JPH01211087A - On-line data acquiring/processing system using electric calibrating box - Google Patents

On-line data acquiring/processing system using electric calibrating box

Info

Publication number
JPH01211087A
JPH01211087A JP3584288A JP3584288A JPH01211087A JP H01211087 A JPH01211087 A JP H01211087A JP 3584288 A JP3584288 A JP 3584288A JP 3584288 A JP3584288 A JP 3584288A JP H01211087 A JPH01211087 A JP H01211087A
Authority
JP
Japan
Prior art keywords
calibration
data
cpu
box
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3584288A
Other languages
Japanese (ja)
Inventor
Kiichi Fukumoto
福本 喜一
Toshitaka Yagi
矢木 敏孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP3584288A priority Critical patent/JPH01211087A/en
Publication of JPH01211087A publication Critical patent/JPH01211087A/en
Pending legal-status Critical Current

Links

Landscapes

  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

PURPOSE:To minimize an erroneous setting and an input error due to a human- initiated operation by generating calibration data by an electric calibrating box, correcting measured data by the calibration data, and executing processing based on a data processing coefficient. CONSTITUTION:For an electric calibrating box 5 provided near a sensor bridge 1, its switch is actuated by a digital/output signal SO sent from a CPU for every test, calibrating resistances 2 are connected to one arm of the bridge 1 in parallel, calibration voltage is generated, and the voltage is read by the CPU as information A/I to represent the transmission characteristics of a measuring system. Thereafter, the measured data are corrected by the calibration data, and the processing based on the data processing coefficient indexed from a memory table additionally provided to the CPU. Thus, an operation procedure in a measuring preparing period can be executed by software, and the erroneous setting and the input error due to the human-initiated operation can be minimized.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ブリッジ型セ″ンサを使用する計DI分野全
般に適用可能で、特に航空機、ロケット等の飛昇体を開
発する為の風洞試験に於けるデータ計測システムにおい
て好適な電気較正ボックスを用いたオンラインデータ取
得/処理システムに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to the general DI field that uses bridge-type sensors, and is particularly applicable to wind tunnel tests for developing flying objects such as aircraft and rockets. The present invention relates to an on-line data acquisition/processing system using an electrical calibration box suitable for data measurement systems in the field.

[従来の技術] 従来技術は特にない。[Conventional technology] There is no particular prior art.

[発明が解決しようとする課題] ゲージブリッジ型センサ及び電圧発生型センサの組合わ
せに、市販の歪増幅器及び直流増幅器とアナログ/デジ
タル(以下A/Dと略す)変換機能をもつCPUとで単
一純構成した計測システムを用いて風洞試験を実施した
場合を想定すると、次のような問題が生じる。
[Problem to be solved by the invention] A simple method for combining a gauge bridge type sensor and a voltage generation type sensor with a commercially available distortion amplifier, a DC amplifier, and a CPU having an analog/digital (hereinafter abbreviated as A/D) conversion function. Assuming that a wind tunnel test is conducted using a measurement system with a single configuration, the following problems arise.

(1)計測系の調整が繁雑な上に、試験、風洞。(1) Adjustment of the measurement system is complicated, and tests and wind tunnels are required.

模型条件の調整、設定及びその結果のCPUへのインプ
ット等が試験直前に集中する。
Adjustment and setting of model conditions and input of the results to the CPU are concentrated immediately before the test.

(2)上記(1)の大部分は人為操作である為、誤設定
やインプットミスが発生し易く試験準備工数増となる。
(2) Since most of the steps in (1) above are performed manually, incorrect settings and input errors are likely to occur, resulting in an increase in test preparation man-hours.

(3)伝送系を補正する為の較正電圧は歪増幅器に内蔵
される標準ブリッジにより発生させる為、必ずしも系全
体(特に風洞試験ではセンサ/増幅器間のケーブル長は
一般に数107ILに達する)の伝送特性を代表するも
のではない。
(3) Since the calibration voltage for correcting the transmission system is generated by a standard bridge built into the distortion amplifier, it is not necessary to transmit the entire system (especially in wind tunnel tests, the cable length between the sensor and amplifier generally reaches several 107 IL). It is not representative of the characteristics.

