JP2010100914A - Method for measuring temperature of substrate of vapor growth device - Google Patents

Method for measuring temperature of substrate of vapor growth device Download PDF

Info

Publication number
JP2010100914A
JP2010100914A JP2008275072A JP2008275072A JP2010100914A JP 2010100914 A JP2010100914 A JP 2010100914A JP 2008275072 A JP2008275072 A JP 2008275072A JP 2008275072 A JP2008275072 A JP 2008275072A JP 2010100914 A JP2010100914 A JP 2010100914A
Authority
JP
Japan
Prior art keywords
substrate
temperature
susceptor
time
sec
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008275072A
Other languages
Japanese (ja)
Other versions
JP5330795B2 (en
Inventor
Keita Fuchigami
慶太 渕上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2008275072A priority Critical patent/JP5330795B2/en
Publication of JP2010100914A publication Critical patent/JP2010100914A/en
Application granted granted Critical
Publication of JP5330795B2 publication Critical patent/JP5330795B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for measuring the temperature of a substrate of a vapor growth device capable of reliably measuring the temperature of the substrate by a simple apparatus constitution and simple signal processing. <P>SOLUTION: There is provided a trigger for detecting that a susceptor makes one turn, and there is provided a thermometer to continuously measure the temperature of the susceptor and the substrate. The temperature of the substrate is defined by selecting the temperature of measurement of measuring the temperature of a substrate part based on the turning state of the susceptor detected by the trigger, the set value preset according to the relationship among the susceptor, the substrate and the trigger, and the temperature of measurement of the thermometer. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、気相成長装置の基板温度測定方法に関し、特に、自公転型の気相成長装置を使用して薄膜を気相成長させる際の基板の温度を測定する方法に関する。   The present invention relates to a method for measuring a substrate temperature of a vapor phase growth apparatus, and more particularly to a method for measuring the temperature of a substrate when a thin film is vapor grown using a self-revolving vapor phase growth apparatus.

成膜室内に回転可能に設けられた円盤状のサセプタに複数の基板を周方向に等間隔で保持し、該基板に対して公転運動及び自転運動を与えながら加熱手段により前記サセプタを介して基板を加熱するとともに、前記成膜室の中心部から外側に向かって原料ガスを放射状に供給して薄膜を気相成長させる自公転型の気相成長装置が知られている(例えば、特許文献1参照。)。また、基板を保持したサセプタが回転する形式の気相成長装置において、気相成長中の基板温度を測定するため、サセプタが特定の位置に回転したときに基板の特定の位置の温度を測定する方法が提案されている(例えば、特許文献2参照。)。
特開2007−243060号公報 特開平11−79887号公報
A plurality of substrates are held at equal intervals in the circumferential direction on a disc-shaped susceptor rotatably provided in the film forming chamber, and the substrate is rotated through the susceptor by heating means while giving revolving motion and rotation motion to the substrate. A self-revolution type vapor phase growth apparatus is known in which a raw material gas is supplied radially from the center of the film formation chamber to the outside to vapor phase grow a thin film (for example, Patent Document 1). reference.). Further, in a vapor phase growth apparatus of a type in which a susceptor holding a substrate rotates, the temperature at a specific position of the substrate is measured when the susceptor rotates to a specific position in order to measure the substrate temperature during the vapor phase growth. A method has been proposed (see, for example, Patent Document 2).
JP 2007-243060 A Japanese Patent Laid-Open No. 11-79887

しかし、特許文献2に記載された温度測定方法では、機器構成が複雑になったり、信号処理が複雑になったりしてコスト面で問題がある。   However, the temperature measurement method described in Patent Document 2 has a problem in terms of cost because the device configuration becomes complicated and signal processing becomes complicated.

そこで本発明は、単純な機器構成、単純な信号処理によって基板の温度を確実に測定することができる気相成長装置の基板温度測定方法を提供することを目的としている。   Accordingly, an object of the present invention is to provide a substrate temperature measuring method for a vapor phase growth apparatus that can reliably measure the temperature of a substrate with a simple equipment configuration and simple signal processing.

上記目的を達成するため、本発明の気相成長装置の基板温度測定方法は、回転するサセプタの周方向に等間隔で複数の基板を保持し、該基板を加熱手段により加熱しながら原料ガスを供給し、前記基板面に薄膜を気相成長させる気相成長装置における前記基板の温度を測定する方法において、前記サセプタが1回転したことを検出するためのトリガを設けるとともに、前記サセプタ及び前記基板の温度を連続的に測定するための温度計を設け、前記トリガによって検出したサセプタの回転状態と、サセプタと基板とトリガとの関係に応じてあらかじめ設定された設定値と、前記温度計の測定温度とに基づいて、基板部分の温度を測定した測定温度を選別することを特徴としている。   In order to achieve the above object, the substrate temperature measuring method of the vapor phase growth apparatus of the present invention holds a plurality of substrates at equal intervals in the circumferential direction of a rotating susceptor, and supplies a source gas while heating the substrates by a heating means. In the method for measuring the temperature of the substrate in a vapor phase growth apparatus for supplying and vapor-depositing a thin film on the substrate surface, a trigger for detecting that the susceptor has made one revolution is provided, and the susceptor and the substrate A thermometer for continuously measuring the temperature of the susceptor, the rotation state of the susceptor detected by the trigger, a preset value set according to the relationship between the susceptor, the substrate and the trigger, and the measurement of the thermometer Based on the temperature, the measurement temperature obtained by measuring the temperature of the substrate portion is selected.

