 0.8 μm.

実施例7で作製したCIGS薄膜の近赤外光吸収スペクトルを、波長が900nm〜1600nmの範囲で測定した。図16に、作製したCIGS薄膜の光透過率のグラフを示す。この図からインクの攪拌時間が長くなり、CIGS膜の膜厚が薄くなるとともに波長が1200nm以上の光の透過率が大きくなることがわかる。このように、スクリ−ン印刷を用いた本実施例の製造方法でも、インクの調整プロセスや用いるスクリ−ンを工夫することによって、蒸着法で作製したCIGS膜と同程度の厚さのCIGS膜を作製することが出来る。   The near infrared light absorption spectrum of the CIGS thin film produced in Example 7 was measured in the wavelength range of 900 nm to 1600 nm. In FIG. 16, the graph of the light transmittance of the produced CIGS thin film is shown. From this figure, it can be seen that the ink stirring time is increased, the CIGS film thickness is decreased, and the transmittance of light having a wavelength of 1200 nm or more is increased. Thus, even in the manufacturing method of this embodiment using screen printing, the CIGS film having the same thickness as the CIGS film prepared by the vapor deposition method can be obtained by devising the ink adjustment process and the screen to be used. Can be produced.

[実施例8]
(原料粉末の調製)
元素粉末Cu、In、Ga、SeをCu1.02(In0.995Ga0.005)Se2.1の比となるように秤量後、そこにNaFを0.5mol%添加した。実施例1と同様に遊星ボールミル用のジルコニア製45cc容器に秤量した粉末20gと、1mm径のジルコニア製玉石40gとを入れ、窒素雰囲気下で、800rpm、20分間攪拌した。攪拌により、メカノケミカル反応が起こり、Cu(In0.995Ga0.005)Seを主成分とする粉末が得られた。
[Example 8]
(Preparation of raw material powder)
The element powders Cu, In, Ga, and Se were weighed so as to have a ratio of Cu 1.02 (In 0.995 Ga 0.005 ) Se 2.1 , and then 0.5 mol% of NaF was added thereto. In the same manner as in Example 1, 20 g of the weighed powder and 40 g of 1 mm diameter zirconia cobblestone were placed in a zirconia 45 cc container for a planetary ball mill, and stirred at 800 rpm for 20 minutes in a nitrogen atmosphere. By stirring, a mechanochemical reaction occurred, and a powder containing Cu (In 0.995 Ga 0.005 ) Se 2 as a main component was obtained.

(塗布剤の調製)
前記Cu(In0.995Ga0.005)Seを主成分とする原料粉末の入ったジルコニア製容器に、エチレングリコールモノフェニルエーテルを9ml加え、容器内を窒素雰囲気にして、700rpmで10時間攪拌して、塗布剤であるインクを得た。
(Preparation of coating agent)
9 ml of ethylene glycol monophenyl ether is added to a container made of zirconia containing the raw material powder containing Cu (In 0.995 Ga 0.005 ) Se 2 as a main component, and the inside of the container is put in a nitrogen atmosphere, at 700 rpm for 10 hours. By stirring, an ink as a coating agent was obtained.

(塗布)
基板として、5cm□のソーダライムガラス(厚み2mm)にMo電極を形成したものを用意した。得られたインクを、スクリーン印刷(500メッシュ)により塗布し、塗布層を形成した。
(Application)
A substrate was prepared by forming a Mo electrode on 5 cm square soda lime glass (thickness 2 mm). The obtained ink was applied by screen printing (500 mesh) to form an application layer.

(乾燥)
前記塗布層を形成した基板を、実施例1と同じ条件で乾燥した。
(Dry)
The substrate on which the coating layer was formed was dried under the same conditions as in Example 1.

(加圧焼成)
実施例1と同じ条件で加圧焼成し、焼結CIGS薄膜を得た。
(Pressurized firing)
Under pressure and firing under the same conditions as in Example 1, a sintered CIGS thin film was obtained.

(熱処理)
前記加圧焼成で得られた焼結CIGS薄膜を、窒素雰囲気下で、600℃、10分間加熱処理した。このとき、基板は石英ガラス製のシャーレに入れ、シャーレ内にSeを入れた。
(Heat treatment)
The sintered CIGS thin film obtained by the pressure firing was heat-treated at 600 ° C. for 10 minutes in a nitrogen atmosphere. At this time, the substrate was put in a petri dish made of quartz glass, and Se was put in the petri dish.

(エッチング処理)
前記熱処理したCIGS薄膜を、10wt%のKCN水溶液に室温で3分間浸漬し、Cu−Se系不純物を溶解除去した。
(Etching process)
The heat-treated CIGS thin film was immersed in a 10 wt% KCN aqueous solution at room temperature for 3 minutes to dissolve and remove Cu—Se impurities.

(膜の特性)
得られたCIGS膜の表面および断面微構造をSEMで観察した。それらの写真を図17に示す。これらの写真から、CIGSの結晶粒成長と緻密化が認められ、本実施例の方法によって、膜厚が約2μmの緻密なCIGS薄膜が得られることが確認できた。
(Membrane characteristics)
The surface and cross-sectional microstructure of the obtained CIGS film were observed with an SEM. Those photographs are shown in FIG. From these photographs, CIGS crystal grain growth and densification were observed, and it was confirmed that a dense CIGS thin film having a thickness of about 2 μm was obtained by the method of this example.

前記得られたCIGS膜の微構造を詳しく調べるために、断面微構造を透過電子顕微鏡(TEM)で観察した。まず、断面微構造をTEMで観察するために、薄片試料を作製した。まず、試料最表面を保護するために、高真空蒸着装置でカーボン膜を、FIB加工装置内でタングステン膜をコーティングした後、指定箇所をマイクロサンプリング法で摘出し、FIB(Focused Ion Beam)加工により薄片化した。その後イオンミリングによりFIBダメージ層を除去した。使用した装置は、集束イオンビーム加工装置((株)日立製作所製、「FB−2100」)とイオンミリング装置(GATAN社製、「PIPS Model−691」(コールドステージ付き))である。次に、得られた薄片試料を電界放射型透過電子顕微鏡(日本電子(株)製、「JEM−2010F」)で、加速電圧200kVの条件で観察した。図18(a)に透過電子顕微鏡で観察した本実施例のCIGS膜の断面微構造を示す。   In order to examine in detail the microstructure of the obtained CIGS film, the cross-sectional microstructure was observed with a transmission electron microscope (TEM). First, in order to observe the cross-sectional microstructure with a TEM, a thin piece sample was prepared. First, in order to protect the outermost surface of the sample, a carbon film is coated with a high vacuum deposition apparatus, and a tungsten film is coated with an FIB processing apparatus. Then, a designated portion is extracted by a microsampling method and is subjected to FIB (Focused Ion Beam) processing. Thinned. Thereafter, the FIB damage layer was removed by ion milling. The apparatus used was a focused ion beam processing apparatus (manufactured by Hitachi, Ltd., “FB-2100”) and an ion milling apparatus (manufactured by GATAN, “PIPS Model-691” (with cold stage)). Next, the obtained flake sample was observed with a field emission transmission electron microscope (“JEM-2010F” manufactured by JEOL Ltd.) under an acceleration voltage of 200 kV. FIG. 18A shows a cross-sectional microstructure of the CIGS film of this example, which was observed with a transmission electron microscope.

