JPH09139514A - Solar cell and its manufacture - Google Patents

Solar cell and its manufacture

Info

Publication number
JPH09139514A
JPH09139514A JP7293858A JP29385895A JPH09139514A JP H09139514 A JPH09139514 A JP H09139514A JP 7293858 A JP7293858 A JP 7293858A JP 29385895 A JP29385895 A JP 29385895A JP H09139514 A JPH09139514 A JP H09139514A
Authority
JP
Japan
Prior art keywords
type
coating film
solar cell
powder
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7293858A
Other languages
Japanese (ja)
Inventor
Osamu Ishikura
修 石倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Original Assignee
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Semiconductor Manufacturing Co Ltd, Kansai Nippon Electric Co Ltd filed Critical Renesas Semiconductor Manufacturing Co Ltd
Priority to JP7293858A priority Critical patent/JPH09139514A/en
Publication of JPH09139514A publication Critical patent/JPH09139514A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PROBLEM TO BE SOLVED: To realize a solar battery of low cost, by reducing semiconductor material cost and forming a PN junction by a simple method. SOLUTION: An N-type silicon coating film 3 is printed and formed on a glass board 1 and made fine. A P-type silicon coating film 4 is printed and formed on other glass board 2 and made fine. The glass boards 1, 2 on which the coating films 3, 4 are formed are so unified in a body that the P-type and the N-type silicon coating films face with each other. By pressing the unified structure simultaneously with heating, a PN junction is formed, and a solar battery 10 is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は太陽電池およびその
製造方法に関し、特に半導体粉末を用いて経時的に安定
かつローコストなシリコン太陽電池を作る方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar cell and a method for manufacturing the same, and more particularly to a method for producing a silicon solar cell which is stable over time and low in cost using a semiconductor powder.

【0002】[0002]

【従来の技術】太陽電池は半導体p−n接合の光起電力
効果を利用したもので、太陽光をクリーンに電気エネル
ギーに変換できるものとして、変換効率の向上や製造コ
ストの低減に向けて多くの技術検討がなされてきた。
2. Description of the Related Art Solar cells make use of the photovoltaic effect of a semiconductor pn junction and are capable of converting sunlight into electric energy in a clean manner, and are often used to improve conversion efficiency and reduce manufacturing costs. Have been studied.

【0003】変換効率の向上は太陽光エネルギーの反射
をなくし、光吸収を極力よくするような半導体材料の探
索という形で種々の材料が検討されてきた。
Various materials have been studied in the form of searching for a semiconductor material which improves the conversion efficiency by eliminating the reflection of sunlight energy and maximizing the light absorption.

【0004】一方製造コストは材料費および加工費の両
面から低減の検討が進められ、例えばシリコン半導体で
は単結晶からポリクリスタルへ、さらにバルクシリコン
から薄膜シリコンへと、より安価な材料をより少なく使
って、簡便な方法でp−n接合を形成する太陽電池の製
法が試みられてきた。
On the other hand, the manufacturing cost is being studied from the viewpoint of both material cost and processing cost. For example, in the case of silicon semiconductor, single crystal to polycrystal, and bulk silicon to thin film silicon are used. Therefore, a method of manufacturing a solar cell in which a pn junction is formed by a simple method has been tried.

【0005】これらの努力にもかかわらず太陽電池は発
電コストにおいて商用電源には対抗することができず広
義のエネルギーソースとして大きな地位を占めるには至
っていない。
Despite these efforts, solar cells cannot compete with commercial power sources in terms of power generation cost and have not yet occupy a large position as an energy source in a broad sense.

【0006】太陽電池を電力の供給源として考えた場
合、発電コストおよび経時的な信頼性の点から結晶系シ
リコン太陽電池が最も使用実績が高い。いわゆるアモル
ファスシリコン薄膜太陽電池はその材料及び製造方法か
ら見て発電コスト低減には最もふさわしい構造を持って
いるが、その構成材料の結晶学的不安定性と低い変換効
率の故に電力供給用太陽電池としては広く実用化される
には至っていない。
When the solar cell is considered as a power supply source, the crystalline silicon solar cell is most used in terms of cost of power generation and reliability over time. So-called amorphous silicon thin-film solar cells have the most suitable structure for reducing power generation costs from the viewpoint of their materials and manufacturing methods, but because of their crystallographic instability and low conversion efficiency, they are used as power supply solar cells. Has not been widely put to practical use.

