JP2011187695A - Vapor phase growth method - Google Patents

Vapor phase growth method Download PDF

Info

Publication number
JP2011187695A
JP2011187695A JP2010051574A JP2010051574A JP2011187695A JP 2011187695 A JP2011187695 A JP 2011187695A JP 2010051574 A JP2010051574 A JP 2010051574A JP 2010051574 A JP2010051574 A JP 2010051574A JP 2011187695 A JP2011187695 A JP 2011187695A
Authority
JP
Japan
Prior art keywords
substrate
susceptor
vapor phase
phase growth
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010051574A
Other languages
Japanese (ja)
Inventor
Eitoku Ubukata
映徳 生方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2010051574A priority Critical patent/JP2011187695A/en
Publication of JP2011187695A publication Critical patent/JP2011187695A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vapor phase growth method capable of obtaining a deposited film of high quality and high reproducibility, while making a susceptor rotate with a substrate mounted, at a low speed. <P>SOLUTION: The present invention relates to the vapor phase growth method that uses a rotation/revolution type vapor phase growth device that performs vapor phase growth of a thin film, on the surface of the substrate heated by a heating means, by supplying a raw material gas to the side of the susceptor surface from a raw material gas supplying section. Meanwhile, a substrate-holding member is made to rotate and revolve, following the rotation of the susceptor; and in the vapor phase growth device, the number of rotations of the susceptor is set to be no more than 60 times a minute; and for the rotating direction of the substrate, the substrate is rotated in a negative direction for a smaller amount of time, as compared with the amount of time in rotation in the forward direction. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、気相成長方法に関し、詳しくは、基板を保持したサセプタを回転させる機構を備えた気相成長装置を用いて基板上に薄膜を気相成長させる方法に関する。   The present invention relates to a vapor phase growth method, and more particularly to a method for vapor phase growth of a thin film on a substrate using a vapor phase growth apparatus having a mechanism for rotating a susceptor holding a substrate.

気相成長装置として、チャンバー内に回転可能に設けられた円盤状のサセプタと、該サセプタの外周部周方向に等間隔で回転可能に設けられた複数の基板保持部材と、該基板保持部材の表面に設けられた円形の基板保持凹部と、前記チャンバーの中央部からサセプタ表面側に原料ガスを放射状に導入する原料ガス導入部と、前記チャンバーの外周部に設けられた排気部と、前記基板保持部材を介して前記基板保持凹部に保持された基板を加熱する加熱手段とを備え、前記サセプタの回転に伴って前記基板保持部材を自公転させるとともに、前記原料ガス導入部からサセプタ表面側に原料ガスを導入して前記加熱手段により加熱された基板面に薄膜を気相成長させる自公転型の気相成長装置が知られている。   As a vapor phase growth apparatus, a disk-shaped susceptor rotatably provided in a chamber, a plurality of substrate holding members rotatably provided at equal intervals in the circumferential direction of the outer periphery of the susceptor, and the substrate holding member A circular substrate holding recess provided on the surface, a raw material gas introduction portion for introducing a raw material gas radially from the central portion of the chamber to the susceptor surface side, an exhaust portion provided on an outer peripheral portion of the chamber, and the substrate Heating means for heating the substrate held in the substrate holding recess through a holding member, and the substrate holding member rotates and revolves as the susceptor rotates, and from the source gas introduction part to the susceptor surface side. A self-revolving vapor phase growth apparatus is known in which a raw material gas is introduced and a thin film is vapor-phase grown on a substrate surface heated by the heating means.

さらに、この自公転型を含めてサセプタに載置した基板を回転させる形式の気相成長装置を用いて基板上に薄膜を気相成長させる際に、サセプタを高速回転させたり、一定周期ごとにサセプタを逆回転させることにより、成長膜の膜質を改善させる方法が提案されている(例えば、特許文献1参照。)。   Furthermore, when a thin film is vapor-phase grown on a substrate using a vapor phase growth apparatus of the type that rotates the substrate placed on the susceptor including this self-revolving type, the susceptor is rotated at a high speed or at regular intervals. A method of improving the film quality of the growth film by rotating the susceptor in reverse has been proposed (see, for example, Patent Document 1).

特開2003−142416号公報JP 2003-142416 A

前記特許文献1に記載された方法は、該文献の発明が解決しようとする課題において、サセプタの回転数が毎分100回転以下の従来のものでは、基板上に成長させる堆積膜の品質劣化を招くという課題が示されており、特許文献1の方法では、基本的にサセプタ上の基板の回転数を毎分100回転以上、実施の形態における記載では、毎分720回転の高速で基板を回転させることにより、成長膜の膜質を改善できるとしている。また、回転方向を変化させる場合でも、回転数を毎分720回転あるいは毎分1800回転の高速回転を行うことを基本とし、さらに、正回転と逆回転とを同じ時間周期で繰り返すようにしている。   In the method described in Patent Document 1, in the problem to be solved by the invention of the document, the quality of the deposited film grown on the substrate is deteriorated in the conventional method in which the rotation speed of the susceptor is 100 rotations per minute or less. In the method of Patent Document 1, the number of rotations of the substrate on the susceptor is basically 100 rotations per minute or more, and in the embodiment, the substrate is rotated at a high speed of 720 rotations per minute. By doing so, the film quality of the growth film can be improved. Further, even when changing the rotation direction, the high speed rotation of 720 rotations per minute or 1800 rotations per minute is basically performed, and forward rotation and reverse rotation are repeated at the same time period. .