さらに、本発明の基板温度測定方法は、前記トリガが、複数の基板の内の任意の隣接する2枚の基板間の中央に対応する位置に設けられていること、前記設定値は、サセプタの回転数であるX[rpm]と、サセプタが前記X[rpm]で回転している状態において、前記トリガが検出されてから該トリガのサセプタ回転方向直後に位置する1枚目の基板の温度測定開始点に前記温度計の温度測定点が至るまでに要する時間A[sec]と、該1枚目の基板の温度測定開始点から温度測定終了点に前記温度計の温度測定点が至るまでに要する時間B[sec]と、該1枚目の基板の温度測定終了点から該1枚目の基板のサセプタ回転方向直後に位置する2枚目の基板の温度測定開始点に前記温度計の温度測定点が至るまでに要する時間C[sec]とであることを特徴としている。   Furthermore, in the substrate temperature measuring method of the present invention, the trigger is provided at a position corresponding to the center between any two adjacent substrates of the plurality of substrates, and the set value is determined by the susceptor. In a state where the rotation speed is X [rpm] and the susceptor is rotating at the X [rpm], the temperature measurement of the first substrate positioned immediately after the trigger is detected and immediately after the trigger is rotated in the susceptor rotation direction. The time A [sec] required for the temperature measurement point of the thermometer to reach the start point and the temperature measurement point of the thermometer from the temperature measurement start point of the first substrate to the temperature measurement end point The temperature of the thermometer is between the time B [sec] required and the temperature measurement start point of the second substrate located immediately after the first substrate temperature measurement end point in the susceptor rotation direction of the first substrate. Time C [s required to reach the measurement point It is characterized in that it is a c].

また、前記測定温度の選別は、前記トリガを検出することによって測定されたサセプタの実回転数Y[rpm]と、サセプタに保持した基板の枚数[n](nは2以上の自然数)と、前記設定値である回転数X[rpm]、時間A[sec]、時間B[sec]及び時間C[sec]とに基づいて、下記の式(1)及び式(2)により、
S(m)=((B+C)×(m−1)+A)/(Y/X)・・・(1)
T(m)=((B+C)×(m−1)+A+B)/(Y/X)・・・(2)
トリガが検出されてからm(mは1〜nの自然数)枚目の基板における温度測定開始点に前記温度計の温度測定点が至るまでの時間S(m)[sec]及びトリガが検出されてから該m枚目の基板における温度測定終了点に前記温度計の温度測定点が至るまでの時間T(m)[sec]を算出し、時間S(m)[sec]から時間T(m)[sec]までの間に測定した温度をm枚目の基板の温度とすることを特徴としている。
In addition, the selection of the measurement temperature includes the actual rotation speed Y [rpm] of the susceptor measured by detecting the trigger, the number of substrates [n] (n is a natural number of 2 or more) held on the susceptor, Based on the set values of the rotational speed X [rpm], the time A [sec], the time B [sec], and the time C [sec], the following equations (1) and (2):
S (m) = ((B + C) × (m−1) + A) / (Y / X) (1)
T (m) = ((B + C) × (m−1) + A + B) / (Y / X) (2)
The time S (m) [sec] from when the trigger is detected until the temperature measurement start point of the thermometer reaches the temperature measurement start point on the m-th substrate (m is a natural number of 1 to n) and the trigger are detected. After that, a time T (m) [sec] until the temperature measurement point of the thermometer reaches the temperature measurement end point on the m-th substrate is calculated, and the time T (m) is calculated from the time S (m) [sec]. ) The temperature measured up to [sec] is the temperature of the m-th substrate.

本発明の気相成長装置の基板温度測定方法によれば、基本的に、サセプタの径、基板の径及びサセプタが保持する基板の枚数によって決まる設定値と、トリガによって検出したサセプタの回転状態とにより、基板の温度測定対象となる部分と他のサセプタなどの部分とを選別することができるので、温度計の他には、サセプタの回転状態を検出するトリガを設けるだけでよく、機器構成を簡略化することができる。また、温度計は連続的に温度を測定し、基板の温度測定対象となる部分の温度のみを取り出す演算処理を行うだけでよいことから、信号処理の簡略化も図れる。   According to the substrate temperature measuring method of the vapor phase growth apparatus of the present invention, basically, the set value determined by the diameter of the susceptor, the diameter of the substrate and the number of substrates held by the susceptor, and the rotation state of the susceptor detected by the trigger Thus, it is possible to sort out the part of the substrate that is the temperature measurement target and the part of the other susceptor, etc. Therefore, in addition to the thermometer, it is only necessary to provide a trigger for detecting the rotation state of the susceptor. It can be simplified. In addition, since the thermometer only needs to perform a calculation process for continuously measuring the temperature and extracting only the temperature of the portion of the substrate that is a temperature measurement target, the signal processing can be simplified.

図1は本発明の基板温度測定方法における温度測定状態を示す説明図、図2は測定した温度の変化を示す図、図3は本発明の基板温度測定方法を実施可能な気相成長装置の一形態例を示す断面正面図である。   FIG. 1 is an explanatory diagram showing a temperature measurement state in the substrate temperature measurement method of the present invention, FIG. 2 is a diagram showing changes in the measured temperature, and FIG. 3 is a diagram of a vapor phase growth apparatus capable of implementing the substrate temperature measurement method of the present invention. It is a section front view showing an example.