【0007】一方結晶系シリコン太陽電池は変換効率も
経時的な信頼性も高いが、太陽電池の主構成材料である
単結晶及び多結晶シリコンがともに高価なため発電コス
トの低減が困難になるという問題があった。そのために
結晶系シリコン太陽電池においては資材費の削減が太陽
電池コストの低減のために最も緊急な課題となってお
り、より少ないシリコン材料で太陽電池を構成する技術
の開発が行われてきた。
On the other hand, crystalline silicon solar cells have high conversion efficiency and high reliability over time, but it is difficult to reduce power generation cost because both the single crystal and polycrystalline silicon, which are the main constituent materials of solar cells, are expensive. There was a problem. For this reason, in crystalline silicon solar cells, reduction of material cost has become the most urgent issue for reduction of solar cell cost, and techniques for forming solar cells with less silicon materials have been developed.

【0008】しかるに半導体のp−n接合からなる太陽
電池において太陽光の電気エネルギーへの変換は結晶表
面のごく浅い領域で行われる。そのため厚いバルクの結
晶でも薄膜状の結晶でも半導体としての物理常数が同じ
なら、同等の変換効率を得ることができる。現実にある
バルク系の太陽電池では厚い結晶の大部分はp−n接合
近傍のエネルギー変換部分を支える土台として機能して
いるにすぎない。従って半導体材料の薄膜化は材料コス
トを低減する上で最も効果的な要素である。20μm〜
30μmの厚さの結晶系シリコンで太陽電池を構成でき
れば材料費を下げる効果は極めて大きいが、結晶系シリ
コンの厚膜ないし薄膜を形成する技術が確立していない
ため厚膜シリコン太陽電池は実在していない。
However, in a solar cell composed of a semiconductor pn junction, conversion of sunlight into electric energy is performed in a very shallow region of the crystal surface. Therefore, the same conversion efficiency can be obtained if the physical constants of the semiconductor are the same in both thick bulk crystals and thin film crystals. In the actual bulk solar cell, most of the thick crystals only function as a base for supporting the energy conversion portion near the pn junction. Therefore, thinning the semiconductor material is the most effective factor in reducing the material cost. 20 μm ~
If a solar cell can be made of crystalline silicon with a thickness of 30 μm, the effect of lowering the material cost will be extremely large, but since there is no established technology to form a thick film or thin film of crystalline silicon, thick-film silicon solar cells are not available. Not not.

【0009】[0009]

【発明が解決しようとする課題】本発明が解決しようと
している技術課題の一つは、資材費の削減であり、より
少ない半導体材料で安価な太陽電池を構成しようとする
ものである。
One of the technical problems to be solved by the present invention is to reduce the material cost and to construct an inexpensive solar cell with less semiconductor material.

【0010】本発明が解決しようとする他の技術課題
は、太陽電池におけるp−n接合の低コストの形成法を
提供することである。従来の太陽電池におけるp−n接
合の形成は、不純物元素の熱拡散、イオン注入、CVD
などの方法によって行われる。これらはp−n接合の形
成には最も普遍的な方法であるが、その実行には膨大な
設備と作業時間を要し太陽電池のコストへの反映も決し
て少なくない。
Another technical problem to be solved by the present invention is to provide a low-cost method for forming a pn junction in a solar cell. Formation of a pn junction in a conventional solar cell is performed by thermal diffusion of an impurity element, ion implantation, CVD.
And the like. These are the most common methods for forming pn junctions, but the execution thereof requires enormous equipment and working time, and the cost of solar cells is reflected in many cases.

