JP2011187414A - Manufacturing method for membrane-electrode assembly - Google Patents

Manufacturing method for membrane-electrode assembly Download PDF

Info

Publication number
JP2011187414A
JP2011187414A JP2010054462A JP2010054462A JP2011187414A JP 2011187414 A JP2011187414 A JP 2011187414A JP 2010054462 A JP2010054462 A JP 2010054462A JP 2010054462 A JP2010054462 A JP 2010054462A JP 2011187414 A JP2011187414 A JP 2011187414A
Authority
JP
Japan
Prior art keywords
electrolyte membrane
opening
substrate
cnt
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010054462A
Other languages
Japanese (ja)
Inventor
Sadahiro Shinozaki
禎宏 篠崎
Seiji Sano
誠治 佐野
Masahiro Imanishi
雅弘 今西
Shigeki Hasegawa
茂樹 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010054462A priority Critical patent/JP2011187414A/en
Publication of JP2011187414A publication Critical patent/JP2011187414A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method for a membrane-electrode assembly, capable of preventing generation of cracks on an electrolyte membrane at electrode transfer. <P>SOLUTION: A CNT electrode 24 wherein CNTs are vertically arranged on the surface of a CNT substrate 16 is formed on the CNT substrate 16. The CNT electrode 24 is transferred to an electrolyte membrane 26, after the CNT substrate 16 is arranged on an opening of a spacer jig 14; and furthermore, a masking jig 18 is arranged so as to cover a peripheral edge of the CNT substrate 16. Consequently, a substrate edge can be restrained from coming into contact with the electrolyte membrane 26 at electrode transfer, since the masking jig 18 can cover the substrate edge of the CNT substrate at the electrode transfer. Generation of cracks on the electrolyte membrane 26 can be restrained, without fail, at the time of the electrode transcription if restraining contact with the electrolyte membrane 26. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、膜電極接合体の製造方法に関し、より詳細には、カーボンナノチューブにより電極が構成された膜電極接合体の製造方法に関する。   The present invention relates to a method for manufacturing a membrane electrode assembly, and more particularly, to a method for manufacturing a membrane electrode assembly in which an electrode is constituted by carbon nanotubes.

従来、例えば特許文献1には、電極と、それよりも寸法の大きい電解質膜とを接合する際に、電解質膜の中央部を一対の電極で挟み込むと同時に、電極範囲の外側の電解質膜を中央部に開口付きの一対の弾性体で挟み込み、電極を加温しながらプレスして膜電極接合体(以下、MEAともいう。)を製造する方法が開示されている。電極よりも大きい電解質膜を用いる際には、プレス時の電解質膜の乾燥収縮により、電極範囲の外側の電解質膜にしわが生じる場合がある。そこで、電極を加温し、電極範囲の外側の電解質膜を、開口付きの弾性体で挟み込みながらプレスすることで、電極範囲の外側の電解質膜を拘束しながら接合できる。従って、しわの発生を抑制した膜電極接合体を製造できる。   Conventionally, for example, in Patent Document 1, when an electrode and an electrolyte membrane having a larger dimension are joined, the center portion of the electrolyte membrane is sandwiched between a pair of electrodes, and at the same time, the electrolyte membrane outside the electrode range is placed in the center. A method of manufacturing a membrane electrode assembly (hereinafter also referred to as MEA) by sandwiching a pair of elastic bodies with openings and pressing the electrodes while heating is disclosed. When an electrolyte membrane larger than the electrode is used, wrinkles may occur in the electrolyte membrane outside the electrode range due to drying shrinkage of the electrolyte membrane during pressing. Therefore, by heating the electrode and pressing the electrolyte membrane outside the electrode range while being sandwiched between the elastic bodies with openings, the electrolyte membrane outside the electrode range can be joined while being restrained. Therefore, it is possible to manufacture a membrane electrode assembly in which the generation of wrinkles is suppressed.

特開2004−214001号公報Japanese Patent Laid-Open No. 2004-214001 特開2002−260684号公報JP 2002-260684 A 特開2007−172844号公報JP 2007-172844 A

ところで、MEAは、一般に、PTFEシートや金属板といった基材上に形成した電極を、電解質膜側に転写することで製造する。上記特許文献1においても、基材上に電極を形成した後、基材と共に切り出して電解質膜側に転写している。   By the way, MEA is generally manufactured by transferring an electrode formed on a substrate such as a PTFE sheet or a metal plate to the electrolyte membrane side. Also in the said patent document 1, after forming an electrode on a base material, it cuts out with a base material and is transcribe | transferred to the electrolyte membrane side.

その一方で、被転写側の電解質膜は、一般に5〜20μm程度と薄い。その上、電解質膜は、転写時に、電解質膜材料のガラス転移点以上に加温される。そのため、転写時において、電解質膜の機械強度は著しく低いといえる。また、転写時には、転写後の剥離を防止する目的で、電解質膜と基材との間に3〜10MPaの転写圧が印加される。   On the other hand, the electrolyte membrane on the transfer side is generally as thin as about 5 to 20 μm. In addition, the electrolyte membrane is heated above the glass transition point of the electrolyte membrane material during transfer. Therefore, it can be said that the mechanical strength of the electrolyte membrane is extremely low during transfer. Further, at the time of transfer, a transfer pressure of 3 to 10 MPa is applied between the electrolyte membrane and the base material for the purpose of preventing peeling after transfer.