もし完全な精度管理を狙うとすれば、風洞試験を休止し
試験計測時と完全に一致した計測系を用いてセンサの較
正検定がとなり風洞可動率が低下する。
If complete accuracy control is aimed at, the wind tunnel test will be suspended and the sensor calibration will be performed using a measurement system that completely matches the test measurement, which will reduce the wind tunnel operating rate.

そこで本発明は、人為操作に伴う誤設定やインプットミ
スが少なくなり、例えば風洞試験を行なう場合のフロー
ティングタイムを大巾に短縮することのできる電気較正
ボックスを用いたオンラインデ〜り取得/処理システム
を提供することを目的とする。
Therefore, the present invention provides an online data acquisition/processing system using an electrical calibration box that reduces incorrect settings and input errors caused by human operations, and can greatly shorten floating time when conducting wind tunnel tests, for example. The purpose is to provide

[課題を解決するための手段] 本発明は上記課題を解決し目的を達成するために次のよ
うな手段を講じた。すなわち試験データの自動計DI 
/処理を行なうシステムにおいて、計測・処理条件等を
情報のCPUへ転送する転送手段と、上記CPUに付設
されたメモリテーブルからデータ処理係数の索引を行な
う手段と、電気較正ボックスにより較正データを発生さ
せこの較正データにより計測データの補正を行ない前記
データ処理係数に基づいた処理を行なう手段とを備えた
[Means for Solving the Problems] In order to solve the above problems and achieve the objects, the present invention takes the following measures. In other words, automatic measurement DI of test data
/In a processing system, a transfer means for transferring measurement/processing conditions, etc. to the information CPU, a means for indexing data processing coefficients from a memory table attached to the CPU, and an electric calibration box generate calibration data. and means for correcting the measured data using the calibration data and performing processing based on the data processing coefficients.

[作用] このような手段を諧じたことにより、計測準備期間に於
ける操作手順が大巾にソフト化され、従って人為的操作
部分は整理、単純化されることになり、人為操作に伴う
誤操作やインプットミスが少なくなる。
[Effect] By studying these methods, the operating procedures during the measurement preparation period will be greatly softened, and the manual operations will be organized and simplified, and the manual operations will be reduced. Misoperations and input errors are reduced.

[実施例] 以下、本発明の一実施例を第1図〜第7図を参照して説
明する。
[Example] Hereinafter, an example of the present invention will be described with reference to FIGS. 1 to 7.

(1)電気較正ボックス(第1図参照)センサブリッジ
1の近傍に設置されている電気較正ボックス5は、次の
ように構成されている。
(1) Electrical calibration box (see FIG. 1) The electric calibration box 5 installed near the sensor bridge 1 is configured as follows.

各試験ごとにCPUから送られてくるデジタル/アウト
プット(以下D/φと略す)信号soによりSWI、S
W2が作動し、ブリッジ1の一辺に較正抵抗2を並列接
続し、較正電圧を発生させて、これを計測系の伝送特性
を代表する情報A/IとしてCPUに読み込まれる。
The SWI, S
W2 is activated, a calibration resistor 2 is connected in parallel to one side of the bridge 1, a calibration voltage is generated, and this is read into the CPU as information A/I representative of the transmission characteristics of the measurement system.

但し電圧発生型センサでは、そのフルレンジに相当する
較正電圧を前記D/φ信号SOの発生タイミングにより
切り換え伝送する。
However, in the voltage generation type sensor, the calibration voltage corresponding to the full range is switched and transmitted depending on the generation timing of the D/φ signal SO.

尚計測器の調整は、正負の較正電圧がA/D変換許容最
大値を越えない程度の電圧となるように合せるだけの調
整でよく、調整時間の大巾短縮となる。
Note that the adjustment of the measuring instrument only needs to be adjusted so that the positive and negative calibration voltages are at a level that does not exceed the maximum allowable A/D conversion value, which greatly reduces the adjustment time.

一方、較正抵抗2としては、歪量換算で1500.10
00.750,500,250及び0(マイクロストレ
イン)相当の6段階の抵抗値を有するものが用意されて
おり、ATT切換用ロータリスイッチ3により選択され
る。
On the other hand, as the calibration resistor 2, it is 1500.10 in terms of distortion amount.
There are six resistance values corresponding to 0.00.750, 500, 250, and 0 (microstrain), which are selected by the ATT switching rotary switch 3.