さらに、図18(a)中に矢印で示した、前記CIGS膜の中央付近の点P1の化学組成を、エネルギー分散X線分光法(EDX)で分析した。用いた装置は、Noran社製EDX分析装置「Vantage」である。分析結果を図18(b)に示す。特性X線の強度からCu:In:Ga:Seの原子比を求めたところ、23.2:25.6:0.1:51.1になり、目的とするCIGS膜の化学組成(Cu:(In+Ga):Se=25:25:50)に非常に近いことがわかった。   Further, the chemical composition of the point P1 near the center of the CIGS film, indicated by an arrow in FIG. 18A, was analyzed by energy dispersive X-ray spectroscopy (EDX). The apparatus used is a Noran EDX analyzer “Vantage”. The analysis result is shown in FIG. When the atomic ratio of Cu: In: Ga: Se was determined from the intensity of the characteristic X-ray, it was 23.2: 25.6: 0.1: 51.1, and the chemical composition of the target CIGS film (Cu: It was found to be very close to (In + Ga): Se = 25: 25: 50).

次に、図19(a)に、前記CIGS膜のCIGS層とMo層との界面近傍を、さらに拡大してTEM観察した微構造を示す。図19(a)から明らかなように、前記CIGS層と前記Mo層との間には、界面層が形成されている。図19(a)中に矢印で示した点P2の化学組成を、前記点P1と同様に、EDXで分析した。分析結果を図19(b)に示す。界面層からは、CuやInがノイズレベルしか検出されずに、MoとSeのみが検出されていることがわかる。特性X線の強度からMo:Seの原子比を求めたところ、64.9:35.1になり、MoSeの化学組成(Mo:Se=66.7:33.3)に非常に近いことがわかった。このことから、本実施例では、CIGS層とMo層との界面付近にMoSeが生成していることが確認できた。この前記界面層のMoSeは、焼結および熱処理過程で、CIGSとMoとの反応により生成したと推定される。なお、蒸着法においては、CIGS層とMo層との界面に、MoSeが生成し、この界面のMoSeは、CIGS太陽電池の特性向上に寄与することが知られている(例えば、Jpn.J.Appl.Phys. Vol.35(1996)pp.L1253−L1256)。 Next, FIG. 19A shows a microstructure in which the vicinity of the interface between the CIGS layer and the Mo layer of the CIGS film is further enlarged and observed by TEM. As is clear from FIG. 19A, an interface layer is formed between the CIGS layer and the Mo layer. The chemical composition at the point P2 indicated by the arrow in FIG. 19A was analyzed by EDX in the same manner as the point P1. The analysis result is shown in FIG. From the interface layer, it can be seen that only Mo and Se are detected while only noise levels of Cu and In are detected. When the atomic ratio of Mo: Se was calculated from the intensity of the characteristic X-ray, it was 64.9: 35.1 and was very close to the chemical composition of MoSe 2 (Mo: Se = 66.7: 33.3). I understood. Thus, in the present embodiment, it was confirmed that the MoSe 2 is generated in the vicinity of the interface between the CIGS layer and the Mo layer. It is presumed that MoSe 2 of the interface layer was generated by a reaction between CIGS and Mo during the sintering and heat treatment processes. In the deposition method, the interface between the CIGS layer and the Mo layer, MoSe 2 is produced, MoSe 2 of this interface is known to contribute to improvement in characteristics of the CIGS solar cells (e.g., Jpn. J. Appl.Phys., Vol.35 (1996) pp.L1253-L1256).

(太陽電池の試作)
このCIGS薄膜を用いて、実施例4と同様に、図14に示すような構造を有する、Al/n−ZnO:B/i−ZnO/CdS/CIGS/Mo/ソーダライムガラス構造の太陽電池を試作した。図20(a)に本実施例のCIGS太陽電池の写真を示す。また、図20(b)に走査電子顕微鏡で観察した本実施例のCIGS太陽電池の破断面の微構造を示す。CIGS光吸収層の上にZnO層が形成されているのが観察される。CdS層の厚さは0.1μm以下なのでこの写真からは識別できない。
(Prototype solar cell)
Using this CIGS thin film, a solar cell having an Al / n-ZnO: B / i-ZnO / CdS / CIGS / Mo / soda lime glass structure having a structure as shown in FIG. Prototype. FIG. 20A shows a photograph of the CIGS solar cell of this example. FIG. 20B shows the microstructure of the fracture surface of the CIGS solar cell of this example observed with a scanning electron microscope. It is observed that a ZnO layer is formed on the CIGS light absorption layer. Since the thickness of the CdS layer is 0.1 μm or less, it cannot be identified from this photograph.

(太陽電池の特性評価)
前記で試作した太陽電池の特性を評価した。測定条件は標準的な測定条件(Standard Test Condition:STC)であるスペクトル:AM1.5、入射光の照度:100mW/cmで、温度を約25℃に保って測定した。太陽電池のI−V特性は四端子法によって行った。一つの太陽電池セルの面積は0.2cmである。このセルの太陽電池特性を図21に示す。図20(a)中、丸で囲んだセルが、最も高い変換効率を示した。その特性は、変換効率(η):3.2%、開放電圧(Voc):284.2mV、短絡電流(Jsc):26.2mA/cm、フィルファクタ−(F.F.):42.9%であった。
(Characteristic evaluation of solar cells)
The characteristics of the solar cell prototyped above were evaluated. Measurement conditions were standard measurement conditions (Standard Test Condition: STC): spectrum: AM1.5, illuminance of incident light: 100 mW / cm 2 , and the temperature was kept at about 25 ° C. The IV characteristic of the solar cell was performed by a four-terminal method. The area of one solar battery cell is 0.2 cm 2 . The solar cell characteristics of this cell are shown in FIG. In FIG. 20A, the circled cell showed the highest conversion efficiency. The characteristics are: conversion efficiency (η): 3.2%, open circuit voltage (V oc ): 284.2 mV, short circuit current (J sc ): 26.2 mA / cm 2 , fill factor (FF): It was 42.9%.

[実施例9]
(原料粉末の調製)
元素粉末Cu、In、Ga、SeをCu1.00(In0.995Ga0.005)Se2.1とCu0.95(In0.995Ga0.005)Se2.1の比となるようにそれぞれ秤量後、それらにNaFを0.5mol%とSb粉末を2mol%添加した。Sb粉末は、焼結助剤として作用し、結晶成長を制御することができる。実施例1と同様に遊星ボールミル用のジルコニア製45cc容器に秤量した粉末20gと、1mm径のジルコニア製玉石40gとを入れ、窒素雰囲気下で、800rpm、20分間攪拌した。攪拌により、メカノケミカル反応が起こり、いずれもCu(In0.995Ga0.005)Seを主成分とする粉末が得られた。
[Example 9]
(Preparation of raw material powder)
The ratio of elemental powder Cu, In, Ga, Se to Cu 1.00 (In 0.995 Ga 0.005 ) Se 2.1 and Cu 0.95 (In 0.995 Ga 0.005 ) Se 2.1 After weighing each so, 0.5 mol% of NaF and 2 mol% of Sb powder were added thereto. The Sb powder acts as a sintering aid and can control crystal growth. In the same manner as in Example 1, 20 g of the weighed powder and 40 g of 1 mm diameter zirconia cobblestone were placed in a zirconia 45 cc container for a planetary ball mill, and stirred at 800 rpm for 20 minutes in a nitrogen atmosphere. By stirring, a mechanochemical reaction occurred, and a powder containing Cu (In 0.995 Ga 0.005 ) Se 2 as a main component was obtained.

(塗布剤の調製)
前記Cu(In0.995Ga0.005)Seを主成分とする原料粉末の入った二つのジルコニア製容器に、それぞれエチレングリコールモノフェニルエーテルを8ml加え、容器内を窒素雰囲気にして、700rpmで5時間攪拌して2種類のインクを得た。
(Preparation of coating agent)
8 ml of ethylene glycol monophenyl ether was added to each of the two zirconia containers containing the raw material powder containing Cu (In 0.995 Ga 0.005 ) Se 2 as a main component, and the inside of the container was made into a nitrogen atmosphere, and 700 rpm Were stirred for 5 hours to obtain two types of inks.