従って、基材が付いた状態の電極を転写する際には、基材のエッジに電解質膜の表面が接触する場合があった。基材のエッジに電解質膜の表面が接触すると、局所応力を受けて、部分的に亀裂が生じてしまう可能性がある。特に、特許文献1のように、電極を基材と共に切り出しているような場合、転写側のエッジは鋭くなっている。従って、鋭いエッジに接触した場合には、電解質膜が切断されてしまう可能性もあった。   Therefore, when the electrode with the substrate attached is transferred, the surface of the electrolyte membrane may come into contact with the edge of the substrate. When the surface of the electrolyte membrane comes into contact with the edge of the base material, there is a possibility that a local stress is applied to cause a partial crack. In particular, as in Patent Document 1, when the electrode is cut out together with the base material, the transfer side edge is sharp. Therefore, when contacting a sharp edge, the electrolyte membrane may be cut.

この発明は、上述のような課題を解決するためになされたもので、電極転写時に電解質膜の亀裂の発生を防止可能な膜電極接合体の製造方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a method for producing a membrane electrode assembly capable of preventing the occurrence of cracks in the electrolyte membrane during electrode transfer.

第1の発明は、上記の目的を達成するため、膜電極接合体の製造方法であって、
表面に電極が形成された基材と、前記基材よりも大きい寸法の開口部を有するスペーサ治具とを準備し、前記基材の外周を前記スペーサ治具の開口部で囲うように前記基材と前記スペーサ治具とを配置する工程と、
前記基材よりも小さい寸法の開口部を有するマスキング治具を準備し、前記マスキング治具の開口部を前記基材の電極形成面と対向させつつ、前記マスキング治具の非開口部を前記基材の周縁を覆うように配置する工程と、
前記マスキング治具の開口部を覆うように、前記電極形成面よりも大きい電解質膜を配置する工程と、
前記マスキング治具の開口部よりも小さい寸法の転写圧付与板を準備し、前記電解質膜を介して前記マスキング治具の開口部と対向するように配置する工程と、
前記転写圧付与板の外周を囲うように弾性体を配置する工程と、
を備えることを特徴とする。
In order to achieve the above object, a first invention is a method of manufacturing a membrane electrode assembly,
A base material having an electrode formed on the surface and a spacer jig having an opening having a size larger than that of the base material are prepared, and the base is formed so that the outer periphery of the base material is surrounded by the opening of the spacer jig. Arranging the material and the spacer jig;
A masking jig having an opening having a size smaller than that of the substrate is prepared, and the opening of the masking jig is opposed to the electrode forming surface of the substrate, and the non-opening of the masking jig is set to the base. A step of covering the periphery of the material;
Placing an electrolyte membrane larger than the electrode formation surface so as to cover the opening of the masking jig;
Preparing a transfer pressure applying plate having a size smaller than the opening of the masking jig, and arranging the plate so as to face the opening of the masking jig through the electrolyte membrane;
Arranging an elastic body so as to surround the outer periphery of the transfer pressure applying plate;
It is characterized by providing.

また、第2の発明は、第1の発明において、
前記電解質膜と当接する側の前記マスキング治具の開口部の周囲が、丸みを帯びるように面取りされていることを特徴とする。
The second invention is the first invention, wherein
The periphery of the opening of the masking jig on the side in contact with the electrolyte membrane is chamfered so as to be rounded.

また、第3の発明は、第1又は第2の発明において、
前記スペーサ治具は前記基材よりも厚く、前記マスキング治具の非開口部と当接する側の前記スペーサ治具の開口部の周囲が、丸みを帯びるように面取りされていることを特徴とする。
The third invention is the first or second invention, wherein
The spacer jig is thicker than the base material, and the periphery of the opening of the spacer jig on the side in contact with the non-opening of the masking jig is chamfered to be rounded. .

また、第4の発明は、第1乃至3何れか1つの発明において、
前記電極はカーボンナノチューブを含み、
前記カーボンナノチューブが、前記基材の面方向に対して垂直に形成されていることを特徴とする。
The fourth invention is the invention according to any one of the first to third inventions,
The electrode comprises carbon nanotubes;
The carbon nanotube is formed perpendicular to the surface direction of the substrate.

第1の発明によれば、電極が形成された基材よりも大きい寸法の開口部を有するスペーサ治具と、上記基材よりも小さい寸法の開口部を有するマスキング治具とを用い、上記スペーサ治具の開口部に上記基材を設置し、上記スペーサ治具の上に、上記マスキング治具の非開口部で上記基材の周縁を覆うように設置し、更に、上記マスキング治具の上に上記電極形成面よりも大きい電解質膜を配置して転写できる。従って、上記マスキング治具によって上記基材のエッジを覆うことができるので、電極範囲の外側の電解質膜を、上記基材のエッジに接触させることなく転写できる。   According to the first invention, a spacer jig having an opening having a size larger than that of the substrate on which the electrode is formed and a masking jig having an opening having a size smaller than that of the substrate are used. The base material is installed in the opening of the jig, and is installed on the spacer jig so as to cover the periphery of the base material with the non-opening part of the masking jig. An electrolyte membrane larger than the electrode forming surface can be arranged and transferred. Therefore, since the edge of the base material can be covered with the masking jig, the electrolyte membrane outside the electrode range can be transferred without contacting the edge of the base material.

また、マスキング治具の開口部よりも小さい寸法の転写圧付与板と、転写圧付与板の外周を囲うように配置された弾性体を用いて転写できる。従って、上記マスキング治具の非開口部と、弾性体とで電極範囲の外側の電解質膜を挟み込んで転写できる。以上のことから、第1の発明によれば、膜しわの発生と、基材エッジによる膜亀裂の発生とを同時に防止できる。   Further, transfer can be performed using a transfer pressure applying plate having a size smaller than the opening of the masking jig and an elastic body arranged so as to surround the outer periphery of the transfer pressure applying plate. Therefore, the electrolyte membrane outside the electrode range can be sandwiched and transferred between the non-opening portion of the masking jig and the elastic body. As described above, according to the first invention, it is possible to simultaneously prevent the generation of film wrinkles and the generation of film cracks due to the substrate edge.