しかしながら、サセプタに載置した基板を高速で回転させるためには、サセプタの回転機構に高精度の加工技術が求められ、装置コストの大幅な上昇を招くという問題があるだけでなく、回転中の僅かな振動でサセプタ上に載置した基板がサセプタ上で不規則に回転し、基板とサセプタとが擦れあって基板が破損したりすることがあり、また、成膜再現性に支障を来したりするという問題がある。さらに、薄くて軽い基板がサセプタから浮き上がるようなことがあると、基板をサセプタ上の所定位置に載置しておくことができず、自公転型の場合には、公転による遠心力で基板がサセプタの外周方向に飛び出してしまうおそれもあった。   However, in order to rotate the substrate placed on the susceptor at high speed, a high-accuracy processing technique is required for the rotation mechanism of the susceptor. The substrate placed on the susceptor may rotate irregularly on the susceptor due to slight vibration, and the substrate and the susceptor may rub against each other, resulting in damage to the substrate. There is a problem that. Furthermore, if a thin and light substrate may be lifted from the susceptor, the substrate cannot be placed at a predetermined position on the susceptor. There was also a risk of jumping out toward the outer periphery of the susceptor.

そこで本発明は、基板を載置したサセプタを低速で回転させながら高品質で再現性も良好な堆積膜を得ることができる気相成長方法を提供することを目的としている。   Accordingly, an object of the present invention is to provide a vapor phase growth method capable of obtaining a deposited film having high quality and good reproducibility while rotating a susceptor on which a substrate is placed at a low speed.

上記目的を達成するため、本発明の気相成長方法は、チャンバー内に回転可能に設けられた円盤状のサセプタと、該サセプタの表面に設けられた基板保持凹部と、前記チャンバーのサセプタ表面側に原料ガスを導入する原料ガス導入部と、前記チャンバーの反原料ガス導入部側に設けられた排気部と、前記基板保持凹部に保持された基板を加熱する加熱手段とを備え、前記サセプタの回転に伴って前記基板を回転させるとともに、前記原料ガス導入部から原料ガスを導入して前記加熱手段により加熱された基板面に薄膜を気相成長させる気相成長装置において、前記サセプタと一体に回転する基板の回転数を毎分60回転以下に設定するとともに、前記基板の回転方向を、正方向に回転している時間に比べて短い時間だけ負方向に回転させることを特徴としている。   In order to achieve the above object, the vapor phase growth method of the present invention comprises a disc-shaped susceptor rotatably provided in a chamber, a substrate holding recess provided on the surface of the susceptor, and a susceptor surface side of the chamber. A source gas introduction section for introducing a source gas into the chamber, an exhaust section provided on the side opposite to the source gas introduction section of the chamber, and a heating means for heating the substrate held in the substrate holding recess. In a vapor phase growth apparatus that rotates the substrate as it rotates and introduces a source gas from the source gas introduction unit and grows a thin film on the substrate surface heated by the heating means, integrated with the susceptor The number of rotations of the rotating substrate is set to 60 or less per minute, and the rotation direction of the substrate is rotated in the negative direction for a shorter time than the time of rotating in the positive direction. It is characterized by a door.

また、本発明の気相成長方法は、チャンバー内に回転可能に設けられた円盤状のサセプタと、該サセプタの外周部周方向に等間隔で回転可能に設けられた複数の基板保持部材と、該基板保持部材の表面に設けられた基板保持凹部と、前記チャンバーの中央部からサセプタ表面側に原料ガスを放射状に導入する原料ガス導入部と、前記チャンバーの外周部に設けられた排気部と、前記基板保持凹部に保持された基板を加熱する加熱手段とを備え、前記サセプタの回転に伴って前記基板を自公転させるとともに、前記原料ガス導入部からサセプタ表面側に原料ガスを導入して前記加熱手段により加熱された基板面に薄膜を気相成長させる自公転型の気相成長装置を用いた気相成長方法において、前記サセプタの回転数を毎分60回転以下に設定するとともに、前記基板の回転方向を、正方向に回転している時間に比べて短い時間、又は、正方向に回転している角度に比べて小さい角度だけ負方向に回転させることを特徴としている。   Further, the vapor phase growth method of the present invention includes a disc-shaped susceptor rotatably provided in the chamber, and a plurality of substrate holding members rotatably provided at equal intervals in the circumferential direction of the outer periphery of the susceptor. A substrate holding recess provided on the surface of the substrate holding member, a source gas introducing portion for introducing a source gas radially from the central portion of the chamber to the susceptor surface side, and an exhaust portion provided on an outer peripheral portion of the chamber; A heating means for heating the substrate held in the substrate holding recess, and the substrate is rotated and revolved along with the rotation of the susceptor, and a source gas is introduced from the source gas introduction part to the susceptor surface side. In a vapor phase growth method using a self-revolution type vapor phase growth apparatus for vapor phase growth of a thin film on a substrate surface heated by the heating means, the rotation speed of the susceptor is set to 60 rpm or less. With the rotation direction of the substrate, shorter than the time which is rotating in the forward direction, or is characterized in that only a small angle compared to the angle which is rotating in the forward direction is rotated in the negative direction.