まず、図3に示す気相成長装置は、成膜室11内に円盤状のサセプタ12を回転可能に設けるとともに、該サセプタ12の外周部に外歯車を有する基板保持部材13を周方向に等間隔で回転可能に設けるとともに、サセプタ12の外周を囲むように内歯車部材14を固定した自公転型気相成長装置であって、サセプタ12は、成膜室11の底面中央部を貫通した回転軸15により支持され、サセプタ12の下方には基板加熱手段であるヒーター16が設けられるとともに、基板温度を測定するための放射温度計17が挿入されている。また、成膜室11のサセプタ12の表面側中央部には、原料ガスを導入するガス導入部18が設けられ、成膜室11の外周部にはガス排出部19が設けられている。なお、基板保持部材13はサセプタ12の一部を構成するものであって、通常、これらはカーボンで形成されている。   First, in the vapor phase growth apparatus shown in FIG. 3, a disk-shaped susceptor 12 is rotatably provided in the film forming chamber 11, and a substrate holding member 13 having an external gear on the outer periphery of the susceptor 12 is provided in the circumferential direction. A self-revolving vapor phase growth apparatus provided so as to be rotatable at intervals and having an internal gear member 14 fixed so as to surround the outer periphery of the susceptor 12. The susceptor 12 rotates through the center of the bottom surface of the film forming chamber 11. A heater 16 as a substrate heating means is provided below the susceptor 12 and supported by a shaft 15. A radiation thermometer 17 for measuring the substrate temperature is inserted therein. In addition, a gas introduction part 18 for introducing a source gas is provided in the central part on the surface side of the susceptor 12 in the film formation chamber 11, and a gas discharge part 19 is provided in the outer peripheral part of the film formation chamber 11. The substrate holding member 13 constitutes a part of the susceptor 12, and these are usually made of carbon.

この気相成長装置を使用して基板上に薄膜を形成する際には、ヒーター16によりサセプタ12や基板保持部材13を介して基板を所定温度に加熱しながら、ガス導入部18から成膜室11内に原料ガスを導入し、排気ガスをガス排出部19を通して成膜室11内から排出する。このとき、回転軸15によってサセプタ12が回転駆動されることにより、回転軸15を中心として基板保持部材13が公転するとともに、基板保持部材13の外歯車が内歯車部材14に噛み合って基板保持部材13が自転することにより、基板保持部材13に保持された基板が自公転する状態になる。   When a thin film is formed on a substrate using this vapor phase growth apparatus, the film introduction chamber 18 is heated from the gas introduction unit 18 while the substrate is heated to a predetermined temperature by the heater 16 via the susceptor 12 and the substrate holding member 13. A raw material gas is introduced into 11, and exhaust gas is discharged from the film forming chamber 11 through the gas discharge unit 19. At this time, when the susceptor 12 is rotationally driven by the rotating shaft 15, the substrate holding member 13 revolves around the rotating shaft 15, and the external gear of the substrate holding member 13 meshes with the internal gear member 14, and the substrate holding member When 13 rotates, the substrate held by the substrate holding member 13 rotates and revolves.

次に、このような自公転型の気相成長装置で基板の温度を測定する方法の一例を、図1及び図2を参照して説明する。まず、図1に示すように、サセプタ12(基板保持部材13を含む。以下同じ。)には、周方向に等間隔で8枚のサファイア製の基板Pが保持されており、薄膜形成処理中には、サセプタ12の回転と同じ回転速度で同じ方向に回転(公転)する。   Next, an example of a method for measuring the temperature of the substrate using such a self-revolving vapor phase growth apparatus will be described with reference to FIGS. First, as shown in FIG. 1, the susceptor 12 (including the substrate holding member 13; the same applies hereinafter) holds eight sapphire substrates P at equal intervals in the circumferential direction. Rotate (revolve) in the same direction at the same rotational speed as the susceptor 12.

サセプタ12あるいは該サセプタ12と共に回転する回転軸15には、サセプタ12が1回転したことを検出するためのトリガが設けられている。このトリガは、サセプタ12が1回転したことを検出することができれば任意の検出手段を用いることができ、機械的、電気的など各種のセンサを用いることができる。また、図1に示す円Aは、前記放射温度計17の温度測定点が通る軌跡を示すもので、基板Pの中心部あるいはその近傍を通るように設定されている。   The susceptor 12 or the rotating shaft 15 that rotates together with the susceptor 12 is provided with a trigger for detecting that the susceptor 12 has made one rotation. As the trigger, any detection means can be used as long as it can detect that the susceptor 12 has made one rotation, and various sensors such as mechanical and electrical can be used. A circle A shown in FIG. 1 indicates a locus through which the temperature measurement point of the radiation thermometer 17 passes, and is set so as to pass through the central portion of the substrate P or in the vicinity thereof.

図2は、放射温度計17で測定した温度の変化を示すもので、温度測定点がサセプタ12の回転に応じて温度測定点がトリガの位置L0から移動したときの各温度測定点における温度を表している。この図2からわかるように、基板Pが上面に存在する部分の測定温度と、基板Pが上面に存在していない部分の測定温度とに差があり、例えば、基板Pが存在している部分の測定温度が800℃のときに、基板が存在していない部分の測定温度は約770℃となり、30℃程度の差が生じる。   FIG. 2 shows a change in temperature measured by the radiation thermometer 17, and the temperature at each temperature measurement point when the temperature measurement point moves from the trigger position L0 according to the rotation of the susceptor 12 is shown. Represents. As can be seen from FIG. 2, there is a difference between the measurement temperature of the portion where the substrate P exists on the upper surface and the measurement temperature of the portion where the substrate P does not exist on the upper surface, for example, a portion where the substrate P exists. When the measurement temperature is 800 ° C., the measurement temperature of the portion where the substrate is not present is about 770 ° C., and a difference of about 30 ° C. occurs.

すなわち、温度測定点がトリガの位置L0から1枚目の基板P1のトリガ側外縁の点L1までの回転距離の範囲では、上面に基板が存在しないために測定温度が低くなっており、基板P1のトリガ側外縁の点L1から基板P1の反トリガ側外縁の点L4までの回転距離の範囲では基板P1が存在しているために測定温度が高くなっている。さらに、基板P1の反トリガ側外縁の点L4から基板P2のトリガ側外縁の点L5までは温度が低く、基板P2のトリガ側外縁の点L5から基板P2の反トリガ側外縁の点L8までは温度が高くなっている。基板P3以下も同様に、基板Pが存在している部分では温度が高く、基板Pが存在していない部分では温度が低く測定される。   That is, in the range of the rotation distance from the trigger position L0 to the trigger-side outer edge point L1 of the first substrate P1, the measurement temperature is low because the substrate does not exist on the upper surface, and the substrate P1. In the range of the rotation distance from the trigger-side outer edge point L1 to the counter-trigger-side outer edge point L4 of the substrate P1, the substrate P1 is present, so the measurement temperature is high. Further, the temperature is low from the point L4 on the counter trigger side outer edge of the substrate P1 to the point L5 on the trigger side outer edge of the substrate P2, and from the point L5 on the trigger side outer edge of the substrate P2 to the point L8 on the counter trigger side outer edge of the substrate P2. The temperature is high. Similarly, the temperature below the substrate P3 is high at the portion where the substrate P is present, and the temperature is low at the portion where the substrate P is not present.