転写時においては、電極形成面よりも大きい電解質膜が、電極だけでなくマスキング治具にも当接する。そのため、マスキング治具のエッジによっても膜亀裂が発生する可能性がある。第2の発明によれば、電解質膜と当接する側のマスキング治具の開口部の周囲が、丸みを帯びるように面取りされているので、マスキング治具のエッジによる膜亀裂の発生を防止できる。   At the time of transfer, the electrolyte membrane larger than the electrode formation surface contacts not only the electrode but also the masking jig. Therefore, there is a possibility that a film crack may occur due to the edge of the masking jig. According to the second invention, since the periphery of the opening of the masking jig on the side in contact with the electrolyte membrane is chamfered to be rounded, the occurrence of film cracks due to the edge of the masking jig can be prevented.

第3の発明によれば、スペーサ治具には基材よりも厚いものを用い、また、マスキング治具の非開口部と当接する側のスペーサ治具の開口部の周囲が、丸みを帯びるように面取りされているので、マスキング治具の開口部側に傾斜させながら転写できる。従って、荷重が掛かり易い転写圧付与板の外周当接部分を緩やかに転写できる。   According to the third invention, the spacer jig is thicker than the base material, and the periphery of the opening of the spacer jig on the side in contact with the non-opening of the masking jig is rounded. Since it is chamfered, it can be transferred while being inclined toward the opening side of the masking jig. Therefore, the outer peripheral contact portion of the transfer pressure applying plate which is easily loaded can be transferred gently.

第4の発明によれば、電解質膜の亀裂を発生させることなく、基材の面方向に対して垂直に形成されたカーボンナノチューブを含む電極を電解質膜に転写できる。   According to the fourth invention, an electrode including carbon nanotubes formed perpendicular to the surface direction of the substrate can be transferred to the electrolyte membrane without causing cracks in the electrolyte membrane.

本実施形態のMEAの製造方法に用いるMEA製造装置を説明するための図である。It is a figure for demonstrating the MEA manufacturing apparatus used for the manufacturing method of MEA of this embodiment. 本実施形態のMEAの製造方法の工程図である。It is process drawing of the manufacturing method of MEA of this embodiment. CNT電極24が形成されたCNT基板16の拡大模式図である。It is an expansion schematic diagram of the CNT board | substrate 16 in which the CNT electrode 24 was formed. 本実施形態の製造方法による効果を説明するための図である。It is a figure for demonstrating the effect by the manufacturing method of this embodiment. 本実施形態のMEAの製造方法の具体例を説明するための図である。It is a figure for demonstrating the specific example of the manufacturing method of MEA of this embodiment. 本実施形態のMEAの製造方法の比較例を説明するための図である。It is a figure for demonstrating the comparative example of the manufacturing method of MEA of this embodiment.

以下、図1乃至図6を用いて、本実施形態のMEAの製造方法について説明する。
先ず、図1を用いて、本実施形態のMEAの製造方法に用いるMEA製造装置を説明する。本実施形態のMEAの製造方法に用いるMEA製造装置は、熱プレス板10,12を備えている。熱プレス板10,12のそれぞれは、熱伝導率の高い金属等から構成されている。熱プレス板10,12のそれぞれは、図示しないヒータ等を内蔵し、加熱可能に構成されている。また、熱プレス板10,12のそれぞれは、図示しない昇降装置に接続され、昇降可能に構成されている。
Hereinafter, the manufacturing method of the MEA of this embodiment will be described with reference to FIGS.
First, the MEA manufacturing apparatus used for the MEA manufacturing method of this embodiment will be described with reference to FIG. The MEA manufacturing apparatus used in the MEA manufacturing method of the present embodiment includes hot press plates 10 and 12. Each of the hot press plates 10 and 12 is made of a metal having a high thermal conductivity. Each of the hot press plates 10 and 12 includes a heater or the like (not shown) and is configured to be heatable. Each of the hot press plates 10 and 12 is connected to a lifting device (not shown) and is configured to be liftable.

熱プレス板10上には、スペーサ治具14が設けられている。スペーサ治具14は、金属、セラミックス、シリコンやポリテトラフルオロエチレン(PTFE)製の基板から構成され、その中央部には、カーボンナノチューブ(以下、CNTともいう。)成長用基板としてのCNT基板16のサイズよりも大きい開口部14aが形成されている。また、スペーサ治具14はCNT基板16よりも厚く形成されている。また、図1に示すように、スペーサ治具14の上方の角部14bは、丸く面取りされている。   A spacer jig 14 is provided on the hot press plate 10. The spacer jig 14 is made of a substrate made of metal, ceramics, silicon, or polytetrafluoroethylene (PTFE), and a CNT substrate 16 as a carbon nanotube (hereinafter also referred to as CNT) growth substrate is provided at the center thereof. An opening 14a larger than the size of is formed. The spacer jig 14 is formed thicker than the CNT substrate 16. Further, as shown in FIG. 1, the upper corner 14b of the spacer jig 14 is rounded and chamfered.

スペーサ治具14上には、マスキング治具18が設けられている。マスキング治具18は、PTFE製シートから構成され、その中央部には、CNT基板16のサイズよりも小さい開口部18aが形成されている。また、マスキング治具18の上方の角部18bは、スペーサ治具14同様、丸く面取りされている。   A masking jig 18 is provided on the spacer jig 14. The masking jig 18 is made of a PTFE sheet, and an opening 18a smaller than the size of the CNT substrate 16 is formed at the center thereof. Further, the upper corner 18 b of the masking jig 18 is chamfered round like the spacer jig 14.

