JP2011179818A - Resistive voltage divider device for calibrating resistance ratio meter and calibration method using the device - Google Patents

Resistive voltage divider device for calibrating resistance ratio meter and calibration method using the device Download PDF

Info

Publication number
JP2011179818A
JP2011179818A JP2010041225A JP2010041225A JP2011179818A JP 2011179818 A JP2011179818 A JP 2011179818A JP 2010041225 A JP2010041225 A JP 2010041225A JP 2010041225 A JP2010041225 A JP 2010041225A JP 2011179818 A JP2011179818 A JP 2011179818A
Authority
JP
Japan
Prior art keywords
resistor
resistance
voltage divider
nominal value
calibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010041225A
Other languages
Japanese (ja)
Inventor
Kunihisa Kaneko
晋久 金子
Kazuaki Yamazawa
一彰 山澤
Yasuhiko Sakamoto
泰彦 坂本
Jun Tanba
純 丹波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2010041225A priority Critical patent/JP2011179818A/en
Publication of JP2011179818A publication Critical patent/JP2011179818A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem that, although a device for use in both a DC bridge and an AC bridge is desired for calibrating a resistance ratio measuring bridge, a conventional device has current dependence and temperature dependence and cannot be precisely calibrated. <P>SOLUTION: The resistive voltage divider device includes at least: a resistor having a nominal value of R/11; and a resistive voltage divider which is obtained by connecting eleven or more unit resistive elements having nominal values of R/11 in series and includes terminals at both ends of each unit resistive element. In some cases, the resistive voltage divider device further includes a resistor having a nominal value of R and a resistor having a nominal value of 1/10 of R, and housed in a metal chassis. This is used to perform the self-calibration and calibration of a resistance ratio meter at high accuracy. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、抵抗比測定器の高精度な校正に適した抵抗分圧器装置及び該装置を用いた校正方法に関する。   The present invention relates to a resistance voltage divider apparatus suitable for highly accurate calibration of a resistance ratio measuring instrument and a calibration method using the apparatus.

近年、電気抵抗値の精密測定は、電気抵抗標準分野で重要であることは勿論、他の分野でも必要とされている。例えば温度の精密測定には白金抵抗温度計が使われているが、温度測定の分野では精密な温度差の校正が求められ、微小な抵抗値の差異を正確に測定するニーズがある。   In recent years, precise measurement of electrical resistance values is important in the field of electrical resistance standards, and is also required in other fields. For example, a platinum resistance thermometer is used for precise temperature measurement, but in the field of temperature measurement, precise temperature difference calibration is required, and there is a need to accurately measure minute resistance difference.

温度や電気抵抗の精密測定の分野等では、対となる2つの抵抗器の抵抗値の比を測定する抵抗比測定器(抵抗比測定ブリッジ又はブリッジともいう)が用いられている。抵抗比測定ブリッジは、標準抵抗器の抵抗値と測定対象の抵抗器の抵抗値との比を測定し、表示するものである。抵抗比測定ブリッジは、一般に、リレー等で切り替えを行いブリッジ回路の平衡を取る上位桁の回路と、上位桁のブリッジでは調整しきれない僅かな残差信号を増幅して検出して平衡を取る下位の桁の回路があり、上位桁および下位桁の調整・測定結果を最終的に抵抗比の測定結果とする。このため、抵抗比の精密測定においては、上位桁および下位桁のそれぞれについて適切に線形性(リニアリティ)が保たれていることを確認することが重要である。   In the field of precision measurement of temperature and electrical resistance, etc., a resistance ratio measuring instrument (also referred to as a resistance ratio measuring bridge or bridge) that measures the ratio of the resistance values of two paired resistors is used. The resistance ratio measurement bridge measures and displays the ratio between the resistance value of the standard resistor and the resistance value of the resistor to be measured. In general, the resistance ratio measurement bridge amplifies and detects and balances the high-order digit circuit that balances the bridge circuit by switching with a relay and the like, and the slight residual signal that cannot be adjusted by the high-order bridge. There is a circuit for the lower digits, and the adjustment and measurement results for the upper and lower digits are finally used as the resistance ratio measurement results. Therefore, in the precise measurement of the resistance ratio, it is important to confirm that the linearity is properly maintained for each of the upper and lower digits.

従来、ブリッジの種類はおおまかに分けて、抵抗に流す電流が直流電流の場合と交流電流の場合がある。現在までに実用化されているブリッジには、直流専用のものと交流専用のものがある。   Conventionally, the types of bridges are roughly divided into a case where the current flowing through the resistor is a direct current and a case where the current is an alternating current. There are two types of bridges that have been put to practical use so far: one dedicated to direct current and the other dedicated to alternating current.

直流専用抵抗比測定ブリッジを用いた抵抗比測定の原理は、2つの抵抗器にそれぞれ電流を流して電圧降下が等しくなる平衡条件を実現し、そのときの2つの電流比(すなわち抵抗比の逆数)を知るというものである。通常、一方の電流値は定格値に固定し、もう一方の電流を変化させて平衡条件を実現させる。ブリッジ出力としては平衡条件における電流比(すなわち抵抗比の逆数)が表示され、測定結果として記録される。   The principle of resistance ratio measurement using a dedicated resistance ratio measurement bridge for DC is that current is passed through two resistors to achieve an equilibrium condition in which the voltage drop is equal, and the two current ratios at that time (that is, the reciprocal of the resistance ratio). ) To know. Normally, one current value is fixed at the rated value, and the other current is changed to realize the equilibrium condition. As the bridge output, the current ratio under equilibrium conditions (that is, the reciprocal of the resistance ratio) is displayed and recorded as a measurement result.

交流専用抵抗比測定ブリッジを用いた抵抗比測定の原理は、2つの抵抗器に同一の電流を流し、そのときの2つの電圧降下比(すなわち抵抗比)を知るというものである。ブリッジ出力としては2つの抵抗器における電圧降下の比(すなわち抵抗比)が表示され、測定結果として記録される。   The principle of resistance ratio measurement using an AC-dedicated resistance ratio measurement bridge is to let the same current flow through two resistors and know the two voltage drop ratios (that is, the resistance ratio) at that time. As the bridge output, the voltage drop ratio (that is, the resistance ratio) in the two resistors is displayed and recorded as a measurement result.

ここで表示された比が、果たしてどれほど正しいかという疑問が、精密測定においては生じる。そこで、それに対する解答の一つとして、「あらかじめ比が校正された抵抗の対(もしくはそれらに同一電流を流して発生させた電圧降下の対)」をブリッジに入力し、表示結果がどの程度正しいかで判断することが考えられる。   The question of how accurate the ratio displayed here arises in precision measurements. Therefore, as one of the answers to that, “a pair of resistors whose ratios are calibrated in advance (or a pair of voltage drops generated by applying the same current to them)” is input to the bridge, and the display result is correct. Judgment can be made.

さて、ブリッジの正確性を確認するために、標準比としてブリッジに入力する、「あらかじめ比が校正された抵抗の対」を、ブリッジが測定しうるすべての抵抗比の値についてくまなく提供することは困難である。そこで、現実的な方法として、ブリッジの測定レンジをほぼ10点に等分した公称値の抵抗比をもつ、「あらかじめ比が校正された抵抗の対」が実用に供せられている。   Now, to check the accuracy of the bridge, provide a “pre-ratio calibrated resistance pair” to the bridge as the standard ratio for all resistance ratio values that the bridge can measure. It is difficult. Therefore, as a practical method, a “resistance pair whose ratio has been calibrated in advance” having a nominal resistance ratio obtained by equally dividing the measurement range of the bridge into approximately 10 points has been put to practical use.

設定する電流比を、主として手動により10進数のダイアルを操作して制御し、そして指示させ、ブリッジの電流比(すなわち抵抗比の逆数)の指示値を校正するためには、最大桁の「十一分の十の整数倍((10/11)×n、但しn=0、1、2、・・・)」の比が厳密に実現された抵抗対群を用いる原理が知られている。この原理の長所は、整数nを0から10まで変化させると、各桁のダイヤルの算術的理想値がいずれも0から9のすべての整数値を、いずれかのnに対応して取ることにある。これにより、すべての桁の指示値を、0から9のすべての整数値について校正できる。従来、この原理に基づき実現された、最大桁の「十一分の十の整数倍((10/11)×n、但しn=0、1、2、・・・)」の公称比の抵抗対群を実現する製品が、交流専用ブリッジのためにはある。ただし、実際には原理に忠実に算術的理想値をもった抵抗比を実現することはできないため、下位のほうの桁では必ずしも指示値を0から9のすべての整数値について校正できるとは限らないという限界がある。   In order to control and indicate the current ratio to be set mainly by manually operating a decimal dial, and to calibrate the indicated value of the bridge current ratio (that is, the reciprocal of the resistance ratio), the maximum digit of “ten” The principle of using a resistance pair group in which a ratio of an integer multiple of one tenth ((10/11) × n, where n = 0, 1, 2,...) ”Is strictly realized is known. The advantage of this principle is that if the integer n is changed from 0 to 10, the arithmetic ideal value of each digit dial takes all integer values from 0 to 9, corresponding to any n. is there. Thereby, the indication values of all digits can be calibrated for all integer values from 0 to 9. Conventionally, a resistance having a nominal ratio of “tenths of tenths ((10/11) × n, where n = 0, 1, 2,...)” Of the maximum digit, realized based on this principle. There is a product that realizes a pair group for an AC bridge. However, in practice, it is impossible to realize a resistance ratio having an arithmetic ideal value that is faithful to the principle. Therefore, it is not always possible to calibrate the indicated value for all integer values from 0 to 9 in the lower digits. There is no limit.

また、直流専用ブリッジのためには、さまざまの公称比の抵抗対群を実現するために、ある定格電流で校正した抵抗の接続を直列や並列に組み替える従来技術がある(特許文献1参照)。   In addition, for a direct current bridge, there is a conventional technique in which connection of resistors calibrated at a certain rated current is rearranged in series or in parallel in order to realize resistance pairs having various nominal ratios (see Patent Document 1).

また、抵抗分圧器の自己校正の方法は知られている(本発明者による非特許文献1参照)。抵抗分圧器は、自己校正時も比較校正時も、定格電流(例えば1mA)を通電して使用するものである。本発明者らは、電気測定分野における標準分圧器の校正技術を開発してきた(非特許文献1、特許文献2参照)。   Also, a method of self-calibration of a resistance voltage divider is known (see Non-Patent Document 1 by the present inventor). The resistance voltage divider is used by supplying a rated current (for example, 1 mA) during both self-calibration and comparative calibration. The present inventors have developed a calibration technique for a standard voltage divider in the field of electrical measurement (see Non-Patent Document 1 and Patent Document 2).

特表平10―502775号公報Japanese National Patent Publication No. 10-502775 特開2003−21671号公報JP 2003-21671 A

T.Endo,Y.Sakamoto 他、「Automated Voltage Divider to Calibrate a 10−V Output of Zener Voltage Standard」,IEEE Transaction on Instrumentation and Measurement,Vol.40,No2,pp333−336(1991)T.A. Endo, Y .; Sakamoto et al., “Automated Voltage Divider to Calibration a 10-V Output of Zener Voltage Standard”, IEEE Transaction on Instrumentation and Measurement. 40, No2, pp 333-336 (1991)

交流専用ブリッジのための上記製品は、交流回路において比較的正確な分圧比が容易に実現できる誘導分圧器の原理を用いたものであって、励磁された高透磁性芯の2次巻き線の数を適切に選ぶものであった。しかし、誘導分圧器の原理を用いたものは直流ブリッジの校正には使用できないという原理的な欠点がある。また、従来製品の構造及び操作法では、制御変数nを変えたときに正しく((10/11)×n、但しn=0、1、2、・・・)の比を実現できることの根拠は、「誘導分圧器の分圧比は巻き線数に比例する」という原理に全面的に依存していて、実験的に自己校正法により確認することができない構造である。よって精密測定の観点からは不十分であるという問題があった。   The above-described product for an AC-dedicated bridge uses the principle of an induction voltage divider that can easily realize a relatively accurate voltage dividing ratio in an AC circuit, and is a secondary winding of an excited high permeability core. The number was chosen appropriately. However, those using the principle of the inductive voltage divider have the principle drawback that they cannot be used for calibration of the DC bridge. In addition, in the structure and operation method of the conventional product, the basis for correctly realizing the ratio of ((10/11) × n, where n = 0, 1, 2,...) When the control variable n is changed is , Which is entirely dependent on the principle that “the voltage division ratio of the induction voltage divider is proportional to the number of windings”, and cannot be confirmed experimentally by the self-calibration method. Therefore, there is a problem that it is insufficient from the viewpoint of precision measurement.

