JP2011184245A - Composition for low-temperature firing porcelain and method for manufacturing low-temperature firing porcelain - Google Patents

Composition for low-temperature firing porcelain and method for manufacturing low-temperature firing porcelain Download PDF

Info

Publication number
JP2011184245A
JP2011184245A JP2010051634A JP2010051634A JP2011184245A JP 2011184245 A JP2011184245 A JP 2011184245A JP 2010051634 A JP2010051634 A JP 2010051634A JP 2010051634 A JP2010051634 A JP 2010051634A JP 2011184245 A JP2011184245 A JP 2011184245A
Authority
JP
Japan
Prior art keywords
component
low
temperature
composition
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010051634A
Other languages
Japanese (ja)
Other versions
JP5661303B2 (en
Inventor
Ryojiro Taniguchi
良治郎 谷口
Yuichi Kobayashi
雄一 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SETO SEIDO KK
Original Assignee
SETO SEIDO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SETO SEIDO KK filed Critical SETO SEIDO KK
Priority to JP2010051634A priority Critical patent/JP5661303B2/en
Publication of JP2011184245A publication Critical patent/JP2011184245A/en
Application granted granted Critical
Publication of JP5661303B2 publication Critical patent/JP5661303B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composition for low-temperature firing porcelain which can be fired at a low temperature of 1,100°C or lower and allowing the strength of the porcelain to be further increased, and to provide a method for manufacturing the low-temperature firing porcelain which makes further more mass production possible by permitting a wider firing temperature range. <P>SOLUTION: The composition for low-temperature firing porcelain includes A component comprising silica and a clay component, and B component comprising feldspar, bone ash and petalite. Therein, a content of the A component is 20 to 80 wt.% and a content of the B component is 80 to 20 wt.%. Further, the method for manufacturing the composition includes: a process of mixing the A component with the B component; a process of grinding the mixed respective components into an average particle size of 11 μm or less; and a firing process of kneading and forming the ground respective components and firing the formed body at a temperature of not lower than 1,030°C and lower than 1,100°C. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、1100℃程度の低温で焼結するとともに、広い焼成温度幅を有する低温焼成磁器用組成物および低温焼成磁器の製造方法に関する。   The present invention relates to a composition for low-temperature fired ceramics that is sintered at a low temperature of about 1100 ° C. and has a wide firing temperature range, and a method for producing a low-temperature fired ceramic.

従来、一般に磁器を製造するための原料組成は、長石−珪石−粘土系、セリサイト−珪石系、長石−リン酸カルシウム−粘土系などであるが、これらは、磁器化するための焼成温度が 1200℃〜1350℃を必要としている。現在製造されている陶磁器の多くの焼成温度は1200℃程度以上となるものがほとんどであり、美濃焼が約 1300℃、有田焼、九谷焼が約 1350℃、ボーンチャイナが 1200〜1280℃などとなっている。   Conventionally, the raw material composition for producing porcelain is generally feldspar-silica-clay system, sericite-silica system, feldspar-calcium phosphate-clay system, etc., but these have a firing temperature of 1200 ° C. Need ~ 1350 ° C. Most of the ceramics that are currently manufactured have a firing temperature of about 1200 ° C or higher, Mino ware is about 1300 ° C, Arita ware, Kutani ware is about 1350 ° C, Bone China is 1200 to 1280 ° C, etc. Yes.

一方で、持続可能な社会実現のための方策の一つとして産業界における環境負荷の低減が求められており、陶磁器製造過程における二酸化炭素排出量の抑制も重要な課題として挙げられている。また、原油の値上がりに伴う燃料費の高騰も深刻な問題になっている。これらの理由により、より低温で焼成できる素地の開発が切望されている。このような低温で焼成できる素地としては、1100℃程度の低温で焼成可能なものとして、例えば以下のようなものが知られている。Li2Oをアルカリ金属成分の主成分として含む鉱物であるC成分と、Na2Oをアルカリ金属成分の主成分として含む鉱物であるA成分およびK2Oをアルカリ金属成分の主成分として含む鉱物であるB成分から選ばれた少なくとも1つの鉱物成分とを含む非粘土成分と、粘土成分とを含み、組成物全体に対して上記粘土成分を 30 〜 50 重量%含み、この非粘土成分全体に対して上記C成分を 8.3 〜 75 重量%含む焼成磁器用組成物が知られており、この焼成磁器用組成物は、およそ1075℃程度の温度にて焼成を可能とするものである(特許文献1参照)。 On the other hand, as one of the measures for realizing a sustainable society, reduction of environmental burden in the industry is required, and the suppression of carbon dioxide emissions in the ceramic manufacturing process is also cited as an important issue. In addition, soaring fuel costs associated with rising crude oil prices are also a serious problem. For these reasons, development of a substrate that can be fired at a lower temperature is eagerly desired. As the substrate that can be fired at such a low temperature, the following materials are known as those that can be fired at a low temperature of about 1100 ° C., for example. C component which is a mineral containing Li 2 O as a main component of an alkali metal component, A component which is a mineral containing Na 2 O as a main component of an alkali metal component, and a mineral containing K 2 O as a main component of an alkali metal component A non-clay component containing at least one mineral component selected from the B component, and a clay component, and the clay component is contained in an amount of 30 to 50% by weight based on the total composition. On the other hand, a composition for fired porcelain containing 8.3 to 75% by weight of the above-mentioned C component is known, and this fired porcelain composition enables firing at a temperature of about 1075 ° C. (Patent Document) 1).