(塗布)
基板として、5cm□のソーダライムガラス(厚み2mm)を用意した。得られた2種類のインクを、スクリーン印刷(500メッシュ)により塗布し、塗布層を形成した。
(Application)
As a substrate, 5 cm □ soda lime glass (thickness 2 mm) was prepared. The obtained two types of inks were applied by screen printing (500 mesh) to form an application layer.

(乾燥)
前記塗布層を形成した基板を、実施例1と同じ条件で乾燥した。
(Dry)
The substrate on which the coating layer was formed was dried under the same conditions as in Example 1.

(加圧焼成)
基板が2枚である他は実施例4と同じ条件で同時加圧焼成し、焼結CIGS薄膜を得た。
(Pressurized firing)
The sintered CIGS thin film was obtained by simultaneous pressure firing under the same conditions as in Example 4 except that the number of substrates was two.

(熱処理)
前記加圧焼成で得られた焼結CIGS薄膜をそれぞれ、窒素雰囲気下で、600℃、10分間加熱処理した。このとき、基板は石英ガラス製のシャーレに入れ、シャーレ内にSeを入れた。
(Heat treatment)
The sintered CIGS thin films obtained by the pressure firing were each heat-treated at 600 ° C. for 10 minutes in a nitrogen atmosphere. At this time, the substrate was put in a petri dish made of quartz glass, and Se was put in the petri dish.

(薄膜の特性)
上記で得られた2種類のCIGS薄膜の、表面および断面微構造をSEMで観察した。それらの写真を図22に示す。図22のように、本実施例のCIGS薄膜は結晶粒成長と緻密化が認められ、本実施例の方法によって、緻密なCIGS薄膜が得られることが確認できた。本実施例で作製したインクを実施例4と同様に、図14に示すような構造を有する、Al/n−ZnO:B/i−ZnO/CdS/CIGS/Mo/ソーダライムガラス構造の太陽電池を試作したところ太陽電池特性を確認し、本実施例の方法によって作製した緻密なCIGS薄膜が太陽電池の光吸収層として有用なことを確認した。
(Thin film characteristics)
The surface and cross-sectional microstructures of the two types of CIGS thin films obtained above were observed with an SEM. Those photographs are shown in FIG. As shown in FIG. 22, crystal growth and densification were observed in the CIGS thin film of this example, and it was confirmed that a dense CIGS thin film was obtained by the method of this example. A solar cell having an Al / n-ZnO: B / i-ZnO / CdS / CIGS / Mo / soda lime glass structure having the structure shown in FIG. As a result, the solar cell characteristics were confirmed, and it was confirmed that the dense CIGS thin film produced by the method of this example was useful as a light absorption layer of the solar cell.

[実施例10]
((In0.995Ga0.005Se粉末の調製)
実施例6と同様にIn粉末、Ga粉末およびSe粉末を1.99:0.01:3のモル比で秤量した。それらを遊星ボールミル用のジルコニア製45cc容器に秤量した粉末と、1mm径のジルコニア製玉石40gとを入れた。容器への粉末の充填量は、塗布剤の調製の際にCu粉末とSe粉末とを加えて20gになるように調整した。それらを、窒素雰囲気下で、800rpm、20分間攪拌し、(In0.995Ga0.005Seの組成比を有する粉末を得た。同様にしてこのような(In0.995Ga0.005Seの組成比を有する粉末を全部で4ポット作製した。
[Example 10]
(Preparation of (In 0.995 Ga 0.005 ) 2 Se 3 powder)
In the same manner as in Example 6, In powder, Ga powder and Se powder were weighed at a molar ratio of 1.99: 0.01: 3. The powder weighed in a 45 cc container made of zirconia for a planetary ball mill and 40 g of 1 mm diameter zirconia cobblestone were placed. The filling amount of the powder in the container was adjusted to 20 g by adding Cu powder and Se powder when preparing the coating agent. They were stirred at 800 rpm for 20 minutes under a nitrogen atmosphere to obtain a powder having a composition ratio of (In 0.995 Ga 0.005 ) 2 Se 3 . Similarly, a total of 4 pots having such a composition ratio of (In 0.995 Ga 0.005 ) 2 Se 3 were prepared.

(塗布剤の調製)
前記4個の(In0.995Ga0.005Seの組成比を有する粉末の入ったジルコニア製容器に、それぞれ全部にCu0.95(In0.995Ga0.005)Se2.10の比になるようにCu粉末とSe粉末とを加えた。さらに、それらに0.5mol%のNaF(Cu0.95(In0.995Ga0.005)Se2.10が1molに対して0.005molに相当)を加えた。その4個のポットの内の3個に、それぞれ焼結助剤としてSbを0.25mol%、1.0mol%、2.0mol%(Cu0.95(In0.995Ga0.005)Se2.10が1molに対して0.0025、0.01、0.02に相当)を入れ、残りの1個にはSbを添加しなかった。さらに、それらの4種類のポットに溶媒としてターピネオールを9ml加え、容器内を窒素雰囲気にして、700rpm、5時間攪拌し、塗布剤であるインクを得た。
(Preparation of coating agent)
Cu 0.95 (In 0.995 Ga 0.005 ) Se 2 was added to each of the four zirconia containers containing powders having a composition ratio of (In 0.995 Ga 0.005 ) 2 Se 3. Cu powder and Se powder were added to a ratio of .10 . Furthermore, 0.5 mol% of NaF (Cu 0.95 (In 0.995 Ga 0.005 ) Se 2.10 corresponds to 0.005 mol with respect to 1 mol) was added thereto. In three of the four pots, 0.25 mol%, 1.0 mol%, and 2.0 mol% (Cu 0.95 (In 0.995 Ga 0.005 ) Se) were used as sintering aids, respectively. 2.10 corresponds to 0.0025, 0.01, and 0.02 per 1 mol), and Sb was not added to the remaining one. Furthermore, 9 ml of terpineol as a solvent was added to these four types of pots, and the inside of the container was placed in a nitrogen atmosphere and stirred at 700 rpm for 5 hours to obtain an ink as a coating agent.

(塗布)
基板として、5cm□のソーダライムガラス(厚み2mm)を用意した。得られたインクを、スクリーン印刷(500メッシュ)により塗布し、塗布層を形成した。
(Application)
As a substrate, 5 cm □ soda lime glass (thickness 2 mm) was prepared. The obtained ink was applied by screen printing (500 mesh) to form an application layer.

(乾燥)
前記塗布層を形成した基板を、窒素雰囲気下で、110℃、5分間乾燥した。
(Dry)
The substrate on which the coating layer was formed was dried at 110 ° C. for 5 minutes in a nitrogen atmosphere.

(加圧焼成)
基板が4枚である他は実施例4と同様にして、これらの基板を同時に加圧焼成し、塗布層を焼結させてCIGS薄膜を作製した。加圧焼成の条件は実施例4と同じである。
(Pressurized firing)
These substrates were simultaneously fired under pressure in the same manner as in Example 4 except that the number of substrates was four, and the coating layer was sintered to produce a CIGS thin film. The conditions for pressure firing are the same as in Example 4.