一方、従来技術(特許文献1参照)は、内部の抵抗器の抵抗値をベースに公称値を決めるものであり、抵抗比測定ブリッジの校正において、外部の標準抵抗器との比を校正することになるので、内部の抵抗器の抵抗値の温度依存性および電流値依存性が、校正結果に大きな影響を与え、不確かさが大きい。即ち、公称比を変えるごとに、抵抗に流れる電流値が校正時のものと異なるため、抵抗値の電流依存性に起因する不確かさが存在する。ある程度より高い精度での直流ブリッジの校正には適さないという問題がある。そこで、抵抗に流れる電流値が校正時と等しく保てるような抵抗比測定器校正用の抵抗対群を実現する必要がある。   On the other hand, the prior art (see Patent Document 1) determines the nominal value based on the resistance value of the internal resistor, and calibrates the ratio with the external standard resistor in the calibration of the resistance ratio measurement bridge. Therefore, the temperature dependency and current value dependency of the resistance value of the internal resistor greatly affect the calibration result, and the uncertainty is large. That is, every time the nominal ratio is changed, the current value flowing through the resistor is different from that at the time of calibration, so there is uncertainty due to the current dependency of the resistance value. There is a problem that it is not suitable for calibrating a DC bridge with a certain degree of accuracy. Therefore, it is necessary to realize a resistance pair group for resistance ratio measurement so that the current value flowing through the resistance can be kept equal to that at the time of calibration.

抵抗比測定ブリッジの校正のためには、抵抗比測定ブリッジの線形性を正確に校正する装置が望まれている。また、自己校正が単体内で完結し、維持できる構造を備えるものが望まれている。   In order to calibrate the resistance ratio measurement bridge, an apparatus that accurately calibrates the linearity of the resistance ratio measurement bridge is desired. It is also desirable to have a structure that allows self-calibration to be completed and maintained within a single unit.

抵抗比測定ブリッジの線形性を正確に校正する必要性について以下詳しく説明する。線形性を校正するには、上位桁の(大局的な)リニアリティと下位桁の(局部的な)リニアリティとを校正することが重要である。上位桁の(大局的な)リニアリティの校正は、被校正抵抗測定ブリッジの装置全体としてのリニアリティを確認するものである。なお、このようなリニアリティの校正を評価とも呼ぶ。図1は、公称抵抗比を横軸、被評価抵抗測定ブリッジの表示値を縦軸としたリニアリティの校正を示す図である。理想のリニアリティを示す点線に対して、ブリッジ校正用の抵抗比によるブリッジ表示値は、丸印として図示される。図1のように、装置全体の線形性の校正をすること(上位桁の(大局的な)リニアリティ)は、各公称比における偏差を求めることに相当する。一方、局部リニアリティとは、図1に、所定の公称抵抗比に対する丸印の点を拡大表示して多数の点が集合していることが図示されているように、所定の公称抵抗比に対して被評価抵抗測定ブリッジの表示値の局部的なリニアリティをさす。下位桁の(局部的な)リニアリティの校正は、特に温度差計測の校正において要求される重要な問題と関連する。83K〜962℃の温度範囲では現行の国際温度目盛(ITS−90)における補間計器は白金抵抗温度計であるが、白金抵抗温度計による温度測定では、感温部の白金抵抗素子の電気抵抗を、高精度な抵抗比測定ブリッジを用いて測定する。温度目盛を構築する上で、微小な温度差の議論には不確かさが約0.1ppmの抵抗比測定が要求されるので、測定器である高精度な抵抗比測定ブリッジの線形性がこの程度に担保されている必要がある。このため、安定な抵抗比を実現できる分圧器を実現して、定期的に線形性の確認を容易にする必要がある。   The necessity of accurately calibrating the linearity of the resistance ratio measuring bridge will be described in detail below. In order to calibrate the linearity, it is important to calibrate the upper digit (global) linearity and the lower digit (local) linearity. The calibration of the upper digit (global) linearity confirms the linearity of the resistance measuring bridge as a whole device. Such linearity calibration is also called evaluation. FIG. 1 is a diagram showing calibration of linearity with the nominal resistance ratio as the horizontal axis and the display value of the resistance measurement bridge to be evaluated as the vertical axis. With respect to the dotted line indicating the ideal linearity, the bridge display value based on the resistance ratio for bridge calibration is shown as a circle. As shown in FIG. 1, calibrating the linearity of the entire apparatus (high-order (global) linearity) corresponds to obtaining a deviation in each nominal ratio. On the other hand, local linearity means that a large number of points are gathered as shown in FIG. 1 by enlarging the circled points for a predetermined nominal resistance ratio. This indicates the local linearity of the displayed value of the resistance measurement bridge to be evaluated. The calibration of the low order (local) linearity is associated with an important issue particularly required in the calibration of temperature difference measurements. In the temperature range of 83K to 962 ° C, the interpolation instrument in the current international temperature scale (ITS-90) is a platinum resistance thermometer. Measure using a highly accurate resistance ratio measurement bridge. In constructing a temperature scale, the discussion of minute temperature differences requires resistance ratio measurement with an uncertainty of about 0.1 ppm, so the linearity of a high-precision resistance ratio measurement bridge, which is a measuring instrument, is about this level Need to be secured. For this reason, it is necessary to realize a voltage divider capable of realizing a stable resistance ratio and to easily confirm the linearity periodically.

本発明は、これらの問題を解決しようとするものであり、直流ブリッジと交流ブリッジのどちらの校正にも使用できる抵抗分圧器装置を実現することを目的とするものである。また、本発明は、直流ブリッジあるいは交流ブリッジの校正にさきだち、あらかじめ比が校正された抵抗対を構成する抵抗分圧器装置の実現を目的とするものである。また、本発明は、抵抗器分圧器装置を用いて高精度に抵抗比測定器を校正する方法を実現することを目的とするものである。   The present invention is intended to solve these problems, and an object thereof is to realize a resistance voltage divider device that can be used for calibration of both a DC bridge and an AC bridge. Another object of the present invention is to realize a resistance voltage divider device that constitutes a resistance pair whose ratio is calibrated in advance before calibration of a DC bridge or an AC bridge. Another object of the present invention is to realize a method for calibrating a resistance ratio measuring device with high accuracy using a resistor voltage divider device.

本発明は、上記目的を達成するために、以下の特徴を有するものである。   In order to achieve the above object, the present invention has the following features.

本発明の装置は、抵抗比測定器校正用の抵抗分圧器装置であることを特徴とする。本発明の装置は、公称値がR/11である抵抗器(C)と、公称値がR/11である単位抵抗素子を11個以上直列接続して各単位抵抗素子両端に端子を有する抵抗分圧器(A)とを少なくとも備えることを特徴とする。本発明の抵抗分圧器は、公称抵抗値がR/11である単位抵抗素子を12個以上直列接続していることを特徴とする。典型的には、13個である。本発明の上記抵抗器(C)及び上記抵抗分圧器(A)は、両端に電流端子を備える。本発明の装置は、公称値がRである抵抗器(B)を、さらに備えることが好ましい。本発明の装置は、公称値がR/10である抵抗器(D)をさらに備えることが好ましい。また、公称値がRである抵抗器(B)と公称値がR/10である抵抗器を備えてもよい。本発明の装置は、公称値がRの10倍である抵抗器(ただし、mは0又は正負の整数)を備えることを特徴とする。また、mが異なる複数個の、公称値がRの10倍である上記抵抗器(ただし、mは0又は正負の整数)を備えることを特徴とする。また、上記抵抗分圧器(A)の上記単位抵抗素子や、公称値がR/11である抵抗器(C)は、同一の公称値Rの抵抗素子を11個並列接続して作製することができる。また、一般に任意の自然数をiと代数表記すれば、同一の公称値i×(R/11)の抵抗素材をi個並列接続して作製することができる。 The apparatus of the present invention is a resistance voltage divider apparatus for calibration of a resistance ratio measuring instrument. The device of the present invention is a resistor (C) having a nominal value of R / 11 and 11 or more unit resistor elements having a nominal value of R / 11 connected in series and having terminals at both ends of each unit resistor element. And a voltage divider (A). The resistive voltage divider according to the present invention is characterized in that 12 or more unit resistive elements having a nominal resistance value of R / 11 are connected in series. Typically, thirteen. The resistor (C) and the resistor voltage divider (A) of the present invention include current terminals at both ends. The device of the present invention preferably further comprises a resistor (B) having a nominal value R. The device of the present invention preferably further comprises a resistor (D) having a nominal value of R / 10. Moreover, you may provide the resistor (B) whose nominal value is R, and the resistor whose nominal value is R / 10. The device of the present invention is characterized by including a resistor (m is 0 or a positive or negative integer) whose nominal value is 10 m times R. In addition, a plurality of resistors having a different m and having a nominal value 10 m times R (where m is 0 or a positive or negative integer) are provided. Further, the unit resistive element of the resistive voltage divider (A) and the resistor (C) having a nominal value of R / 11 can be manufactured by connecting 11 resistive elements having the same nominal value R in parallel. it can. In general, if an arbitrary natural number is algebraically expressed as i, it can be manufactured by connecting i resistance materials having the same nominal value i × (R / 11) in parallel.

本発明の方法は、抵抗比測定ブリッジの抵抗比測定能力を校正する方法であって、抵抗分圧器装置を用いて、上記抵抗器(C)と、上記抵抗分圧器(A)の隣接する単位抵抗素子からなる部分直列要素との抵抗比を求め、該抵抗比を用いて、抵抗比測定ブリッジを校正することを特徴とする。また、本発明の方法では、上記抵抗分圧器(A)の単位抵抗素子群の間の抵抗比を自己校正する時の通電電流と、その自己校正結果を用いて抵抗比測定ブリッジの抵抗比測定能力の校正に供する時の通電公称電流を等しくすることができる。本発明の方法は、抵抗分圧器(A)の単位抵抗素子を12個以上として冗長性を持たせることにより、同一公称比の周りで微小な差を有する異なる複数の抵抗比を求めて、該抵抗比を用いることを特徴とする。   The method of the present invention is a method for calibrating the resistance ratio measuring capability of a resistance ratio measuring bridge, and is a unit adjacent to the resistor (C) and the resistor voltage divider (A) using a resistor voltage divider device. A resistance ratio with a partial series element made of a resistance element is obtained, and the resistance ratio measurement bridge is calibrated using the resistance ratio. In the method of the present invention, the resistance ratio measurement of the resistance ratio measurement bridge is performed by using the energization current when the resistance ratio between the unit resistance element groups of the resistance voltage divider (A) is self-calibrated and the self-calibration result. It is possible to equalize the energized nominal current when subjected to capacity calibration. The method of the present invention obtains a plurality of different resistance ratios having a small difference around the same nominal ratio by providing redundancy by setting the unit resistive elements of the resistance voltage divider (A) to 12 or more. It is characterized by using a resistance ratio.

本発明の装置は、公称値がR/11である抵抗器と、公称値がR/11である単位抵抗素子を11個以上直列接続して各単位抵抗素子両端に端子を有する抵抗分圧器とを少なくとも備えるので、「あらかじめ比が校正された抵抗の対」を用いて、抵抗比測定ブリッジを校正することができる。また、本発明の装置は、「定格電流を流した時の比があらかじめ校正された抵抗の対」を用いるという新しい概念に基づくので、抵抗値の絶対値を校正して行う比較的困難な場合と比べて、不確かさを小さくできる。このように、本発明の装置は、所定の抵抗分圧器を備えるので、装置内の要素で必要な抵抗器対の抵抗比の自己校正を行うことができる。特に、各抵抗器や抵抗分圧器の単位抵抗素子の温度係数の変化や電流依存性を合わせ込む設計・実装により高精度にするのが容易である。また同一公称値の抵抗素材の並列接続によるので、比較的容易に作製できる。   The device of the present invention includes a resistor having a nominal value of R / 11, a resistor voltage divider having terminals connected to both ends of each unit resistor element, in which 11 or more unit resistor elements having a nominal value of R / 11 are connected in series. Therefore, the resistance ratio measurement bridge can be calibrated using “a pair of resistors whose ratios are calibrated in advance”. In addition, since the device of the present invention is based on a new concept of using “a pair of resistances whose ratio when a rated current is passed is calibrated in advance”, it is relatively difficult to calibrate the absolute value of the resistance value. Compared with, uncertainty can be reduced. As described above, since the device of the present invention includes the predetermined resistance voltage divider, it is possible to perform self-calibration of the resistance ratio of the resistor pair required by the elements in the device. In particular, it is easy to achieve high accuracy by designing and mounting a change in temperature coefficient and current dependency of the unit resistance elements of each resistor and resistor voltage divider. In addition, since the resistance materials of the same nominal value are connected in parallel, they can be manufactured relatively easily.