特開2009−215115号公報JP 2009-215115 A

しかしながら、前述した従来技術では、焼成温度については1075℃程度として他の陶磁器の焼成温度よりも低温での焼成を可能としているが、曲げ強度は「58.3MPa」であるものとして他の一般的な陶磁器と同程度にとどまっていた。また、焼成温度幅をより広くしてより一層の大量生産を可能とすることも望まれていた。   However, in the above-described conventional technology, the firing temperature is set to about 1075 ° C., which enables firing at a temperature lower than the firing temperature of other ceramics. However, the bending strength is “58.3 MPa” and other general It remained at the same level as ceramics. It has also been desired to make the firing temperature range wider to enable further mass production.

本発明は、前述した従来の焼成磁器用組成物の問題点を解消しようとするものであり、1100℃以下の低温で焼結できる低温焼成磁器用組成物を提供することを第一の目的とする。また、より強度を増すことのできる低温焼成磁器用組成物を提供することを第二の目的とする。また、焼成温度幅をより広く取ることを可能とすることにより、より一層の大量生産を実現可能とすることも第三の目的とする。   The first object of the present invention is to provide a composition for low-temperature fired porcelain that can be sintered at a low temperature of 1100 ° C. or lower. To do. Another object of the present invention is to provide a composition for low-temperature fired porcelain that can further increase the strength. A third object is to make it possible to realize further mass production by making the firing temperature range wider.

本発明の低温焼成磁器用組成物は、珪石及び粘土成分とからなるA成分と、長石、骨灰及びペタライトからなるB成分とを含むことを特徴とする。   The composition for low-temperature fired porcelain of the present invention is characterized by comprising an A component composed of silica and a clay component, and a B component composed of feldspar, bone ash and petalite.

また、前記B成分全体に対して、前記長石、骨灰及びペタライトの各重量%が下記三角座標(1)の斜線範囲で表されることを特徴とする。

Figure 2011184245

上記三角座標(1)において、長石、骨灰及びペタライトの各成分の頂点の値は100重量%を示し、各頂点の対辺は0重量%をそれぞれ表す。 Further, each weight% of the feldspar, bone ash, and petalite is represented by the hatched range of the following triangular coordinate (1) with respect to the entire B component.
Figure 2011184245

In the triangular coordinate (1), the value of the vertex of each component of feldspar, bone ash and petalite represents 100% by weight, and the opposite side of each vertex represents 0% by weight.

また、前記B成分全体に対して、前記長石、骨灰及びペタライトの各重量%が下記三角座標(2)の斜線範囲で表されることを特徴とする。

Figure 2011184245

上記三角座標(2)において、長石、骨灰及びペタライトの各成分の頂点の値は100重量%を示し、各頂点の対辺は0重量%をそれぞれ表す。 Moreover, each weight% of the said feldspar, bone ash, and petalite is represented with the oblique line range of the following triangular coordinate (2) with respect to the said B component whole.
Figure 2011184245

In the triangular coordinate (2), the value of the vertex of each component of feldspar, bone ash and petalite represents 100% by weight, and the opposite side of each vertex represents 0% by weight.

また、前記組成物全体に対して、前記A成分が20〜80重量%、前記B成分が80〜20重量%とすることを特徴とする。   Further, the A component is 20 to 80% by weight and the B component is 80 to 20% by weight with respect to the entire composition.

本発明の低温焼成磁器の製造方法は、前記A成分と、前記B成分とを混合する工程と、前記混合した各成分を平均粒子径 11 μm以下に粉砕する工程と、前記粉砕した各成分を混練・成形して1030℃以上1100℃未満で焼成する工程とを含むことを特徴とする。   The method for producing a low-temperature fired porcelain of the present invention comprises a step of mixing the component A and the component B, a step of pulverizing the mixed components to an average particle size of 11 μm or less, and the pulverized components. And a step of kneading and forming and firing at 1030 ° C. or higher and lower than 1100 ° C.

本発明の低温焼成磁器用組成物は、長石、骨灰及びペタライトを必須成分として含むので、1030〜1100℃程度での焼成による磁器化が可能となる。そして、1030℃〜1100℃程度の広い焼成温度幅を有し、焼成温度幅を70℃以上とすることができるので、焼結温度にむらのある通常の陶磁器焼成炉でも使用可能となり、大量に生産を行うことが容易となる。また、その強度を向上させることができ、曲げ強度を90〜120MPaとすることができる。   Since the composition for low-temperature fired porcelain of the present invention contains feldspar, bone ash, and petalite as essential components, it can be made porcelain by firing at about 1030 to 1100 ° C. And since it has a wide firing temperature range of about 1030 ° C to 1100 ° C, and the firing temperature range can be set to 70 ° C or higher, it can be used even in ordinary ceramic firing furnaces with uneven sintering temperatures, and in large quantities It becomes easy to perform production. Moreover, the intensity | strength can be improved and bending strength can be 90-120 MPa.