尚、この較正抵抗2を選択するための識別コードは、C
PUからのD/φ信号S1と、ロータリスイッチ3と、
バイナリ・コード・デシマル(以下BCDと略す)マト
リクス4とで構成されるデジタル/インプット マルチ
プレクサ(以下D/I  MPXと略す)方式により転
送ビットS2に変換されてシーケンシャルにCPUにイ
ンプットされる。
The identification code for selecting this calibration resistor 2 is C.
D/φ signal S1 from PU, rotary switch 3,
It is converted into transfer bits S2 by a digital/input multiplexer (hereinafter referred to as D/I MPX) system consisting of a binary code decimal (hereinafter referred to as BCD) matrix 4 and is sequentially input to the CPU.

(2)D/I  MPX (第2図参照)第2図に示す
制御卓6は電気較正ボックス5の較正抵抗選択スイッチ
に連動して風洞試験計測処理条件の選択切換を行なう識
別信号S2をつくり、これを転送ビットとしてシーケン
シャルにCPUに転送するものである。
(2) D/I MPX (See Figure 2) The control console 6 shown in Figure 2 generates an identification signal S2 for selecting and switching wind tunnel test measurement processing conditions in conjunction with the calibration resistance selection switch of the electrical calibration box 5. , which are sequentially transferred to the CPU as transfer bits.

かくしてCPUから対応アドレスD/φ信号S1が送出
されると、この信号S1で指定された電気較正ボックス
5における接点信号群の列が制御卓6におけるB、C,
D、マトリクス4によりエンコードされ、転送ビットS
2としてCPUに読込まれる。この読込まれた転送ビッ
トはCPU内のコモンエリアの対応アドレス位置にファ
イルされる。
In this way, when the corresponding address D/φ signal S1 is sent from the CPU, the row of contact signal groups in the electrical calibration box 5 specified by this signal S1 is changed to B, C, C, etc. in the control console 6.
D, encoded by matrix 4, transfer bit S
It is read into the CPU as 2. This read transfer bit is filed at the corresponding address position in the common area within the CPU.

(3)トリガコードとメモリテーブル(第3図参照) 機能概要は第3図に示す通りである。すなわち予め磁気
ディスク10内の「メモリテーブル」に、係数の変更が
少ないものはカードインプットにより、また略定期的に
係数の変更のあるものはオンライン検定により、各種係
数M、Nを変換器、風洞検定毎及び模型製作毎にファイ
ルしておく。そして必要に応じて第1表に示すトリガコ
ードを用い、これに対応する第2表に示す係数を磁気デ
ィスク10のメモリテーブルからR1,R2に示す如く
索引し、通風時にはコモンエリア11へ、また係数チj
−ツク時にはCaracter/ D1sply以下C
/Dと略す)画面12ヘセツトアツプするシステムであ
る。なお第4図は第1表の試験コードの模式図である。
(3) Trigger code and memory table (see Figure 3) The functional outline is as shown in Figure 3. In other words, various coefficients M and N are stored in advance in the "memory table" in the magnetic disk 10 by card input for coefficients that do not change much, and by online verification for coefficients that change almost regularly. File for each test and model production. Then, using the trigger code shown in Table 1 as necessary, the corresponding coefficient shown in Table 2 is indexed from the memory table of the magnetic disk 10 as shown in R1 and R2, and when ventilation is performed, the coefficient shown in Table 2 is indexed to the common area 11. coefficient chi
- When picking, Character/ D1sply or less C
/D) is a system that sets up the screen 12. Note that FIG. 4 is a schematic diagram of the test code in Table 1.

本システムによれば値かな数のトリガコードのインプッ
トにより、膨大な量になる各種係数の自動的な索引及び
設定が可能となり、人為操作によるミス介入の排除、準
備工数の削減に寄与する。
According to this system, it is possible to automatically index and set a huge amount of various coefficients by inputting a trigger code with a small number of values, which contributes to eliminating errors caused by human intervention and reducing preparation man-hours.