本発明の装置は、直流でも交流でもその定格電流で校正できるので、直流抵抗比測定ブリッジと交流抵抗比測定ブリッジのどちらの校正にも使用できる。   Since the apparatus of the present invention can be calibrated at its rated current for both direct current and alternating current, it can be used for calibration of both a direct current resistance ratio measurement bridge and an alternating current resistance ratio measurement bridge.

本発明の装置においては、自己校正時の定格通電電流と、使用に供する時の定格通電電流を等しくできるので、抵抗値の電流依存性に起因する不確かさが生じないため、より高精度が保証される。また、本発明の装置は、単位抵抗素子を直列接続した抵抗分圧器は、両端に電流端子を備える構造であるので、全単位抵抗素子に通電する電流の大きさを等しく保って校正を行うことができ、抵抗器の抵抗値の電流依存性に起因する抵抗比の不確かさを低減できる。   In the device of the present invention, the rated energization current at the time of self-calibration and the rated energization current at the time of use can be made equal, so there is no uncertainty due to the current dependence of the resistance value, so higher accuracy is guaranteed. Is done. In the apparatus of the present invention, since the resistor voltage divider in which unit resistance elements are connected in series has a structure having current terminals at both ends, calibration is performed while keeping the magnitude of the current flowing through all the unit resistor elements equal. Uncertainty in the resistance ratio due to the current dependency of the resistance value of the resistor can be reduced.

本発明の抵抗分圧器装置は、抵抗分圧器の電圧端子を2つ選んで適宜構成することで実現する部分直列要素の、抵抗器(例えば、公称値がRの(10の整数乗)倍である抵抗器)に対する公称(抵抗)比を、例えば10/11の整数倍に設定することにより、抵抗比測定器の十進ダイアルの各桁につき0から9までのすべての設定について校正することができる。即ち、本発明の装置による校正により、上位桁の線形性と下位桁の線形性が同時に校正できる効果がある。特に、上位桁の校正のために公知の1/11の算数トリックを利用しているので工数が少なくてよい。さらに、本発明の装置において、抵抗分圧器が、単位抵抗素子を12個以上直列接続している場合は、抵抗分圧器の回路の冗長性により、ほぼ同じ公称値となる回路の組み合わせが複数存在し、下位桁の線形性校正がより高精度となる。   The resistive voltage divider apparatus of the present invention is a partial series element realized by selecting two voltage terminals of the resistive voltage divider and appropriately configuring the resistor (for example, the nominal value is R (multiple of 10) times R). Can be calibrated for all settings from 0 to 9 for each digit of the decimal dial of the resistance ratio measuring instrument by setting the nominal (resistance) ratio to a certain resistor to an integer multiple of 10/11, for example. it can. That is, the calibration by the apparatus of the present invention has an effect that the linearity of the upper digit and the linearity of the lower digit can be calibrated simultaneously. In particular, since a well-known 1/11 arithmetic trick is used to calibrate the upper digits, man-hours can be reduced. Furthermore, in the device of the present invention, when the resistive voltage divider has 12 or more unit resistive elements connected in series, there are a plurality of combinations of circuits having the same nominal value due to the redundancy of the resistive voltage divider circuit. In addition, the low-order linearity calibration becomes more accurate.

本発明により、例えば温度標準の分野で昨今要求されている20マイクロケルビン(2/100000℃)程度という微小な温度差の測定の信頼性の確認が行えるようになった。   According to the present invention, for example, the reliability of measurement of a minute temperature difference of about 20 microkelvin (2 / 100,000 ° C.), which is required recently in the field of temperature standards, can be confirmed.

リニアリティの課題を説明するための図。The figure for demonstrating the subject of linearity. 本発明の第1の実施の形態の抵抗分圧器装置を示す図。The figure which shows the resistive voltage divider apparatus of the 1st Embodiment of this invention. 本発明の第1の実施の形態の抵抗分圧器装置の抵抗器(B)を示す図。The figure which shows the resistor (B) of the resistance voltage divider apparatus of the 1st Embodiment of this invention. 本発明の第1の実施の形態の抵抗分圧器装置の抵抗器(C)を示す図。The figure which shows the resistor (C) of the resistive voltage divider apparatus of the 1st Embodiment of this invention. 本発明の第1の実施の形態の抵抗分圧器装置の抵抗分圧器(A)を示す図。The figure which shows the resistance voltage divider (A) of the resistance voltage divider apparatus of the 1st Embodiment of this invention. 本発明の第1の実施の形態の抵抗分圧器装置の抵抗器(D)を示す図。The figure which shows the resistor (D) of the resistance voltage divider apparatus of the 1st Embodiment of this invention. 本発明の抵抗分圧器装置による抵抗比測定器の線形性校正方法を示す図。The figure which shows the linearity calibration method of the resistance ratio measuring device by the resistance voltage divider apparatus of this invention. 本発明の装置の自己校正手順1の結線を示す図。The figure which shows the connection of the self-calibration procedure 1 of the apparatus of this invention. 本発明の装置の自己校正手順2の結線を示す図。The figure which shows the connection of the self-calibration procedure 2 of the apparatus of this invention. 本発明の装置を用いて抵抗比測定装置の自動測定を示す図。The figure which shows the automatic measurement of a resistance ratio measuring apparatus using the apparatus of this invention. 本発明の装置を用いて抵抗比測定器の直線性を校正する抵抗比を説明する図。The figure explaining the resistance ratio which calibrates the linearity of a resistance ratio measuring device using the apparatus of the present invention. 本発明の装置を用いて抵抗比測定器の直線性を校正する校正点を説明する図。The figure explaining the calibration point which calibrates the linearity of a resistance ratio measuring device using the apparatus of the present invention. 本発明による線形性校正の例を示す図。The figure which shows the example of the linearity calibration by this invention.

本発明の装置は、少なくとも、公称値がR/11である(典型的には四端子の)抵抗器(C)一個と、公称値がR/11である抵抗器(単位抵抗素子とも呼ぶ)を11個以上直列接続した抵抗分圧器(A)とを備えている。さらに、公称値がRの(10の整数乗)倍である少なくとも1個の抵抗器を適宜設けることができる。また、ここで、整数乗倍とは、0倍、正負の整数倍である。即ち、公称値がRである抵抗器(B)や、公称値が(Rの10倍又はRの(1/10)倍)である抵抗器(D)を適宜設けることができる。抵抗器(B)や抵抗器(D)は、典型的には四端子の抵抗器である。なお、公称値とは、使用のための指針となる計器の特性に関する丸めた値又は近似値をいう。公称値(nominal value)は、ISO/IEC指針のなかの「国際計量基本用語集」の定義に準じて用いる。以下、実施の形態について述べる。   The device of the present invention includes at least one resistor (C) having a nominal value of R / 11 (typically four terminals) and a resistor having a nominal value of R / 11 (also referred to as a unit resistance element). 11 or more resistor dividers (A) connected in series. Furthermore, at least one resistor having a nominal value that is a multiple of R (an integer power of 10) can be provided as appropriate. Here, the integral multiplication is 0 times and positive and negative integer multiples. That is, a resistor (B) whose nominal value is R and a resistor (D) whose nominal value is (10 times R or (1/10) times R) can be appropriately provided. The resistor (B) and the resistor (D) are typically four-terminal resistors. The nominal value refers to a rounded value or an approximate value related to the characteristics of an instrument that serves as a guide for use. The nominal value is used in accordance with the definition of “International Glossary of Basic Terms” in the ISO / IEC guidelines. Hereinafter, embodiments will be described.

(第1の実施の形態)
本発明の第1の実施の形態を図を参照して説明する。図2乃至6は、本実施の形態の抵抗分圧器装置を説明する図である。図2は、本実施の形態の抵抗分圧器装置(全体図)である。図2の抵抗分圧器装置は、抵抗器(B)と抵抗器(C)と抵抗器(D)と抵抗分圧器(A)を備える。複数の単体の抵抗器(B、C、D)を、それぞれ図3、4、6に示し、抵抗分圧器(A)を図5に示す。
(First embodiment)
A first embodiment of the present invention will be described with reference to the drawings. 2 to 6 are diagrams for explaining the resistance voltage divider device according to the present embodiment. FIG. 2 is a resistance voltage divider device (overall view) according to the present embodiment. The resistance voltage divider apparatus of FIG. 2 includes a resistor (B), a resistor (C), a resistor (D), and a resistance voltage divider (A). A plurality of single resistors (B, C, D) are shown in FIGS. 3, 4 and 6, respectively, and a resistive voltage divider (A) is shown in FIG.

図3に示すように、抵抗器(B)は、公称値がRである抵抗器単体であり、2個の電流端子(C1、C2)と、2個の電圧端子(P1、P2)とを備える。
図4に示すように、抵抗器(C)は、公称値が(R/11)である抵抗器単体であり、2個の電流端子(C1、C2)と、2個の電圧端子(P1、P2)とを備える。公称値が(R/11)である抵抗器は、例えば公称値R(例えば100Ω)の抵抗素材を11個並列接続したものを用いる。同一公称値の抵抗素材の並列接続によるので、比較的容易に作製できる。例えば、Rが100Ωの場合、100/11(およそ9.09Ω)である。また、例えば、Rの公称値が100Ωであって、公称値がR/11≒9.09Ωの単位抵抗素子は、公称値が 4×(R/11)≒36.363Ω の抵抗素材(例えば、抵抗箔)を4枚並列接続することで作製することができる。即ち、一般に任意の自然数をiと代数表記すれば、同一の公称値i×(R/11)の抵抗素材をi個並列接続して作製することができる。
As shown in FIG. 3, the resistor (B) is a single resistor having a nominal value R, and includes two current terminals (C1, C2) and two voltage terminals (P1, P2). Prepare.
As shown in FIG. 4, the resistor (C) is a single resistor having a nominal value (R / 11), and includes two current terminals (C1, C2) and two voltage terminals (P1, P2). As the resistor having a nominal value (R / 11), for example, a resistor having 11 resistor materials having a nominal value R (for example, 100Ω) connected in parallel is used. Due to the parallel connection of resistance materials of the same nominal value, it can be manufactured relatively easily. For example, when R is 100Ω, it is 100/11 (approximately 9.09Ω). In addition, for example, a unit resistance element having a nominal value of R of 100Ω and a nominal value of R / 11≈9.09Ω has a resistance material having a nominal value of 4 × (R / 11) ≈36.363Ω (for example, It can be manufactured by connecting four resistance foils in parallel. That is, in general, if an arbitrary natural number is expressed as an algebra, it can be produced by connecting i resistance materials having the same nominal value i × (R / 11) in parallel.