マスキング治具18の上方には、転写圧付与板20及び膜しわ防止弾性体22が設けられている。転写圧付与板20は、PTFE、金属等の剛体から構成され、開口部18aのサイズよりも小さく構成されている。膜しわ防止弾性体22は、内部にクッション材を内包したポリイミドやPTFE製のシートから構成され、その中央部には、膜しわ防止弾性体22のサイズよりも大きい開口部22aが形成されている。転写圧付与板20の厚みは、膜しわ防止弾性体22の厚みや潰れ代、圧縮変形特性との相関で決定される。   Above the masking jig 18, a transfer pressure applying plate 20 and a film wrinkle preventing elastic body 22 are provided. The transfer pressure applying plate 20 is made of a rigid body such as PTFE or metal, and is made smaller than the size of the opening 18a. The membrane wrinkle prevention elastic body 22 is made of a sheet made of polyimide or PTFE containing a cushion material therein, and an opening 22a larger than the size of the membrane wrinkle prevention elastic body 22 is formed at the center thereof. . The thickness of the transfer pressure applying plate 20 is determined by the correlation with the thickness of the film wrinkle preventing elastic body 22, the crushing allowance, and the compression deformation characteristics.

次に、図2乃至図4を適宜用いて、本実施形態のMEAの製造方法の詳細を説明する。
図2は、本実施形態のMEAの製造方法の工程図である。図2の(1)に示すように、本実施形態では、先ず、スペーサ治具14の開口部14aに、表面にCNT電極24が形成されたCNT基板16を設置する。
Next, the details of the MEA manufacturing method of the present embodiment will be described using FIGS. 2 to 4 as appropriate.
FIG. 2 is a process diagram of the MEA manufacturing method of the present embodiment. As shown in FIG. 2 (1), in this embodiment, first, the CNT substrate 16 having the CNT electrode 24 formed on the surface is installed in the opening 14 a of the spacer jig 14.

ここで、CNT電極24について、図3を用いて簡単に説明する。図3は、CNT電極24が形成されたCNT基板16の拡大模式図である。図3に示すように、CNT電極24は、CNT24aを複数本備えている。CNT24aは、CNT基板16の表面に担持させた種触媒(図示しない)を起点とし、約800℃の高温条件下、種触媒に炭素源ガスを供給することで成長させたものであり、それぞれCNT基板16の面方向に対して垂直に形成されている。それぞれのCNT24aの外表面には、触媒粒子24bが設けられている。また、それぞれのCNT24aの外表面には、触媒粒子24bを覆うように、アイオノマー24cが設けられている。隣り合うアイオノマー24c間には、空隙24dが形成されている。   Here, the CNT electrode 24 will be briefly described with reference to FIG. FIG. 3 is an enlarged schematic view of the CNT substrate 16 on which the CNT electrodes 24 are formed. As shown in FIG. 3, the CNT electrode 24 includes a plurality of CNTs 24a. The CNT 24a is grown by supplying a carbon source gas to the seed catalyst under a high temperature condition of about 800 ° C. starting from a seed catalyst (not shown) supported on the surface of the CNT substrate 16. It is formed perpendicular to the surface direction of the substrate 16. Catalyst particles 24b are provided on the outer surface of each CNT 24a. An ionomer 24c is provided on the outer surface of each CNT 24a so as to cover the catalyst particles 24b. A gap 24d is formed between adjacent ionomers 24c.

再び図2に戻り、本実施形態のMEAの製造方法詳細を説明する。図2の(1)でCNT基板16を設置した後、図2の(2)に示すように、CNT電極24とマスキング治具18の開口部18aを対向させつつ、CNT基板16の周縁を覆うように、マスキング治具18を設置する。続いて、同図(3)に示すように、マスキング治具18上に、マスキング治具18の開口部18aを覆うように、電解質膜26を設置する。   Returning to FIG. 2 again, the details of the MEA manufacturing method of this embodiment will be described. After the CNT substrate 16 is installed in (1) of FIG. 2, the periphery of the CNT substrate 16 is covered while the CNT electrode 24 and the opening 18a of the masking jig 18 are opposed to each other as shown in (2) of FIG. Thus, the masking jig 18 is installed. Subsequently, as shown in FIG. 3 (3), an electrolyte membrane 26 is installed on the masking jig 18 so as to cover the opening 18 a of the masking jig 18.

電解質膜26を設置した後、図2の(4)に示すように、電解質膜26の上に、マスキング治具18の開口部18aと対向させて転写圧付与板20を設置する。同時に、転写圧付与板20の外周を囲うように膜しわ防止弾性体22を設置する。続いて、同図(5)に示すように、転写圧付与板20及び膜しわ防止弾性体22上に熱プレス板12を設置し、熱プレス板10,12を加温しながら、これらを鉛直方向に移動させて加圧する。その後、CNT基板16を除去することで、CNT24aを電解質膜26の面方向に対して垂直に形成させたMEAが製造できる。   After the electrolyte membrane 26 is installed, the transfer pressure applying plate 20 is installed on the electrolyte membrane 26 so as to face the opening 18a of the masking jig 18 as shown in FIG. At the same time, the film wrinkle prevention elastic body 22 is installed so as to surround the outer periphery of the transfer pressure applying plate 20. Subsequently, as shown in FIG. 5 (5), the heat press plate 12 is installed on the transfer pressure applying plate 20 and the film wrinkle prevention elastic body 22, and these are pressed vertically while the heat press plates 10 and 12 are heated. Move in the direction and pressurize. Thereafter, by removing the CNT substrate 16, an MEA in which the CNTs 24a are formed perpendicular to the surface direction of the electrolyte membrane 26 can be manufactured.