したがって、基板Pが存在している部分の測定温度と存在しない部分の測定温度とから、基板Pが存在している部分の測定温度を選別し、これを基板温度とする選別操作が必要となる。この選別操作を開始する前に、選別操作に必要な演算処理を行うコンピュータなどの制御手段に、基本的に、サセプタ12の径(直径、半径いずれでも可)あるいはサセプタ12に設けた基板保持部材13の中心点が通る軌跡の径、基板の径及びサセプタが保持する基板の枚数によって決まる設定値をあらかじめ入力する。これらの設定値と、前記トリガによって検出したサセプタ12の回転状態とから、基板Pが存在している部分と存在しない部分とを選別することができる。   Therefore, it is necessary to select the measurement temperature of the portion where the substrate P exists from the measurement temperature of the portion where the substrate P exists and the measurement temperature of the portion where the substrate P does not exist, and use this as the substrate temperature. . Before starting the sorting operation, a control means such as a computer for performing arithmetic processing necessary for the sorting operation is basically used as a diameter of the susceptor 12 (either diameter or radius is acceptable) or a substrate holding member provided on the susceptor 12. A set value determined in advance by the diameter of the trajectory through which the 13 central points pass, the diameter of the substrate, and the number of substrates held by the susceptor is input in advance. From these set values and the rotation state of the susceptor 12 detected by the trigger, it is possible to select a portion where the substrate P is present and a portion where the substrate P is not present.

例えば、計算が容易な数値を挙げて説明すると、直径が約200mmのサセプタ12の外周に等間隔で直径が約60mmの基板Pを4枚保持し、基板Pの中心が通る軌跡の円の円周の長さを約360mmとした場合、サセプタ12が1周すると、基板Pが存在する部分の長さは、約60mm×4で約240mm、基板Pが存在しない部分の長さは、約360mm−約240mmで約120mmであり、隣接する基板間では約120mm/4でそれぞれ約30mmとなる。   For example, a numerical value that is easy to calculate will be described. Four substrates P having a diameter of about 60 mm are held at equal intervals on the outer periphery of the susceptor 12 having a diameter of about 200 mm, and a circle of a trajectory that passes through the center of the substrate P. When the circumference is about 360 mm, when the susceptor 12 makes one turn, the length of the portion where the substrate P is present is about 60 mm × 4 and about 240 mm, and the length of the portion where the substrate P is not present is about 360 mm. -About 240 mm, about 120 mm, and about 120 mm / 4 between adjacent substrates, each about 30 mm.

したがって、この場合は、サセプタ12の回転により、放射温度計17の温度測定点では、基板の存在する範囲の約60mmの部分と、基板の存在しない範囲の約30mmの部分とが交互に連続して通過することになる。このとき、サセプタ12が毎分1回転(1rpm)で回転しているとすれば、サセプタ12が1周する60秒の間に、基板有り部分の約10秒、基板無し部分の約5秒が交互に4回ずつ生じることになる。前記トリガの位置L0を基板の回転方向先端外縁部分に設定すれば、トリガの位置L0から約10秒間は基板有り、続く約5秒間は基板無しとなり、以下、約10秒間の基板有りの部分と、約5秒間の基板無しの部分とが繰り返されることになる。これにより、各温度測定点から基板Pが存在している部分の測定温度を選別して取り出すことができる。   Therefore, in this case, due to the rotation of the susceptor 12, at the temperature measurement point of the radiation thermometer 17, a portion of about 60 mm in the range where the substrate exists and a portion of about 30 mm in the range where the substrate does not exist alternately. Will pass through. At this time, if the susceptor 12 is rotating at one revolution per minute (1 rpm), about 60 seconds when the susceptor 12 makes one revolution, about 10 seconds for the portion with the substrate and about 5 seconds for the portion without the substrate. It will occur four times alternately. If the trigger position L0 is set at the outer edge of the rotation direction of the substrate, the substrate is present for about 10 seconds from the trigger position L0, the substrate is absent for about 5 seconds, and the portion with the substrate for about 10 seconds is referred to below. The portion without the substrate for about 5 seconds is repeated. Thereby, the measurement temperature of the part in which the board | substrate P exists can be selected and taken out from each temperature measurement point.

図1では、サセプタ12に8枚の基板Pを保持するとともに、前記トリガを、複数の基板の内の任意の隣接する2枚の基板P1,P8間の中央に対応する位置L0に設けている。また、設定値としては、サセプタ12の回転数X[rpm]と、サセプタ12が前記X[rpm]で回転している状態において、前記トリガが検出されてから該トリガのサセプタ回転方向直後に位置する1枚目の基板P1の温度測定開始点L2に至るまでに要する時間A[sec]と、該1枚目の基板P1の温度測定開始点L2から温度測定終了点L3に至るまでに要する時間B[sec]と、該1枚目の基板P1の温度測定終了点L3から該1枚目の基板P1のサセプタ回転方向直後に位置する2枚目の基板P2の温度測定開始点L5に至るまでに要する時間C[sec]とを用いている。   In FIG. 1, eight substrates P are held on the susceptor 12, and the trigger is provided at a position L0 corresponding to the center between any two adjacent substrates P1 and P8 among the plurality of substrates. . Further, as the set values, when the susceptor 12 is rotated at the rotational speed X [rpm] and the susceptor 12 is rotating at the X [rpm], the position is set immediately after the trigger is detected and immediately after the trigger is rotated. The time A [sec] required to reach the temperature measurement start point L2 of the first substrate P1 and the time required to reach the temperature measurement end point L3 from the temperature measurement start point L2 of the first substrate P1 B [sec] and from the temperature measurement end point L3 of the first substrate P1 to the temperature measurement start point L5 of the second substrate P2 positioned immediately after the susceptor rotation direction of the first substrate P1. Time C [sec] required for.