図5は、公称値が(R/11)である抵抗器を、11個以上直列接続した抵抗分圧器(A)である。公称値が(R/11)である抵抗器は、抵抗分圧器(A)の1単位であるといえるので、「単位抵抗素子」と呼ぶ。単位抵抗素子として、例えば公称値Rの抵抗素材を11個並列接続したものを用いる。また、単位抵抗素子は、公称値が(R/11)である上記抵抗器(C)と同じ構成であるので、抵抗器(C)は、単位抵抗素子1個からなる抵抗器であるといえる。抵抗分圧器の各抵抗器(単位抵抗素子)は、最小数は11個であり、校正の精度を上げるためには、12個以上が求められ、典型的には、13個であり、14個以上であってもよい。11個以上13個以下が、使用上の利便性やコンパクト化の点等で適切である。抵抗分圧器の単位抵抗素子の隣同士をつなぐ節点からは、もれなく電圧端子を引き出し、抵抗分圧器の両端からはそれぞれ電圧端子と電流端子を引き出す。13個直列接続した場合は、14個の電圧端子(P0、P1・・・P13)と、両端2個の電流端子(C1、C2)とを備えている。抵抗分圧器の単位抵抗素子(公称抵抗値が(R/11))の直列接続数を多めに設定するのは、次の理由による。現実の装置において実現される抵抗値には公称値から微少量の偏差がある。そこで、抵抗分圧器の単位抵抗素子(公称抵抗値が(R/11))の直列接続数を多めに設定して冗長性を持たせれば、同じ公称比(n/11)に対しても微妙に異なった既知の抵抗比を抵抗分圧器の部分直列要素から実現できるため、公称比近傍において複数の実験値を検証できるので、公称比近傍の線形性の検証にも適用できるからである。   FIG. 5 shows a resistive voltage divider (A) in which 11 or more resistors having a nominal value (R / 11) are connected in series. A resistor having a nominal value of (R / 11) is called a “unit resistance element” because it can be said to be one unit of the resistance voltage divider (A). As the unit resistance element, for example, an element in which 11 resistance materials having a nominal value R are connected in parallel is used. The unit resistor element has the same configuration as the resistor (C) having a nominal value of (R / 11), and thus the resistor (C) can be said to be a resistor composed of one unit resistor element. . The minimum number of each resistor (unit resistance element) of the resistor voltage divider is 11, and 12 or more are required to increase the accuracy of calibration, typically 13 and 14 It may be the above. 11 or more and 13 or less are appropriate in terms of convenience in use and compactness. The voltage terminal is drawn out from the node connecting the adjacent unit resistance elements of the resistive voltage divider, and the voltage terminal and the current terminal are drawn out from both ends of the resistive voltage divider. When 13 are connected in series, 14 voltage terminals (P0, P1,... P13) and two current terminals (C1, C2) at both ends are provided. The reason why the number of series connection of unit resistance elements (the nominal resistance value is (R / 11)) of the resistor voltage divider is set to be larger is as follows. There is a slight deviation from the nominal value in the resistance value realized in an actual device. Therefore, if redundancy is provided by setting a large number of series-connected unit resistance elements (nominal resistance value (R / 11)) of the resistor voltage divider, the same nominal ratio (n / 11) is subtle. This is because, since different resistance ratios can be realized from the partial series element of the resistor voltage divider, a plurality of experimental values can be verified in the vicinity of the nominal ratio, and therefore, it can be applied to verification of linearity in the vicinity of the nominal ratio.

図6に示すように、抵抗器(D)は、公称値がR/10である抵抗器単体であり、2個の電流端子(C1、C2)と、2個の電圧端子(P1、P2)とを備える。抵抗器(D)として、R/10に替えて、10R等のRの(10の整数乗)倍である抵抗器単体を用いることができる。一例として公称値が(R/10)である抵抗器の場合は、例えば公称値R(例えば100Ω)の抵抗素材を10個並列接続して作製したものを用いる。同一公称値の抵抗素材の並列接続によるので、比較的容易に作製できる。   As shown in FIG. 6, the resistor (D) is a single resistor having a nominal value of R / 10 and includes two current terminals (C1, C2) and two voltage terminals (P1, P2). With. As the resistor (D), instead of R / 10, a single resistor which is a multiple of 10 (an integer power of 10) R such as 10R can be used. As an example, in the case of a resistor having a nominal value (R / 10), for example, a resistor manufactured by connecting ten resistance materials having a nominal value R (for example, 100Ω) in parallel is used. Due to the parallel connection of resistance materials of the same nominal value, it can be manufactured relatively easily.

図2乃至図6で示した抵抗器や抵抗分圧器において、各端子は、典型的にはバインディングポストであって電気的に高絶縁な板(例えば、高絶縁性樹脂板)に取り付けられている。   In each of the resistors and resistor dividers shown in FIGS. 2 to 6, each terminal is typically a binding post and is attached to an electrically highly insulating plate (for example, a highly insulating resin plate). .

本実施の形態では、抵抗分圧器(A)及び抵抗器(B、C、D)をセットとして1つの筐体箱に収納した。筐体箱は、金属筐体が望ましく、さらに蓋付きであることが望ましい。また、金属筐体はガード付き4芯リード線2本を引き出せるようにするとよい。また、抵抗分圧器(A)、抵抗器(B、C、D)を個別に校正できるように、個々に取り外しができる構造にすることもできる。上記抵抗器(B、C、D)ならびに抵抗分圧器(A)の間は、電気絶縁を十分に高くすることにより、使用の際に精密電気測定の精度を高く保つことができる。   In the present embodiment, the resistor voltage divider (A) and the resistors (B, C, D) are stored as a set in one housing box. The housing box is preferably a metal housing and further preferably has a lid. Moreover, it is preferable that the metal housing can draw out two 4-core lead wires with guards. Moreover, it can also be set as the structure which can be removed separately so that a resistance voltage divider (A) and a resistor (B, C, D) can be calibrated separately. Between the resistors (B, C, D) and the resistor voltage divider (A), the accuracy of precision electrical measurement can be kept high during use by making the electrical insulation sufficiently high.

(校正法)
本実施の形態の抵抗分圧器装置の使用法について説明する。本発明の抵抗分圧器装置は、抵抗比測定ブリッジの線形性を校正するための装置であり、抵抗比測定ブリッジのダイアルの校正に用いる。即ち、本発明の抵抗比測定器校正用抵抗分圧器装置は、次の2つの段階で使用するものである。本発明の装置の自己校正の段階と、自己校正済みの本発明の装置を使って抵抗比測定ブリッジの線形性校正をする段階とからなる。例えば、抵抗分圧器(A)と抵抗器(B)との抵抗比の校正を行う自己校正の段階と、抵抗分圧器(A)と抵抗器(B)との抵抗比が自己校正済みの本発明の装置を使用して抵抗比測定ブリッジの線形性を校正する段階と、からなる。自己校正は、次の2つの手順からなる。自己校正の第1の手順は、抵抗器(C)(R/11が1個)を介在させることで、抵抗分圧器(A)のうちの公称値R/11のすべての単位抵抗素子の互いの抵抗比を校正する手順である。自己校正の第2の手順は、抵抗器(B)(Rが1個)と、抵抗分圧器(A)のうちの隣接する11個の単位抵抗素子を直列接続した部分直列要素(公称抵抗値R)との比を校正する手順である。この2つの抵抗比測定を最高精度の抵抗比測定ブリッジを使って繰り返す手順からなる自己校正を完了すれば、抵抗器(B)(Rが1個)と、抵抗分圧器(A)のうちの隣接する単位抵抗素子を任意の数だけ直列接続した部分直列要素の抵抗との比を知ることができ、これらの組合せの抵抗比の校正結果群が得られる。さらに、抵抗比の範囲を拡張するために、抵抗器(B)の代わりに、公称値がRの10倍や(1/10)倍等の抵抗器(D)を用いることができる。抵抗器B及び抵抗器(D)を、まとめて、公称値Rの(10の整数乗)倍(ただし、ここで整数とは、0と正負の整数を意味する)の値の抵抗器と呼ぶことができる。
(Calibration method)
A method of using the resistance voltage divider device of this embodiment will be described. The resistance voltage divider device of the present invention is a device for calibrating the linearity of the resistance ratio measurement bridge, and is used for calibrating the dial of the resistance ratio measurement bridge. That is, the resistance voltage divider for resistance ratio measuring instrument calibration according to the present invention is used in the following two stages. The method comprises the steps of self-calibration of the device of the present invention and the step of calibrating the linearity of the resistance ratio measuring bridge using the self-calibrated device of the present invention. For example, a self-calibration stage for calibrating the resistance ratio between the resistor voltage divider (A) and the resistor (B), and a book in which the resistance ratio between the resistor voltage divider (A) and the resistor (B) is self-calibrated. Calibrating the linearity of the resistance ratio measuring bridge using the apparatus of the invention. Self-calibration consists of the following two procedures. The first procedure for self-calibration is to interpose resistors (C) (one R / 11) so that all the unit resistance elements having the nominal value R / 11 of the resistance voltage divider (A) are mutually connected. This is a procedure for calibrating the resistance ratio. The second procedure of self-calibration is a partial series element (nominal resistance value) in which a resistor (B) (R is one) and 11 adjacent unit resistor elements of the resistor voltage divider (A) are connected in series. This is a procedure for calibrating the ratio to R). If the self-calibration consisting of the procedure of repeating these two resistance ratio measurements using the highest-precision resistance ratio measurement bridge is completed, the resistor (B) (one R) and the resistor voltage divider (A) A ratio with the resistance of a partial series element in which an arbitrary number of adjacent unit resistance elements are connected in series can be known, and a resistance ratio calibration result group of these combinations can be obtained. Furthermore, in order to extend the range of the resistance ratio, a resistor (D) having a nominal value 10 times or 1/10 times R can be used instead of the resistor (B). The resistor B and the resistor (D) are collectively referred to as a resistor having a value that is a value (an integer power of 10) times the nominal value R (where an integer means a positive or negative integer). be able to.

(抵抗比測定ブリッジの線形性を校正する方法)
本実施の形態の装置を用いて抵抗比測定ブリッジの線形性を校正する方法を、図7を参照して説明する。図7は、抵抗比測定ブリッジ(3)と抵抗器(B)(2)と抵抗分圧器(A)(1)の結線を示す図である。抵抗器(B、C、D)は、高安定な抵抗素子を使用して製作した四端子抵抗器である。また、抵抗分圧器(A)は、単位抵抗素子を直列に接続した抵抗分圧器ではあるが、2つの電流端子と、異なる2つの電圧端子に配線を行うことで、四端子抵抗器とみなすことができる。
(Method to calibrate the linearity of the resistance ratio measurement bridge)
A method of calibrating the linearity of the resistance ratio measurement bridge using the apparatus of the present embodiment will be described with reference to FIG. FIG. 7 is a diagram showing the connection of the resistance ratio measurement bridge (3), the resistors (B) (2), and the resistance voltage divider (A) (1). The resistors (B, C, D) are four-terminal resistors manufactured using highly stable resistance elements. The resistance voltage divider (A) is a resistance voltage divider in which unit resistance elements are connected in series. However, the resistance voltage divider (A) is regarded as a four-terminal resistor by wiring two current terminals and two different voltage terminals. Can do.

抵抗分圧器において、単位抵抗素子の数が13個の場合には、14=14×13/2=91通りの四端子抵抗Ri,jが実現できる。Ri,jは、j番目の電圧端子とi番目の電圧端子との間の抵抗値であり、i,jは電圧端子の番号を表す。 In the resistive voltage divider, when the number of unit resistive elements is 13, 14 C 2 = 14 × 13/2 = 91 types of four-terminal resistors R i, j can be realized. R i, j is a resistance value between the j-th voltage terminal and the i-th voltage terminal, and i, j represents the number of the voltage terminal.

図7において、抵抗比測定ブリッジ(3)は、校正対象の抵抗比測定ブリッジであり、公称抵抗比Ri,j/Rの測定を行うことで校正される。図7の抵抗器(B)の四端子抵抗器は公称抵抗値Rである。図7の抵抗分圧器(A)は、14箇所の電圧端子のどの対に、抵抗比測定ブリッジ(3)からの導線の電圧端子対を接続するかにより、91通りの公称抵抗値Ri,jが実現できる。なお、実際の抵抗比Ri,j/Rは自己校正であらかじめ校正済みである。 In FIG. 7, the resistance ratio measurement bridge (3) is a resistance ratio measurement bridge to be calibrated, and is calibrated by measuring the nominal resistance ratio R i, j / R. The four-terminal resistor of the resistor (B) in FIG. The resistance voltage divider (A) in FIG. 7 has 91 nominal resistance values R i, depending on which pair of 14 voltage terminals is connected to the voltage terminal pair of the conductor from the resistance ratio measurement bridge (3) . j can be realized. The actual resistance ratio R i, j / R is calibrated in advance by self-calibration.