さらに、本発明の気相成長方法は、前記サセプタの回転数が毎分1〜10回転であり、前記基板は、正方向に回転している時間又は角度に対して負方向に回転する時間又は角度が1/8〜1/2の範囲であること、特に、前記基板は、正方向に360度回転したときに、負方向に90度回転して正回転に戻ることを成膜操作中に繰り返すことを特徴としている。   Furthermore, in the vapor phase growth method of the present invention, the rotation speed of the susceptor is 1 to 10 rotations per minute, and the substrate is rotated in the negative direction with respect to the time or angle of rotation in the positive direction or During the film forming operation, the angle is in the range of 1/8 to 1/2. In particular, when the substrate rotates 360 degrees in the positive direction, the substrate rotates 90 degrees in the negative direction and returns to the positive rotation. It is characterized by repetition.

本発明の気相成長方法によれば、サセプタや基板を低速で回転させるとともに短時間だけ基板を逆回転させることにより、回転中のサセプタや基板保持部材の振動によって基板保持凹部内の基板が不規則に回転することを抑制できるので、高品質で再現性も良好な堆積膜を得ることができる。また、サセプタを高速で回転させる必要がないので、装置コストが上昇することはなく、通常の気相成長装置に対しても容易に適用することができる。   According to the vapor phase growth method of the present invention, by rotating the susceptor and the substrate at a low speed and by rotating the substrate in the reverse direction for a short time, the substrate in the substrate holding recess is not affected by the vibration of the rotating susceptor and the substrate holding member. Since regular rotation can be suppressed, a deposited film with high quality and good reproducibility can be obtained. Further, since it is not necessary to rotate the susceptor at a high speed, the apparatus cost does not increase, and it can be easily applied to a normal vapor phase growth apparatus.

本発明の気相成長装置の一形態例を示す断面図である。It is sectional drawing which shows one example of the vapor phase growth apparatus of this invention. 図1のII−II矢視図である。It is an II-II arrow line view of FIG. 図2のIII−III断面図である。FIG. 3 is a sectional view taken along line III-III in FIG. 2. 基板の回転方向を示す説明図である。It is explanatory drawing which shows the rotation direction of a board | substrate. 実施例1における回転角度と面内発光分布の関係を示す図である。It is a figure which shows the relationship between the rotation angle in Example 1, and in-plane light emission distribution. 実施例2における回転角度と面内発光分布の関係を示す図である。It is a figure which shows the relationship between the rotation angle in Example 2, and in-plane light emission distribution.

本形態例に示す気相成長装置11は、ステンレスで形成された偏平円筒状のチャンバー12内に円盤状のサセプタ13を回転可能に設けるとともに、該サセプタ13の外周部に複数の基板保持部材14を回転歯車部材15を介して回転可能に設けた自公転型気相成長装置であって、本形態例では10枚の基板16を同時に処理することができるように形成されている。   In the vapor phase growth apparatus 11 shown in this embodiment, a disk-shaped susceptor 13 is rotatably provided in a flat cylindrical chamber 12 made of stainless steel, and a plurality of substrate holding members 14 are provided on the outer periphery of the susceptor 13. Is a revolving type vapor phase growth apparatus that is rotatably provided via a rotating gear member 15. In this embodiment, it is formed so that ten substrates 16 can be processed simultaneously.

サセプタ13は、チャンバー12の底面部分を貫通した回転軸17により支持されており、該回転軸17を、回転数及び回転方向を制御可能なパルスモータで駆動するようにしている。チャンバー12の下部にはヒーター18や温度計19がそれぞれ設けられ、ヒーター18の周囲にはリフレクター20が設けられている。また、チャンバー12のサセプタ表面側中央部には原料ガス導入部21が設けられ、外周部には排気部22が設けられるとともに、回転軸17の周囲には不活性ガス導入部23が設けられ、リフレクター20の外周には前記排気部22に連通する不活性ガス導出部24が設けられている。   The susceptor 13 is supported by a rotating shaft 17 penetrating the bottom surface portion of the chamber 12, and the rotating shaft 17 is driven by a pulse motor capable of controlling the rotation speed and the rotation direction. A heater 18 and a thermometer 19 are provided below the chamber 12, and a reflector 20 is provided around the heater 18. Further, a source gas introduction part 21 is provided in the central part on the susceptor surface side of the chamber 12, an exhaust part 22 is provided in the outer peripheral part, and an inert gas introduction part 23 is provided around the rotating shaft 17, An inert gas lead-out portion 24 communicating with the exhaust portion 22 is provided on the outer periphery of the reflector 20.