【0011】[0011]

【課題を解決するための手段】本発明は前記課題を解決
するために提案されたもので、本発明の太陽電池は、少
なくとも一方がガラス基板からなる一対の耐熱性基板の
間にp型半導体結晶粉末の焼結層とn型半導体結晶粉末
の焼結層とにより形成されたp−n接合を備えたことを
特徴とする。また、その製造方法にあっては、耐熱性ガ
ラス基板上にp型(またはn型)半導体粉末の塗布膜を
形成する工程、耐熱性基板上にn型(またはp型)半導
体粉末の塗布膜を形成する工程、前記p型半導体粉末の
塗布膜と前記n型半導体粉末の塗布膜とをそれぞれ形成
した基板を塗布面で対向するように一体化する工程、一
体化させた構成物を熱間静水圧加圧、ホットプレスなど
により加熱加圧する工程を含むことを特徴とする。ま
た、耐熱性ガラス基板または金属基板にp型(またはn
型)半導体粉末の塗布膜を積層形成し、その上にn型
(またはp型)半導体粉末の塗布膜を積層形成し、その
上に耐熱性ガラス基板または金属板を当接し、加熱、加
圧する工程を含むことを特徴とする。
The present invention has been proposed to solve the above-mentioned problems, and a solar cell of the present invention has a p-type semiconductor between a pair of heat-resistant substrates, at least one of which is a glass substrate. It is characterized by comprising a pn junction formed by a sintered layer of crystal powder and a sintered layer of n-type semiconductor crystal powder. Further, in the manufacturing method thereof, a step of forming a coating film of p-type (or n-type) semiconductor powder on a heat-resistant glass substrate, a coating film of n-type (or p-type) semiconductor powder on the heat-resistant substrate A step of forming a p-type semiconductor powder coating film and a substrate on which an n-type semiconductor powder coating film is formed such that the substrates are integrated so that the coating surfaces face each other. The method is characterized by including a step of heating and pressing by hydrostatic pressing, hot pressing, or the like. In addition, a p-type (or n-type) is formed on a heat-resistant glass substrate or a metal substrate.
Type) semiconductor powder coating film is laminated, an n-type (or p-type) semiconductor powder coating film is laminated thereon, and a heat-resistant glass substrate or a metal plate is brought into contact therewith and heated and pressed. It is characterized by including a process.

【0012】本発明は高温圧接という簡便な方法によ
り、半導体粉末の緻密化と同時にp−n接合の形成を可
能にするものであり、かつp−n接合の傾斜や表面から
の深さを任意に制御できる特徴を有する。粉末半導体の
塗布膜とはいえ、熱間静水圧プレスによってほぼ真密度
の厚膜となり、良好なp−n接合を形成することができ
る。上記構成によって形成された太陽電池は、光エネル
ギーを電気エネルギーに変換するために必要なp−n接
合の深さ方向の厚みは確保しているが、それを支える基
板はガラスなどによって形成されている。従って例えば
バルク状シリコン太陽電池に比べ使用するシリコン材料
を大幅に低減させ低コスト化できる。
The present invention makes it possible to form a pn junction at the same time as densifying the semiconductor powder by a simple method of high temperature pressure welding, and to make the inclination of the pn junction and the depth from the surface arbitrary. It has a feature that can be controlled. Although it is a powder semiconductor coating film, it can be formed into a thick film with a substantially true density by hot isostatic pressing, and a good pn junction can be formed. In the solar cell formed by the above structure, the thickness of the pn junction in the depth direction required for converting light energy into electric energy is secured, but the substrate supporting it is formed of glass or the like. There is. Therefore, compared with, for example, a bulk silicon solar cell, the silicon material used can be significantly reduced and the cost can be reduced.

【0013】また本発明によれば、加熱、加圧により塗
布されたシリコン粉末などの半導体粉末の高密度化と同
時にp−n接合が形成される。これはp−n接合の形成
に関する従来の方法よりも簡便にp−n接合の形成を可
能にするものであり、製造コストの低減が図れる。
Further, according to the present invention, the pn junction is formed at the same time as the density of the semiconductor powder such as silicon powder applied by heating and pressing is increased. This enables the formation of the pn junction more easily than the conventional method for forming the pn junction, and the manufacturing cost can be reduced.