図7に、「4−wire」と図示されている2系統の導線のうち、1系統は抵抗比測定ブリッジの2つのポート(すなわち、電流端子が2個と電圧端子が2個の計4個の外部接続端子と、場合によってはさらにガード端子を加えたものが一つの組を構成するもの)のうちの一方のポート(Rsポート)と、抵抗器(B)(Rが1個)の4端子を四端子法で結線する。他の1系統は、他方のポート(Rxポート)と、抵抗分圧器(A)の中から選択した部分直列要素を四端子法で結線する。つまり導線の2つの電圧端子は抵抗分圧器(A)の中から選んだ電圧端子(例えばP0,P1・・・・)と電圧端子(例えばP0,P1・・・P13等)に結線する。ここで、抵抗分圧器の単位抵抗素子の数が13個の場合で説明する。抵抗器(B)と抵抗分圧器(A)を図7のように結線した状態で、校正対象の抵抗比測定ブリッジ(3)に、抵抗比Ri,j/Rを測定させるのであるが、これらの抵抗比Ri,j/Rの実際の値(通常は、n/11から微小に隔たっている)は、自己校正法により既知となっている。これらの抵抗比を抵抗比測定ブリッジ(3)で測定した時の指示値(ダイアル)と、自己校正により知り得ている実際の抵抗比Ri,j/Rの値とを比較することで、抵抗比測定ブリッジ(3)の指示値(ダイアル)がどのような偏差を含んでいて、どのように補正して用いるべきかが分かるので、抵抗比測定ブリッジ(3)のダイアルを校正することができる。校正対象の抵抗比測定ブリッジ(3)に測定させる抵抗比Ri,j/Rは、結線する対象の、抵抗分圧器(A)の電圧端子を適切に選んで変えることで、公称値n/11においてnを0から13まで1刻みで振ることができる。したがって、背景技術の項で述べた公知の原理により、校正対象の抵抗比測定ブリッジ(3)上位のすべての桁と下位のほとんどの桁の指示値を、0から9のすべての整数値について校正できる。 Of the two conductors shown in FIG. 7 as “4-wire”, one system has two ports of the resistance ratio measurement bridge (ie, two current terminals and two voltage terminals, for a total of four). Of the external connection terminal and, in some cases, a guard terminal added to form one set), one of the ports (Rs port) and 4 of the resistor (B) (one R) Connect the terminals using the four-terminal method. The other one system connects the other port (Rx port) and the partial series element selected from the resistor voltage divider (A) by the four-terminal method. That is, the two voltage terminals of the conducting wire are connected to voltage terminals (for example, P0, P1,...) Selected from the resistor voltage divider (A) and voltage terminals (for example, P0, P1,... P13). Here, the case where the number of unit resistive elements of the resistive voltage divider is 13 will be described. In the state where the resistor (B) and the resistor voltage divider (A) are connected as shown in FIG. 7, the resistance ratio measurement bridge (3) to be calibrated measures the resistance ratio R i, j / R. The actual values of these resistance ratios R i, j / R (usually slightly separated from n / 11) are known by the self-calibration method. By comparing the indicated value (dial) when these resistance ratios are measured with the resistance ratio measurement bridge (3) and the actual resistance ratio R i, j / R values obtained by self-calibration, It is possible to calibrate the dial of the resistance ratio measurement bridge (3) because it is possible to know what deviation is included in the indicated value (dial) of the resistance ratio measurement bridge (3) and how it should be corrected and used. it can. The resistance ratio R i, j / R to be measured by the resistance ratio measurement bridge (3) to be calibrated can be changed to the nominal value n / j by appropriately selecting and changing the voltage terminal of the resistance voltage divider (A) to be connected. 11, n can be swung from 0 to 13 in increments of 1. Therefore, according to the known principle described in the background section, the resistance ratio measurement bridge to be calibrated (3) calibrates the indicated values of all the upper digits and the lower most digits for all integer values from 0 to 9. it can.

なお、抵抗分圧器(A)及び抵抗器(B)(Rが1個)の四端子抵抗の比Ri,j/R(91通り)は、高安定な抵抗器を使用しているので安定である。このことを利用し、あらかじめ自己校正により91通りの公称値Ri,j/Rの抵抗比のそれぞれの値を校正しておけば、抵抗比測定ブリッジの線形性の校正に使用できる。 Note that the four-terminal resistance ratio R i, j / R (91 ways) of the resistor voltage divider (A) and the resistor (B) (one R) is stable because a highly stable resistor is used. It is. Utilizing this fact, if each value of the resistance ratio of the 91 nominal values R i, j / R is previously calibrated by self-calibration, it can be used for calibration of the linearity of the resistance ratio measurement bridge.

(自己校正について)
自己校正の手順について、図8、9を参照して説明する。図8は、自己校正手順1での結線を示す図である。図8において、抵抗比測定ブリッジ(5)は、抵抗分圧器(A)(1)の自己校正に使うための、最高精度の抵抗比測定ブリッジであり、抵抗比Ri,j/(R/11)の校正に使用する。図8の四端子抵抗器(C)(4)は、公称抵抗値R/11である。図8の抵抗分圧器(A)(1)は、14箇所の電圧端子のどの対に、ブリッジからの導線の電圧端子対を結線するかにより、13通りの公称抵抗値Ri,j(i=j+1; j=0,1,・・・,13)が実現できるものである。図9は、自己校正手順2での結線を示す図である。図9において、抵抗比測定ブリッジ(5)は、抵抗分圧器(A)(1)の自己校正に使うための、最高精度の抵抗比測定ブリッジであり、抵抗比Ri,j/Rの校正に使用する。図9の四端子抵抗器(B)は公称抵抗値Rである。抵抗分圧器(A)(1)は、14箇所の電圧端子のどの対に、ブリッジからの導線の電圧端子対を結線するかにより、3通りで同じ公称抵抗値R(i=j+11; j=0,1,2)が実現できる。
(About self-calibration)
The self-calibration procedure will be described with reference to FIGS. FIG. 8 is a diagram showing a connection in the self-calibration procedure 1. In FIG. 8, a resistance ratio measurement bridge (5) is the most accurate resistance ratio measurement bridge for use in self-calibration of the resistance voltage divider (A) (1), and the resistance ratio R i, j / (R / Used for calibration of 11). The four-terminal resistors (C) and (4) in FIG. 8 have a nominal resistance value R / 11. The resistance voltage divider (A) (1) of FIG. 8 has 13 nominal resistance values R i, j (i) depending on which of the 14 voltage terminals is connected to the voltage terminal pair of the conductor from the bridge. = J + 1; j = 0, 1,..., 13) can be realized. FIG. 9 is a diagram showing a connection in the self-calibration procedure 2. In FIG. 9, a resistance ratio measurement bridge (5) is the most accurate resistance ratio measurement bridge for use in self-calibration of the resistance voltage divider (A) (1), and calibrates the resistance ratio R i, j / R. Used for. The four-terminal resistor (B) in FIG. 9 has a nominal resistance value R. The resistor voltage divider (A) (1) has the same nominal resistance value R (i = j + 11; j = 3) depending on which of the 14 voltage terminals is connected to the voltage terminal pair of the conductors from the bridge. 0, 1, 2) can be realized.

抵抗比の公称値Ri,j/Rを決めるために以下の手順で測定を行って自己校正をする。 In order to determine the nominal value R i, j / R of the resistance ratio, self-calibration is performed by performing measurement according to the following procedure.

(手順1)
抵抗分圧器(A)の(i=j+1)となるiとjとの対で実現される公称抵抗値R/11のすべての場合について、抵抗器(C)(公称値R/11)との比(ほぼ1)であるRi,j/(R/11)を順次測定する。例えば、図8のように、最高精度の抵抗比測定ブリッジ(5)を用意し、抵抗比測定ブリッジ(5)の2つのポートのうちの一方のポートと、抵抗器(C)(公称値がR/11である抵抗器1個)の4端子とを結線する。他方のポートは、抵抗分圧器(A)と四端子法で結線する。その際、導線の電圧端子対は、抵抗分圧器(A)の端子P0と端子P1の対、端子P1と端子P2の対、端子P2と端子P3の対・・・、端子P12と端子P13の対、のように結線して、抵抗比Ri,j/(R/11)を順次測定する。この測定において、抵抗器(C)には一定の定格電流を通電し、抵抗分圧器(A)にも、上記定格電流とほぼ等しい一定の定格電流を通電する。ここで、ほぼ等しいとは、実質的に等しくするという意味であり、交流抵抗比ブリッジを用いる場合はいかに等しくしようとしても、抵抗器Cの電源は、抵抗分圧器Aと別電源であることから、原理的に全く等しくすることはできないので、ほぼ等しいという表現をする。また、代表的な直流抵抗比ブリッジを用いる場合は、ブリッジが、2つの抵抗器に流す電流の比を抵抗比の逆数になるように自動調整するから、2つの抵抗の比が厳密に1になっていない分だけ、2つの電流も厳密に等しくはならない。いずれにしても、これらは公称1:1の抵抗比の校正なので、例えば抵抗比測定ブリッジにつなぐ2つの抵抗器の結線を置換することで仮に抵抗比測定ブリッジの測定に偏差が含まれていてもそれを算出して補正できるなど、高精度な校正が比較的簡単である。順次測定が終了すれば、抵抗分圧器(A)の各単位抵抗素子の抵抗値Ri,j(ただしi=j+1)と、抵抗器(C)(公称値R/11)の抵抗値との比をすべて知ることができる。なお、抵抗分圧器(A)の各単位抵抗素子で隣接する任意の数nを直列接続したもの(以下「部分直列要素」と呼ぶ。)について、抵抗器(C)との抵抗比(この公称抵抗比はn、ただし n=0,1,2,・・・,11,・・・)は、計算で求めることができる。
(Procedure 1)
Resistor (C) (nominal value R / 11) for all cases of nominal resistance value R / 11 realized with i and j pairs (i = j + 1) for resistor divider (A) The ratio (approximately 1), R i, j / (R / 11), is measured sequentially. For example, as shown in FIG. 8, a resistance ratio measurement bridge (5) with the highest accuracy is prepared, and one of the two ports of the resistance ratio measurement bridge (5) and a resistor (C) (the nominal value is Connect 4 terminals of one resistor (R / 11). The other port is connected to the resistive voltage divider (A) by the four-terminal method. At that time, the voltage terminal pairs of the conductive wires are a pair of terminals P0 and P1, a pair of terminals P1 and P2, a pair of terminals P2 and P3,..., A terminal P12 and a terminal P13. The resistance ratios R i, j / (R / 11) are sequentially measured by connecting like the pair. In this measurement, a constant rated current is applied to the resistor (C), and a constant rated current substantially equal to the rated current is also applied to the resistor voltage divider (A). Here, “substantially equal” means substantially equal, and no matter how much the AC resistance ratio bridge is used, the power source of the resistor C is a separate power source from the resistor voltage divider A. In principle, it cannot be made completely equal, so the expression is almost equal. When a typical DC resistance ratio bridge is used, since the bridge automatically adjusts the ratio of the currents flowing through the two resistors so that it is the reciprocal of the resistance ratio, the ratio of the two resistances is strictly 1. As a result, the two currents are not exactly equal. In any case, since these are nominally 1: 1 resistance ratio calibrations, for example, by replacing the connection of two resistors connected to the resistance ratio measurement bridge, there is a deviation included in the measurement of the resistance ratio measurement bridge. High-precision calibration is relatively easy, as it can be calculated and corrected. When the sequential measurement is completed, the resistance value R i, j (where i = j + 1) of each unit resistance element of the resistance voltage divider (A) and the resistance value of the resistor (C) (nominal value R / 11) You can know all the ratios. It should be noted that the resistance ratio (this nominal value) to the resistor (C) of an arbitrary number n adjacent to each other in the unit resistive elements of the resistance voltage divider (A) (hereinafter referred to as “partial series element”) is connected. The resistance ratio is n (where n = 0, 1, 2,..., 11,...) Can be obtained by calculation.