(膜の特性)
実施例10で得られた4種類のCIGS薄膜(Sbの添加量 0.25 mol%、1.0 mol%、2.0mol%、およびSbを添加しなかったもの)をXRD分析した。X線回折図形は、結晶構造解析データ(ICSD:Inorganic Crystal Structure Database #70051)に基づくシミュレーションによるX線回折図形と一致し、カルコパイライト型構造を持つCIGS薄膜が合成されていることがわかった。このX線回折図形から、実施例1の場合と同様に本実施例のCIGS薄膜が不純物を含まない単一相であることを確認した。また、得られた薄膜の表面微構造をSEMで観察した。その結果を図23に示す。これらのSEM写真から、焼結助剤としてSbを添加しなくても十分な緻密化が認められるが、焼結助剤としてSbを添加することで、添加量が増えるにしたがって、より緻密化が促進されることがわかる。
(Membrane characteristics)
The four types of CIGS thin films obtained in Example 10 (addition amounts of Sb of 0.25 mol%, 1.0 mol%, 2.0 mol%, and Sb were not added) were subjected to XRD analysis. The X-ray diffraction pattern coincides with the X-ray diffraction pattern obtained by simulation based on crystal structure analysis data (ICSD: Inorganic Crystal Structure Database # 70051), and it was found that a CIGS thin film having a chalcopyrite structure was synthesized. From this X-ray diffraction pattern, it was confirmed that the CIGS thin film of this example was a single phase containing no impurities, as in the case of Example 1. Moreover, the surface microstructure of the obtained thin film was observed with SEM. The result is shown in FIG. From these SEM photographs, sufficient densification is observed without adding Sb as a sintering aid, but by adding Sb as a sintering aid, the densification becomes more dense as the amount added increases. It turns out that it is promoted.

[実施例11]
((In0.995Ga0.005Seと(In0.9Ga0.1Se粉末の調製)
In粉末、Ga粉末およびSe粉末を1.99:0.01:3と1.80:0.20:3のモル比で秤量した。それらを遊星ボールミル用のジルコニア製45cc容器に秤量した粉末と、1mm径のジルコニア製玉石40gとを入れた。容器へ粉末の充填量は、塗布剤の調製の際にCu粉末とSe粉末とを加えて20gになるように調整した。それらを、窒素雰囲気下で、800rpm、20分間攪拌し、(In0.995Ga0.005Seと(In0.9Ga0.1Seの組成比を有する粉末を得た。
[Example 11]
(Preparation of (In 0.995 Ga 0.005 ) 2 Se 3 and (In 0.9 Ga 0.1 ) 2 Se 3 powder)
In powder, Ga powder and Se powder were weighed in a molar ratio of 1.99: 0.01: 3 and 1.80: 0.20: 3. The powder weighed in a 45 cc container made of zirconia for a planetary ball mill and 40 g of 1 mm diameter zirconia cobblestone were placed. The filling amount of the powder in the container was adjusted to 20 g by adding Cu powder and Se powder during the preparation of the coating agent. They are stirred at 800 rpm for 20 minutes in a nitrogen atmosphere to obtain a powder having a composition ratio of (In 0.995 Ga 0.005 ) 2 Se 3 and (In 0.9 Ga 0.1 ) 2 Se 3. It was.

(塗布剤の調製)
前記(In0.995Ga0.005Seと(In0.9Ga0.1Seの組成比を有する粉末の調製に用いたジルコニア製容器に、それぞれCu0.9(In0.995Ga0.005)Se2.10とCu0.9(In0.9Ga0.1)Se2.10の比になるようにCu粉末とSe粉末とを加えた。さらに、それらに0.5mol%のNaFを(Cu0.9(In0.995Ga0.005)Se2.10とCu0.9(In0.9Ga0.1)Se2.10が1molに対して0.005molに相当)を入れた。その2個のポットに焼結助剤としてSbを2mol%(Cu0.9(In0.995Ga0.005)Se2.10とCu0.9(In0.9Ga0.1)Se2.10が1molに対して0.02molに相当)入れた。さらに、それらのポットに溶媒としてターピネオールを9ml加え、容器内を窒素雰囲気にして、700rpm、5時間攪拌し、塗布剤であるインクを得た。
(Preparation of coating agent)
In the zirconia container used for the preparation of the powder having the composition ratio of (In 0.995 Ga 0.005 ) 2 Se 3 and (In 0.9 Ga 0.1 ) 2 Se 3 , Cu 0.9 ( Cu powder and Se powder were added so as to have a ratio of In 0.995 Ga 0.005 ) Se 2.10 to Cu 0.9 (In 0.9 Ga 0.1 ) Se 2.10 . Furthermore, 0.5 mol% of NaF was added to them (Cu 0.9 (In 0.995 Ga 0.005 ) Se 2.10 and Cu 0.9 (In 0.9 Ga 0.1 ) Se 2.10 ). Equivalent to 0.005 mol per 1 mol). In the two pots, 2 mol% (Cu 0.9 (In 0.995 Ga 0.005 ) Se 2.10 and Cu 0.9 (In 0.9 Ga 0.1 ) Se were used as sintering aids. 2.10 corresponds to 0.02 mol per 1 mol). Furthermore, 9 ml of terpineol was added to these pots as a solvent, and the inside of the container was placed in a nitrogen atmosphere and stirred at 700 rpm for 5 hours to obtain ink as a coating agent.

(塗布)
基板として、5cm□のソーダライムガラス(厚み2mm)を用意した。得られたインクを、スクリーン印刷(500メッシュ)により塗布し、塗布層を形成した。
(Application)
As a substrate, 5 cm □ soda lime glass (thickness 2 mm) was prepared. The obtained ink was applied by screen printing (500 mesh) to form an application layer.

(乾燥)
前記塗布層を形成した基板を、窒素雰囲気下で、110℃、5分間乾燥した。
(Dry)
The substrate on which the coating layer was formed was dried at 110 ° C. for 5 minutes in a nitrogen atmosphere.

(加圧焼成)
実施例4と同様にして、これらの基板を同時に加圧焼成し、塗布層を焼結させてCIGS薄膜を作製した。加圧焼成の条件は実施例4と同じである。
(Pressurized firing)
In the same manner as in Example 4, these substrates were simultaneously fired under pressure, and the coating layer was sintered to produce a CIGS thin film. The conditions for pressure firing are the same as in Example 4.

(膜の特性)
実施例11で得られた2種類のCIGS薄膜をXRD分析した。X線回折図形は、基本的に結晶構造解析データ(ICSD:Inorganic Crystal Structure Database #70051)に基づくシミュレーションによるX線回折図形と一致し、カルコパイライト型構造を持つCIGS薄膜が合成されていることがわかった。このX線回折図形から、実施例1の場合と同様に本実施例のCIGS薄膜が不純物を含まない単一相であることを確認した。また、得られた薄膜の表面微構造をSEMで観察した。その結果を図24に示す。これらのSEM写真から、いずれの試料においても結晶粒成長と緻密化が認められることがわかる。実施例で作製したインクを実施例4と同様に、図14に示すような構造を有する、Al/n−ZnO:B/i−ZnO/CdS/CIGS/Mo/ソーダライムガラス構造の太陽電池を試作したところ太陽電池特性を確認し、本実施例の方法によって作製した緻密なCIGS薄膜が太陽電池の光吸収層として有用なことがわかった。
(Membrane characteristics)
Two types of CIGS thin films obtained in Example 11 were subjected to XRD analysis. The X-ray diffraction pattern basically matches the X-ray diffraction pattern obtained by simulation based on crystal structure analysis data (ICSD: Inorganic Crystal Structure Database # 70051), and a CIGS thin film having a chalcopyrite structure is synthesized. all right. From this X-ray diffraction pattern, it was confirmed that the CIGS thin film of this example was a single phase containing no impurities, as in the case of Example 1. Moreover, the surface microstructure of the obtained thin film was observed with SEM. The result is shown in FIG. From these SEM photographs, it can be seen that crystal grain growth and densification are observed in any sample. A solar cell having an Al / n-ZnO: B / i-ZnO / CdS / CIGS / Mo / soda lime glass structure having the structure shown in FIG. As a prototype, the solar cell characteristics were confirmed, and it was found that a dense CIGS thin film produced by the method of this example was useful as a light absorption layer of a solar cell.