【0014】本発明では、結晶系シリコンを焼結する
が、これはアモルファスシリコンではなく、そのためエ
ネルギーの変換効率は高く、経時的にも極めて安定性に
富むものである。
In the present invention, crystalline silicon is sintered, but this is not amorphous silicon, so that it has a high energy conversion efficiency and is extremely stable over time.

【0015】[0015]

【発明の実施の形態】以下に本発明の実施例を図面に従
って説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0016】まず本発明の基本構成要素である高純度シ
リコン粉末の製法について説明する。出発材料は予め所
定の導電型と比抵抗を与えるように調整した不純物を添
加されたキャスト型シリコンが望ましい。これを高純度
ポリシリコン製のボールミルポットに入れて一定時間回
転し粉砕する。粉砕後これを所定の篩いメッシュを通過
させることにより粒度のそろった高純度シリコン粉末を
得ることができる。
First, a method for producing high-purity silicon powder, which is a basic constituent element of the present invention, will be described. The starting material is preferably cast type silicon to which impurities have been added and which has been adjusted so as to give a predetermined conductivity type and specific resistance. This is placed in a ball mill pot made of high-purity polysilicon, and it is crushed by rotating for a certain period of time. After crushing, this is passed through a predetermined sieving mesh to obtain high-purity silicon powder with uniform particle size.

【0017】図3は本発明にかかわる太陽電池の一実施
例を示したものである。図1,図2および図3における
ガラス基板1および2はシリコンとほぼ同じ線膨張係数
を持つ耐熱性の高いパイレックスガラスである。例えば
コーニング社の7052ガラスをこれに充当することが
できる。図1におけるガラス基板1の上に1Ω−cmの
比抵抗を持つn型シリコン粉末の塗布層3を厚さ20μ
m形成する。このガラス基板上へのシリコン粉末の塗布
は、例えばシリコン粉末をエタノールによってペースト
状とし、これをいわゆるドクターブレード法によって所
定の一様な厚さに塗布することができる。
FIG. 3 shows an embodiment of the solar cell according to the present invention. The glass substrates 1 and 2 in FIGS. 1, 2 and 3 are highly heat resistant Pyrex glass having substantially the same linear expansion coefficient as that of silicon. For example, Corning 7052 glass can be used for this. A coating layer 3 of n-type silicon powder having a specific resistance of 1 Ω-cm having a thickness of 20 μ is formed on the glass substrate 1 in FIG.
m. The silicon powder can be applied onto the glass substrate by, for example, forming a paste of silicon powder with ethanol and applying the paste into a predetermined uniform thickness by a so-called doctor blade method.

【0018】シリコン塗布膜の形成は他の方法によって
も可能である。すなわち、シリコン粉末にニトロセルロ
ースを溶解した酢酸ブチルを加えてペースト状とし、粘
度を調整した後シルクスクリーン印刷により塗布膜を形
成することができる。乾燥後に真空中で450℃に加熱
してバインダーを昇華させる。その他、ディップ法、ス
プレー法なども使用できる。
The silicon coating film can be formed by other methods. That is, butyl acetate in which nitrocellulose is dissolved is added to silicon powder to form a paste, the viscosity is adjusted, and then the coating film can be formed by silk screen printing. After drying, the binder is sublimated by heating to 450 ° C. in vacuum. In addition, a dip method, a spray method, etc. can also be used.

【0019】このようにして形成されたシリコン塗布膜
が密度も低くガラス基板との密着性も十分でない場合、
これを改善するため下記のように緻密化する。すなわ
ち、乾燥したシリコン粉末塗布膜上に耐熱性の良好な導
体であるカーボン電極を置き、ガラス基板(−)、カー
ボン電極(+)となるように約800vの直流電圧を印
加しながら500℃に加熱する。この処理は真空中、あ
るいは窒素雰囲気中いずれでも可能である。この処理に
より粉末シリコン塗布膜とガラス基板の間に静電気的引
力が作用し、シリコン塗布膜は緻密化すると共にガラス
基板と強固に密着する。なお、耐熱性の良好な導体とし
てカーボンの他に、シリコン板などの半導体板、タンタ
ル、モリブデン、ダングステンなどの高融点金属も電極
として使用できる。また、緻密化の他の方法として冷間
静水圧加圧も有効である。
When the silicon coating film thus formed has low density and insufficient adhesion to the glass substrate,
In order to improve this, densification is performed as follows. That is, a carbon electrode, which is a conductor having good heat resistance, is placed on a dried silicon powder coating film, and a glass substrate (−) and a carbon electrode (+) are applied at a temperature of 500 ° C. while applying a DC voltage of about 800 v. To heat. This treatment can be performed either in vacuum or in a nitrogen atmosphere. By this treatment, electrostatic attraction acts between the powder silicon coating film and the glass substrate, and the silicon coating film is densified and firmly adheres to the glass substrate. In addition to carbon, a semiconductor plate such as a silicon plate and a refractory metal such as tantalum, molybdenum, or dangsten can be used as an electrode as a conductor having good heat resistance. Cold isostatic pressing is also effective as another method of densification.