なお、公称1:1の校正の測定法について、説明する。直流抵抗比測定ブリッジを用いる方法と交流抵抗比測定ブリッジを用いる方法では、具体的な測定法の例として、抵抗分圧器(A)の1単位抵抗素子と抵抗器(C)とを抵抗比測定ブリッッジに設けられている2つのポートにそれぞれ四端子法で結線し、抵抗比測定ブリッジが指示する1の近傍の値を高精度に記録し、それを繰り返す方法がある。そのほかの具体的な測定法の例として、定格値が等しい電流を各々に通電した抵抗分圧器(A)の1単位抵抗素子と抵抗器(C)の、2つの抵抗器間で対応する電圧端子の間を、一方は短絡線で、もう一方は電圧計で結線して電圧計により0Vに近い微小電圧差を測定し、それを繰り返す方法がある。   A nominal 1: 1 calibration measurement method will be described. In the method using the DC resistance ratio measurement bridge and the method using the AC resistance ratio measurement bridge, as an example of a specific measurement method, the resistance ratio measurement is performed on one unit resistance element of the resistance voltage divider (A) and the resistor (C). There is a method in which two ports provided in the bridge are each connected by a four-terminal method, a value near 1 indicated by the resistance ratio measurement bridge is recorded with high accuracy, and this is repeated. As another specific example of the measurement method, a voltage terminal corresponding between two resistors, that is, one unit resistance element of a resistor voltage divider (A) and a resistor (C) each having a current having the same rated value applied thereto. There is a method in which one is connected with a short-circuit wire and the other is connected with a voltmeter, a minute voltage difference close to 0 V is measured with a voltmeter, and this is repeated.

(手順2)
抵抗分圧器(A)の(i=j+11)となるiとjの対について、抵抗器(B)(公称値R)との比(ほぼ1)であるRi,j/Rを順次測定する。例えば、図9のように、最高精度の抵抗比測定ブリッジ(5)を用意し、抵抗比測定ブリッジ(5)の2つのポートのうちの一方のポートと、抵抗器(B)(2)(公称値がRである抵抗器1個)とを四端子法で結線する。他方のポートと、抵抗分圧器(A)(1)とを四端子法で結線する。このとき、導線の抵抗分圧器(A)(1)側の電流端子対は通常のように抵抗分圧器(A)(1)の電流端子対に結線するが、電圧端子対は、端子P0と端子P11の対に、また端子P1と端子P12の対に、そしてまた端子P2と端子P13の対に、のように接続を繰り返す。そして、これら複数の接続で実現された、四端子抵抗器である部分直列要素の、抵抗器(B)(公称値R)に対する比Ri,j/Rを順次測定する。この測定において、抵抗分圧器(A)のn=11の部分直列要素(隣接する11個の単位抵抗素子の直列接続からなるもの)に注目すると、その公称抵抗値はRであるから、この手順は、本発明の実施の形態の装置の、公称値がRである抵抗器(B)との抵抗比の校正である。これは、公称1:1の校正なので、高精度な校正が比較的簡単である。
(Procedure 2)
R i, j / R , which is a ratio (approximately 1) to the resistor (B) (nominal value R), is sequentially measured for a pair of i and j that is (i = j + 11) of the resistor voltage divider (A). . For example, as shown in FIG. 9, a resistance ratio measurement bridge (5) with the highest accuracy is prepared, and one of the two ports of the resistance ratio measurement bridge (5) and resistors (B) (2) ( One resistor having a nominal value of R) is connected by a four-terminal method. The other port and the resistance voltage divider (A) (1) are connected by a four-terminal method. At this time, the current terminal pair on the resistance voltage divider (A) (1) side of the conducting wire is connected to the current terminal pair of the resistance voltage divider (A) (1) as usual, but the voltage terminal pair is connected to the terminal P0. The connection is repeated as a pair of terminals P11, a pair of terminals P1 and P12, and a pair of terminals P2 and P13. Then, the ratio R i, j / R of the partial series element, which is a four-terminal resistor, realized by the plurality of connections to the resistor (B) (nominal value R) is sequentially measured. In this measurement, when attention is paid to the n = 11 partial series elements (consisting of series connection of 11 adjacent unit resistance elements) of the resistance voltage divider (A), the nominal resistance value is R. Is a calibration of the resistance ratio of the device according to the embodiment of the present invention with a resistor (B) whose nominal value is R. Since this is a nominal 1: 1 calibration, highly accurate calibration is relatively easy.

これらの測定結果から、計算により、全てのi、j(ただしi>j)の組み合わせの公称値Ri,j/Rの測定値をそれぞれについて求める。即ち、手順1の抵抗分圧器(A)内の各単位抵抗素子同士の比の計算結果を用いることにより、公称値がRである抵抗器(B)と、抵抗分圧器(A)内の各単位抵抗素子で隣接する任意の数nを直列接続したもの(公称抵抗値が(R/11)×n))との、抵抗比は、計算で求まる。なお、三段論法により、抵抗器(B)と抵抗器(C)との抵抗比も、計算で求まる。 From these measurement results, the measured values of the nominal values R i, j / R of all combinations of i and j (where i> j) are obtained by calculation. That is, by using the calculation result of the ratio between the unit resistance elements in the resistance voltage divider (A) in step 1, each resistor in the resistance voltage divider (A) and the resistor (B) whose nominal value is R The resistance ratio of an arbitrary number n of adjacent unit resistors connected in series (the nominal resistance value is (R / 11) × n) is obtained by calculation. In addition, the resistance ratio between the resistor (B) and the resistor (C) can also be obtained by calculation using the three-stage theory.

手順1及び2の校正を済ませると、抵抗器(B)と、抵抗値が各種の値(公称抵抗値が(R/11)×n)である抵抗分圧器(A)の部分直列要素との比が、求まっているので、これらを対で用いることで、公称比が(n/11、但し n=0,1,2,・・・,11,・・・)であって自己校正済みの抵抗対が、提供されたことになる。該抵抗対を用いて、抵抗比測定ブリッジを校正することができる。   After the calibration in steps 1 and 2, the resistor (B) and the partial series element of the resistor voltage divider (A) having various resistance values (the nominal resistance value is (R / 11) × n) Since the ratio is determined, using these in pairs, the nominal ratio is (n / 11, where n = 0, 1, 2,..., 11,. A resistance pair has been provided. The resistance ratio measurement bridge can be calibrated using the resistance pair.

以上の手順の自己校正や抵抗比ブリッジの線形性校正に際しては、図10のように、コンピュータ制御の低熱起電力スキャナとの組み合わせで、抵抗比測定ブリッジの測定を自動測定で行うことができる。   In the self-calibration of the above procedure and the linearity calibration of the resistance ratio bridge, as shown in FIG. 10, the resistance ratio measurement bridge can be automatically measured by combining with a computer-controlled low thermal electromotive force scanner.

(本装置の自己校正及びブリッジの直線性校正の実施例)
自己校正について、公称値Rが100Ωの場合を示す。上記手順1のように、抵抗分圧器(A)の各単位抵抗素子(公称抵抗値100/11Ω)と、抵抗器(C)(公称抵抗値100/11Ω)の抵抗比(公称100/11:100/11=1:1)を校正する。次に、上記手順2のように、抵抗分圧器(A)の、0番端子と11番端子間、1番端子と12番端子間、及び2番端子と13番端子間(公称抵抗値1100/11Ω(=100Ω))と、抵抗器(B)(公称抵抗値100Ω)(又は抵抗器(D)(公称値がRの1/10で、10Ω))との抵抗比を校正する。もしさらに、いずれかの抵抗器の抵抗値を抵抗標準を用いて校正すれば、抵抗分圧器(A)の単位抵抗素子すべてと、他の抵抗器の抵抗値も校正したことになる。
(Example of self-calibration of this device and linearity calibration of bridge)
For self-calibration, the nominal value R is 100Ω. As in Procedure 1 above, the resistance ratio of each unit resistance element (nominal resistance value 100 / 11Ω) of the resistor voltage divider (A) to the resistor (C) (nominal resistance value 100 / 11Ω) (nominal 100/11: 100/11 = 1: 1) is calibrated. Next, as in procedure 2 above, between the 0th terminal and the 11th terminal of the resistance voltage divider (A), between the 1st terminal and the 12th terminal, and between the 2nd terminal and the 13th terminal (nominal resistance value 1100 / 11Ω (= 100Ω)) and the resistance ratio of resistor (B) (nominal resistance value 100Ω) (or resistor (D) (nominal value is 1/10 of R and 10Ω)) is calibrated. Further, if the resistance value of any resistor is calibrated using a resistance standard, all the unit resistance elements of the resistor voltage divider (A) and the resistance values of other resistors are also calibrated.

次に、自己校正済みの抵抗比を用いて、ブリッジの直線性を校正する。図11の中央欄「0番端子との間の抵抗値/Ω」は、各端子番号の端子と0番端子との間の公称抵抗値(単位はΩ)の例を小数点以下2桁で丸めて示している。1番端子と0番端子との間の公称抵抗値(単位はΩ)は、100/11=9.09、2番端子と0番端子との間の公称抵抗値(単位はΩ)は、200/11=18.18となる。図11の右欄「10Ωとの比」は、抵抗分圧器(A)の各端子番号の端子と0番端子との間の公称抵抗値(単位はΩ)と、抵抗器(D)(公称抵抗値10Ω)との公称抵抗比を小数点以下9桁で丸めて示したもので、左欄に示すパラメータを0から9まで全て振れば、各ダイアル(桁)が0から9のすべての値を示すことを示している。例えば、小数点下第2桁に注目して右欄を最上行の第0番から下に向かって第10番目まで眺めると、その値は、0、0、1、2、3、4、5、6、7、8、9と変わっていて、0から9までのすべての整数が現れることがわかる。したがって、公称抵抗比が(n/11、但し n=0,1,2,・・・,11,・・・)について、その実際の抵抗比が自己校正済みの抵抗対が提供されることにより、ブリッジの直線性が各ダイアル(桁)の全値域(すなわち、0から9までのすべての整数)について校正できる。   Next, the linearity of the bridge is calibrated using the self-calibrated resistance ratio. In the middle column of Fig. 11, "Resistance value between terminal 0 / Ω" is an example of the nominal resistance value (unit is Ω) between each terminal number and terminal 0, rounded to two decimal places It shows. Nominal resistance value between the 1st terminal and the 0th terminal (unit is Ω) is 100/11 = 9.09 Nominal resistance value between the 2nd terminal and the 0th terminal (unit is Ω) is 200/11 = 18.18. The right column “ratio to 10Ω” in FIG. 11 shows the nominal resistance value (unit: Ω) between the terminal of each terminal number of the resistance voltage divider (A) and the 0th terminal, and the resistor (D) (nominal The resistance ratio is 10 ohms) rounded to 9 digits after the decimal point. If all the parameters shown in the left column are assigned from 0 to 9, each dial (digit) will show all values from 0 to 9. It shows that it shows. For example, when looking at the second digit below the decimal point and looking at the right column from the 0th row of the top row to the 10th row, the value is 0, 0, 1, 2, 3, 4, 5, It can be seen that all integers from 0 to 9 appear as 6, 7, 8, and 9. Therefore, for a nominal resistance ratio (n / 11, where n = 0, 1, 2,..., 11,...), A resistance pair whose actual resistance ratio is self-calibrated is provided. , The linearity of the bridge can be calibrated for the full range of each dial (digit) (ie all integers from 0 to 9).

図12は、抵抗比測定ブリッジを用いて行った場合の測定結果を大局的に眺めるために通常用いているグラフの座標軸を用いており、横に抵抗比測定ブリッジが指示する比の値の軸を、縦に測定値の軸をとっている。そして、この座標の上に上記の公称抵抗比(n/11、但し n=0,1,2,・・・,11,・・・)すなわち本方法で抵抗比測定ブリッジを校正した場合に理想的な校正結果として測定されるであろう点をドットでプロットして表示したものであり、各ドットの縦(すなわち横に等しい)座標が整数値からずらされていることを表している。このように、ここで示した全ての校正点で校正を行えば、抵抗比測定ブリッジの全てのダイアルについて全ての指示可能な値(0,1,2、・・・,9)に設定して直線性校正を行うことができる。   FIG. 12 uses the coordinate axes of a graph that is normally used to view the measurement results when the resistance ratio measurement bridge is used, and shows the axis of the ratio value indicated by the resistance ratio measurement bridge. The measurement value axis is taken vertically. And, when the nominal resistance ratio (n / 11, where n = 0, 1, 2,..., 11,...), That is, the resistance ratio measurement bridge is calibrated by this method on this coordinate, it is ideal. The points that will be measured as typical calibration results are plotted and displayed as dots, indicating that the vertical (ie, equal to horizontal) coordinates of each dot are shifted from the integer value. Thus, if calibration is performed at all the calibration points shown here, all the instructable values (0, 1, 2,..., 9) are set for all the dials of the resistance ratio measurement bridge. Linearity calibration can be performed.