従来の長石及びペタライトを混練した磁器用組成物では1075〜1100℃程度の焼成により磁器化が可能であり、焼成温度幅は約25℃、曲げ強度は58.3MPaとされているが、本発明の低温焼成磁器用組成物では、これに加えて骨灰も混練・成形することにより、従来の低温焼成磁器用組成物では困難であった、より低い温度での磁器化、より広い焼成温度幅、一般磁器以上の強度を確保することができたものと考えられる。また、より低温での焼成が可能であるので釉薬などの発色性にも優れる。   The porcelain composition kneaded with conventional feldspar and petalite can be made porcelain by firing at about 1075 to 1100 ° C, the firing temperature range is about 25 ° C, and the bending strength is 58.3 MPa. In the composition for low-temperature fired porcelain, in addition to this, bone ash is also kneaded and molded, so that it has been difficult with conventional low-temperature fired porcelain compositions. It is thought that the strength more than porcelain was able to be secured. In addition, since it can be fired at a lower temperature, it is excellent in coloring properties such as glaze.

また、本発明の低温焼成磁器の製造方法は、前記A成分と、前記B成分とを混合する工程と、前記混合した各成分を平均粒子径 11 μm以下に粉砕する工程と、前記粉砕した各成分を混練・成形して1030℃以上1100℃未満で焼成する工程とを含むので、焼成温度幅を70℃以上とすることができ、焼結温度にむらのある通常の陶磁器焼成炉でも使用可能となり、大量に生産を行うことが容易となる。また、その強度を向上させることができ、曲げ強度を90〜120MPaとすることができる。   The method for producing a low-temperature fired porcelain of the present invention includes a step of mixing the component A and the component B, a step of pulverizing the mixed components to an average particle size of 11 μm or less, It includes a process of kneading and molding the ingredients and firing at 1030 ° C or more and less than 1100 ° C, so the firing temperature range can be set to 70 ° C or more, and it can be used in ordinary ceramic firing furnaces with uneven sintering temperatures. Thus, mass production is easy. Moreover, the intensity | strength can be improved and bending strength can be 90-120 MPa.

本発明の焼成体の焼成温度とかさ密度及び見掛け気孔率の変化を示すグラフである。It is a graph which shows the change of the baking temperature of the sintered body of this invention, a bulk density, and an apparent porosity. 本発明の焼成体の焼成温度とかさ密度及び平均曲げ強度の変化を示すグラフである。It is a graph which shows the change of the baking temperature of the sintered body of this invention, bulk density, and average bending strength. 本発明の別の焼成体の三点曲げ強度と破壊確率を示すグラフである。It is a graph which shows the three-point bending strength and fracture probability of another sintered body of the present invention. 従来磁器における焼成温度とかさ密度及び見掛け気孔率の変化を示すグラフである。It is a graph which shows the change of the firing temperature in a conventional porcelain, a bulk density, and an apparent porosity. 従来磁器における焼成温度と曲げ強度の変化を示すグラフである。It is a graph which shows the change of the calcination temperature and bending strength in the conventional porcelain.

本発明の低温焼成磁器用組成物は、珪石及び粘土成分とからなるA成分と、長石、骨灰及びペタライトからなるB成分とを含む。   The composition for low-temperature fired porcelain of the present invention includes an A component composed of silica and a clay component, and a B component composed of feldspar, bone ash and petalite.

A成分としての珪石は、石英、チャート、珪質砂岩、珪岩、石英片岩などを例示することができる。また、同じくA成分としての粘土成分は、ニュージランド(NZ)カオリンや河東カオリンなどのカオリン、蛙目粘土、木節粘土、ベントナイト等を用いることができる。これらの中で、不純物が少ないという理由でNZカオリンが好ましい。   Examples of the silica as the component A include quartz, chart, siliceous sandstone, quartzite, quartz schist. Similarly, as the clay component as the A component, kaolin such as New Zealand (NZ) kaolin and Hedong kaolin, glazed clay, kibushi clay, bentonite and the like can be used. Of these, NZ kaolin is preferred because it has few impurities.

B成分としての長石は、正長石(orthoclase)、サニディン(sanidine)、微斜長石(microcline)、アノーソクレース(anorthoclase)などのアルカリ長石(alkali feldspar)、曹長石(albite)、灰長石(anorthit)などの斜長石(plagioclases)などを例示することができる。骨灰は、動物の骨を高温で焼くことによって作られる白い粉末状の灰であり、主成分はリン酸カルシウムである。ペタライトはリチウム・アルミニウム珪酸塩として示されるものである。加熱による急激な体積変化がなく、資源も豊富で入手しやすいという理由によりペタライトが採用されている。   The feldspar as component B is orthoclase, sanidine, microcline, anorthoclase and other alkali feldspar, albite, anorthit ) And plagioclases. Bone ash is a white powdery ash made by baking animal bones at a high temperature, and the main component is calcium phosphate. Petalite is shown as lithium aluminum silicate. Petalite is used because it has no sudden volume change due to heating, is rich in resources and is easily available.

本発明の低温焼成磁器用組成物では、長石、骨灰及びペタライトを必須成分として含むので、1030〜1100℃程度での焼成による磁器化が可能となる。1030℃〜1100℃程度の広い焼成温度幅を有し、焼成温度幅を70℃以上とすることができるので、焼結温度にむらのある通常の陶磁器焼成炉でも使用可能となり、大量に生産を行うことが容易となる。また、その強度を向上させることができ、曲げ強度を90〜120MPaとすることができる。   Since the composition for low-temperature fired porcelain of the present invention contains feldspar, bone ash and petalite as essential components, it can be made porcelain by firing at about 1030 to 1100 ° C. Since it has a wide firing temperature range of about 1030 ° C to 1100 ° C and the firing temperature range can be set to 70 ° C or higher, it can be used in ordinary ceramic firing furnaces with uneven sintering temperatures, and can be produced in large quantities. Easy to do. Moreover, the intensity | strength can be improved and bending strength can be 90-120 MPa.