CNT24aが電解質膜26の面方向に対して垂直に形成されていることで、図3で説明した空隙24dを、ガス流路や、電気化学反応により生じた水の排水路として活用できる。従って、CNT24aが電解質膜26の面方向に対して垂直に形成されたMEAを燃料電池に用いれば、電解質膜26近傍の触媒粒子24bを有効に利用できる。触媒粒子24bを有効に利用できれば、低触媒化やそれに伴う低コスト化が図れる。   Since the CNTs 24a are formed perpendicular to the surface direction of the electrolyte membrane 26, the gap 24d described with reference to FIG. 3 can be used as a gas flow path or a drainage path for water generated by an electrochemical reaction. Therefore, if the MEA in which the CNTs 24a are formed perpendicular to the surface direction of the electrolyte membrane 26 is used in the fuel cell, the catalyst particles 24b in the vicinity of the electrolyte membrane 26 can be used effectively. If the catalyst particles 24b can be used effectively, the catalyst can be reduced and the cost can be reduced accordingly.

このようなMEAを製造するためには、CNT24aを、電解質膜26の面方向に対して垂直に転写する必要がある。垂直に転写するためには、CNT電極24をCNT基板16から剥離せずに用いることが望ましい。これは、CNT電極24をCNT基板16から剥離して用いる場合はその取り扱いが難しく、転写時にCNT24aの配向性が低下する可能性が高いからである。   In order to manufacture such an MEA, it is necessary to transfer the CNTs 24 a perpendicular to the surface direction of the electrolyte membrane 26. In order to transfer vertically, it is desirable to use the CNT electrode 24 without peeling from the CNT substrate 16. This is because when the CNT electrode 24 is peeled from the CNT substrate 16, it is difficult to handle, and the orientation of the CNT 24 a is likely to deteriorate during transfer.

ところが、CNT基板16には、シリコン、石英、SUSといった基材が用いられる。また、CNT基板16は、その表面にCNT電極24が形成された後、転写用サイズに切り出される。この理由は、大面積の基板からCNTの配向状態の良い部分を選んで転写するような場合に有効だからである。従って、転写用サイズに切り出されたCNT基板16のエッジは、一般に鋭利である。   However, a substrate such as silicon, quartz, or SUS is used for the CNT substrate 16. The CNT substrate 16 is cut to a transfer size after the CNT electrode 24 is formed on the surface thereof. This is because it is effective when a portion having a good orientation of CNTs is selected and transferred from a large-area substrate. Therefore, the edge of the CNT substrate 16 cut out to the transfer size is generally sharp.

一方、電解質膜26は、一般に5〜20μm程度と薄い上、転写時には、電解質膜26を構成する高分子材料のガラス転移点以上に加温される。そのため、転写時における電解質膜26の機械強度は著しく低い。また、転写時には、その後に剥離が生じないよう、電解質膜26とCNT基板16との間に3〜10MPaの転写圧が印加される。更に、CNT電極24の厚みは、一般に30μm程度である。従って、CNT基板16を剥離せずに用いる場合、CNT基板16のエッジが電解質膜26に接触し、局所応力を受けた結果、電解質膜26に亀裂が発生してしまう可能性がある。   On the other hand, the electrolyte membrane 26 is generally as thin as about 5 to 20 μm and is heated to a temperature higher than the glass transition point of the polymer material constituting the electrolyte membrane 26 during transfer. Therefore, the mechanical strength of the electrolyte membrane 26 during transfer is extremely low. Further, at the time of transfer, a transfer pressure of 3 to 10 MPa is applied between the electrolyte membrane 26 and the CNT substrate 16 so that peeling does not occur thereafter. Furthermore, the thickness of the CNT electrode 24 is generally about 30 μm. Therefore, when the CNT substrate 16 is used without being peeled off, the edge of the CNT substrate 16 comes into contact with the electrolyte membrane 26, and as a result of receiving a local stress, the electrolyte membrane 26 may be cracked.

CNT基板16のエッジを面取加工すれば、電解質膜26の亀裂の発生を抑制できる。面取加工するタイミングには、2つの場合が考えられる。例えば、個々にCNT基板16を作製し、CNT16aを成長させるような場合には、CNT成長前に面取加工できる。しかしながら、このタイミングで面取り加工する方法は、大量生産に向かず経済的でない。他方、CNT電極24の形成後に面取加工する場合、大面積基板から状態の良い部分を選んで小面積に分割して使う場合にも対応できる。しかしながら、このタイミングで面取り加工する方法には、CNT基板16の基板材料によるコンタミネーションの問題がある。従って、面取加工を採用するのは必ずしも適切ではなく、面取り加工を避けた転写が望ましいと言える。   If the edge of the CNT substrate 16 is chamfered, the occurrence of cracks in the electrolyte membrane 26 can be suppressed. There are two possible timings for chamfering. For example, when the CNT substrate 16 is individually produced and the CNT 16a is grown, the chamfering can be performed before the CNT growth. However, the method of chamfering at this timing is not economical because it is not suitable for mass production. On the other hand, when chamfering is performed after the formation of the CNT electrode 24, it is possible to cope with a case where a portion having a good state is selected from a large area substrate and divided into small areas. However, the method of chamfering at this timing has a problem of contamination due to the substrate material of the CNT substrate 16. Therefore, it is not always appropriate to employ the chamfering process, and it can be said that transfer without chamfering process is desirable.