[実施例12]
(原料粉末の調製)
元素粉末Cu、In、Se、TeをCu1.02In(Se1−XTe2.1の比(X=0.0、0.3、0.5)となるように秤量後、実施例1と同様にして、CuIn(Se1−XTeを主成分とする粉末を得た。ここで、X=0.0、0.3、0.5の3水準である。
[Example 12]
(Preparation of raw material powder)
After weighing element powders Cu, In, Se, Te to a ratio of Cu 1.02 In (Se 1-X Te X ) 2.1 (X = 0.0, 0.3, 0.5), in the same manner as in example 1 to obtain a powder mainly composed of CuIn (Se 1-X Te X ) 2. Here, the three levels of X = 0.0, 0.3, and 0.5.

(塗布剤の調製)
前記CuIn(Se1−XTeを主成分とする原料粉末の入ったジルコニア製容器に、それぞれエチレングリコールモノフェニルエーテル13ml加えたほかは、実施例1と同様の条件で攪拌し、塗布剤であるインクを3種類得た。
(Preparation of coating agent)
Entered zirconia containers starting powder whose main component is the CuIn (Se 1-X Te X ) 2, except that by adding each 13ml ethylene glycol monophenyl ether, and stirred under the same conditions as in Example 1, the coating Three types of inks were obtained.

(塗布)
基板として、5cm□のソーダライムガラス(厚み2mm)を用意した。得られたインクを、スクリーン印刷(500メッシュ)により塗布し、塗布層を形成した。
(Application)
As a substrate, 5 cm □ soda lime glass (thickness 2 mm) was prepared. The obtained ink was applied by screen printing (500 mesh) to form an application layer.

(乾燥)
前記塗布層を形成した基板を、窒素雰囲気下で、145℃、7分間乾燥した。
(Dry)
The substrate on which the coating layer was formed was dried at 145 ° C. for 7 minutes in a nitrogen atmosphere.

(加圧焼成)
実施例4と同様にして、これらの基板を同時に加圧焼成し、塗布層を焼結させてCuIn(Se1−XTe薄膜を作製した。加圧焼成の条件は実施例4と同じである。
(Pressurized firing)
In the same manner as in Example 4, these substrates were simultaneously fired under pressure, and the coating layer was sintered to produce a CuIn (Se 1-X Te X ) 2 thin film. The conditions for pressure firing are the same as in Example 4.

(熱処理)
前記加圧焼成で得られた焼結CuIn(Se1−XTe薄膜をそれぞれ、窒素雰囲気下で、550℃、10分間加熱処理した。このとき、基板は石英ガラス製のシャーレに入れ、シャーレ内にSeを入れた。
(Heat treatment)
The sintered CuIn (Se 1-X Te X ) 2 thin films obtained by the pressure firing were each heat-treated at 550 ° C. for 10 minutes in a nitrogen atmosphere. At this time, the substrate was put in a petri dish made of quartz glass, and Se was put in the petri dish.

(膜の特性)
作製したCuIn(Se1−XTe薄膜の近赤外光吸収スペクトルを、波長が900nm〜1600nmの範囲で測定した。図25(a)に、作製したCuIn(Se1−XTe薄膜の光透過率のグラフを示す。このように、CuIn(Se1−XTe薄膜においても緻密な膜がえられ、Teの固溶量の増加とともに光の吸収端が長波長側にシフトしていることがわかる。この透過スペクトルからCuIn(Se1−XTe薄膜の禁制帯幅を求めるために、直接遷移半導体を仮定してhνに対し(αhν)プロットした図を図25(b)、(c)および(d)に示す。図25(b)からCuIn(Se1−XTe薄膜の禁制帯幅はX=0.0では0.98eV、図25(c)からX=0.3では0.90eV、図25(d)からX=0.5では0.88eVであることがわかる。
(Membrane characteristics)
Fabricated CuIn the (Se 1-X Te X) near-infrared absorption spectrum of 2 thin film, the wavelength is measured in the range of 900Nm~1600nm. FIG. 25A shows a graph of the light transmittance of the prepared CuIn (Se 1-X Te X ) 2 thin film. Thus, CuIn (Se 1-X Te X) dense Makugae be even 2 thin film, it can be seen that the absorption edge of light with increasing amount of solid solution Te is shifted to the long wavelength side. In order to obtain the forbidden band width of the CuIn (Se 1-X Te X ) 2 thin film from this transmission spectrum, (αhν) 2 plots with respect to hν assuming a direct transition semiconductor are shown in FIGS. ) And (d). From FIG. 25B, the forbidden band width of the CuIn (Se 1-X Te X ) 2 thin film is 0.98 eV when X = 0.0, and 0.90 eV when X = 0.3 from FIG. 25C. It can be seen from (d) that at X = 0.5, it is 0.88 eV.

[実施例13]
(原料粉末の調製)
元素粉末Cu、Zn、Sn、SeをCu2.04ZnSnSe4.2(Cu1.02(Zn0.5Sn0.5)Se2.1に相当)の比となるように秤量後、実施例1と同様にして、CuZnSnSeを主成分とする粉末を得た。
[Example 13]
(Preparation of raw material powder)
Conducted after weighing element powders Cu, Zn, Sn, Se to a ratio of Cu 2.04 ZnSnSe 4.2 (equivalent to Cu 1.02 (Zn 0.5 Sn 0.5 ) Se 2.1 ) In the same manner as in Example 1, a powder containing Cu 2 ZnSnSe 4 as a main component was obtained.

(塗布剤の調製)
前記CuZnSnSeを主成分とする原料粉末の入ったジルコニア製容器に、エチレングリコールモノフェニルエーテル13ml加えたほかは、実施例1と同様の条件で攪拌し、塗布剤であるインクを得た。
(Preparation of coating agent)
An ink as a coating agent was obtained by stirring under the same conditions as in Example 1 except that 13 ml of ethylene glycol monophenyl ether was added to a container made of zirconia containing the raw material powder containing Cu 2 ZnSnSe 4 as a main component. .

(塗布)
基板として、5cm□のソーダライムガラス(厚み2mm)を用意した。得られたインクを、スクリーン印刷(500メッシュ)により塗布し、塗布層を形成した。
(Application)
As a substrate, 5 cm □ soda lime glass (thickness 2 mm) was prepared. The obtained ink was applied by screen printing (500 mesh) to form an application layer.

(乾燥)
前記塗布層を形成した基板を、窒素雰囲気下で、145℃、7分間乾燥した。
(Dry)
The substrate on which the coating layer was formed was dried at 145 ° C. for 7 minutes in a nitrogen atmosphere.

(加圧焼成)
実施例1と同様にして、塗布層を焼結させてCuZnSnSe薄膜を作製した。加圧焼成の条件は実施例1と同じである。
(Pressurized firing)
In the same manner as in Example 1, the coating layer was sintered to prepare a Cu 2 ZnSnSe 4 thin film. The conditions for pressure firing are the same as in Example 1.

(薄膜の特性)
実施例13で得られたCuZnSnSe薄膜をX線回折(XRD)で分析した。得られたX線回折図形を図26に示す。このX線回折図形は、基本的に下に示したCuZnSnSeの結晶構造解析データ(ICSD:Inorganic Crystal Structure Database #95007)に基づくシミュレーションによるX線回折図形と一致し、CuZnSnSe薄膜が合成されていることがわかった。このX線回折図形から、本実施例のCuZnSnSe薄膜が不純物を含まない単一相であることが確認できる。
(Thin film characteristics)
The Cu 2 ZnSnSe 4 thin film obtained in Example 13 was analyzed by X-ray diffraction (XRD). The obtained X-ray diffraction pattern is shown in FIG. This X-ray diffraction pattern basically coincides with the X-ray diffraction pattern obtained by simulation based on the crystal structure analysis data (ICSD: Inorganic Crystal Structure Database # 95007) of Cu 2 ZnSnSe 4 shown below, and the Cu 2 ZnSnSe 4 thin film Was found to be synthesized. From this X-ray diffraction pattern, it can be confirmed that the Cu 2 ZnSnSe 4 thin film of this example is a single phase containing no impurities.