各設定値A,B,Cは、前述のように、サセプタ12の径あるいはサセプタ12に設けた基板保持部材13の中心点が通る軌跡の径、基板の径及びサセプタが保持する基板の枚数が決まれば計算によって容易に求めることができ、回転数Xについては任意であり、処理中に設定されるサセプタ12の実際の回転数を設定値としてもよく、単純に「1」を設定値とすることもできる。また、基板Pの外縁部分を温度測定開始点や温度測定終了点に設定しないのは、設計上の基板の位置と実際の基板の位置とのずれを考慮したものであり、基板外縁から温度測定開始点や温度測定終了点までの距離は、基板の径等の条件に応じて任意に設定することができる。   As described above, each of the set values A, B, and C includes the diameter of the susceptor 12 or the diameter of the locus through which the central point of the substrate holding member 13 provided on the susceptor 12 passes, the diameter of the substrate, and the number of substrates held by the susceptor. If it is determined, it can be easily obtained by calculation. The rotational speed X is arbitrary, and the actual rotational speed of the susceptor 12 set during processing may be set as a set value, and “1” is simply set as the set value. You can also. The reason why the outer edge portion of the substrate P is not set as the temperature measurement start point or the temperature measurement end point is that the deviation between the designed substrate position and the actual substrate position is taken into consideration. The distance to the start point and the temperature measurement end point can be arbitrarily set according to conditions such as the diameter of the substrate.

ここで、前記トリガを検出することによって測定されたサセプタ12の実回転数Y[rpm]と、サセプタ12に保持した基板Pの枚数[n](nは2以上の自然数)と、前記設定値である回転数(設定回転数)X[rpm]、時間A[sec]、時間B[sec]及び時間C[sec]とに基づいて、トリガが検出されてからm(mは1〜nの自然数)枚目の基板の温度を測定する手順について説明する。   Here, the actual rotation speed Y [rpm] of the susceptor 12 measured by detecting the trigger, the number of substrates P held by the susceptor 12 [n] (n is a natural number of 2 or more), and the set value Based on the rotation speed (set rotation speed) X [rpm], time A [sec], time B [sec], and time C [sec], m (m is 1 to n) after the trigger is detected A procedure for measuring the temperature of the (natural number) th substrate will be described.

まず、トリガが検出されてから1枚目の基板P1における温度測定開始点L2に放射温度計17の温度測定点が至るまでの時間S(1)[sec]は、前記時間A[sec]と、設定回転数に対する実回転数の補正を行えばよく、S(1)=A/(Y/X)で求めることができ、設定回転数X=実回転数Yであれば、S(1)=Aとなる。また、トリガが検出されてから基板P1における温度測定終了点L3に至るまでの時間T(1)[sec]は、前記時間A[sec]と時間B[sec]との和に対して回転数の補正を行えばよいことから、T(1)=(A+B)/(Y/X)で求められる。   First, the time S (1) [sec] from when the trigger is detected until the temperature measurement start point L2 of the first substrate P1 reaches the temperature measurement start point L2 is the time A [sec]. The actual rotational speed may be corrected with respect to the set rotational speed, and can be obtained by S (1) = A / (Y / X). If the set rotational speed X = actual rotational speed Y, S (1) = A. The time T (1) [sec] from the detection of the trigger to the temperature measurement end point L3 on the substrate P1 is the number of rotations with respect to the sum of the time A [sec] and the time B [sec]. Therefore, T (1) = (A + B) / (Y / X) is obtained.

2枚目の基板P2における温度測定開始点L6に温度測定点が至るまでの時間S(2)[sec]は、前記時間A[sec]、時間B[sec]及び時間C[sec]の和に対して回転数の補正を行えばよく、この時間S(2)[sec]と時間B[sec]との和に回転数の補正を行えば、基板P2における温度測定終了点L7に温度測定点が至るまでの時間T(2)[sec]が求められる。   The time S (2) [sec] until the temperature measurement point reaches the temperature measurement start point L6 on the second substrate P2 is the sum of the time A [sec], the time B [sec], and the time C [sec]. If the rotation number is corrected to the sum of the time S (2) [sec] and the time B [sec], the temperature measurement is completed at the temperature measurement end point L7 on the substrate P2. Time T (2) [sec] until the point is reached is obtained.

すなわち、m枚目の基板における温度測定開始点に温度測定点が至るまでの時間S(m)は、1枚目の基板P1の温度測定開始点に温度測定点が至るまでの時間A[sec]と、m枚目に至るまでに温度測定点が経過した時間B[sec]及び時間C[sec]の和に回転数の補正を行えばよいことになり、また、m枚目の基板における温度測定終了点に温度測定点が至るまでの時間T(m)は、温度測定開始点に温度測定点が至るまでの時間S(m)と時間B[sec]との和に回転数の補正を行えばよいことになるから、m枚目の基板における温度測定開始点に温度測定点が至るまでの時間S(m)は、下記の式(1)にて表すことができ、m枚目の基板における温度測定終了点に温度測定点が至るまでの時間T(m)は、下記の式(2)にて表すことができる。   That is, the time S (m) until the temperature measurement point reaches the temperature measurement start point in the m-th substrate is the time A [sec] until the temperature measurement point reaches the temperature measurement start point of the first substrate P1. ] And the sum of the time B [sec] and the time C [sec] that the temperature measurement point has passed before reaching the m-th sheet, and the rotation number may be corrected. The time T (m) until the temperature measurement point reaches the temperature measurement end point is the sum of the time S (m) and the time B [sec] until the temperature measurement point reaches the temperature measurement start point. Therefore, the time S (m) until the temperature measurement point reaches the temperature measurement start point on the m-th substrate can be expressed by the following equation (1). The time T (m) required for the temperature measurement point to reach the temperature measurement end point on the substrate is expressed by the following equation (2). It can be represented by.