電解質膜26の亀裂の発生を抑制できる他の方法として、CNT基板16を、CNT電極24の形成領域よりも広くする方法も考えられる。即ち、CNT基板16の周縁に、CNT電極24を形成させない余白部を設けて、その余白部上に、例えば、マスキング治具18同様の機能を有する弾性体を設置して転写すれば、電解質膜26の亀裂の発生を抑制できる可能性が高い。しかしながら、この余白部分には、上記弾性体を支持できる十分なスペースも要求されることになる。従って、高価なCNT基板16を用いるような場合には経済的ではない。   As another method that can suppress the occurrence of cracks in the electrolyte membrane 26, a method in which the CNT substrate 16 is made wider than the formation region of the CNT electrode 24 is also conceivable. That is, if a blank portion where the CNT electrode 24 is not formed is provided on the peripheral edge of the CNT substrate 16 and an elastic body having a function similar to the masking jig 18 is placed and transferred on the blank portion, for example, the electrolyte membrane There is a high possibility that the occurrence of 26 cracks can be suppressed. However, a sufficient space capable of supporting the elastic body is also required for the blank portion. Therefore, it is not economical when an expensive CNT substrate 16 is used.

また別の方法として、スペーサ治具14を厚くする方法もある。即ち、転写圧を変化させない条件で、スペーサ治具14を厚くすれば、CNT基板16のエッジに電解質膜26の接触を和らげることができるので、電解質膜26の亀裂の発生を抑制できる可能性が高い。しかしながら、スペーサ治具14を厚くすると、それだけ電解質膜26と、CNT電極24との高低差も大きくなるので、転写圧付与板20を押し込む際に、電解質膜26にしわが発生する可能性が生じてしまう。   Another method is to increase the thickness of the spacer jig 14. That is, if the spacer jig 14 is thickened under the condition that the transfer pressure is not changed, the contact of the electrolyte film 26 with the edge of the CNT substrate 16 can be eased, so that there is a possibility that the occurrence of cracks in the electrolyte film 26 can be suppressed. high. However, if the spacer jig 14 is thickened, the height difference between the electrolyte membrane 26 and the CNT electrode 24 increases accordingly, and thus the electrolyte membrane 26 may be wrinkled when the transfer pressure applying plate 20 is pushed in. End up.

次に、図4を用いて、本実施形態の製造方法による効果を説明する。本実施形態のMEAの製造方法によれば、図2(1)、(2)で示したように、スペーサ治具14の開口部14aに、CNT基板16を設置し、CNT基板16の周縁を覆うように、マスキング治具18を設置している。従って、図4に示すように、CNT基板16のエッジをマスキング治具18で覆うことができるので、電解質膜26に接触することを抑制できる。電解質膜26に接触することを抑制できるので、亀裂の発生を確実に抑制できる。   Next, the effect by the manufacturing method of this embodiment is demonstrated using FIG. According to the MEA manufacturing method of the present embodiment, as shown in FIGS. 2A and 2B, the CNT substrate 16 is installed in the opening 14a of the spacer jig 14, and the periphery of the CNT substrate 16 is formed. A masking jig 18 is installed so as to cover it. Therefore, as shown in FIG. 4, the edge of the CNT substrate 16 can be covered with the masking jig 18, so that contact with the electrolyte membrane 26 can be suppressed. Since it can suppress that it contacts the electrolyte membrane 26, generation | occurrence | production of a crack can be suppressed reliably.

また、図4に示すように、マスキング治具18の上方の角部18bが面取りされているので、マスキング治具18のエッジによる電解質膜26の亀裂の発生も抑制できる。
また、図4に示すように、スペーサ治具14にはCNT基板16よりも厚いものを用い、また、スペーサ治具14の上方の角部14bが面取りされているので、CNT基板16のエッジの局所荷重を逃がしながら転写できる。
Further, as shown in FIG. 4, since the upper corner 18b of the masking jig 18 is chamfered, the occurrence of cracks in the electrolyte membrane 26 due to the edge of the masking jig 18 can be suppressed.
Further, as shown in FIG. 4, the spacer jig 14 is thicker than the CNT substrate 16, and the upper corner 14b of the spacer jig 14 is chamfered, so that the edge of the CNT substrate 16 is chamfered. Transfer while releasing local load.

また、図4に示すように、転写圧付与板20の外周を囲うように膜しわ防止弾性体22を設置している。従って、マスキング治具18と、膜しわ防止弾性体22とで電解質膜26を挟み込んで加圧できる。従って、膜しわの発生をも防止できる。   Further, as shown in FIG. 4, a film wrinkle prevention elastic body 22 is installed so as to surround the outer periphery of the transfer pressure applying plate 20. Accordingly, the electrolyte membrane 26 can be sandwiched and pressed between the masking jig 18 and the membrane wrinkle-preventing elastic body 22. Therefore, the generation of film wrinkles can be prevented.