次いで、組成物全体に対してA成分が20重量%、B成分が80重量%となる配合において、B成分の割合を変化させて温度1055℃で1時間焼成し、吸水率およびかさ密度の変化を測定し、かさ密度が最大値に近い2.38g/cm3以上で、吸水率が0.5%以下となる範囲を以下に三角座標(3)で示す。

Figure 2011184245
上記三角座標(3)において、長石、骨灰及びペタライトの各成分の頂点の値は100重量%を示し、各頂点の対辺は0重量%をそれぞれ表す。 Next, in a composition in which the A component is 20% by weight and the B component is 80% by weight with respect to the entire composition, the proportion of the B component is changed and baked at a temperature of 1055 ° C. for 1 hour to change the water absorption rate and the bulk density. The range in which the bulk density is 2.38 g / cm 3 or more close to the maximum value and the water absorption is 0.5% or less is indicated by triangular coordinates (3) below.
Figure 2011184245
In the triangular coordinate (3), the value of the vertex of each component of feldspar, bone ash, and petalite represents 100% by weight, and the opposite side of each vertex represents 0% by weight.

次いで、組成物全体に対してA成分が20重量%、B成分が80重量%となる配合において、B成分の割合を変化させて温度1031℃で1時間焼成し、吸水率およびかさ密度の変化を測定し、かさ密度が最大値に近い2.38g/cm3以上で、吸水率が0.5%以下となる範囲を以下に三角座標(4)で示す。

Figure 2011184245
上記三角座標(4)において、長石、骨灰及びペタライトの各成分の頂点の値は100重量%を示し、各頂点の対辺は0重量%をそれぞれ表す。 Next, in a composition in which the A component is 20% by weight and the B component is 80% by weight with respect to the entire composition, the proportion of the B component is changed and baked at a temperature of 1031 ° C. for 1 hour to change the water absorption rate and the bulk density. The range in which the bulk density is 2.38 g / cm 3 or more close to the maximum value and the water absorption is 0.5% or less is indicated by triangular coordinates (4) below.
Figure 2011184245
In the triangular coordinate (4), the value of the vertex of each component of feldspar, bone ash and petalite represents 100% by weight, and the opposite side of each vertex represents 0% by weight.

本発明の低温焼成磁器組成物は、前記A成分及び前記B成分以外に、その20重量%以下であれば、酸化亜鉛、二酸化ケイ素、酸化アルミニウム、酸化チタン、ジルコン、酸化ジルコニウム、ムライト、酸化鉄、酸化銅、酸化マンガン、酸化コバルト、酸化ニッケル、酸化クロムなどの成分を含ませることも可能である。   The low-temperature fired porcelain composition of the present invention is zinc oxide, silicon dioxide, aluminum oxide, titanium oxide, zircon, zirconium oxide, mullite, iron oxide as long as it is 20% by weight or less in addition to the A component and the B component. It is also possible to include components such as copper oxide, manganese oxide, cobalt oxide, nickel oxide and chromium oxide.

次いで本発明の低温焼成磁器の製造方法について説明する。上述のA成分と、B成分とを湿式法または乾式法により混合する。例えば、湿式法では、各成分を所定の大きさのボールミルに入れ、所定量の水を添加した後、10〜 24 時間程度回転させて粉砕混合する。そして、除鉄器及びふるいにかけて不純物を除去した混合物をフィルタープレスなどを用いて脱水し、成形に供する。成形は、排泥鋳込成形法、圧力鋳込成形法、機械ろくろ成形法、手ろくろ成形法、湿式プレス成形法、乾式プレス成形法などにより、所定の形状に成形する。例えば、排泥鋳込成形法では、上記脱水混合物に所定量の水と分散剤を加え、撹拌機などを用いて2〜5 時間程度混合撹拌し、スラリーを作製する。このスラリーを所定の形状の石膏型に流し込んで着肉させた後、残留するスラリーを排泥し、脱型して成形体を得る。焼成は、得られた成形体を乾燥させた後、電気炉、ガス炉などにより 1030〜1100 ℃で焼成する。   Next, a method for producing the low-temperature fired porcelain of the present invention will be described. The above-described A component and B component are mixed by a wet method or a dry method. For example, in the wet method, each component is put into a ball mill of a predetermined size, a predetermined amount of water is added, and then the mixture is pulverized and mixed for about 10 to 24 hours. Then, the mixture from which impurities have been removed by passing through an iron remover and a sieve is dehydrated using a filter press or the like and subjected to molding. The molding is performed in a predetermined shape by a sludge casting molding method, a pressure casting molding method, a mechanical potter's wheel molding method, a hand potter's wheel molding method, a wet press molding method, a dry press molding method, or the like. For example, in the waste mud casting method, a predetermined amount of water and a dispersant are added to the dehydrated mixture, and the mixture is stirred for about 2 to 5 hours using a stirrer or the like to prepare a slurry. After pouring this slurry into a gypsum mold having a predetermined shape and making it thick, the remaining slurry is drained and demolded to obtain a molded body. Firing is performed at 1030 to 1100 ° C. in an electric furnace or gas furnace after the obtained molded body is dried.