S(m)=((B+C)×(m−1)+A)/(Y/X)・・・(1)
T(m)=((B+C)×(m−1)+A+B)/(Y/X)・・・(2)
S (m) = ((B + C) × (m−1) + A) / (Y / X) (1)
T (m) = ((B + C) × (m−1) + A + B) / (Y / X) (2)

例えば、基板枚数n=8枚、設定回転数X=1rpm、時間A=2.5sec、時間B=3.5sec、時間C=4.0secに設定されており、トリガで検出したサセプタの実回転数Yが5rpmの場合、トリガを検出したときを0secとして温度測定を開始すると、各基板の温度測定開始点に温度測定点が至る時間(測定開始時間)S(m)と各基板の温度測定終了点に温度測定点が至る時間(測定終了時間)T(m)とは、表1に示す時間となる。また、温度測定点が8枚目の基板P8を通過し、トリガが検出されると計測時間はリセットされて0に戻る。

Figure 2010100914
For example, the number of substrates n = 8, set rotation speed X = 1 rpm, time A = 2.5 sec, time B = 3.5 sec, time C = 4.0 sec, and actual rotation of the susceptor detected by the trigger When the number Y is 5 rpm and the temperature measurement is started with the time when the trigger is detected as 0 sec, the time (measurement start time) S (m) that the temperature measurement point reaches the temperature measurement start point of each substrate and the temperature measurement of each substrate The time taken for the temperature measurement point to reach the end point (measurement end time) T (m) is the time shown in Table 1. When the temperature measurement point passes through the eighth substrate P8 and a trigger is detected, the measurement time is reset and returns to zero.
Figure 2010100914

このようにして算出した各測定開始時間と各測定終了時間との間の範囲で放射温度計17により測定した温度を基板温度とすることにより、不要な部分の測定温度を排除して各基板の温度を正確に測定することができる。表2は前述のようにして測定した各基板の温度を示している。

Figure 2010100914
By setting the temperature measured by the radiation thermometer 17 in the range between each measurement start time and each measurement end time calculated in this manner as the substrate temperature, unnecessary measurement temperatures are eliminated and each substrate is measured. The temperature can be measured accurately. Table 2 shows the temperature of each substrate measured as described above.
Figure 2010100914

各基板の温度は、該基板の温度測定開始点から温度測定終了点までの間の温度測定範囲内で測定した温度の平均値であり、各基板における温度測定範囲における温度測定点数は、サセプタ12の回転数と演算処理するPLCの演算処理速度に依存し、例えば、回転数が1rpmで演算処理速度が50msecの場合、温度測定範囲の時間Bは3500msecであるから、温度測定点は70点となる。また、この70点の温度測定点をさらに区分けすることにより、各基板における外周部の温度と中心部の温度とをそれぞれ測定することが可能となる。   The temperature of each substrate is an average value of the temperatures measured in the temperature measurement range from the temperature measurement start point to the temperature measurement end point of the substrate, and the number of temperature measurement points in the temperature measurement range on each substrate is the susceptor 12. For example, when the rotation speed is 1 rpm and the calculation processing speed is 50 msec, the time B in the temperature measurement range is 3500 msec, so the temperature measurement point is 70 points. Become. Further, by further dividing the 70 temperature measurement points, it is possible to measure the temperature of the outer peripheral portion and the temperature of the central portion of each substrate.

さらに、このようにして得られた基板温度は、ヒーター16の出力を制御するヒーター制御手段に温度信号として送信され、測定温度に応じた出力制御が行われる。ヒーター制御手段に送信する温度信号は、サセプタ12の1回転分の測定温度を平均した温度であってもよく、最高温度や最低温度、温度のばらつきを含めた温度情報であってもよい。   Furthermore, the substrate temperature obtained in this way is transmitted as a temperature signal to a heater control means for controlling the output of the heater 16, and output control according to the measured temperature is performed. The temperature signal transmitted to the heater control means may be a temperature obtained by averaging measured temperatures for one rotation of the susceptor 12 or may be temperature information including a maximum temperature, a minimum temperature, and temperature variations.

なお、本発明の基板温度測定方法は、本形態例に示す自公転型に限らず、公転のみを行う気相成長装置にも適用することができ、基板を下向きに保持する形式の気相成長装置にも適用することができる。また、トリガの設置位置はサセプタの回転状態を検出できる位置ならば任意の位置に設けることができ、サセプタ、回転軸だけでなく、回転軸を駆動するモーターからトリガ信号を得るようにしてもよく、回転状態を検出する方法も任意である。また、温度計にも任意の温度測定手段を用いることができ、設置位置も任意であり、例えば本形態例におけるサセプタ上面側(成膜室11の天板側)に設けることもできる。さらに、加熱手段も任意の加熱手段を用いることができ、基板表面側から基板を加熱するものを用いることも可能である。   The substrate temperature measuring method of the present invention is not limited to the self-revolving type shown in the present embodiment, but can be applied to a vapor phase growth apparatus that performs only revolving, and a method of vapor phase growth in which the substrate is held downward. It can also be applied to devices. The trigger can be installed at any position as long as the rotation state of the susceptor can be detected, and the trigger signal may be obtained not only from the susceptor and the rotation shaft but also from a motor that drives the rotation shaft. The method for detecting the rotation state is also arbitrary. Further, any temperature measuring means can be used for the thermometer, and the installation position is also arbitrary. For example, the thermometer can be provided on the susceptor upper surface side (the top plate side of the film forming chamber 11) in this embodiment. Furthermore, any heating means can be used as the heating means, and it is possible to use a means for heating the substrate from the substrate surface side.