上記の実施例は、必要な抵抗比の自己校正を済ませた抵抗分圧器(A)と抵抗器(D)の組を用いて抵抗比測定ブリッジの校正を行った例である。手順2で、抵抗器(B)ではなく抵抗器(D)を用いてもよい。抵抗器(D)(公称値がRの(10の整数乗)倍)を用いる線形性校正では、抵抗器(D)と抵抗器(B)(公称値がR)との抵抗比(例えば、公称比1:10)は、比較的容易に高精度で校正できることを利用する。上記実施例の自己校正で得た自己校正済みの抵抗対に加えて、抵抗器(D)が加わることにより、抵抗器(D)の公称値が(Rの1/10倍)の場合、該抵抗器(D)と抵抗分圧器(A)の単位抵抗素子群を用いて、公称比が((10/11)×n、ただし、n=0,1,2,・・・,11,・・・)の抵抗対も、提供される。これを用いて、抵抗比測定ブリッジの校正レンジの広い校正をすることができる。   The above embodiment is an example in which a resistance ratio measurement bridge is calibrated by using a resistor voltage divider (A) and a resistor (D) that have undergone self-calibration of the necessary resistance ratio. In step 2, a resistor (D) may be used instead of the resistor (B). In a linearity calibration using a resistor (D) (nominal value multiplied by (an integer power of 10)), the resistance ratio between resistor (D) and resistor (B) (nominal value R) (eg, The nominal ratio 1:10) takes advantage of the fact that it can be calibrated relatively easily with high accuracy. In addition to the self-calibrated resistance pair obtained by the self-calibration of the above embodiment, when the resistor (D) is added, the nominal value of the resistor (D) is (1/10 times R). Using the unit resistor element group of the resistor (D) and the resistor voltage divider (A), the nominal ratio is ((10/11) × n, where n = 0, 1, 2,..., 11,. ..) resistance pairs are also provided. By using this, it is possible to perform calibration with a wide calibration range of the resistance ratio measurement bridge.

図13は、本実施の形態の装置を用いて、抵抗比Ri,j/Rを校正することでその値を知った後、本来の目的である抵抗比測定ブリッジの線形性を校正した実施例を示したものである。図13のグラフは、横軸には、本発明の方法で抵抗比測定ブリッジを校正したときに入力した抵抗比の公称値(nominal input resistance ratio in bridge calibration)をとり、縦軸には、校正の結果知りえた被校正抵抗比ブリッジの指示値の偏差(deviation of bridge reading from the reference ratio value)を拡大した尺度でとっている。そして、この座標の上に公称抵抗比(n/11、但しn=1,2,・・・,12)について繰り返し測定した結果をプロットしたものである。 FIG. 13 shows an implementation in which the linearity of the resistance ratio measurement bridge, which is the original purpose, is calibrated after knowing the value by calibrating the resistance ratio R i, j / R using the apparatus of the present embodiment. An example is shown. In the graph of FIG. 13, the horizontal axis represents the nominal value of the resistance ratio (nominal input resistance ratio in calibration) that was input when the resistance ratio measurement bridge was calibrated by the method of the present invention, and the vertical axis represents the calibration. As a result, the deviation of the indication value of the resistance ratio bridge to be calibrated (development of bridge reading from the reference ratio value) is taken on an enlarged scale. Then, the results of repeated measurements on the nominal resistance ratio (n / 11, where n = 1, 2,..., 12) are plotted on the coordinates.

(第2の実施の形態)
第2の実施の形態は、第1の実施の形態で示した抵抗器(D)を備えない点を除いて、第1の実施の形態と同様の構造を備える。即ち、第2の実施の形態の抵抗分圧器装置は、抵抗器(B)と抵抗器(C)と抵抗分圧器(A)を備える。本実施の形態の抵抗分圧器装置を使用して、第1の実施の形態と同様に、自己校正を行い、自己校正済みの本発明の装置を使って抵抗比測定ブリッジの線形性校正をする。
(Second Embodiment)
The second embodiment has the same structure as that of the first embodiment except that the resistor (D) shown in the first embodiment is not provided. That is, the resistance voltage divider device of the second embodiment includes a resistor (B), a resistor (C), and a resistance voltage divider (A). As in the first embodiment, self-calibration is performed using the resistance voltage divider apparatus of the present embodiment, and the linearity calibration of the resistance ratio measurement bridge is performed using the self-calibrated apparatus of the present invention. .

(第3の実施の形態)
第3の実施の形態は、第1の実施の形態で示した抵抗器(B)を備えない点を除いて、第1の実施の形態と同様の構造を備える。第3の実施の形態は、特に説明をしない事項については、基本的に第1の実施の形態と同様である。即ち、第3の実施の形態の抵抗分圧器装置は、抵抗器(C)と抵抗器(D)と抵抗分圧器(A)を備える。抵抗器(C)は、図4に示すように、公称値が(R/11)である抵抗器1個であり、抵抗器(D)は、図6に示すように、公称値がR/10等のRの(10の整数乗)倍である抵抗器1個である。抵抗分圧器(A)は、図5に示すように、公称値が(R/11)である単位抵抗素子を11個以上直列接続した抵抗分圧器である。
(Third embodiment)
The third embodiment has the same structure as that of the first embodiment except that the resistor (B) shown in the first embodiment is not provided. The third embodiment is basically the same as the first embodiment in matters that are not particularly described. That is, the resistance voltage divider device according to the third embodiment includes a resistor (C), a resistor (D), and a resistance voltage divider (A). The resistor (C) is one resistor having a nominal value (R / 11) as shown in FIG. 4, and the resistor (D) has a nominal value of R / R as shown in FIG. One resistor which is 10 times the R (10 to the power of an integer). As shown in FIG. 5, the resistance voltage divider (A) is a resistance voltage divider in which 11 or more unit resistance elements having a nominal value (R / 11) are connected in series.

本実施の形態の抵抗分圧器装置を用いて、第1の実施の形態と同様に、自己校正を行い、自己校正済みの本装置を用いて、抵抗比測定ブリッジの線形性を校正する。
まず、本実施の形態では、第1の実施の形態における抵抗器(B)の使用の代わりに、自己校正の手順2において、抵抗分圧器(A)の(i=j+11)となるiとjの対について、抵抗器(D)(公称値がRの(10の整数乗)倍)との比であるRi,j/(Rの(10の整数乗)倍)を順次測定する。
As in the first embodiment, self-calibration is performed using the resistance voltage divider device of the present embodiment, and the linearity of the resistance ratio measurement bridge is calibrated using the self-calibrated device.
First, in this embodiment, instead of using the resistor (B) in the first embodiment, i and j that become (i = j + 11) of the resistance voltage divider (A) in the procedure 2 of the self-calibration. R i, j / (R (multiple of 10)), which is a ratio of the resistor (D) (the nominal value is (multiple of 10)) of R, is sequentially measured.

次に自己校正した本実施の形態の装置を用いて、抵抗比測定ブリッジの線形性を校正する。図7の配線図において、抵抗器(B)の代わりに抵抗器(D)と結線して、抵抗器(D)と抵抗分圧器(A)の部分直列要素との抵抗比を用いて、測定ブリッジを校正する。   Next, the linearity of the resistance ratio measurement bridge is calibrated using the self-calibrated apparatus of the present embodiment. In the wiring diagram of FIG. 7, measurement is performed using the resistance ratio between the resistor (D) and the partial series element of the resistor voltage divider (A) connected to the resistor (D) instead of the resistor (B). Calibrate the bridge.

(第4の実施の形態)
第4の実施の形態は、第1の実施の形態で示した抵抗器Bと抵抗器Dを備えない点を除いて、第1の実施の形態と同様の構造を備える。装置として、抵抗器Bや抵抗器Dを備えずに別体でよく、別体であって公称値が上記に述べた抵抗器Bや抵抗器Dに等しいものを用いても、別形態で同じ効果が得られる。
さらに、抵抗器Bと抵抗器Dを備えず、かつ同等の別体品も用意せず、抵抗分圧器(A)と抵抗器(C)の二つからなる形態で自己校正すれば、公称 n、n=1、2、・・・、11、・・・の比の測定能力について、抵抗比測定用ブリッジの校正が高精度に実施できる。この場合、「10進数を11で割って得られるトリック」を用いていないため小数点以下各桁の公称表示値を0から9までのすべての整数にわたって変化させることは必ずしも期待できないが、大局的な線形性の校正は行うことができ、また抵抗分圧器(A)の単位抵抗素子の数に冗長性をもたせることで、それら大局的校正の公称値(n、n=1、2、・・・、11、・・・)周りの局所的な線形性校正も行うことができる。
(Fourth embodiment)
The fourth embodiment has the same structure as that of the first embodiment except that the resistor B and the resistor D shown in the first embodiment are not provided. The device may be a separate unit without the resistor B and the resistor D, and even if a separate unit having a nominal value equal to the resistor B or the resistor D described above is used, it is the same in another form. An effect is obtained.
Further, if the self-calibration is performed in the form of the resistor voltage divider (A) and the resistor (C) without providing the resistor B and the resistor D and preparing an equivalent separate product, the nominal n , N = 1, 2,..., 11,..., The resistance ratio measurement bridge can be calibrated with high accuracy. In this case, since the “trick obtained by dividing decimal number by 11” is not used, it is not necessarily expected to change the nominal display value of each digit after the decimal point over all integers from 0 to 9. Linearity calibration can be performed, and by providing redundancy to the number of unit resistive elements of the resistive voltage divider (A), the nominal values of these global calibrations (n, n = 1, 2,...). , 11,...) Local linearity calibration around can also be performed.

(第5の実施の形態)
上記の各実施の形態で示した抵抗器の組み合わせの他に、他の公称値の抵抗器を用いることができる。例えば、抵抗分圧器(A)と、抵抗器(C)と、mが異なる複数個の、公称値がRの10倍である上記抵抗器(ただし、mは0又は正負の整数)とを、備える抵抗分圧器装置とする。本実施の形態では、公称値がRの抵抗器との比が校正されていて、公称値が百倍又は百分の一等の抵抗器を、さらに組み合わせることができ、これらの抵抗器を用意して適宜選択することにより、抵抗比測定器の校正レンジを変えて、柔軟性のある校正を実現できる。
(Fifth embodiment)
In addition to the combination of resistors shown in the above embodiments, other nominal value resistors can be used. For example, a resistor voltage divider (A), a resistor (C), and a plurality of resistors having a different m and a nominal value of 10 m times R (where m is 0 or a positive or negative integer). A resistive voltage divider device. In this embodiment, the ratio of the resistor with the nominal value R is calibrated, and a resistor whose nominal value is one hundred times or one hundredth can be further combined, and these resistors are prepared. By selecting as appropriate, flexible calibration can be realized by changing the calibration range of the resistance ratio measuring instrument.

(第6の実施の形態)
本発明の抵抗分圧器装置を構成する抵抗器の抵抗値の温度依存性は、限りなく小さい方がよいが、現実的に製作可能な抵抗器には必ず温度依存性が存在する。本実施の形態では、温度依存性をより小さくするための構成を提供する。抵抗分圧器装置の使用温度付近における各抵抗器の温度係数を揃えるようにする。抵抗分圧器(A)及び抵抗器(B、C、D)について、次のような実装上の工夫をすることが望ましい。そして、温度依存性を減少させることにより、各抵抗素子の抵抗値の不確かさよりも小さい不確かさで、抵抗比Ri,j/R等を維持できる。例えば、各抵抗器及び抵抗分圧器を構成する抵抗素子の温度係数を小さくすることが好ましい。また、温度係数(抵抗値の温度による偏微分の、抵抗値に対する相対量)をほぼ同じ値に揃えることにより、抵抗比の精度を向上させることができる。各抵抗素子を同じ材料で構成することにより温度係数を揃えることができる。また、抵抗器と抵抗分圧器を、1つの筐体に収めて等温に保つことにより温度変化の影響を除くことができる。このように、各抵抗器の温度依存性を揃えることにより、自己校正において得られる抵抗値の比(抵抗対)の温度依存性を、抵抗値そのものの温度依存性に比べて小さくすることができる。
(Sixth embodiment)
The temperature dependency of the resistance value of the resistor constituting the resistance voltage divider device of the present invention should be as small as possible. However, a resistor that can be actually manufactured always has temperature dependency. In this embodiment, a configuration for reducing temperature dependence is provided. The temperature coefficient of each resistor in the vicinity of the operating temperature of the resistor voltage divider device is made uniform. It is desirable to devise the following mounting methods for the resistor voltage divider (A) and the resistors (B, C, D). Then, by reducing the temperature dependence, the resistance ratio R i, j / R and the like can be maintained with an uncertainty smaller than the uncertainty of the resistance value of each resistance element. For example, it is preferable to reduce the temperature coefficient of the resistance elements constituting each resistor and the resistor voltage divider. In addition, the accuracy of the resistance ratio can be improved by aligning the temperature coefficient (the relative amount of the partial differentiation of the resistance value with respect to the resistance value) to substantially the same value. By configuring each resistance element with the same material, the temperature coefficients can be made uniform. Further, the effect of temperature change can be eliminated by keeping the resistor and the resistor voltage divider in a single housing and keeping them isothermal. Thus, by making the temperature dependence of each resistor uniform, the temperature dependence of the resistance value ratio (resistance vs.) obtained in self-calibration can be made smaller than the temperature dependence of the resistance value itself. .