サセプタ13の外周部には、前記回転歯車部材15を収納する平面視円形の収容部13aが周方向に等間隔で設けられている。収容部13aのサセプタ13外周側には開口部13bが設けられ、回転歯車部材15の外歯車15aがサセプタ13外周に突出するように形成されている。   On the outer periphery of the susceptor 13, there are provided storage portions 13 a having a circular shape in plan view for storing the rotating gear member 15 at equal intervals in the circumferential direction. An opening 13b is provided on the outer periphery side of the susceptor 13 of the housing portion 13a, and the external gear 15a of the rotating gear member 15 is formed so as to protrude to the outer periphery of the susceptor 13.

基板保持部材14は、上面に基板16を保持する基板保持凹部14aを設けた大径部14bと、該大径部14bの下面から突出した小径部14cと、大径部14bと小径部14cとの間の水平方向の下向き段部14dとを有する円柱状に形成されている。   The substrate holding member 14 includes a large-diameter portion 14b provided with a substrate holding recess 14a for holding the substrate 16 on the upper surface, a small-diameter portion 14c protruding from the lower surface of the large-diameter portion 14b, a large-diameter portion 14b, and a small-diameter portion 14c. It is formed in the column shape which has the downward step part 14d of the horizontal direction of between.

回転歯車部材15は、内周上部の前記基板保持部材14の大径部14bを収納する大径収納部15bと、内周下部の前記基板保持部材14の小径部14cを収納する小径収納部15cと、大径収納部15bと小径収納部15cとの間で前記基板保持部材14の下向き段部14dを載置する載置段部15dとを有する円筒状に形成され、上部外周には前記外歯車15aが形成されている。この回転歯車部材15は、前記収容部13a内に、カーボンやセラミックで形成された多数のボール25を介して回転可能に収容されている。   The rotating gear member 15 includes a large-diameter accommodating portion 15b that accommodates the large-diameter portion 14b of the substrate holding member 14 in the upper inner periphery, and a small-diameter accommodating portion 15c that accommodates the small-diameter portion 14c in the substrate holding member 14 in the lower inner periphery. And a mounting step portion 15d for mounting the downward step portion 14d of the substrate holding member 14 between the large diameter storage portion 15b and the small diameter storage portion 15c, A gear 15a is formed. The rotating gear member 15 is rotatably accommodated in the accommodating portion 13a via a large number of balls 25 formed of carbon or ceramic.

基板保持部材14は、下向き段部14dと載置段部15dとの間に、スペーサリング26を介装させた状態で回転歯車部材15の内部に収納されて保持され、回転歯車部材15と一体的に回転する。スペーサリング26は、回転歯車部材15に保持した基板保持部材14の高さ調整を行うものであって、厚さ寸法の異なるものが複数用意されている。このスペーサリング26は、サファイアやカーボンなどの各種材料で形成することができるが、窒化ケイ素と窒化ホウ素の複合材料で形成することにより、加工性の向上と強度の向上を図ることができる。   The substrate holding member 14 is housed and held inside the rotating gear member 15 with the spacer ring 26 interposed between the downward stepped portion 14d and the mounting stepped portion 15d, and is integrated with the rotating gear member 15. Rotate. The spacer ring 26 adjusts the height of the substrate holding member 14 held by the rotating gear member 15, and a plurality of spacer rings 26 having different thickness dimensions are prepared. The spacer ring 26 can be formed of various materials such as sapphire and carbon. However, by forming the spacer ring 26 from a composite material of silicon nitride and boron nitride, it is possible to improve workability and strength.

また、サセプタ13の外周位置には、前記開口部13bから突出する回転歯車部材15の外歯車15aに歯合する内歯車27aを備えたリング状の固定歯車部材27が設けられている。   A ring-shaped fixed gear member 27 having an internal gear 27a meshing with the external gear 15a of the rotating gear member 15 protruding from the opening 13b is provided at the outer peripheral position of the susceptor 13.

基板保持部材14の上面に設けられている基板保持凹部14aは、保持する基板16の直径に対応した直径、通常は基板16の直径よりも僅かに、例えば数mm大きな直径を有し、基板16の厚さと略同じ深さを有している。   The substrate holding recess 14 a provided on the upper surface of the substrate holding member 14 has a diameter corresponding to the diameter of the substrate 16 to be held, usually a diameter slightly larger than the diameter of the substrate 16, for example, several millimeters. It has a depth substantially the same as the thickness.