本発明の基板温度測定方法における温度測定状態を示す説明図である。It is explanatory drawing which shows the temperature measurement state in the substrate temperature measuring method of this invention. 測定した温度の変化を示す図である。It is a figure which shows the change of the measured temperature. 本発明の基板温度測定方法を実施可能な気相成長装置の一形態例を示す断面正面図である。It is a cross-sectional front view which shows one example of the vapor phase growth apparatus which can implement the substrate temperature measuring method of this invention.

符号の説明Explanation of symbols

11…成膜室、12…サセプタ、13…基板保持部材、14…内歯車部材、15…回転軸、16…ヒーター、17…放射温度計、18…ガス導入部、19…ガス排出部   DESCRIPTION OF SYMBOLS 11 ... Film-forming chamber, 12 ... Susceptor, 13 ... Substrate holding member, 14 ... Internal gear member, 15 ... Rotating shaft, 16 ... Heater, 17 ... Radiation thermometer, 18 ... Gas introduction part, 19 ... Gas discharge part

Claims (4)

回転するサセプタの周方向に等間隔で複数の基板を保持し、該基板を加熱手段により加熱しながら原料ガスを供給し、前記基板面に薄膜を気相成長させる気相成長装置における前記基板の温度を測定する方法において、前記サセプタが1回転したことを検出するためのトリガを設けるとともに、前記サセプタ及び前記基板の温度を連続的に測定するための温度計を設け、前記トリガによって検出したサセプタの回転状態と、サセプタと基板とトリガとの関係に応じてあらかじめ設定された設定値と、前記温度計の測定温度とに基づいて、基板部分の温度を測定した測定温度を選別することを特徴とする気相成長装置の基板温度測定方法。   A plurality of substrates are held at equal intervals in the circumferential direction of the rotating susceptor, a source gas is supplied while the substrates are heated by a heating means, and a thin film on the substrate surface is grown in a vapor phase. In the method for measuring temperature, a trigger for detecting one rotation of the susceptor is provided, and a thermometer for continuously measuring the temperature of the susceptor and the substrate is provided, and the susceptor detected by the trigger is provided. The measurement temperature obtained by measuring the temperature of the substrate portion is selected on the basis of the set value preset according to the rotation state of the susceptor, the substrate and the trigger, and the measured temperature of the thermometer. A method for measuring a substrate temperature of a vapor phase growth apparatus. 前記トリガは、複数の基板の内の任意の隣接する2枚の基板間の中央に対応する位置に設けられていることを特徴とする請求項1記載の気相成長装置の基板温度測定方法。   2. The substrate temperature measuring method for a vapor phase growth apparatus according to claim 1, wherein the trigger is provided at a position corresponding to the center between any two adjacent substrates of the plurality of substrates. 前記設定値は、サセプタの回転数であるX[rpm]と、サセプタが前記X[rpm]で回転している状態において、前記トリガが検出されてから該トリガのサセプタ回転方向直後に位置する1枚目の基板の温度測定開始点に前記温度計の温度測定点が至るまでに要する時間A[sec]と、該1枚目の基板の温度測定開始点から温度測定終了点に前記温度計の温度測定点が至るまでに要する時間B[sec]と、該1枚目の基板の温度測定終了点から該1枚目の基板のサセプタ回転方向直後に位置する2枚目の基板の温度測定開始点に前記温度計の温度測定点が至るまでに要する時間C[sec]とであることを特徴とする請求項2記載の気相成長装置の基板温度測定方法。   The set value is 1 [X] [rpm], which is the rotation speed of the susceptor, and 1 immediately after the trigger is detected in the state where the susceptor is rotating at [X] [rpm]. The time A [sec] required for the temperature measurement point of the thermometer to reach the temperature measurement start point of the first substrate and the temperature measurement start point of the first substrate from the temperature measurement start point of the first substrate The time B [sec] required for the temperature measurement point to reach and the temperature measurement start of the second substrate located immediately after the temperature measurement end point of the first substrate immediately after the susceptor rotation direction of the first substrate is started. 3. The method for measuring a substrate temperature of a vapor phase growth apparatus according to claim 2, wherein a time C [sec] required until the temperature measurement point of the thermometer reaches the point. 前記測定温度の選別は、前記トリガを検出することによって測定されたサセプタの実回転数Y[rpm]と、サセプタに保持した基板の枚数[n](nは2以上の自然数)と、前記設定値である回転数X[rpm]、時間A[sec]、時間B[sec]及び時間C[sec]とに基づいて、以下の式(1)及び式(2)により、トリガが検出されてからm(mは1〜nの自然数)枚目の基板における温度測定開始点に前記温度計の温度測定点が至るまでの時間S(m)[sec]及びトリガが検出されてから該m枚目の基板における温度測定終了点に前記温度計の温度測定点が至るまでの時間T(m)[sec]を算出し、時間S(m)[sec]から時間T(m)[sec]までの間に測定した温度をm枚目の基板の温度とすることを特徴とする請求項3記載の気相成長装置の基板温度測定方法。
S(m)=((B+C)×(m−1)+A)/(Y/X)・・・(1)
T(m)=((B+C)×(m−1)+A+B)/(Y/X)・・・(2)
The selection of the measurement temperature includes the actual rotation speed Y [rpm] of the susceptor measured by detecting the trigger, the number of substrates [n] (n is a natural number of 2 or more) held on the susceptor, and the setting. Based on the values of the rotational speed X [rpm], time A [sec], time B [sec], and time C [sec], the trigger is detected by the following equations (1) and (2). To m (m is a natural number between 1 and n) sheets, the time S (m) [sec] until the temperature measurement start point of the thermometer reaches the temperature measurement start point and the m sheets after the trigger is detected The time T (m) [sec] until the temperature measurement point of the thermometer reaches the temperature measurement end point on the eye substrate is calculated, and from time S (m) [sec] to time T (m) [sec]. The temperature measured during this period is the temperature of the mth substrate. Substrate temperature measuring method of the vapor phase growth apparatus according to claim 3,.
S (m) = ((B + C) × (m−1) + A) / (Y / X) (1)
T (m) = ((B + C) × (m−1) + A + B) / (Y / X) (2)
JP2008275072A 2008-10-27 2008-10-27 Method for measuring substrate temperature of vapor phase growth apparatus Active JP5330795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008275072A JP5330795B2 (en) 2008-10-27 2008-10-27 Method for measuring substrate temperature of vapor phase growth apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008275072A JP5330795B2 (en) 2008-10-27 2008-10-27 Method for measuring substrate temperature of vapor phase growth apparatus