次に、図5及び図6を用いて、本実施形態のMEAの製造方法を具体的に説明する。
図5に示すように、熱プレス板としてSUS平板を、スペーサ治具として基板型抜きシリコンシート(厚さ0.8mm)を準備した。また、表面に垂直配向CNT電極(配向方向厚さ60μm)を形成させたシリコン基板(厚さ約0.65mm)をCNT基板として準備した。また、マスキング治具としてテフロンマスク(厚み0.1mm)(テフロン:登録商標、デュポン社)、アノード・フィルム付きの電解質膜(フッ素系電解質膜、電解質膜厚さ10μm)、転写圧付与板としてテフロンスペーサ(厚さ0.3mm)、膜しわ防止弾性体としてクッションGDLをカプトンシートで挟み込んだものを、それぞれ準備した。
次に、これらを図5の様に配置し、予備加圧(2トン、140℃、10分)、本加圧(25トン、140℃、10分)、冷却(25トン、〜40℃)の順に行い、CNT電極を電解質膜側に転写した。
その結果、膜しわは発生せず、また、電解質膜は基板端部で切断されることはなかった。これにより、基板型抜きシリコンシートを設置した上に、更にテフロンマスクを用いることで、電解質膜のCNT電極範囲外にはしわ防止に必要十分な圧力が掛かるが、電解質膜には鋭いCNT基板端部からの大きな局所応力が掛からないことが証明された。
Next, the manufacturing method of MEA of this embodiment is concretely demonstrated using FIG.5 and FIG.6.
As shown in FIG. 5, a SUS flat plate was prepared as a hot press plate, and a substrate die-cut silicon sheet (thickness 0.8 mm) was prepared as a spacer jig. In addition, a silicon substrate (thickness: about 0.65 mm) having a vertically aligned CNT electrode (thickness in the alignment direction 60 μm) formed on the surface was prepared as a CNT substrate. Also, a Teflon mask (thickness: 0.1 mm) as a masking jig (Teflon: registered trademark, DuPont), an electrolyte membrane with an anode film (fluorine electrolyte membrane, electrolyte thickness: 10 μm), and a Teflon as a transfer pressure applying plate A spacer (thickness 0.3 mm) and a cushion GDL sandwiched between kapton sheets as a film wrinkle-preventing elastic body were prepared.
Next, these are arranged as shown in FIG. 5, pre-pressurization (2 tons, 140 ° C., 10 minutes), main pressurization (25 tons, 140 ° C., 10 minutes), cooling (25 tons, ˜40 ° C.) The CNT electrode was transferred to the electrolyte membrane side.
As a result, no film wrinkle was generated, and the electrolyte membrane was not cut at the edge of the substrate. As a result, by installing a silicon die-cut substrate and further using a Teflon mask, a pressure sufficient and sufficient to prevent wrinkles is applied outside the CNT electrode range of the electrolyte membrane, but the CNT substrate edge is sharp on the electrolyte membrane. It was proved that no large local stress was applied from the part.

図6に示すように、熱プレス板としてSUS平板を準備した。また、表面に垂直配向CNT電極(配向方向厚さ60μm)を形成させたシリコン基板(厚さ約0.65mm)をCNT基板として準備した。また、テフロンマスク(厚み0.1mm)、アノード・フィルム付きの電解質膜(フッ素系電解質膜、電解質膜厚さ10μm)、テフロンスペーサ(厚さ0.05mm)、クッションGDL付きテフロンシートを準備した。
次に、これらを図6の様に配置し、図5と同様の条件で、予備加圧、本加圧、冷却の順に転写した。この結果、図6に示すように電解質膜の一部が切断されてしまった。
As shown in FIG. 6, a SUS flat plate was prepared as a hot press plate. In addition, a silicon substrate (thickness: about 0.65 mm) having a vertically aligned CNT electrode (thickness in the alignment direction 60 μm) formed on the surface was prepared as a CNT substrate. Further, a Teflon mask (thickness 0.1 mm), an electrolyte membrane with an anode film (fluorine electrolyte membrane, electrolyte thickness 10 μm), a Teflon spacer (thickness 0.05 mm), and a Teflon sheet with a cushion GDL were prepared.
Next, these were arranged as shown in FIG. 6 and transferred under the same conditions as in FIG. 5 in the order of pre-pressurization, main pressurization, and cooling. As a result, a part of the electrolyte membrane was cut as shown in FIG.

以上、本実施の形態の製造方法によれば、CNT基板のエッジによる電解質膜の亀裂を発生させることなく、CNT基板の面方向に対して垂直に形成されたCNTを含む電極を、電解質膜に転写できる。   As described above, according to the manufacturing method of the present embodiment, an electrode including CNTs formed perpendicular to the surface direction of the CNT substrate without causing cracks in the electrolyte membrane due to the edges of the CNT substrate is formed on the electrolyte membrane. Can be transferred.

尚、本実施の形態では、表面にCNT電極24が形成されたCNT基板16を用いたMEAの製造方法を説明したが、垂直配向CNTを用いない一般的なカーボン電極を用いた製造方法にも適用が可能である。一般的なカーボン電極を用いた場合であっても、CNT基板16に用いるような基板上にカーボン電極を形成し、基板と共に切り出して電解質膜に転写する場合においては、切り出しによりエッジが鋭くなるからである。   In the present embodiment, the MEA manufacturing method using the CNT substrate 16 having the CNT electrode 24 formed on the surface has been described. However, the manufacturing method using a general carbon electrode that does not use the vertically aligned CNT is also used. Applicable. Even when a general carbon electrode is used, when the carbon electrode is formed on a substrate such as that used for the CNT substrate 16 and cut out together with the substrate and transferred to the electrolyte membrane, the edge becomes sharp due to the cutting out. It is.

10,12 熱プレス板
14 スペーサ治具
14a,18a,22a 開口部
14b,18b 角部
16 CNT基板
18 マスキング治具
20 転写圧付与板
22 防止弾性体
24 CNT電極
26 電解質膜
DESCRIPTION OF SYMBOLS 10, 12 Hot press board 14 Spacer jig 14a, 18a, 22a Opening part 14b, 18b Corner | angular part 16 CNT board | substrate 18 Masking jig | tool 20 Transfer pressure provision board 22 Prevention elastic body 24 CNT electrode 26 Electrolyte membrane

Claims (4)