この気相成長装置11で基板16の上面に薄膜を気相成長させる際に、回転軸17を所定速度で回転させてサセプタ13を回転させると、このサセプタ13の回転により、サセプタ13の軸線を中心として公転する回転歯車部材15の外歯車15aが固定歯車部材27の内歯車27aと歯合することにより、回転歯車部材15及びこれに保持された基板保持部材14がその軸線を中心として自転し、これによって基板16が自公転する状態となる。   When the thin film is vapor-phase grown on the upper surface of the substrate 16 by the vapor phase growth apparatus 11, when the susceptor 13 is rotated by rotating the rotating shaft 17 at a predetermined speed, the axis of the susceptor 13 is rotated by the rotation of the susceptor 13. When the external gear 15a of the rotating gear member 15 revolving around the center meshes with the internal gear 27a of the fixed gear member 27, the rotating gear member 15 and the substrate holding member 14 held thereby rotate around its axis. As a result, the substrate 16 revolves and revolves.

このように、基板保持部材14に保持した基板16を自公転させながら気相成長操作を行う際に、前記サセプタ13の回転数を毎分60回転以下、好ましくは毎分1〜10回転に設定するとともに、図4の実線及び破線に示すように、前記基板16の回転方向を、正方向(図4の実線矢印A)、例えば図2において反時計回りに回転している時間に比べて、短い時間だけ負方向(図4の破線矢印B)、すなわち図2において時計回りに回転させることにより、正方向に回転するときに基板16に発生する加速度、基板保持凹部14aに対して基板16を回転させようとする力を抑えることができ、回転に伴ってサセプタ13や基板保持部材14、回転歯車部材15からの振動を受けて基板16が基板保持凹部14a内で不規則に回転することを防止できる。   Thus, when performing the vapor phase growth operation while revolving the substrate 16 held on the substrate holding member 14, the rotation speed of the susceptor 13 is set to 60 rotations per minute or less, preferably 1 to 10 rotations per minute. At the same time, as shown by the solid line and the broken line in FIG. 4, the rotation direction of the substrate 16 is compared to the positive direction (solid arrow A in FIG. 4), for example, the time during which it rotates counterclockwise in FIG. By rotating in the negative direction (broken arrow B in FIG. 4) for a short time, that is, clockwise in FIG. 2, the acceleration generated in the substrate 16 when rotating in the positive direction, and the substrate 16 with respect to the substrate holding recess 14a. The force to be rotated can be suppressed, and the substrate 16 is irregularly rotated in the substrate holding recess 14a due to vibrations from the susceptor 13, the substrate holding member 14, and the rotating gear member 15 accompanying the rotation. It can be prevented.

すなわち、サセプタ13の回転数を低く設定するとともに、基板16を短時間だけ負方向に回転させることにより、成膜操作中の基板16を安定した状態で保持することができ、公転方向へも十分に回転させることができるので、高品質で再現性も良好な堆積膜を得ることができる。   That is, by setting the number of rotations of the susceptor 13 low and rotating the substrate 16 in the negative direction for a short time, the substrate 16 during the film forming operation can be held in a stable state, and also sufficiently in the revolution direction. Therefore, it is possible to obtain a deposited film with high quality and good reproducibility.

正方向に回転する時間と負方向に回転する時間との割合は、サセプタ13の回転数(基板16の公転数)、基板保持部材14の回転数(基板16の自転数)、サセプタ13や基板16の大きさ(直径)、自転部と公転部とのギア比などの条件によって最適な条件を選定すればよい。通常、正方向に回転する時間に対して負方向に回転する時間を近付けていくと、回転方向の切り替えが少な過ぎて十分な効果を得ることができない。一方、回転方向の切り替えを多くし過ぎると、切り替え時の僅かな回転停止時間が無視できなくなり、成膜均一性が損なわれるおそれがある。正方向に回転する時間に対して負方向に回転する時間は1/8〜1/2の範囲、特に1/4とすることが好ましい。例えば、正方向に12秒間回転させた後、3〜6秒間負方向に回転させることが好ましく、これを回転角度で表せば、基板16を、例えば360度正方向に回転させた後に、45〜180度負方向に回転させることが好ましい。例えば、回転数に関係なく、サセプタ13を回転させて基板16が360度正方向に回転した後、90度(360度の1/4)負方向に基板16を回転させることにより、逆回転1回について公転方向に270度ずつ進むことになるので、基板16を自公転させる効果を損なうことなく、良好な堆積膜を得ることができる。   The ratios of the time to rotate in the positive direction and the time to rotate in the negative direction are the number of rotations of the susceptor 13 (the number of revolutions of the substrate 16), the number of rotations of the substrate holding member 14 (the number of rotations of the substrate 16), and the susceptor 13 and the substrate. What is necessary is just to select optimal conditions according to conditions, such as the magnitude | size (diameter) of 16, and the gear ratio of a rotation part and a revolution part. Usually, if the time for rotating in the negative direction is made closer to the time for rotating in the positive direction, there are too few changes in the rotation direction, and a sufficient effect cannot be obtained. On the other hand, if the rotation direction is switched too much, a slight rotation stop time at the time of switching cannot be ignored, and the film formation uniformity may be impaired. The time for rotating in the negative direction relative to the time for rotating in the positive direction is preferably in the range of 1/8 to 1/2, particularly 1/4. For example, after rotating in the positive direction for 12 seconds, it is preferable to rotate in the negative direction for 3 to 6 seconds. If this is expressed by a rotation angle, the substrate 16 is rotated in the positive direction of 360 degrees, for example, and then 45 to 45 seconds. It is preferable to rotate 180 degrees in the negative direction. For example, the susceptor 13 is rotated regardless of the number of rotations, the substrate 16 is rotated 360 degrees in the positive direction, and then the substrate 16 is rotated 90 degrees (1/4 of 360 degrees) in the negative direction. Since the rotation proceeds by 270 degrees in the revolution direction, a good deposited film can be obtained without impairing the effect of revolving the substrate 16.