【0020】図2におけるガラス基板2の上には0.0
05Ω−cmの比抵抗を持つp型シリコン粉末塗布層4
を基板1と同様の方法で5μmの厚さに形成し同様の方
法で緻密化する。
0.0 on the glass substrate 2 in FIG.
P-type silicon powder coating layer 4 having a resistivity of 05 Ω-cm 4
Is formed to a thickness of 5 μm by the same method as the substrate 1 and densified by the same method.

【0021】このp型およびn型シリコンの塗布層を持
つ二枚のガラス基板をそのシリコン塗布面で対向するよ
うに、電極取り出し部分をを残して一体化する。更にシ
リコンの対向面の周辺をフリットガラス粉末5によって
覆い、後の熱処理によって溶解し、気密性が維持される
ようにする。
The two glass substrates having the p-type and n-type silicon coating layers are integrated so as to face each other on their silicon coating surfaces, leaving the electrode extraction portions. Further, the periphery of the facing surface of the silicon is covered with the frit glass powder 5 and melted by the subsequent heat treatment so that the airtightness is maintained.

【0022】本発明による太陽電池において、p−n接
合はこの一体化された構成体をホットプレスまたは熱間
静水圧プレス(以下HIP)によって加熱しながら同時
に加圧することによって形成される。すなわち、HIP
処理を例にとると、まず一体化された構成体をHIP装
置の中に設置し、はじめに10-3mmHg程度の真空度
に排気しながら加熱を開始する。構成体が800℃まで
昇温すると対向面周辺のガラスフリット5が溶解し対向
面周辺を気密に保つように封じる。
In the solar cell according to the present invention, the pn junction is formed by simultaneously pressing the integrated structure while heating it by a hot press or a hot isostatic press (HIP). That is, HIP
Taking processing as an example, first, the integrated structure is installed in a HIP device, and heating is started while exhausting to a vacuum degree of about 10 −3 mmHg. When the temperature of the structure rises to 800 ° C., the glass frit 5 around the facing surface is melted and sealed so as to keep the surrounding area of the facing surface airtight.

【0023】このような状態において、次に構成体を9
00℃以上、例えば1000℃まで昇温させながらアル
ゴンガスによる加圧を始め、最終的に1500気圧まで
静水圧的に加圧する。1000℃まで加熱された結果、
ガラス基板1および2とも軟化しアルゴンガスによる圧
力が内部までシリコン塗布膜に有効に伝達される。この
処理によりシリコン粉末塗布膜はほぼシリコンの真密度
に近い値にまで高密度化され、かつ対向面全面にわたっ
て均一なp−n接合6が形成される。温度、圧力は半導
体材料、ガラス材料などに応じて選定すればよい。ま
た、ホットプレスの場合も温度、圧力などを適宜選定す
ることができる。
In such a state, next, 9
Pressurization with argon gas is started while the temperature is raised to 00 ° C. or more, for example, 1000 ° C., and finally hydrostatically pressurized to 1500 atm. As a result of being heated to 1000 ° C,
Both the glass substrates 1 and 2 are softened, and the pressure of the argon gas is effectively transmitted to the silicon coating film to the inside. By this treatment, the silicon powder coating film is densified to a value close to the true density of silicon, and a uniform pn junction 6 is formed over the entire facing surface. The temperature and pressure may be selected according to the semiconductor material, glass material, and the like. Further, in the case of hot pressing as well, the temperature, pressure and the like can be appropriately selected.