得られた薄膜の表面および断面微構造を走査電子顕微鏡(SEM)で観察した。それらの写真を図27に示す。これらの写真から、CuZnSnSeの結晶粒成長と緻密化が認められ、本実施例の方法によって、緻密なCuZnSnSe薄膜が得られることが確認できる。 The surface and cross-sectional microstructure of the obtained thin film were observed with a scanning electron microscope (SEM). Those photographs are shown in FIG. From these photographs, growth of crystal grains and densification of Cu 2 ZnSnSe 4 are recognized, and it can be confirmed that a dense Cu 2 ZnSnSe 4 thin film can be obtained by the method of this example.

作製したCuZnSnSe薄膜の近赤外光吸収スペクトルを、波長が900nm〜1600nmの範囲で測定した。図28(a)に、作製したCuZnSnSe薄膜の光透過率のグラフを示す。この透過スペクトルからCuZnSnSe薄膜の禁制帯幅を求めるために、直接遷移半導体を仮定してhνに対し(αhν)プロットした図を図28(b)に示す。図28(b)からCuZnSnSe薄膜の禁制帯幅は1.05eVであることがわかる。 The near-infrared light absorption spectrum of the prepared Cu 2 ZnSnSe 4 thin film was measured in a wavelength range of 900 nm to 1600 nm. FIG. 28 (a) shows a graph of the light transmittance of the prepared Cu 2 ZnSnSe 4 thin film. FIG. 28B shows a diagram in which (αhν) 2 is plotted against hν, assuming a direct transition semiconductor, in order to obtain the forbidden band width of the Cu 2 ZnSnSe 4 thin film from this transmission spectrum. FIG. 28B shows that the forbidden band width of the Cu 2 ZnSnSe 4 thin film is 1.05 eV.

[実施例14]
(原料粉末の調製)
元素粉末Cu、Ag、Ga、Seを(Cu1−XAg)GaSe2.1の比(X=0.2、0.8)となるように秤量後、実施例1と同様にして、(Cu1−XAg)GaSeを主成分とする粉末を得た。ここで、X=0.2、0.8の2水準である。
[Example 14]
(Preparation of raw material powder)
After weighing the element powders Cu, Ag, Ga, Se to a ratio of (Cu 1-X Ag X ) GaSe 2.1 (X = 0.2, 0.8), the same as in Example 1, A powder containing (Cu 1-X Ag X ) GaSe 2 as a main component was obtained. Here, two levels of X = 0.2 and 0.8.

(塗布剤の調製)
前記(Cu1−XAg)GaSeを主成分とする原料粉末の入った窒化珪素製容器に、それぞれエチレングリコールモノフェニルエーテル8ml加え、直径3mmの窒化珪素製の玉石を用いたほかは、実施例1と同様の条件で攪拌し、塗布剤であるインクを2種類得た。
(Preparation of coating agent)
Except for adding 8 ml of ethylene glycol monophenyl ether to a silicon nitride container containing a raw material powder mainly composed of (Cu 1-X Ag X ) GaSe 2 and using a silicon nitride boulder having a diameter of 3 mm, The mixture was stirred under the same conditions as in Example 1 to obtain two types of inks as coating agents.

(塗布)
基板として、5cm□のソーダライムガラス(厚み2mm)を用意した。得られたインクを、スクリーン印刷(500メッシュ)により塗布し、塗布層を形成した。
(Application)
As a substrate, 5 cm □ soda lime glass (thickness 2 mm) was prepared. The obtained ink was applied by screen printing (500 mesh) to form an application layer.

(乾燥)
前記塗布層を形成した基板を、窒素雰囲気下で、145℃、7分間乾燥した。
(Dry)
The substrate on which the coating layer was formed was dried at 145 ° C. for 7 minutes in a nitrogen atmosphere.

(加圧焼成)
実施例4と同様にして、これらの基板を同時に加圧焼成し、塗布層を焼結させて(Cu1−XAg)GaSe薄膜を作製した。加圧焼成の条件は実施例4と同じである。
(Pressurized firing)
In the same manner as in Example 4, these substrates were simultaneously fired under pressure, and the coating layer was sintered to produce a (Cu 1-X Ag X ) GaSe 2 thin film. The conditions for pressure firing are the same as in Example 4.

(熱処理)
前記加圧焼成で得られた焼結(Cu1−XAg)GaSe薄膜をそれぞれ、窒素雰囲気下で、600℃、10分間加熱処理した。このとき、基板は石英ガラス製のシャーレに入れ、シャーレ内にSeを入れた。
(Heat treatment)
The sintered (Cu 1-X Ag X ) GaSe 2 thin films obtained by the pressure firing were each heat-treated at 600 ° C. for 10 minutes in a nitrogen atmosphere. At this time, the substrate was put in a petri dish made of quartz glass, and Se was put in the petri dish.

(膜の特性)
本実施例によって緻密な(Cu1−XAg)GaSe薄膜が作製できたので、得られた膜の紫外−可視−赤外光吸収スペクトルを、波長が350nm〜1600nmの範囲で測定した。CuGaSeの禁制帯幅が1.68eVでAgGaSeの禁制帯幅が1.80eVであることから予想されるように、Agの固溶量の多いX=0.8の膜の方がX=0.2の膜よりも吸収端が短波長になり、Agの固溶によって禁制帯幅が少し大きくなることがわかった。
(Membrane characteristics)
Since according to this example dense (Cu 1-X Ag X) GaSe 2 thin film could be produced, ultraviolet resulting membrane - visible - the infrared absorption spectrum, the wavelength is measured in the range of 350Nm~1600nm. As bandgap of AgGaSe 2 bandgap at 1.68eV of CuGaSe 2 it is expected because it is 1.80 eV, towards the solute intensive X = 0.8 of the membrane of Ag is X = It has been found that the absorption edge has a shorter wavelength than the 0.2 film, and that the forbidden band width is slightly increased due to the solid solution of Ag.

本発明の化合物半導体薄膜の製造方法によると、化合物半導体薄膜を、非真空プロセスにより、容易に低コストで提供することができる。本製造方法では、常圧下での材料塗布を可能とし、製造装置への設備投資削減、材料の使用量低減を図ることができるため、太陽電池モジュールの製造工程において、大幅なコスト削減可能な製造方法として適用可能である。得られた化合物半導体薄膜は、太陽電池等の幅広い用途に適用できる。   According to the method for producing a compound semiconductor thin film of the present invention, the compound semiconductor thin film can be easily provided at a low cost by a non-vacuum process. This manufacturing method enables material application under normal pressure, reduces capital investment in the manufacturing equipment, and reduces the amount of material used. Manufacturing that can greatly reduce costs in the manufacturing process of solar cell modules It is applicable as a method. The obtained compound semiconductor thin film can be applied to a wide range of uses such as solar cells.