なお、本形態例では、自公転型の気相成長装置を例示して説明したが、チャンバー内に回転可能に設けられた円盤状のサセプタと、該サセプタの表面に設けられた基板保持凹部と、前記チャンバーのサセプタ表面側に原料ガスを導入する原料ガス導入部と、前記チャンバーの反原料ガス導入部側に設けられた排気部と、前記基板保持凹部に保持された基板を加熱する加熱手段とを備え、前記サセプタの回転に伴って前記基板を回転させるとともに、前記原料ガス導入部から原料ガスを導入して前記加熱手段により加熱された基板面に薄膜を気相成長させる横型の気相成長装置にも適用可能である。   In this embodiment, the self-revolution type vapor phase growth apparatus has been described as an example. However, a disk-shaped susceptor provided rotatably in the chamber, and a substrate holding recess provided on the surface of the susceptor. A source gas introduction part for introducing a source gas into the susceptor surface side of the chamber; an exhaust part provided on the side opposite to the source gas introduction part of the chamber; and a heating means for heating the substrate held in the substrate holding recess A horizontal gas phase in which the substrate is rotated in accordance with the rotation of the susceptor, and a source gas is introduced from the source gas introduction part and a thin film is vapor-phase grown on the substrate surface heated by the heating means. It can also be applied to a growth apparatus.

基板16の負方向への回転角度(自転角度)を正方向の自転角度の1/4に設定し、負方向に回転させるまでの正方向への自転角度を変化させてGaN系半導体発光デバイスを通常の条件で成膜し、得られた発光デバイスの面内波長分布を測定した。なお、正方向への自転角度が0度というのは、基板16は自転せずにサセプタ13の回転による公転のみの状態である。結果を図5に示す。この結果から、負方向への自転角度が正方向の自転角度の1/4の場合には、基板16の回転方向を変化させることによって堆積膜の面内分布を改善できること、正方向への自転角度が360度のときに回転方向を切り換えることによって最も良好な結果が得られることがわかる。   The rotation angle (rotation angle) of the substrate 16 in the negative direction is set to 1/4 of the rotation angle in the positive direction, and the rotation angle in the positive direction until the substrate 16 is rotated in the negative direction is changed to change the GaN-based semiconductor light-emitting device. A film was formed under normal conditions, and the in-plane wavelength distribution of the obtained light emitting device was measured. Note that the rotation angle in the positive direction is 0 degree means that the substrate 16 does not rotate but only revolves due to the rotation of the susceptor 13. The results are shown in FIG. From this result, when the rotation angle in the negative direction is 1/4 of the rotation angle in the positive direction, the in-plane distribution of the deposited film can be improved by changing the rotation direction of the substrate 16, and the rotation in the positive direction. It can be seen that the best results are obtained by switching the direction of rotation when the angle is 360 degrees.

基板16の正方向への回転角度(自転角度)を360度に設定し、負方向への自転角度を変化させてGaN系半導体発光デバイスを成膜し、得られた発光デバイスの面内波長分布を測定した。なお、逆自転角度が0度というのは回転方向の切り換えを行わなかった場合である。結果を図6に示す。この結果から、正方向への自転角度が360度の場合には、90度のときに最も良好な結果が得られることがわかる。また、直径100mmの基板において、正方向への自転角度を360度、負方向への自転角度を90度としたときの基板直径方向における面内波長分布は±1nm程度の範囲であり、面内波長分布が改善されていることがわかる。   The rotation angle (rotation angle) of the substrate 16 in the positive direction is set to 360 degrees, and the rotation angle in the negative direction is changed to form a GaN-based semiconductor light emitting device, and the in-plane wavelength distribution of the obtained light emitting device Was measured. Note that the reverse rotation angle is 0 degrees when the rotation direction is not switched. The results are shown in FIG. From this result, it can be seen that when the rotation angle in the positive direction is 360 degrees, the best result is obtained at 90 degrees. In addition, in a substrate having a diameter of 100 mm, the in-plane wavelength distribution in the substrate diameter direction is about ± 1 nm when the rotation angle in the positive direction is 360 degrees and the rotation angle in the negative direction is 90 degrees. It can be seen that the wavelength distribution is improved.