Publications (2)

Publication Number Publication Date
JP2010100914A true JP2010100914A (en) 2010-05-06
JP5330795B2 JP5330795B2 (en) 2013-10-30

Family

ID=42291801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008275072A Active JP5330795B2 (en) 2008-10-27 2008-10-27 Method for measuring substrate temperature of vapor phase growth apparatus

Country Status (1)

Country Link
JP (1) JP5330795B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101207234B1 (en) * 2011-02-07 2012-12-03 엘아이지에이디피 주식회사 Chemical vapor deposition apparatus and temperature control method for the same
JP2012248634A (en) * 2011-05-26 2012-12-13 Tokyo Electron Ltd Temperature measurement device, temperature measurement method, memory medium and heat treatment device
JP2012248631A (en) * 2011-05-26 2012-12-13 Tokyo Electron Ltd Temperature measurement device, temperature measurement method, memory medium and heat treatment device
JP2015074821A (en) * 2013-10-11 2015-04-20 大陽日酸株式会社 Film thickness measurement method for vapor phase growth apparatus
JP2016100601A (en) * 2014-11-21 2016-05-30 漢民科技股▲分▼有限公司 Method for controlling wafer and thin film temperature

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1179887A (en) * 1997-09-04 1999-03-23 Japan Energy Corp Temperature measurement of substrate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1179887A (en) * 1997-09-04 1999-03-23 Japan Energy Corp Temperature measurement of substrate

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101207234B1 (en) * 2011-02-07 2012-12-03 엘아이지에이디피 주식회사 Chemical vapor deposition apparatus and temperature control method for the same
JP2012248634A (en) * 2011-05-26 2012-12-13 Tokyo Electron Ltd Temperature measurement device, temperature measurement method, memory medium and heat treatment device
JP2012248631A (en) * 2011-05-26 2012-12-13 Tokyo Electron Ltd Temperature measurement device, temperature measurement method, memory medium and heat treatment device
TWI603412B (en) * 2011-05-26 2017-10-21 東京威力科創股份有限公司 Temperature measurement apparatus, method of measuring temperature profile, recording medium and heat treatment apparatus
JP2015074821A (en) * 2013-10-11 2015-04-20 大陽日酸株式会社 Film thickness measurement method for vapor phase growth apparatus
JP2016100601A (en) * 2014-11-21 2016-05-30 漢民科技股▲分▼有限公司 Method for controlling wafer and thin film temperature
CN105624638A (en) * 2014-11-21 2016-06-01 汉民科技股份有限公司 Control system and method for temperature of chemical vapor deposition wafer and film
US9617636B2 (en) 2014-11-21 2017-04-11 Hermes-Epitek Corporation System and method for controlling wafer and thin film surface temperature

Also Published As

Publication number Publication date
JP5330795B2 (en) 2013-10-30

Similar Documents

Publication Publication Date Title
JP5330795B2 (en) Method for measuring substrate temperature of vapor phase growth apparatus
TWI432601B (en) Temperature control method for chemical vapor deposition apparatus
KR101542289B1 (en) Method and apparatus for measuring temperature, storage medium and heat treatment apparatus
KR101489556B1 (en) Method and apparatus for measuring temperature, storage medium and heat treatment apparatus
TWI515329B (en) Gas growth device
KR101383283B1 (en) Chemical vapor deposition device and temperature control method of chemical vapor deposition device
JP6000173B2 (en) PVD processing apparatus and PVD processing method
JP2018147939A (en) Auto-rotation detection jig, substrate processing apparatus and operation method of substrate processing apparatus
JP2007243060A (en) Gas-phase growth equipment
JP2014032018A (en) Organism chemical analysis system and temperature control using the same
CN105603383B (en) Pallet wafer alignment system, method and MOCVD device
JP5710817B1 (en) Semiconductor wafer position display system, semiconductor wafer position display method, and semiconductor wafer position display program
US20110311690A1 (en) System and method for the preparation of food in a cooking oven
JP2016031352A5 (en)
TWI503908B (en) Substrate processing apparatus, control device thereof, and control method thereof
JP3631921B2 (en) Calibration method for non-contact thermometer
JP2011187695A (en) Vapor phase growth method
SE538429C2 (en) A drive unit for controlling a control valve element, a method for operating a drive unit of a control valve element anda control valve unit
JP5144328B2 (en) Vapor growth equipment
JP2009275255A (en) Vapor phase growth apparatus
JP2006339242A (en) Manufacturing method of semiconductor device
JP6172672B2 (en) Method for measuring film thickness of vapor phase growth apparatus
JP2018189613A (en) Temperature measuring device
JP7305076B1 (en) Data collection analysis system, measurement data collection unit, and data collection analysis method
JPH11106289A (en) Measurement of temperature distribution of substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130726

R150 Certificate of patent or registration of utility model

Ref document number: 5330795

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250