表面に電極が形成された基材と、前記基材よりも大きい寸法の開口部を有するスペーサ治具とを準備し、前記基材の外周を前記スペーサ治具の開口部で囲うように前記基材と前記スペーサ治具とを配置する工程と、
前記基材よりも小さい寸法の開口部を有するマスキング治具を準備し、前記マスキング治具の開口部を前記基材の電極形成面と対向させつつ、前記マスキング治具の非開口部を前記基材の周縁を覆うように配置する工程と、
前記マスキング治具の開口部を覆うように、前記電極形成面よりも大きい電解質膜を配置する工程と、
前記マスキング治具の開口部よりも小さい寸法の転写圧付与板を準備し、前記電解質膜を介して前記マスキング治具の開口部と対向するように配置する工程と、
前記転写圧付与板の外周を囲うように弾性体を配置する工程と、
を備えることを特徴とする膜電極接合体の製造方法。
A base material having an electrode formed on the surface and a spacer jig having an opening having a size larger than that of the base material are prepared, and the base is formed so that the outer periphery of the base material is surrounded by the opening of the spacer jig. Arranging the material and the spacer jig;
A masking jig having an opening having a size smaller than that of the substrate is prepared, and the opening of the masking jig is opposed to the electrode forming surface of the substrate, and the non-opening of the masking jig is set to the base. A step of covering the periphery of the material;
Placing an electrolyte membrane larger than the electrode formation surface so as to cover the opening of the masking jig;
Preparing a transfer pressure applying plate having a size smaller than the opening of the masking jig, and arranging the plate so as to face the opening of the masking jig through the electrolyte membrane;
Arranging an elastic body so as to surround the outer periphery of the transfer pressure applying plate;
A method for producing a membrane electrode assembly, comprising:
前記電解質膜と当接する側の前記マスキング治具の開口部の周囲が、丸みを帯びるように面取りされていることを特徴とする請求項1に記載の膜電極接合体の製造方法。   The method for manufacturing a membrane electrode assembly according to claim 1, wherein the periphery of the opening of the masking jig on the side in contact with the electrolyte membrane is chamfered so as to be rounded. 前記スペーサ治具は前記基材よりも厚く、前記マスキング治具の非開口部と当接する側の前記スペーサ治具の開口部の周囲が、丸みを帯びるように面取りされていることを特徴とする請求項1又は2に記載の膜電極接合体の製造方法。   The spacer jig is thicker than the base material, and the periphery of the opening of the spacer jig on the side in contact with the non-opening of the masking jig is chamfered to be rounded. The manufacturing method of the membrane electrode assembly of Claim 1 or 2. 前記電極はカーボンナノチューブを含み、
前記カーボンナノチューブが、前記基材の面方向に対して垂直に形成されていることを特徴とする請求項1乃至3何れか1項に記載の膜電極接合体の製造方法。
The electrode comprises carbon nanotubes;
The method for producing a membrane electrode assembly according to any one of claims 1 to 3, wherein the carbon nanotubes are formed perpendicular to the surface direction of the base material.
JP2010054462A 2010-03-11 2010-03-11 Manufacturing method for membrane-electrode assembly Pending JP2011187414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010054462A JP2011187414A (en) 2010-03-11 2010-03-11 Manufacturing method for membrane-electrode assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010054462A JP2011187414A (en) 2010-03-11 2010-03-11 Manufacturing method for membrane-electrode assembly

Publications (1)

Publication Number Publication Date
JP2011187414A true JP2011187414A (en) 2011-09-22

Family

ID=44793443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010054462A Pending JP2011187414A (en) 2010-03-11 2010-03-11 Manufacturing method for membrane-electrode assembly

Country Status (1)

Country Link
JP (1) JP2011187414A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018062972A1 (en) * 2016-09-30 2018-04-05 코오롱인더스트리 주식회사 Method for manufacturing membrane electrode assembly for fuel cell
US11108069B2 (en) 2016-09-30 2021-08-31 Kolon Industries, Inc. Method for manufacturing membrane electrode assembly including transferring electrode layer to electrolyte membrane by gas pressure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018062972A1 (en) * 2016-09-30 2018-04-05 코오롱인더스트리 주식회사 Method for manufacturing membrane electrode assembly for fuel cell
US11108069B2 (en) 2016-09-30 2021-08-31 Kolon Industries, Inc. Method for manufacturing membrane electrode assembly including transferring electrode layer to electrolyte membrane by gas pressure

Similar Documents

Publication Publication Date Title
KR101903863B1 (en) Fuel cell and method for manufacturing same
CN102823040B (en) Method for manufacturing fuel cell membrane electrode assembly and apparatus for manufacturing fuel cell membrane electrode assembly
JP2011071049A (en) Method and device for manufacturing membrane electrode assembly
JP2007141674A (en) Manufacturing method of membrane-electrode assembly and method of assembling fuel cell
KR101745114B1 (en) Manufacturing method for Membrane-electrode assembly
JP2016162648A (en) Manufacturing method for fuel battery single cell
JP2011187414A (en) Manufacturing method for membrane-electrode assembly
JP2004303627A (en) Manufacturing method of electrolyte membrane-electrode jointed assembly for direct methanol type fuel cell
US20210288338A1 (en) Fuel cell and method for producing fuel cell
JP4085385B2 (en) Method for fixing and holding three-layer MEA membrane and bonding method
EP3716379B1 (en) Apparatus and method for plasticizing solid oxide fuel cell
JP5849418B2 (en) Manufacturing method of membrane electrode assembly
JP2010225415A (en) Fuel cell and manufacturing method of fuel cell
JP6155989B2 (en) Membrane electrode assembly manufacturing apparatus and manufacturing method
JP5387059B2 (en) Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell
JP2006216257A (en) Manufacturing method of separator for fuel cell
JP5282536B2 (en) Peeling device and method for manufacturing joined body using the same
US7651581B2 (en) Catalyst coated diffusion media
JP6561800B2 (en) Manufacturing method of membrane electrode assembly
JP5361553B2 (en) Jig for manufacturing membrane / electrode assemblies
JP6844476B2 (en) How to make cells for fuel cells
JP6079381B2 (en) Membrane electrode assembly manufacturing method and membrane electrode assembly manufacturing apparatus
JP2008269909A (en) Manufacturing method of membrane electrode assembly used for fuel cell, and membrane electrode assembly
WO2013069543A1 (en) Membrane electrode assembly manufacturing method
JP7184057B2 (en) Method for manufacturing fuel cell