11…気相成長装置、12…チャンバー、13…サセプタ、13a…収容部、13b…開口部、14…基板保持部材、14a…基板保持凹部、14b…大径部、14c…小径部、14d…下向き段部、15…回転歯車部材、15a…外歯車、15b…大径収納部、15c…小径収納部、15d…載置段部、16…基板、17…回転軸、18…ヒーター、19…温度計、20…リフレクター、21…原料ガス導入部、22…排気部、23…不活性ガス導入部、24…不活性ガス導出部、25…ボール、26…スペーサリング、27…固定歯車部材、27a…内歯車   DESCRIPTION OF SYMBOLS 11 ... Vapor growth apparatus, 12 ... Chamber, 13 ... Susceptor, 13a ... Accommodating part, 13b ... Opening part, 14 ... Substrate holding member, 14a ... Substrate holding recessed part, 14b ... Large diameter part, 14c ... Small diameter part, 14d ... Downward stepped portion, 15 ... rotating gear member, 15a ... external gear, 15b ... large diameter accommodating portion, 15c ... small diameter accommodating portion, 15d ... mounting stepped portion, 16 ... substrate, 17 ... rotating shaft, 18 ... heater, 19 ... Thermometer, 20 ... reflector, 21 ... raw material gas introduction part, 22 ... exhaust part, 23 ... inert gas introduction part, 24 ... inert gas outlet part, 25 ... ball, 26 ... spacer ring, 27 ... fixed gear member, 27a ... Internal gear

Claims (4)

チャンバー内に回転可能に設けられた円盤状のサセプタと、該サセプタの表面に設けられた基板保持凹部と、前記チャンバーのサセプタ表面側に原料ガスを導入する原料ガス導入部と、前記チャンバーの反原料ガス導入部側に設けられた排気部と、前記基板保持凹部に保持された基板を加熱する加熱手段とを備え、前記サセプタの回転に伴って前記基板を回転させるとともに、前記原料ガス導入部から原料ガスを導入して前記加熱手段により加熱された基板面に薄膜を気相成長させる気相成長装置において、前記サセプタと一体に回転する基板の回転数を毎分60回転以下に設定するとともに、前記基板の回転方向を、正方向に回転している時間に比べて短い時間だけ負方向に回転させることを特徴とする気相成長方法。   A disk-shaped susceptor that is rotatably provided in the chamber, a substrate holding recess provided on the surface of the susceptor, a source gas introduction part that introduces a source gas to the susceptor surface side of the chamber, and a reaction of the chamber An exhaust part provided on the source gas introduction part side, and a heating means for heating the substrate held in the substrate holding recess, and the substrate gas is rotated as the susceptor rotates, and the source gas introduction part In the vapor phase growth apparatus that introduces the source gas from the vapor phase and vapor-deposits the thin film on the substrate surface heated by the heating means, the rotation speed of the substrate that rotates integrally with the susceptor is set to 60 rotations per minute or less. The vapor phase growth method characterized in that the rotation direction of the substrate is rotated in the negative direction for a shorter time than the time in which the substrate is rotated in the positive direction. チャンバー内に回転可能に設けられた円盤状のサセプタと、該サセプタの外周部周方向に等間隔で回転可能に設けられた複数の基板保持部材と、該基板保持部材の表面に設けられた円形の基板保持凹部と、前記チャンバーの中央部からサセプタ表面側に原料ガスを放射状に導入する原料ガス導入部と、前記チャンバーの外周部に設けられた排気部と、前記基板保持凹部に保持された基板を加熱する加熱手段とを備え、前記サセプタの回転に伴って前記基板を自公転させるとともに、前記原料ガス導入部からサセプタ表面側に原料ガスを導入して前記加熱手段により加熱された基板面に薄膜を気相成長させる自公転型の気相成長装置を用いた気相成長方法において、前記サセプタの回転数を毎分60回転以下に設定するとともに、前記基板の回転方向を、正方向に回転している時間に比べて短い時間だけ負方向に回転させることを特徴とする気相成長方法。   A disk-shaped susceptor that is rotatably provided in the chamber, a plurality of substrate holding members that are rotatably provided at equal intervals in the circumferential direction of the outer periphery of the susceptor, and a circular shape that is provided on the surface of the substrate holding member The substrate holding recess, the source gas introducing portion for introducing the source gas radially from the central portion of the chamber to the susceptor surface side, the exhaust portion provided in the outer peripheral portion of the chamber, and the substrate holding recess Heating means for heating the substrate, and the substrate surface revolves as the susceptor rotates, and a source gas is introduced from the source gas introduction part to the susceptor surface side and heated by the heating means. In a vapor phase growth method using a self-revolution type vapor phase growth apparatus for vapor phase growth of a thin film on the substrate, the rotation speed of the susceptor is set to 60 rpm or less, and the rotation of the substrate is performed. Vapor deposition method characterized by rotating the direction, the negative direction for a short time compared to the time which is rotating in the forward direction. 前記サセプタの回転数が毎分1〜10回転であり、前記基板は、正方向に回転している時間に対して負方向に回転する時間が1/8〜1/2の範囲であることを特徴とする請求項1又は2記載の気相成長方法。   The number of rotations of the susceptor is 1 to 10 rotations per minute, and the rotation time of the substrate in the negative direction is in the range of 1/8 to 1/2 with respect to the rotation time in the positive direction. 3. The vapor phase growth method according to claim 1 or 2, characterized in that: 前記基板は、正方向に360度回転したときに、負方向に90度回転して正回転に戻ることを成膜操作中に繰り返すことを特徴とする請求項1乃至3のいずれか1項記載の気相成長方法。   4. The substrate according to claim 1, wherein when the substrate rotates 360 degrees in the positive direction, the substrate rotates 90 degrees in the negative direction and returns to the positive rotation during the film forming operation. 5. Vapor phase growth method.
JP2010051574A 2010-03-09 2010-03-09 Vapor phase growth method Pending JP2011187695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010051574A JP2011187695A (en) 2010-03-09 2010-03-09 Vapor phase growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010051574A JP2011187695A (en) 2010-03-09 2010-03-09 Vapor phase growth method