第   1   表 第   2   表 (4)検定とデータ処理(第5図参照)検定は第5図の
較正幅KHに相当する物理ff1Aを求める為に行なう
ものである。一方、計測処理は較正幅KHに対する計測
値KSの比率から計11111物理量Aaを算定するも
のである。即ち物理変換  !係数B及び計測物理量A
aは           (B−(検定加重W/検定
出力P) ×(較正幅KH)          ・・・■Aa−
(計測出力KS/較正幅KH) ×(物理変換係数B)       ・・・■   ′
ここで試験/検定では較正幅KHが共通ベース  ′と
なり、この較正幅K Hは較正抵抗2にめみ依存  “
するから、それ以降の増幅器、A/D変換器等の  0
計n1系とは無関係となる。            
 rI従ってセンサの較正検定は、風洞試験に関わり 
 エなく随時可能となり、精度管理面で有効である上、
 イ風洞可動率へも影響を与えない。        
 i尚、試験/検定での較正°幅の違い(検定時;  
−1000(マイクロストレイン))を補正するた  
ラめ前記式■は                  
ノAa=ATT比率(計測出力KS/ 較正巾KH)x物理変換係数 ・・・■となる。ここで
ATT比率はD/I  MPX(第2図を参照)で転送
された較正抵抗(第1図を参機)の識別コードを基に、
メモリテーブル(第3閾、第2表を参照)から索引され
る係数であり、これにより計/lPJ伝送系のゲインが
補正される。
Table 1 Table 2 (4) Verification and data processing (see FIG. 5) Verification is performed to determine the physical ff1A corresponding to the calibration width KH in FIG. On the other hand, the measurement process calculates a total of 11111 physical quantities Aa from the ratio of the measured value KS to the calibration width KH. In other words, physical transformation! Coefficient B and measured physical quantity A
a is (B-(test weight W/test output P) × (calibration width KH)...■Aa-
(Measurement output KS/calibration width KH) × (physical conversion coefficient B) ・・・■ ′
Here, in the test/certification, the calibration width KH is the common base, and this calibration width KH depends on the calibration resistance 2.
Therefore, the subsequent amplifiers, A/D converters, etc.
It has nothing to do with the total n1 system.
rI Therefore sensor calibration verification involves wind tunnel testing.
It can be done at any time without any hassle, and it is effective in terms of quality control.
It also does not affect the wind tunnel operating rate.
iIn addition, the difference in calibration range in testing/certification (at the time of certification;
-1000 (microstrain))
The above formula ■ is
Aa=ATT ratio (measurement output KS/calibration width KH) x physical conversion coefficient...■. Here, the ATT ratio is based on the identification code of the calibration resistor (see Fig. 1) transferred by the D/I MPX (see Fig. 2).
This is a coefficient indexed from the memory table (third threshold, see Table 2), by which the gain of the total/lPJ transmission system is corrected.

(5)メインプログラム(第6図、第7図)風洞試験の
計測準備・試験・データ処理・データアウトプットを総
括するメインプログラムの概更を第6図および第7図に
示す。図に示すように¥ 動割込ミ21 、 22 、
27 、 28 及ヒC/ D 画(j23〜26から
の「キーイン」により、各種条tの呼込みとその条件に
基づく各種係数、制御関文のコモンエリアへの設定が進
められ、計測準備ヨ完了して「通風」に至り、較正及び
計n1データバ取得される。また調圧停止後にはファイ
ナルデータが取得されたのち第5図に示す概念に基づき
戸−夕処理が行われ、処理結果のC/D表示、数?3図
表のプリントアウト等の全てがソフトルーチンにガード
された手順に沿って行われる。上記メインプログラムの
特徴は以下に示すとおりである。
(5) Main program (Figures 6 and 7) Figures 6 and 7 outline the main program that summarizes measurement preparation, testing, data processing, and data output for the wind tunnel test. As shown in the figure, dynamic interrupts 21, 22,
27, 28 and C/D pictures (J23-26 "key-in" calls various articles and sets various coefficients and control statements in the common area based on the conditions, and measurement preparation is completed. Then, "ventilation" is reached, and calibration and a total of n1 data bases are obtained.Furthermore, after the pressure regulation is stopped, final data is obtained, and door-to-door processing is performed based on the concept shown in Fig. 5, and the processing result is C. /D display, printing out of number 3 diagrams, etc. are all performed in accordance with the procedures guarded by the software routine.The features of the above main program are as shown below.