【0024】このようにして太陽電位10が構成され、
入射した太陽光による光起電力効果で発生した電力を外
部に露出した取り出し電極7から取り出すことができ
る。
The solar potential 10 is constructed in this way,
Electric power generated by the photovoltaic effect of the incident sunlight can be extracted from the extraction electrode 7 exposed to the outside.

【0025】上記実施例では半導体材料として結晶系シ
リコン粉末を使用した例について説明したが、これに限
らず他の結晶系半導体材料、例えばSiGe粉末、カル
コパイライト(CuInS2 ,CuInSe2 )などの
合金粉末も基板材料の膨張係数などを適切に選定するこ
とにより使用可能である。
In the above-mentioned embodiment, an example in which crystalline silicon powder is used as the semiconductor material has been described, but the present invention is not limited to this, and other crystalline semiconductor materials such as SiGe powder, chalcopyrite (CuInS 2 , CuInSe 2 ) and other alloys. Powder can also be used by appropriately selecting the expansion coefficient of the substrate material.

【0026】また、半導体粉末の塗布膜厚は上記に限ら
ず効率などを考慮して適宜選定することができる。特
に、本発明は半導体粉末の塗布膜を数ミクロンないし、
数10ミクロンのいわゆる厚膜に形成することが特徴で
あり、このため基板の水平方向の抵抗値が十分に低い値
になるので、基板にITO、金属薄膜などの電極層をあ
らかじめ形成しておく必要もなく、コスト上有利であ
る。さらに、エネルギー変換効率を高めるためにp−n
接合の深さや形状を最適化することも容易にできる。
Further, the coating film thickness of the semiconductor powder is not limited to the above and can be appropriately selected in consideration of efficiency and the like. In particular, the present invention provides a semiconductor powder coating film of several microns or less,
It is characterized in that it is formed in a so-called thick film of several tens of microns, and since the resistance value in the horizontal direction of the substrate is sufficiently low for this reason, an electrode layer such as ITO or a metal thin film is previously formed on the substrate. It is not necessary and is advantageous in cost. Furthermore, in order to increase the energy conversion efficiency, pn
It is also easy to optimize the depth and shape of the joint.

【0027】上記実施例では両耐熱性基板共ガラス基板
を用いたが、一方の基板例えば光が入射しない側の基板
を金属板にしてもよい。金属板としてはシリコンなど半
導体材料との膨張係数をできるだけ適合させる必要があ
り、例えば組成を選択したステンレス板などがある。金
属板を使用すると強度的に有利であり、また導電性に優
れるので効率の向上も図れる。
In the above embodiment, both heat resistant substrates are glass substrates, but one substrate, for example, the substrate on the side where light does not enter may be a metal plate. As the metal plate, it is necessary to match the expansion coefficient with the semiconductor material such as silicon as much as possible, and for example, there is a stainless plate whose composition is selected. The use of a metal plate is advantageous in strength and excellent in conductivity, so that the efficiency can be improved.

【0028】本発明の変形例として、ガラス基板または
金属板にp型(またはn型)半導体粉末の塗布膜を厚膜
に形成し、その上にn型(またはp型)半導体粉末の塗
布膜を厚膜に積層形成し、その上に別体のガラス基板ま
たは金属板(ステンレスなど)を当接し、熱間静水圧加
圧またはホットプレスなどにより加熱、加圧してp型、
n型焼結層からなるp−n接合を形成してもよい。この
方法は前記の方法よりもさらに工程が簡略化しコスト的
に有利になる。
As a modified example of the present invention, a coating film of p-type (or n-type) semiconductor powder is formed in a thick film on a glass substrate or a metal plate, and a coating film of n-type (or p-type) semiconductor powder is formed thereon. Is laminated to form a thick film, and a separate glass substrate or metal plate (stainless steel, etc.) is brought into contact therewith, and heated by hot isostatic pressing or hot pressing to apply p-type,
You may form the pn junction which consists of an n-type sintered layer. This method is more cost-effective than the above-mentioned method because the process is simplified.