焼成の際には炉内の温度は均一ではないため、焼成温度幅が狭いと製品の歩留まりが悪くなる。よって、焼成温度幅が広いことが望まれる。本発明の低温焼成磁器用組成物は前記した配合により、1030〜1100 ℃で焼成可能としていることにより、約70℃以上の良好な焼成温度幅を有している。   Since the temperature in the furnace is not uniform at the time of firing, the yield of products deteriorates if the firing temperature range is narrow. Therefore, it is desired that the firing temperature range is wide. The composition for low-temperature fired porcelain of the present invention has a good firing temperature range of about 70 ° C. or more because it can be fired at 1030 to 1100 ° C. by the above-described blending.

以下の実施例および比較例において、以下の原料を使用した。
(実施例1)
下記に示す配合割合で長石、骨灰及びペタライト、並びに珪石及び粘土を20間湿式ボールミルで混合した後、乾燥した。
長石30重量%、骨灰10重量%、ペタライト10重量%、珪石7重量%、蛙目粘土20重量%、NZカオリン10重量%、天草陶石10重量%、タルク3重量%。
乾燥した各調合物を粉砕し、160meshのふるいを通過させた。試験体は、これを用いて、圧力 50 MPa で直径 25 mm、厚さ約 5 mm の円盤をプレス成形した。また、曲げ強度の試験体は、120×25×約 7 mm の直方体を同様にプレス成形した。各成形体は、電気炉により、毎分5℃の速度で昇温し、1000℃で1時間保持した後に、炉内放冷した。
The following raw materials were used in the following examples and comparative examples.
Example 1
The feldspar, bone ash and petalite, and silica and clay were mixed in a wet ball mill for 20 minutes at the following blending ratio, and then dried.
30% by weight feldspar, 10% by weight bone ash, 10% by weight petalite, 7% by weight silica, 20% by weight clay, 10% by weight NZ kaolin, 10% by weight Amakusa porcelain and 3% by weight talc.
Each dried formulation was crushed and passed through a 160 mesh sieve. The test specimen was used to press-mold a disk having a diameter of 25 mm and a thickness of about 5 mm at a pressure of 50 MPa. The test specimen for bending strength was press-molded in the same manner as a rectangular parallelepiped of 120 x 25 x about 7 mm. Each molded body was heated by an electric furnace at a rate of 5 ° C. per minute, held at 1000 ° C. for 1 hour, and then allowed to cool in the furnace.

得られた焼結体の焼結性を評価するため、焼結体のかさ密度をアルキメデス法により測定し、Norris らによる方法( A.W.Norris, et al. "Range Curves : An Experimental Method for the Study of Vitreous Pottery Bodies". Trans. J. Brit. Ceram. Soc., 78, P102-108(1979) )により焼成温度幅を求めた。また、見掛け気孔率は、かさ密度×吸水率として測定した。また、曲げ強度は、焼成3点曲げ法により、支点間距離 10 cm、クロスヘッドスピード 5 m/min として測定した。得られた焼結体1の焼成温度とかさ密度及び見掛け気孔率を図1に示す。また、焼結体1の焼成温度とかさ密度及び平均曲げ強度を図2に示す。   In order to evaluate the sinterability of the sintered body, the bulk density of the sintered body was measured by the Archimedes method, and the method by Norris et al. (AWNorris, et al. “Range Curves: An Experimental Method for the Study of Vitreous Pottery Bodies ". Trans. J. Brit. Ceram. Soc., 78, P102-108 (1979)). The apparent porosity was measured as bulk density × water absorption. The bending strength was measured by a firing three-point bending method with a distance between supporting points of 10 cm and a crosshead speed of 5 m / min. The firing temperature, bulk density and apparent porosity of the obtained sintered body 1 are shown in FIG. Moreover, the firing temperature, bulk density, and average bending strength of the sintered body 1 are shown in FIG.

(実施例2)
また、下記に示す配合割合で長石、骨灰及びペタライト、並びに珪石及び粘土に加えて酸化アルミニウムを加えたものを20時間湿式ボールミルで混合した後、乾燥した。
長石30重量%、骨灰10重量%、ペタライト10重量%、珪石7重量%、蛙目粘土20重量%、NZカオリン10重量%、酸化アルミニウム10重量%、タルク3重量%。
乾燥した各調合物を粉砕し、160meshのふるいを通過させた。試験体は、これを用いて、圧力 50 MPa で直径 25 mm、厚さ約 5 mm の円盤をプレス成形した。また、曲げ強度の試験体は、120×25×約 7 mm の直方体を同様にプレス成形した。各成形体を2種類用意し、電気炉により、毎分5℃の速度で昇温し、第一例については1057℃で1時間保持した後に、炉内放冷し、第二例については1077℃で1時間保持した後に、炉内放冷した。
(Example 2)
Further, feldspar, bone ash and petalite, and silica oxide and clay added with aluminum oxide in a mixing ratio shown below were mixed in a wet ball mill for 20 hours and then dried.
30% by weight feldspar, 10% by weight bone ash, 10% by weight petalite, 7% by weight silica, 20% by weight clay, 10% by weight NZ kaolin, 10% by weight aluminum oxide, and 3% by weight talc.
Each dried formulation was crushed and passed through a 160 mesh sieve. The test specimen was used to press-mold a disk having a diameter of 25 mm and a thickness of about 5 mm at a pressure of 50 MPa. The test specimen for bending strength was press-molded in the same manner as a rectangular parallelepiped of 120 x 25 x about 7 mm. Prepare two types of compacts, raise the temperature in an electric furnace at a rate of 5 ° C per minute, hold the sample at 1057 ° C for 1 hour in the first example, and then let it cool in the furnace. After keeping at 1 ° C. for 1 hour, it was allowed to cool in the furnace.