(1)手動割込みSW及びC/D画面は、準備操作手順
に沿って配列され、特に手動割込みs w i;:はL
GET (i)2g、AND回路29により途中割込み
、飛越しを防止する。
(1) The manual interrupt SW and C/D screen are arranged according to the preparation operation procedure, and especially the manual interrupt switch is L.
GET (i) 2g, AND circuit 29 prevents midway interrupts and skips.

尚、C/D画面は入力条件「キーイン」後の「エンター
」が次段階への割込みを兼ねる。従ってオペレータによ
る操作ミスの発生の余地は少ない。
Note that on the C/D screen, the "enter" after the input condition "key-in" also serves as an interrupt to the next stage. Therefore, there is little room for operator errors to occur.

(2)各操作の節目ごとにC/D画面をデイスプレィし
、CPU内の条件設定状況の目視確認が可能である。
(2) The C/D screen is displayed at each turning point of each operation, making it possible to visually check the condition setting status in the CPU.

(3)rP3000Jの画面23は、D/IMPXによ
る転送結果の表示であり、またrP 2000J  2
3.  rP 2010J  25には前回試験の条件
がホールドされている。一方rP3010J   24
はトリガコードにより標準値が自動索引(第2表を参照
)される。従って試験ごとの条件変更に伴う再「キイー
イン」は少なく、オペレータへの負担は軽い。
(3) The rP3000J screen 23 displays the transfer results by D/IMPX, and the rP2000J 2
3. rP 2010J 25 holds the conditions of the previous test. On the other hand rP3010J 24
The standard values are automatically indexed (see Table 2) using the trigger code. Therefore, the number of re-key-ins associated with changing conditions for each test is small, and the burden on the operator is light.

(4)試験データは較正中とATT比率とにより、常に
センサ較正検定時と同一条件下と等価な処理ができる。
(4) During calibration, test data can always be processed under the same conditions as during sensor calibration verification, depending on the ATT ratio.

なお本発明は上述した実施例に限定されるものではなく
、本発明の要旨を逸脱しない範囲で種々変形実施可能で
あるのは勿論である。
Note that the present invention is not limited to the embodiments described above, and it goes without saying that various modifications can be made without departing from the gist of the present invention.

[発明の効果] 本発明によれば、計Ipl準備期に於ける操作手順が大
巾にソフト化され、従って人為操作部分が整理、単純化
される為1人為操作に伴う誤設定やインプットミスが少
なく、例えば風洞試験を行なう場合のフローティングタ
イムを大巾に短縮することのできる電気較正ボックスを
用いたオンラインデータ取得/処理システムを提供でき
る。
[Effects of the Invention] According to the present invention, the operating procedures during the IPL preparation period are greatly softened, and the manual operation part is organized and simplified, so that incorrect settings and input errors caused by manual operation are avoided. It is possible to provide an online data acquisition/processing system using an electrical calibration box, which can greatly reduce floating time when performing wind tunnel tests, for example.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第7図は本発明の一実施例であり、第1図は電
気較正ボックスの機能を示す概略図、第2図はD/I 
 MPXによる転送状況を示すフロー図、第3図はトリ
ガコードとメモリテーブルの機能を示す図、第4図は試
験コードの模式図、第5図は検定/試験における較正中
を示す図、第6図および第7図は計7111準備および
試験を行なう場合のメインプログラムを示すフロー図で
ある。 1・・・センサブリッジ、2・・・較正抵抗、3・・・
ATT切換用ロータリスイッチ、4・・・BCDマトリ
クス、5・・・電気較正ボックス、6・・・制御卓。 出願人代理人 弁理士 鈴江武彦 第1図 第3図 第4図 第5図
1 to 7 show one embodiment of the present invention, FIG. 1 is a schematic diagram showing the function of the electrical calibration box, and FIG. 2 is a D/I
Flowchart showing the transfer status by MPX, Figure 3 is a diagram showing the functions of the trigger code and memory table, Figure 4 is a schematic diagram of the test code, Figure 5 is a diagram showing calibration during certification/test, Figure 6 FIG. 7 and FIG. 7 are flowcharts showing the main program when performing a total of 7111 preparations and tests. 1...Sensor bridge, 2...Calibration resistor, 3...
ATT switching rotary switch, 4... BCD matrix, 5... electrical calibration box, 6... control console. Applicant's Representative Patent Attorney Takehiko Suzue Figure 1 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 試験データの自動計測/処理を行なうシステムにおいて
、計測・処理条件等を情報をCPUへ転送する転送手段
と、上記CPUに付設されたメモリテーブルからデータ
処理係数の索引を行なう手段と、電気較正ボックスによ
り較正データを発生させこの較正データにより計測デー
タの補正を行ない前記データ処理係数に基づいた処理を
行なう手段とを具備したことを特徴とする電気較正ボッ
クスを用いたオンラインデータ取得/処理システム。
In a system that automatically measures and processes test data, there is provided a transfer means for transferring information such as measurement and processing conditions to a CPU, a means for indexing data processing coefficients from a memory table attached to the CPU, and an electrical calibration box. 1. An online data acquisition/processing system using an electrical calibration box, comprising means for generating calibration data, correcting measured data using the calibration data, and performing processing based on the data processing coefficient.
JP3584288A 1988-02-18 1988-02-18 On-line data acquiring/processing system using electric calibrating box Pending JPH01211087A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3584288A JPH01211087A (en) 1988-02-18 1988-02-18 On-line data acquiring/processing system using electric calibrating box