【0029】[0029]

【発明の効果】本発明により、より少ない半導体材料と
簡便な方法によってp−n接合を形成でき、低コストの
太陽電池を実現できる。
According to the present invention, a pn junction can be formed with less semiconductor material and a simple method, and a low-cost solar cell can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明にかかわる太陽電池の、ガラス基板上
に形成された一導電型シリコン粉末塗布層を示す断面図
である。
FIG. 1 is a cross-sectional view showing one conductivity type silicon powder coating layer formed on a glass substrate of a solar cell according to the present invention.

【図2】 図1と同様の他の導電型シリコン粉末塗布層
を示す断面図である。
FIG. 2 is a cross-sectional view showing another conductive type silicon powder coating layer similar to that of FIG.

【図3】 本発明にかかわる太陽電池の断面図である。FIG. 3 is a cross-sectional view of a solar cell according to the present invention.

【符号の説明】[Explanation of symbols]

1 ガラス基板 2 ガラス基板 3 n型シリコン塗布膜 4 p型シリコン塗布膜 5 フリットガラス 6 p−n接合 7 取出し電極 10 太陽電池 1 glass substrate 2 glass substrate 3 n-type silicon coating film 4 p-type silicon coating film 5 frit glass 6 pn junction 7 extraction electrode 10 solar cell

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】少なくとも一方がガラス基板からなる一対
の耐熱性基板の間にp型半導体結晶粉末の焼結層とn型
半導体結晶粉末の焼結層とにより形成されたp−n接合
を備えた太陽電池。
1. A pn junction formed by a sintered layer of p-type semiconductor crystal powder and a sintered layer of n-type semiconductor crystal powder is provided between a pair of heat-resistant substrates, at least one of which is a glass substrate. Solar cells.
【請求項2】耐熱性ガラス基板上にp型(またはn型)
半導体粉末の塗布膜を形成する工程と、耐熱性基板上に
n型(またはp型)半導体粉末の塗布膜を形成する工程
と、前記p型半導体粉末の塗布膜と前記n型半導体粉末
の塗布膜とをそれぞれ形成した基板を塗布面で対抗する
ように一体化する工程と、一体化された構成物を加熱、
加圧する工程とを含む太陽電池の製造方法。
2. A p-type (or n-type) on a heat-resistant glass substrate.
A step of forming a coating film of semiconductor powder, a step of forming a coating film of n-type (or p-type) semiconductor powder on a heat resistant substrate, a coating film of the p-type semiconductor powder and a coating of the n-type semiconductor powder A step of integrating the substrates on which the films are formed so as to face each other on the coating surface, and heating the integrated components,
A method of manufacturing a solar cell, which includes a step of applying pressure.
【請求項3】p型(またはn型)半導体粉末の塗布膜を
形成した後、該塗布膜を緻密化することを特徴とする請
求項2に記載の太陽電池の製造方法。
3. The method for manufacturing a solar cell according to claim 2, wherein after forming a coating film of p-type (or n-type) semiconductor powder, the coating film is densified.
【請求項4】熱間静水圧加圧またはホットプレスにより
加熱、加圧することを特徴とする請求項2に記載の太陽
電池の製造方法。
4. The method for manufacturing a solar cell according to claim 2, wherein heating and pressing are performed by hot isostatic pressing or hot pressing.
【請求項5】半導体粉末が結晶系シリコン粉末であるこ
とを特徴とする請求項2に記載の太陽電池の製造方法。
5. The method for manufacturing a solar cell according to claim 2, wherein the semiconductor powder is crystalline silicon powder.
【請求項6】塗布膜上に耐熱性の良好な電極を載置し、
高温状態で該電極が+、基板が−となるように高電圧を
印加することにより塗布膜を緻密化することを特徴とす
る請求項3に記載の太陽電池の製造方法。
6. An electrode having good heat resistance is placed on the coating film,
The method for manufacturing a solar cell according to claim 3, wherein the coating film is densified by applying a high voltage so that the electrode becomes + and the substrate becomes − at a high temperature.
【請求項7】耐熱性ガラス基板または金属基板にp型
(またはn型)半導体粉末の塗布膜を形成し、その上に
n型(またはp型)半導体粉末の塗布膜を積層形成し、
その上に耐熱性ガラス基板または金属板を当接し、加
熱、加圧する工程とを含む太陽電池の製造方法。
7. A coating film of p-type (or n-type) semiconductor powder is formed on a heat-resistant glass substrate or a metal substrate, and a coating film of n-type (or p-type) semiconductor powder is laminated and formed thereon.
A method of manufacturing a solar cell, which comprises a step of bringing a heat-resistant glass substrate or a metal plate into contact therewith, and heating and pressing.
JP7293858A 1995-11-13 1995-11-13 Solar cell and its manufacture Pending JPH09139514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7293858A JPH09139514A (en) 1995-11-13 1995-11-13 Solar cell and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7293858A JPH09139514A (en) 1995-11-13 1995-11-13 Solar cell and its manufacture