上記実施の形態を適宜組み合わせて用いることができ、上記実施の形態等で示した例は、発明を理解しやすくするために記載したものであり、この形態に限定されるものではない。   The above embodiments can be used in appropriate combination, and the examples shown in the above embodiments and the like are described for easy understanding of the invention, and are not limited to these embodiments.

産業界において、温度や電気抵抗の精密測定等の分野で用いる抵抗比測定ブリッジを、高精度で校正することが要求されているので、本発明を適用することは有用である。   In the industry, it is required to calibrate a resistance ratio measurement bridge used in fields such as precision measurement of temperature and electric resistance with high accuracy, and therefore it is useful to apply the present invention.

Claims (14)

抵抗比測定器校正用の抵抗分圧器装置であって、
公称値がR/11である抵抗器と、
公称値がR/11である単位抵抗素子を11個以上直列接続して各単位抵抗素子両端に端子を有する抵抗分圧器と、
を少なくとも備えることを特徴とする抵抗分圧器装置。
A resistance voltage divider device for calibration of a resistance ratio measuring instrument,
A resistor having a nominal value of R / 11;
11 or more unit resistor elements having a nominal value R / 11 connected in series, and a resistor voltage divider having terminals at both ends of each unit resistor element;
A resistance voltage divider device comprising:
上記抵抗分圧器は、上記単位抵抗素子を12個以上直列接続していることを特徴とする請求項1記載の抵抗分圧器装置。   2. The resistance voltage divider apparatus according to claim 1, wherein the resistance voltage divider has 12 or more unit resistance elements connected in series. 上記抵抗器及び上記抵抗分圧器は、両端に電流端子を備えることを特徴とする請求項1又は2記載の抵抗分圧器装置。   3. The resistor voltage divider apparatus according to claim 1, wherein the resistor and the resistor voltage divider include current terminals at both ends. 公称値がRである抵抗器を、備えることを特徴とする請求項1乃至3のいずれか1項記載の抵抗分圧器装置。   The resistor voltage divider device according to claim 1, further comprising a resistor having a nominal value of R. 5. 公称値がR/10である抵抗器を、備えることを特徴とする請求項1乃至4のいずれか1項記載の抵抗分圧器装置。   5. The resistance voltage divider device according to claim 1, further comprising a resistor having a nominal value of R / 10. 公称値がRの10倍である抵抗器(ただし、mは0又は正負の整数)を、さらに備えることを特徴とする請求項1乃至3のいずれか1項記載の抵抗分圧器装置。 The resistance voltage divider apparatus according to claim 1, further comprising a resistor having a nominal value 10 m times R (where m is 0 or a positive or negative integer). mが異なる複数個の、公称値がRの10倍である上記抵抗器(ただし、mは0又は正負の整数)を、さらに備えることを特徴とする請求項1乃至3のいずれか1項記載の抵抗分圧器装置。 4. The apparatus according to claim 1, further comprising a plurality of resistors having different values of m and having a nominal value of 10 m times R (where m is 0 or a positive or negative integer). 5. The resistive voltage divider device described. 上記抵抗分圧器の上記単位抵抗素子は、公称値Rの抵抗素子を11個並列接続してなることを特徴とする請求項1記載の抵抗分圧器装置。   2. The resistive voltage divider apparatus according to claim 1, wherein the unit resistive element of the resistive voltage divider is formed by connecting 11 resistive elements having a nominal value R in parallel. 上記公称値がR/11である抵抗器は、公称値Rの抵抗素子を11個並列接続してなることを特徴とする請求項1項記載の抵抗分圧器装置。   2. The resistance voltage divider apparatus according to claim 1, wherein the resistor having a nominal value of R / 11 comprises 11 resistor elements having a nominal value of R connected in parallel. 上記抵抗分圧器の上記単位抵抗素子は、任意の自然数をiと代数表記して公称値i×(R/11)の抵抗素材をi個並列接続してなることを特徴とする請求項1記載の抵抗分圧器装置。   2. The unit resistive element of the resistive voltage divider is formed by connecting an i number of resistance materials having a nominal value i × (R / 11) in parallel with an algebraic representation of an arbitrary natural number as i. Resistance voltage divider device. 上記公称値がR/11である抵抗器は、任意の自然数をiと代数表記して公称値i×(R/11)の抵抗素材をi個並列接続してなることを特徴とする請求項1記載の抵抗分圧器装置。   The resistor having a nominal value of R / 11 comprises an arbitrary algebraic notation of i as an algebraic expression, and i resistor materials having a nominal value i × (R / 11) connected in parallel. The resistance voltage divider apparatus according to claim 1. 抵抗比測定器を校正する方法であって、
公称値がR/11である抵抗器と、公称値がR/11である単位抵抗素子を11個以上直列接続して各単位抵抗素子両端に端子を有する抵抗分圧器とを少なくとも備える抵抗分圧器装置を用いて、
上記抵抗器と、上記抵抗分圧器の隣接する単位抵抗素子からなる部分直列要素との抵抗比を求め、該抵抗比を用いて、抵抗比測定器を校正することを特徴とする校正方法。
A method for calibrating a resistance ratio measuring instrument,
A resistor voltage divider comprising at least a resistor having a nominal value of R / 11 and a resistor voltage divider having at least 11 unit resistor elements having a nominal value of R / 11 connected in series and having terminals at both ends of each unit resistor element Using the device,
A calibration method characterized by obtaining a resistance ratio between the resistor and a partial series element composed of adjacent unit resistor elements of the resistor voltage divider, and calibrating the resistance ratio measuring instrument using the resistance ratio.
自己校正時の通電電流と、使用に供する時の通電電流が等しいことを特徴とする請求項12記載の校正方法。   13. The calibration method according to claim 12, wherein the energization current at the time of self-calibration is equal to the energization current at the time of use. 上記抵抗分圧器の単位抵抗素子を12個以上として冗長性を持たせることにより、同一公称比の周りで微小な差を有する異なる複数の抵抗比を求めて、該抵抗比を用いることを特徴とする請求項12記載の校正方法。   It is characterized in that a plurality of different resistance ratios having a minute difference around the same nominal ratio are obtained by using 12 or more unit resistance elements of the resistance voltage divider to provide redundancy, and the resistance ratio is used. The calibration method according to claim 12.
JP2010041225A 2010-02-26 2010-02-26 Resistive voltage divider device for calibrating resistance ratio meter and calibration method using the device Pending JP2011179818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010041225A JP2011179818A (en) 2010-02-26 2010-02-26 Resistive voltage divider device for calibrating resistance ratio meter and calibration method using the device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010041225A JP2011179818A (en) 2010-02-26 2010-02-26 Resistive voltage divider device for calibrating resistance ratio meter and calibration method using the device

Publications (1)

Publication Number Publication Date
JP2011179818A true JP2011179818A (en) 2011-09-15

Family

ID=44691498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010041225A Pending JP2011179818A (en) 2010-02-26 2010-02-26 Resistive voltage divider device for calibrating resistance ratio meter and calibration method using the device

Country Status (1)

Country Link
JP (1) JP2011179818A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103344932A (en) * 2013-07-09 2013-10-09 上海华力微电子有限公司 Standard testing sample
CN104215811B (en) * 2014-09-22 2017-01-18 富阳精密仪器厂 Single arm electric bridge and potentiometer dual purpose meter
CN109581260A (en) * 2018-12-06 2019-04-05 河南省计量科学研究院 Earth-continuity tester calibration standard resistance system
CN112965019A (en) * 2021-03-22 2021-06-15 云南省计量测试技术研究院 Multidimensional intelligent compensation method for high-power current divider

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5414278A (en) * 1977-07-04 1979-02-02 Takeda Riken Ind Co Ltd Haymon type resistyance voltage divider
JPH01211087A (en) * 1988-02-18 1989-08-24 Mitsubishi Heavy Ind Ltd On-line data acquiring/processing system using electric calibrating box
JPH10502775A (en) * 1994-03-02 1998-03-10 インダストリアル リサーチ リミテッド Resistance network
JP2005069929A (en) * 2003-08-26 2005-03-17 Toshiba Plant Systems & Services Corp Resistance generator for calibration
JP2007513325A (en) * 2003-11-04 2007-05-24 レイセオン・カンパニー Broadband microwave power sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5414278A (en) * 1977-07-04 1979-02-02 Takeda Riken Ind Co Ltd Haymon type resistyance voltage divider
JPH01211087A (en) * 1988-02-18 1989-08-24 Mitsubishi Heavy Ind Ltd On-line data acquiring/processing system using electric calibrating box
JPH10502775A (en) * 1994-03-02 1998-03-10 インダストリアル リサーチ リミテッド Resistance network
JP2005069929A (en) * 2003-08-26 2005-03-17 Toshiba Plant Systems & Services Corp Resistance generator for calibration
JP2007513325A (en) * 2003-11-04 2007-05-24 レイセオン・カンパニー Broadband microwave power sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103344932A (en) * 2013-07-09 2013-10-09 上海华力微电子有限公司 Standard testing sample
CN104215811B (en) * 2014-09-22 2017-01-18 富阳精密仪器厂 Single arm electric bridge and potentiometer dual purpose meter
CN109581260A (en) * 2018-12-06 2019-04-05 河南省计量科学研究院 Earth-continuity tester calibration standard resistance system
CN112965019A (en) * 2021-03-22 2021-06-15 云南省计量测试技术研究院 Multidimensional intelligent compensation method for high-power current divider

Similar Documents

Publication Publication Date Title
Li et al. Development of precision DC high-voltage dividers
US8847576B1 (en) Phase compensation method and apparatus for current transformers
Park Special shielded resistor for high-voltage DC measurements
CN103323642B (en) internal self-check resistance bridge and method
JP2011179818A (en) Resistive voltage divider device for calibrating resistance ratio meter and calibration method using the device
US20230333145A1 (en) Apparatus for measure of quantity and associated method of manufacturing
Hill et al. An ac double bridge with inductively coupled ratio arms for precision platinum-resistance thermometry
CN108008193B (en) Combined quantum Hall resistance sample proportion checker
Elmquist et al. NIST measurement service for DC standard resistors
JP3208336U (en) Calibration test equipment
Li et al. Method to determine the ratio error of DC high-voltage dividers
JP3790993B2 (en) Ground resistance measuring instrument and ground resistance measuring method
CN105652056A (en) Self-adaptive compensation method of single-phase electric energy meter voltage change influence quantity
Galliana et al. Analysis of a national comparison in the field of electrical low dc resistance
IL233537A (en) Identifying defective electrical cables
RU2244319C1 (en) Device for calibration testing instrument current transformer
KR20100048060A (en) Resistance measuring apparatus and method
US3377555A (en) Method of calibrating high-voltage precision resistance potential dividers
CN102662098B (en) High voltage, high-resistance method is measured with ratio stacked system
Tadros et al. Automated accurate high value resistances measurement in the range from 100 kΩ to 100 MΩ at NIS
RU2645900C2 (en) Measurement of the homogeneous temperature of coil by increasing resistance of the wire
Oe et al. Voltage injection type high ohm resistance bridge
JP2018071996A (en) Calibration test device
GB2409732A (en) Electrical power meter with adaptation for testing
CN207751610U (en) A kind of dry transformer temperature measurement instrument calibration equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140407

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141202