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3584288A JPH01211087A (en) 1988-02-18 1988-02-18 On-line data acquiring/processing system using electric calibrating box

Publications (1)

Publication Number Publication Date
JPH01211087A true JPH01211087A (en) 1989-08-24

Family

ID=12453233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3584288A Pending JPH01211087A (en) 1988-02-18 1988-02-18 On-line data acquiring/processing system using electric calibrating box

Country Status (1)

Country Link
JP (1) JPH01211087A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0665419A1 (en) * 1994-01-28 1995-08-02 MAGNETI MARELLI S.p.A. An auto-calibration device for a bridge sensor
JP2011179818A (en) * 2010-02-26 2011-09-15 National Institute Of Advanced Industrial Science & Technology Resistive voltage divider device for calibrating resistance ratio meter and calibration method using the device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0665419A1 (en) * 1994-01-28 1995-08-02 MAGNETI MARELLI S.p.A. An auto-calibration device for a bridge sensor
JP2011179818A (en) * 2010-02-26 2011-09-15 National Institute Of Advanced Industrial Science & Technology Resistive voltage divider device for calibrating resistance ratio meter and calibration method using the device

Similar Documents

Publication Publication Date Title
EP0110898B1 (en) Transducer calibration system
JP2865664B2 (en) Inspection method and inspection system for inspecting control device having electric circuit
JPS5875073A (en) Dc characteristic measuring system
GB2212016A (en) Calibration of digital to analog converters
CN88103246A (en) The method that measure to exchange calibration error and instrument and employing have the instrument of the device of the calibration error of exchanging
JPS5829096A (en) Process variable transmitter
CN106992782B (en) Timing synchronization DAC static parameter testing method
JP2697861B2 (en) Automatic measurement program creation device
JPH01211087A (en) On-line data acquiring/processing system using electric calibrating box
CN203772910U (en) Oscilloscope with constant temperature change amplitude
CN106020019B (en) A kind of bearing calibration of multichannel analog signals data acquisition automatic calibration circuit
EP0324581A3 (en) Calibration of vector demodulator using statistical analysis
CN108195481B (en) Strain fermentation temperature measuring device with self-diagnosis function and strain fermentation temperature measuring method
JPH03179919A (en) Analog/digital converter
CN113541689A (en) Automatic calibration circuit and calibration method for analog acquisition potentiometer-free device
JP3628789B2 (en) Automatic calibration system for semiconductor test system
JP2979365B2 (en) Reference signal correction device
JP4160683B2 (en) Strain measurement system
CN217716287U (en) Sampling system based on six-wire system full bridge
CN211741866U (en) Analog thermal resistance load output module
CN211603936U (en) Air conditioner humiture simulation output device
JPH0128401Y2 (en)
JPH07104406B2 (en) Digital measuring instrument automatic calibration system
CN113884962A (en) Automatic metering and calibrating device of track insulation measuring instrument based on image recognition
SU734693A1 (en) Device for functional testing of digital circuits