得られた焼結体の強度を評価するため、焼結体の三点曲げ強度を測定した。また、焼結体の破壊確率を測定した。得られた焼結体の三点曲げ強度と破壊確率を図3に示す。   In order to evaluate the strength of the obtained sintered body, the three-point bending strength of the sintered body was measured. Moreover, the fracture probability of the sintered body was measured. The three-point bending strength and fracture probability of the obtained sintered body are shown in FIG.

図4には、比較例として従来の一般磁器の焼結性が示されている。比較例は、A−ニューボン、B−一般磁器、C−セリサイト磁器である。これらの最大かさ密度を得るためには、1250〜1350℃を必要としている。一方、図1に示すように、実施例1においては最大かさ密度を得るための焼成温度は1100℃以下と低い。また、図5には、比較例として従来の一般磁器の曲げ強度が示されているが、いずれも最大曲げ強度で87.5MPa〜65MPaとなり、1100℃程度の焼成温度の場合にはいずれも65MPa以下となっている。一方、図2に示すように、実施例1の曲げ強度は、1070〜1100℃の最大かさ密度においてほぼ100MPaと極めて高く、1050℃の場合にも90MPa以上と極めて高い。   FIG. 4 shows the sinterability of a conventional general porcelain as a comparative example. Comparative examples are A-Newbon, B-General porcelain, C-Sericite porcelain. In order to obtain these maximum bulk densities, 1250-1350 ° C is required. On the other hand, as shown in FIG. 1, in Example 1, the firing temperature for obtaining the maximum bulk density is as low as 1100 ° C. or lower. In addition, FIG. 5 shows the bending strength of conventional general porcelain as a comparative example, but all have a maximum bending strength of 87.5 MPa to 65 MPa, and in the case of a firing temperature of about 1100 ° C., all are 65 MPa or less. It has become. On the other hand, as shown in FIG. 2, the bending strength of Example 1 is extremely high at about 100 MPa at a maximum bulk density of 1070 to 1100 ° C., and is extremely high at 90 MPa or more even at 1050 ° C.

また、図3に示すように、酸化アルミニウムを10重量%含む実施例2において、1057℃にて焼成した磁器については平均強度106MPa、ワイブル係数7との結果を得ており、一方1077℃にて焼成した磁器については平均強度118MPa、ワイブル係数14との結果を得ており、いずれも従来に対して良好な値を示している。   Further, as shown in FIG. 3, in Example 2 containing 10% by weight of aluminum oxide, the result was that the porcelain fired at 1057 ° C. had an average strength of 106 MPa and a Weibull coefficient of 7, while at 1077 ° C. The fired porcelain obtained an average strength of 118 MPa and a Weibull coefficient of 14, both of which are better than the conventional ones.

このように、本例では、骨灰を混合して焼成することにより、溶融点の下限値が下がり焼成温度幅が広がったと考えられる。したがって、長石、骨灰及びペタライト、並びに珪石及び粘土による磁器用組成物とすることで、これまでの陶磁器素地では困難であった低温での焼結と、高い強度を得ることができる。また、広い焼成温度幅を得ることができることから、通常の陶磁器焼成炉を用いて大量に焼成することも容易である。   Thus, in this example, it is considered that by mixing bone ash and firing, the lower limit of the melting point was lowered and the firing temperature range was widened. Therefore, by using a composition for porcelain of feldspar, bone ash and petalite, and silica and clay, sintering at a low temperature and high strength, which has been difficult with conventional ceramic bodies, can be obtained. Further, since a wide firing temperature range can be obtained, it is easy to fire a large amount using a normal ceramic firing furnace.

本発明の低温焼成磁器用組成物及び製造方法は、1100℃程度で焼成でき広い焼成温度幅を有するので従来の磁器製造に広く利用することができる。また、低温焼成磁器であるにも拘わらず、緻密で機械的強度が高いので、食器や照明器具など日用品として用いられる磁器や観賞用磁器だけでなく、電子材料などとして用いられる特殊な磁器にも利用可能である。   The composition for low-temperature fired porcelain and the production method of the present invention can be fired at about 1100 ° C. and have a wide firing temperature range, so that it can be widely used for conventional porcelain production. Despite being a low-temperature fired porcelain, it is dense and has high mechanical strength, so it can be used not only for porcelain and ornamental porcelain such as tableware and lighting equipment, but also for special porcelain used as electronic materials. Is available.