1 CIGS塗布膜
2 基板
3 スペーサー
4、4’ 押し棒
5、5’ 押し板
6、6’ 第二の押し板(グラファイトシート)
11、21、31 CIGS塗布膜
12、22、32 基板
13、23、33 スペーサー
17、27、37 中押し板
130 化合物半導体薄膜製造装置
131 チャンバー
132 加熱槽
133 ヒーター
134、134’ 押し棒
141 基板
142 裏面電極
143 光吸収層
144 バッファー層
145 透明電極
146 取り出し電極
147 反射防止層
DESCRIPTION OF SYMBOLS 1 CIGS coating film 2 Substrate 3 Spacer 4, 4 'Push bar 5, 5' Push plate 6, 6 'Second push plate (graphite sheet)
11, 21, 31 CIGS coating film 12, 22, 32 Substrate 13, 23, 33 Spacer 17, 27, 37 Intermediate pressing plate 130 Compound semiconductor thin film manufacturing apparatus 131 Chamber 132 Heating tank 133 Heater 134, 134 'Push rod 141 Substrate 142 Back surface Electrode 143 Light absorption layer 144 Buffer layer 145 Transparent electrode 146 Extraction electrode 147 Antireflection layer

Claims (22)

ΙB族元素、ΙΙΙB族元素およびVΙB族元素を含む化合物半導体薄膜の製造方法であって、ΙB族元素、ΙΙΙB族元素およびVΙB族元素を含有する塗布剤を調製する工程と、
前記塗布剤を基板に塗布して塗布膜を形成する工程と、
前記塗布膜を、機械的に圧力を加えた条件下で加熱して焼結させる加圧焼成工程とを含むことを特徴とする化合物半導体薄膜の製造方法。
A method for producing a compound semiconductor thin film containing a group B element, a group B element, and a group V element, and a step of preparing a coating agent containing the group B element, the group B element, and the group V element,
Applying the coating agent to a substrate to form a coating film;
A method for producing a compound semiconductor thin film, comprising: a pressure firing step in which the coating film is heated and sintered under a condition where mechanical pressure is applied.
前記ΙB族元素、ΙΙΙB族元素およびVΙB族元素を含む塗布剤として、
ΙB族元素、ΙΙΙB族元素およびVΙB族元素から選ばれる少なくとも2種類の族の元素を含む化合物粒子を含有する塗布剤を用いる、請求項1記載の化合物半導体薄膜の製造方法。
As a coating agent containing the ΙB group element, ΙΙΙB group element and VΙB group element,
The manufacturing method of the compound semiconductor thin film of Claim 1 using the coating agent containing the compound particle | grains containing the element of the at least 2 sorts of group chosen from the ΙB group element, the ΙΙΙB group element, and the VΙB group element.
前記ΙB族元素、ΙΙΙB族元素およびVΙB族元素を含む塗布剤として、
ΙΙΙB族元素およびVΙB族元素を含む化合物粒子と、ΙB族元素粉末と、VΙB族元素粉末とを含有する塗布剤を用いる、請求項1または2記載の化合物半導体薄膜の製造方法。
As a coating agent containing the ΙB group element, ΙΙΙB group element and VΙB group element,
The manufacturing method of the compound semiconductor thin film of Claim 1 or 2 using the coating agent containing the compound particle | grains containing the ΙΙΙB group element and the VΙB group element, the ΙB group element powder, and the VΙB group element powder.
前記ΙB族元素、ΙΙΙB族元素およびVΙB族元素を含む塗布剤として、
ΙB族元素、ΙΙΙB族元素およびVΙB族元素を含む化合物粒子を含有する塗布剤を用いる、請求項1または2記載の化合物半導体薄膜の製造方法。
As a coating agent containing the ΙB group element, ΙΙΙB group element and VΙB group element,
The manufacturing method of the compound semiconductor thin film of Claim 1 or 2 using the coating agent containing the compound particle | grain containing a ΙB group element, a ΙΙΙB group element, and a VΙB group element.
前記化合物粒子として、メカノケミカルプロセスを行って得られた化合物粒子を用いる、請求項2から4のいずれか一項に記載の化合物半導体薄膜の製造方法。 The method for producing a compound semiconductor thin film according to claim 2, wherein compound particles obtained by performing a mechanochemical process are used as the compound particles. ΙB族元素が、CuおよびAgから選ばれる少なくとも一つの元素である、請求項1から5のいずれか一項に記載の化合物半導体薄膜の製造方法。 The method for producing a compound semiconductor thin film according to claim 1, wherein the group B element is at least one element selected from Cu and Ag. ΙΙΙB族元素が、In、Ga、およびAlから選ばれる少なくとも一つの元素である、請求項1から6のいずれか一項に記載の化合物半導体薄膜の製造方法。 The method for producing a compound semiconductor thin film according to any one of claims 1 to 6, wherein the group B element is at least one element selected from In, Ga, and Al. VΙB族元素が、S、SeおよびTeから選ばれる少なくとも一つの元素である、請求項1から7のいずれか一項に記載の化合物半導体薄膜の製造方法。 The method for producing a compound semiconductor thin film according to any one of claims 1 to 7, wherein the VΙB group element is at least one element selected from S, Se, and Te. 前記塗布剤が、さらにSbを含んでいる、請求項1から8のいずれか一項に記載の化合物半導体薄膜の製造方法。 The method for producing a compound semiconductor thin film according to claim 1, wherein the coating agent further contains Sb. さらに前記塗布膜を乾燥させる乾燥工程を、前記加圧焼成工程の前に行う、請求項1から9のいずれか一項に記載の化合物半導体薄膜の製造方法。 Furthermore, the manufacturing method of the compound semiconductor thin film as described in any one of Claim 1 to 9 which performs the drying process which dries the said coating film before the said pressurization baking process. 前記加圧焼成工程における機械的に加える圧力が、0Paを超え100MPa以下の範囲にある、請求項1から10のいずれか一項に記載の化合物半導体薄膜の製造方法。 The method for producing a compound semiconductor thin film according to any one of claims 1 to 10, wherein a pressure applied mechanically in the pressure firing step is in a range of more than 0 Pa and 100 MPa or less. 前記加圧焼成工程が、300℃〜650℃の範囲内の温度で行われる、請求項1から11のいずれか一項に記載の化合物半導体薄膜の製造方法。 The manufacturing method of the compound semiconductor thin film as described in any one of Claim 1 to 11 with which the said pressurization baking process is performed at the temperature within the range of 300 to 650 degreeC. 前記加圧焼成工程が、常圧から1MPaの範囲の圧力の雰囲気下で行われる、請求項1から12のいずれか一項に記載の化合物半導体薄膜の製造方法。 The manufacturing method of the compound semiconductor thin film as described in any one of Claim 1 to 12 with which the said pressurization baking process is performed in the atmosphere of the pressure of the range of normal pressure to 1 MPa. 前記加圧焼成工程の後に、さらに常圧から1MPaの範囲の圧力の雰囲気下で加熱する熱処理工程を行う、請求項1から13のいずれか一項に記載の化合物半導体薄膜の製造方法。 The method for producing a compound semiconductor thin film according to any one of claims 1 to 13, wherein a heat treatment step of heating in an atmosphere having a pressure in a range of normal pressure to 1 MPa is further performed after the pressure firing step. 前記熱処理工程が、前記加圧焼成工程における温度よりも高い温度で行われる、請求項14記載の化合物半導体薄膜の製造方法。 The method for producing a compound semiconductor thin film according to claim 14, wherein the heat treatment step is performed at a temperature higher than a temperature in the pressure firing step. 前記塗布剤を基板に塗布する工程が、スクリーン印刷によって行われる、請求項1から15のいずれか一項に記載の化合物半導体薄膜の製造方法。 The method for producing a compound semiconductor thin film according to any one of claims 1 to 15, wherein the step of applying the coating agent to the substrate is performed by screen printing. 前記加圧焼成工程において、前記塗布膜が形成された基板を複数枚重ねた状態で加圧焼成する、請求項1から16のいずれか一項に記載の化合物半導体薄膜の製造方法。 The method for producing a compound semiconductor thin film according to any one of claims 1 to 16, wherein, in the pressure firing step, pressure firing is performed in a state where a plurality of substrates on which the coating film is formed are stacked. 前記複数枚重ねた基板の間にスペーサーを設けて加圧焼成する、請求項17記載の化合物半導体薄膜の製造方法。 The method for producing a compound semiconductor thin film according to claim 17, wherein a spacer is provided between the plurality of stacked substrates and pressure firing is performed. 前記スペーサーとして、金属、ガラスおよびセラミックスからなる群から選ばれるスペーサーを用いる、請求項18記載の化合物半導体薄膜の製造方法。 The method for producing a compound semiconductor thin film according to claim 18, wherein a spacer selected from the group consisting of metal, glass and ceramics is used as the spacer. 前記ΙΙΙB族元素に加え、もしくは代えて、ΙΙB族元素とΙVB族元素とを組み合わせて用いることを特徴とする、請求項1から19のいずれか一項に記載の化合物半導体薄膜の製造方法。 The method for producing a compound semiconductor thin film according to any one of claims 1 to 19, wherein a combination of a group B element and a group VB element is used in addition to or instead of the group B element. 化合物半導体薄膜を有する太陽電池であって、
前記化合物半導体薄膜が、請求項1から20のいずれか一項に記載の化合物半導体薄膜の製造方法によって製造されたことを特徴とする太陽電池。
A solar cell having a compound semiconductor thin film,
The solar cell, wherein the compound semiconductor thin film is manufactured by the method for manufacturing a compound semiconductor thin film according to any one of claims 1 to 20.
請求項1から20のいずれか一項に記載の化合物半導体薄膜の製造方法に使用される装置であって、少なくとも押圧手段と加熱手段とを備えることを特徴とする化合物半導体薄膜製造装置。 21. An apparatus for manufacturing a compound semiconductor thin film according to any one of claims 1 to 20, comprising at least a pressing means and a heating means.
JP2010198000A 2009-10-12 2010-09-03 Method for producing compound semiconductor thin film, solar cell, and device for producing compound semiconductor thin film Withdrawn JP2011187920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010198000A JP2011187920A (en) 2009-10-12 2010-09-03 Method for producing compound semiconductor thin film, solar cell, and device for producing compound semiconductor thin film