Publications (1)

Publication Number Publication Date
JPH09139514A true JPH09139514A (en) 1997-05-27

Family

ID=17800072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7293858A Pending JPH09139514A (en) 1995-11-13 1995-11-13 Solar cell and its manufacture

Country Status (1)

Country Link
JP (1) JPH09139514A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010122409A (en) * 2008-11-19 2010-06-03 Hoya Corp Photomask blank and photomask blank manufacturing method, and for photomask manufacturing method
WO2011045989A1 (en) * 2009-10-12 2011-04-21 学校法人龍谷大学 Method for producing compound semiconductor thin film, solar cell, and device for producing compound semiconductor thin film
JP2011112824A (en) * 2009-11-26 2011-06-09 Hoya Corp Mask blank and transfer mask, and method for producing these

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010122409A (en) * 2008-11-19 2010-06-03 Hoya Corp Photomask blank and photomask blank manufacturing method, and for photomask manufacturing method
US8709683B2 (en) 2008-11-19 2014-04-29 Hoya Corporation Photomask blank, photomask blank manufacturing method, and photomask manufacturing method
WO2011045989A1 (en) * 2009-10-12 2011-04-21 学校法人龍谷大学 Method for producing compound semiconductor thin film, solar cell, and device for producing compound semiconductor thin film
JP2011112824A (en) * 2009-11-26 2011-06-09 Hoya Corp Mask blank and transfer mask, and method for producing these

Similar Documents

Publication Publication Date Title
JP3242452B2 (en) Manufacturing method of thin film solar cell
CN101174659B (en) Method for producing thin film mono-crystalline silicon solar cell
US5344500A (en) Thin-film solar cell
US4207119A (en) Polycrystalline thin film CdS/CdTe photovoltaic cell
CN101174596A (en) Method for producing single crystal silicon solar cell and single crystal silicon solar cell
WO2005006393A2 (en) Pinhold porosity free insulating films on flexible metallic substrates for thin film applications
JP2002100789A (en) Manufacturing method for solar battery
CN101188258A (en) Method of manufacturing single crystal silicon solar cell and single crystal silicon solar cell
CN101286537A (en) Method for manufacturing single-crystal silicon solar cell and single-crystal silicon solar
JPH0449789B2 (en)
WO1994027327A1 (en) Series interconnected photovoltaic cells and method for making same
JPH0536997A (en) Photovoltaic device
JPH02143468A (en) Solar cell
JPH09139514A (en) Solar cell and its manufacture
JP3817656B2 (en) Photovoltaic module manufacturing method
Keshmiri et al. Enhancement of drift mobility of zinc oxide transparent-conducting films by a hydrogenation process
JP2002185024A (en) Solar battery and manufacturing method therefor
US4602422A (en) Flash compression process for making photovoltaic cells
JP2522024B2 (en) Method for manufacturing photoelectric conversion element
JP2758741B2 (en) Photoelectric conversion element and method for manufacturing the same
CN112864263B (en) Solar cell panel and application thereof
CN112951944B (en) Preparation method of solar cell panel
JP3012143B2 (en) Method for forming amorphous semiconductor thin film
JPS6210037B2 (en)
JPH03132080A (en) Photovoltaic device