Publications (1)

Publication Number Publication Date
JP2011187695A true JP2011187695A (en) 2011-09-22

Family

ID=44793628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010051574A Pending JP2011187695A (en) 2010-03-09 2010-03-09 Vapor phase growth method

Country Status (1)

Country Link
JP (1) JP2011187695A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014017290A (en) * 2012-07-06 2014-01-30 Taiyo Nippon Sanso Corp Susceptor and vapor phase growth device
JP2021501465A (en) * 2017-10-27 2021-01-14 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Single wafer processing environment with spatial separation
CN115110037A (en) * 2022-06-23 2022-09-27 北海惠科半导体科技有限公司 Coating method of evaporation coating device and evaporation coating device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014017290A (en) * 2012-07-06 2014-01-30 Taiyo Nippon Sanso Corp Susceptor and vapor phase growth device
JP2021501465A (en) * 2017-10-27 2021-01-14 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Single wafer processing environment with spatial separation
JP7337786B2 (en) 2017-10-27 2023-09-04 アプライド マテリアルズ インコーポレイテッド Single wafer processing environment with spatial separation
US11894257B2 (en) 2017-10-27 2024-02-06 Applied Materials, Inc. Single wafer processing environments with spatial separation
CN115110037A (en) * 2022-06-23 2022-09-27 北海惠科半导体科技有限公司 Coating method of evaporation coating device and evaporation coating device
CN115110037B (en) * 2022-06-23 2024-01-12 北海惠科半导体科技有限公司 Coating method of evaporation coating device and evaporation coating device

Similar Documents

Publication Publication Date Title
JP5436043B2 (en) Vapor growth equipment
US7494562B2 (en) Vapor phase growth apparatus
JP2010192720A (en) Semiconductor vapor-phase epitaxial device
JP2016096220A (en) Film formation apparatus
JP2007243060A (en) Gas-phase growth equipment
WO2012120941A1 (en) Vapor deposition apparatus
TWI510658B (en) Film forming apparatus and film forming method
TWI559440B (en) Wafer susceptor apparatus
JP2013147677A (en) Film deposition system
JP2011187695A (en) Vapor phase growth method
JP2008121103A (en) Vacuum vapor-deposition apparatus
JP5139105B2 (en) Vapor growth equipment
KR20070017673A (en) Chemical Vapor Deposition Apparatus for Multiple Substrates
JP2013004956A (en) Rotation system for forming thin film and method for the same
WO2012105313A1 (en) Vapor phase growing apparatus
JP4706531B2 (en) Vapor growth equipment
JP2009275255A (en) Vapor phase growth apparatus
JP2010100914A (en) Method for measuring temperature of substrate of vapor growth device
KR100674872B1 (en) Chemical Vapor Deposition Apparatus for Multiple Substrates
JP2009099770A (en) Vapor deposition apparatus
JP2010024475A (en) Film deposition apparatus, and manufacturing method using the same
JP3070158B2 (en) Susceptor rotation support structure for thin film vapor phase growth equipment
JP5144328B2 (en) Vapor growth equipment
JPH0424916A (en) Film forming apparatus for semiconductor wafer
JP2011060979A (en) Method of manufacturing epitaxial wafer