Claims (5)

珪石及び粘土成分とからなるA成分と、長石、骨灰及びペタライトからなるB成分とを含むことを特徴とする低温焼成磁器用組成物。   A composition for low-temperature fired porcelain, comprising an A component composed of silica and a clay component, and a B component composed of feldspar, bone ash, and petalite. 前記B成分全体に対して、前記長石、骨灰及びペタライトの各重量%が下記三角座標(1)の斜線範囲で表されることを特徴とする低温焼成磁器用組成物。
Figure 2011184245

上記三角座標(1)において、長石、骨灰及びペタライトの各成分の頂点の値は100重量%を示し、各頂点の対辺は0重量%をそれぞれ表す。
A composition for low-temperature fired porcelain, characterized in that each weight% of the feldspar, bone ash, and petalite is represented by a hatched range of the following triangular coordinate (1) with respect to the entire B component.
Figure 2011184245

In the triangular coordinate (1), the value of the vertex of each component of feldspar, bone ash and petalite represents 100% by weight, and the opposite side of each vertex represents 0% by weight.
前記B成分全体に対して、前記長石、骨灰及びペタライトの各重量%が下記三角座標(2)の斜線範囲で表されることを特徴とする低温焼成磁器用組成物。
Figure 2011184245

上記三角座標(2)において、長石、骨灰及びペタライトの各成分の頂点の値は100重量%を示し、各頂点の対辺は0重量%をそれぞれ表す。
A composition for low-temperature fired porcelain, characterized in that each weight% of the feldspar, bone ash, and petalite is represented by a hatched range of the following triangular coordinate (2) with respect to the entire B component.
Figure 2011184245

In the triangular coordinate (2), the value of the vertex of each component of feldspar, bone ash and petalite represents 100% by weight, and the opposite side of each vertex represents 0% by weight.
前記組成物全体に対して、前記A成分が20〜80重量%、前記B成分が80〜20重量%とすることを特徴とする請求項1又は請求項2に記載の低温焼成磁器用組成物。   The composition for low-temperature fired porcelain according to claim 1 or 2, wherein the A component is 20 to 80% by weight and the B component is 80 to 20% by weight with respect to the entire composition. . 前記A成分と、前記B成分とを混合する工程と、前記混合した各成分を平均粒子径 11 μm以下に粉砕する工程と、前記粉砕した各成分を混練・成形して1030℃以上1100℃未満で焼成する工程とを含むことを特徴とする請求項1から請求項3の何れかに記載の低温焼成磁器用組成物による低温焼成磁器の製造方法。   The step of mixing the component A and the component B, the step of pulverizing the mixed components to an average particle size of 11 μm or less, and kneading and molding the pulverized components to 1030 ° C. or higher and lower than 1100 ° C. A method for producing a low-temperature-fired porcelain using the composition for low-temperature-fired porcelain according to any one of claims 1 to 3, characterized by comprising:
JP2010051634A 2010-03-09 2010-03-09 Composition for low-temperature fired porcelain and method for producing low-temperature fired porcelain Active JP5661303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010051634A JP5661303B2 (en) 2010-03-09 2010-03-09 Composition for low-temperature fired porcelain and method for producing low-temperature fired porcelain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010051634A JP5661303B2 (en) 2010-03-09 2010-03-09 Composition for low-temperature fired porcelain and method for producing low-temperature fired porcelain

Publications (2)

Publication Number Publication Date
JP2011184245A true JP2011184245A (en) 2011-09-22
JP5661303B2 JP5661303B2 (en) 2015-01-28

Family

ID=44790980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010051634A Active JP5661303B2 (en) 2010-03-09 2010-03-09 Composition for low-temperature fired porcelain and method for producing low-temperature fired porcelain

Country Status (1)

Country Link
JP (1) JP5661303B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2484044C1 (en) * 2012-01-12 2013-06-10 Юлия Алексеевна Щепочкина Ceramic mixture
RU2486155C1 (en) * 2012-03-07 2013-06-27 Юлия Алексеевна Щепочкина Mixture for making sanitary ceramics
KR101283314B1 (en) 2012-03-09 2013-07-09 최인규 Composite for ceramic ware with low deformation and high strength and manufacturing method of ceramic ware
RU2494074C1 (en) * 2012-05-22 2013-09-27 Юлия Алексеевна Щепочкина Crude mixture for making porcelain
RU2509750C1 (en) * 2013-01-15 2014-03-20 Юлия Алексеевна Щепочкина Ceramic mixture for making brick
RU2513893C1 (en) * 2013-02-19 2014-04-20 Юлия Алексеевна Щепочкина Ceramic mixture for making facing tile
KR101642277B1 (en) * 2015-11-10 2016-07-25 류선영 White ceramic composition for middle temperature sintering and method of manufacturing thereof
RU2596220C1 (en) * 2015-09-21 2016-09-10 Юлия Алексеевна Щепочкина Ceramic mixture
KR101667773B1 (en) * 2015-07-24 2016-10-28 강동하 Ceramic composition using waste ceramics, manufacturing method thereof and ceramics with high strength and transparent using thereof
KR20180065675A (en) * 2016-12-08 2018-06-18 김화원 Method for manufacturing ceramic composition with excellent durability
WO2018195257A1 (en) * 2017-04-21 2018-10-25 Lantec Products, Inc. Low bake ceramic material
CN109516779A (en) * 2018-12-21 2019-03-26 湖南华联瓷业股份有限公司 A kind of medium temperature crack glaze household china and preparation method thereof
CN111978070A (en) * 2020-09-02 2020-11-24 福建泉州顺美集团有限责任公司 Environment-friendly ceramic prepared from Dehua stream sludge and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05245813A (en) * 1991-03-07 1993-09-24 Sumitomo Cement Co Ltd Manufacture of ceramic thin plate
JPH0769709A (en) * 1992-11-30 1995-03-14 Rosenthal Ag Porcelain, porcelain raw material composition and preparation of said porcelain