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2009235827 2009-10-12
JP2009235827 2009-10-12
JP2010030485 2010-02-15
JP2010030485 2010-02-15
JP2010198000A JP2011187920A (en) 2009-10-12 2010-09-03 Method for producing compound semiconductor thin film, solar cell, and device for producing compound semiconductor thin film

Publications (1)

Publication Number Publication Date
JP2011187920A true JP2011187920A (en) 2011-09-22

Family

ID=43876044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010198000A Withdrawn JP2011187920A (en) 2009-10-12 2010-09-03 Method for producing compound semiconductor thin film, solar cell, and device for producing compound semiconductor thin film

Country Status (2)

Country Link
JP (1) JP2011187920A (en)
WO (1) WO2011045989A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013180137A1 (en) 2012-05-30 2013-12-05 凸版印刷株式会社 Production method for compound semiconductor thin film, and solar cell provided with said compound semiconductor thin film
JP2016533038A (en) * 2013-09-13 2016-10-20 ナノコ テクノロジーズ リミテッド Inorganic salt nanoparticle inks for thin film photovoltaic devices and related methods
JP2019024106A (en) * 2013-11-15 2019-02-14 ナノコ テクノロジーズ リミテッド Preparation of copper-rich copper indium (gallium) diselenide/disulphide

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103367543B (en) * 2013-07-05 2016-08-10 北京四方继保自动化股份有限公司 A kind of method that antivacuum method prepares CIGS thin film
JP6373124B2 (en) * 2014-08-21 2018-08-15 東京応化工業株式会社 Coating liquid, light absorption layer for solar cell and solar cell, and production method thereof
CN117430346A (en) * 2023-12-21 2024-01-23 浙江大华技术股份有限公司 Glass processing method, glass and image pickup device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63134566A (en) * 1986-11-25 1988-06-07 ティーディーケイ株式会社 Manufacture of al2o3-tic sintered body
JPH01152766A (en) * 1987-12-10 1989-06-15 Matsushita Electric Ind Co Ltd Manufacture of indium copper selenide
JPH07215704A (en) * 1994-02-02 1995-08-15 Yamaha Corp Production of ib-iiib-vib group compound thin film
CN1047002C (en) * 1994-09-29 1999-12-01 耶路撒冷希伯来语大学依苏姆研究开发公司 Radiation detection system and processes for preparing the same
JPH09139514A (en) * 1995-11-13 1997-05-27 Nec Kansai Ltd Solar cell and its manufacture

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013180137A1 (en) 2012-05-30 2013-12-05 凸版印刷株式会社 Production method for compound semiconductor thin film, and solar cell provided with said compound semiconductor thin film
JPWO2013180137A1 (en) * 2012-05-30 2016-01-21 凸版印刷株式会社 Method for producing compound semiconductor thin film and solar cell including the compound semiconductor thin film
TWI570949B (en) * 2012-05-30 2017-02-11 凸版印刷股份有限公司 Method of manufacturing compound semiconductor thin film and solar cell having the compound semiconductor thin film
JP2016533038A (en) * 2013-09-13 2016-10-20 ナノコ テクノロジーズ リミテッド Inorganic salt nanoparticle inks for thin film photovoltaic devices and related methods
US9960314B2 (en) 2013-09-13 2018-05-01 Nanoco Technologies Ltd. Inorganic salt-nanoparticle ink for thin film photovoltaic devices and related methods
JP2019024106A (en) * 2013-11-15 2019-02-14 ナノコ テクノロジーズ リミテッド Preparation of copper-rich copper indium (gallium) diselenide/disulphide

Also Published As

Publication number Publication date
WO2011045989A1 (en) 2011-04-21

Similar Documents

Publication Publication Date Title
Lin et al. 11.3% efficiency Cu (In, Ga)(S, Se) 2 thin film solar cells via drop-on-demand inkjet printing
EP1922761B1 (en) Process for preparation of absorption layer of solar cell
Woo et al. A non-toxic, solution-processed, earth abundant absorbing layer for thin-film solar cells
KR101075873B1 (en) Fabrication of cis or cigs thin film for solar cells using paste or ink
JP5867392B2 (en) Compound semiconductor thin film ink and method for producing solar cell
KR101267254B1 (en) Manufacturing method for thin film type light absorbing layer, and manufacturing method for thin film solar cell using thereof
WO2011045989A1 (en) Method for producing compound semiconductor thin film, solar cell, and device for producing compound semiconductor thin film
JP6248118B2 (en) Molybdenum substrate for CIGS photovoltaic devices
WO2013069710A1 (en) Sputtering target and method for producing same
EP3058038B1 (en) Cigs nanoparticle ink formulation having a high crack-free limit
KR20110060211A (en) Fabrication of cuinxga1-xse2 thin films solar cell by selenization process with se solution
WO2010087484A1 (en) Process for producing compound semiconductor thin film, solar cell, and coating agent for use in production of compound semiconductor thin film
KR101110214B1 (en) Manufacturing method of photoelectric conversion film
WO2013180137A1 (en) Production method for compound semiconductor thin film, and solar cell provided with said compound semiconductor thin film
JP5782672B2 (en) COMPOUND SEMICONDUCTOR THIN FILM INK
KR20110065596A (en) Fabrication of cuinxga1-xse2 thin films solar cell by paste coating and selenization process with se solution
TWI675890B (en) Cigs nanoparticle ink formulation with a high crack-free limit
Hong et al. Synthesis and Low-temperature Sintering of CuInSe2-CuGaSe2 Powders
KR101172050B1 (en) Method for manufacturing absorber layer of thin film solar cell
Akaki et al. Structural and optical characterization of CuInS 2 thin films grown by vacuum evaporation method
KR101395779B1 (en) Fabrication Method of Photo Active Layer for Solar Cell
KR101454610B1 (en) Manufacturing method of single phased cigs powder
TW201344944A (en) A high-temperature selenization method with selenide-containing compensation discs for fabricating the p-type stannite and chalcopyrite absorption layers of the thin-film solar cells
Nomura et al. Fabrication of (Cu, Ag) InSe2 Thin Films by a Combination of Mechanochemical and Screen Printing/Sintering Processes
KR20110019466A (en) Method of manufaturing target for pvd

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20131105