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05245813A (en) * 1991-03-07 1993-09-24 Sumitomo Cement Co Ltd Manufacture of ceramic thin plate
JPH0769709A (en) * 1992-11-30 1995-03-14 Rosenthal Ag Porcelain, porcelain raw material composition and preparation of said porcelain

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2484044C1 (en) * 2012-01-12 2013-06-10 Юлия Алексеевна Щепочкина Ceramic mixture
RU2486155C1 (en) * 2012-03-07 2013-06-27 Юлия Алексеевна Щепочкина Mixture for making sanitary ceramics
KR101283314B1 (en) 2012-03-09 2013-07-09 최인규 Composite for ceramic ware with low deformation and high strength and manufacturing method of ceramic ware
RU2494074C1 (en) * 2012-05-22 2013-09-27 Юлия Алексеевна Щепочкина Crude mixture for making porcelain
RU2509750C1 (en) * 2013-01-15 2014-03-20 Юлия Алексеевна Щепочкина Ceramic mixture for making brick
RU2513893C1 (en) * 2013-02-19 2014-04-20 Юлия Алексеевна Щепочкина Ceramic mixture for making facing tile
KR101667773B1 (en) * 2015-07-24 2016-10-28 강동하 Ceramic composition using waste ceramics, manufacturing method thereof and ceramics with high strength and transparent using thereof
RU2596220C1 (en) * 2015-09-21 2016-09-10 Юлия Алексеевна Щепочкина Ceramic mixture
KR101642277B1 (en) * 2015-11-10 2016-07-25 류선영 White ceramic composition for middle temperature sintering and method of manufacturing thereof
KR20180065675A (en) * 2016-12-08 2018-06-18 김화원 Method for manufacturing ceramic composition with excellent durability
WO2018195257A1 (en) * 2017-04-21 2018-10-25 Lantec Products, Inc. Low bake ceramic material
CN109516779A (en) * 2018-12-21 2019-03-26 湖南华联瓷业股份有限公司 A kind of medium temperature crack glaze household china and preparation method thereof
CN109516779B (en) * 2018-12-21 2021-04-13 湖南华联瓷业股份有限公司 Medium-temperature crack glaze household porcelain and preparation method thereof
CN111978070A (en) * 2020-09-02 2020-11-24 福建泉州顺美集团有限责任公司 Environment-friendly ceramic prepared from Dehua stream sludge and preparation method thereof

Also Published As

Publication number Publication date
JP5661303B2 (en) 2015-01-28

Similar Documents

Publication Publication Date Title
JP5661303B2 (en) Composition for low-temperature fired porcelain and method for producing low-temperature fired porcelain
CN108367993B (en) Sintered refractory zircon composite material, method for the production thereof and use thereof
Ozel et al. Effect of the processing on the production of cordierite–mullite composite
CN101935222B (en) High-temperature corundum-porzite pushing plate and manufacture method thereof
Ochen et al. Physical and mechanical properties of porcelain tiles made from raw materials in Uganda
Awaad et al. Effect of replacing weathered feldspar for potash feldspar in the production of stoneware tiles containing fish bone ash
Zhang et al. Effect of Al2O3 addition on the flexural strength and light‐transmission properties of bone china
JP4408104B2 (en) Strengthened porcelain and manufacturing method thereof
Khattab et al. Alumina–zircon refractory materials for lining of the basin of glass furnaces: effect of processing technique and TiO2 addition
Zawrah et al. Recycling and utilization of some waste clays for production of sintered ceramic bodies
CN106431435A (en) Porous periclase-forsterite multiphase material and preparation method thereof
JP5080736B2 (en) Refractory manufacturing method and refractory obtained thereby
JP5083971B2 (en) Composition for low-temperature fired porcelain and method for producing low-temperature fired porcelain
Etukudoh et al. Characterization of Ezzodo clay deposit for its industrial potentials
US9181133B1 (en) Crystallized silicate powder by synthesized and high strengthened porcelain body having the same
KR101343808B1 (en) Composite for low temperature sinterable porcelain and manufacturing method of low temperature sinterable porcelain
US9840441B2 (en) Composition for producing a shaped refractory ceramic product, a method for producing a shaped refractory ceramic product, and a shaped refractory ceramic product
JP2012036026A (en) Plastic clay mixture for pottery or porcelain and pottery or porcelain made from the thermoplastic clay mixture
CN107311674B (en) Special sprue pipe for casting and preparation method thereof
Aydin et al. Characterization and production of slip casts mullite–zirconia composites
JPH0930860A (en) Production of refractory having low thermal expansion property
Li et al. Synthesis of α-cordierite based glass-ceramic from Bayan Obo tailing and fly ash through volume crystallization
Amutha et al. Comparison studies of quartz and biosilica influence on the porcelain tiles
KUTTY et al. Influence of Different Compositions of Fly Ash as Fluxing Agent in Porcelain
Sarai Improvement on mechanical properties sodium feldspar for porcelains tableware

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141203

R150 Certificate of patent or registration of utility model

Ref document number: 5661303

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250