JP2011177851A - Manufacturing method of mems parts - Google Patents

Manufacturing method of mems parts Download PDF

Info

Publication number
JP2011177851A
JP2011177851A JP2010046060A JP2010046060A JP2011177851A JP 2011177851 A JP2011177851 A JP 2011177851A JP 2010046060 A JP2010046060 A JP 2010046060A JP 2010046060 A JP2010046060 A JP 2010046060A JP 2011177851 A JP2011177851 A JP 2011177851A
Authority
JP
Japan
Prior art keywords
substrate
adhesive
mems
hole
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010046060A
Other languages
Japanese (ja)
Inventor
Takao Kumada
貴夫 熊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2010046060A priority Critical patent/JP2011177851A/en
Publication of JP2011177851A publication Critical patent/JP2011177851A/en
Pending legal-status Critical Current

Links

Landscapes

  • Micromachines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of MEMS parts which can reduce the occurrence of defective parts and manufacture the MEMS parts with good productivity. <P>SOLUTION: A through-hole 22 for injecting an adhesive agent is formed on either a first microcomponent 10 or a second microcomponent 20. After the first microcomponent 10 comes into close contact with the second microcomponent 20, the adhesive agent 7 is injected into the through-hole 22 and the first and second microcomponents 10 and 20 are fixed by hardening the adhesive agent 7. A photosensitive curing resin is preferably used as the adhesive agent 7. The first and/or second microcomponents 10 and/or 20 are preferably formed with a transparent material. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、振動子デバイスなどのMEMS部品の製造方法に関する。   The present invention relates to a method for manufacturing a MEMS component such as a vibrator device.

MEMS(Micro Electro Mechanical System)技術は、マイクロマシン技術の一つで、携帯電話などの小型電子機器に用いられる部品の製造技術として注目されている。   The MEMS (Micro Electro Mechanical System) technology is one of micromachine technologies, and has attracted attention as a manufacturing technology for components used in small electronic devices such as mobile phones.

MEMS技術により形成されたMEMS部品の一つとして、振動子を有する第1基板を、静電容量検出電極が形成された第2基板に接合してなるMEMS振動子デバイスがある。かかるMEMS部品は、その振動子の機能を生かして、共振器や各種センサなどの用途に利用されている。   As one of the MEMS parts formed by the MEMS technology, there is a MEMS vibrator device formed by joining a first substrate having a vibrator to a second substrate on which a capacitance detection electrode is formed. Such MEMS parts are utilized for applications such as resonators and various sensors by utilizing the function of the vibrator.

それぞれの微小部品どうしを接合してMEMS部品を製造するにあたり、接着剤で接着固定する方法が従来より行われている。   Conventionally, a method of bonding and fixing with an adhesive has been performed in manufacturing MEMS parts by joining respective micro parts.

図3(a)〜(d)は、従来のMEMS振動子デバイスの製造工程を示す概略断面図であり、図4(a)〜(d)は図3(a)〜(d)のA’−A’矢視線から見た平面図である。図中の1はシリコン基板(第1基板)であり、2は振動子であり、3は電極パッドであり、4は静電容量検出電極、5はガラス基板(第2基板)であり、7は接着剤であり、8は接着剤塗布ノズルである。   3 (a) to 3 (d) are schematic cross-sectional views showing a manufacturing process of a conventional MEMS vibrator device, and FIGS. 4 (a) to 4 (d) are cross-sectional views of A ′ in FIGS. 3 (a) to 3 (d). It is the top view seen from -A 'arrow gaze line. In the figure, 1 is a silicon substrate (first substrate), 2 is a vibrator, 3 is an electrode pad, 4 is a capacitance detection electrode, 5 is a glass substrate (second substrate), 7 Is an adhesive, and 8 is an adhesive application nozzle.

図3,4に示すように、振動子2が形成されたシリコン基板1の上方に、静電容量検出電極4が形成されたガラス基板5を配置し(図3(a)、図4(a))、シリコン基板1とガラス基板5とを当接させて位置合わせを行い(図3(b)、図4(b))、シリコン基板1とガラス基板5との接合部の周辺にノズル8から接着剤7を塗布してシリコン基板1とガラス基板5とを接着固定することで、MEMS振動子デバイスが製造される(図3(c)、図4(c))。   As shown in FIGS. 3 and 4, a glass substrate 5 on which a capacitance detection electrode 4 is formed is disposed above the silicon substrate 1 on which the vibrator 2 is formed (FIGS. 3A and 4A). )), The silicon substrate 1 and the glass substrate 5 are brought into contact with each other for alignment (FIGS. 3 (b) and 4 (b)), and the nozzle 8 is formed around the joint between the silicon substrate 1 and the glass substrate 5. The MEMS vibrator device is manufactured by applying the adhesive 7 and bonding and fixing the silicon substrate 1 and the glass substrate 5 (FIG. 3C, FIG. 4C).

また、下記特許文献1には、導電性接着剤で固着する支持台の上面に、導電性接着剤用の塗布幅をもった溝を形成し、この溝に沿って導電性接着剤を定量塗布し、しかるのちに、圧電板を重ねて圧電板と支持台とを固着することが開示されている。   Further, in Patent Document 1 below, a groove having a coating width for the conductive adhesive is formed on the upper surface of the support fixed with the conductive adhesive, and the conductive adhesive is quantitatively applied along the groove. However, after that, it is disclosed that the piezoelectric plates are stacked and the piezoelectric plate and the support base are fixedly attached.

特開平5−283967号公報Japanese Patent Laid-Open No. 5-283967

しかしながら、微小部品の接着固定に使用する接着剤は極微量であるので、塗布量を微小制御することは困難であった。このため、図3,4のように、それぞれの微小部品どうしの接合部の周辺に接着剤を塗布した場合、接着剤が広範囲にしみ出して、図3(d)、図4(d)に示すように、電極パッド3など、本来接着されてはいけない部分までもが接着剤で接着されることがあり、動作不良を引き起こし、不良品の発生につながる。   However, since the amount of the adhesive used for bonding and fixing the minute parts is extremely small, it is difficult to minutely control the coating amount. For this reason, as shown in FIGS. 3 and 4, when an adhesive is applied to the periphery of the joint between the respective microparts, the adhesive oozes out over a wide area and is shown in FIGS. 3 (d) and 4 (d). As shown, even parts such as the electrode pad 3 that should not be bonded to each other may be bonded with an adhesive, causing malfunction and leading to generation of defective products.

また、特許文献1の方法の場合、微小部品どうしを合わせた後に位置調整をした場合、接着材が付いた状態で部品をずらすことになるため、微小部品の移動に伴って微小部品間の密着面に接着材が進入することがあった。また、接着剤の塗布量が多すぎた場合、溝から溢れた接着剤が、微小部品間の密着面に進入することがあった。微小部品間の密着面に接着剤が進入すると部品間隔にバラつきが生じるが、特に容量センサなどの場合、この部品間隔のバラつきはセンサ誤差となって現われ、不良品の発生につながる。   Further, in the case of the method of Patent Document 1, when the position adjustment is performed after aligning the minute parts, the parts are shifted in a state where the adhesive is attached. The adhesive sometimes entered the surface. Moreover, when there was too much application amount of the adhesive agent, the adhesive agent overflowed from the groove | channel might approach into the contact | adherence surface between micro components. When the adhesive enters the close contact surface between the minute parts, the part interval varies. Particularly in the case of a capacitance sensor or the like, this part interval variation appears as a sensor error, leading to the generation of defective products.

したがって、本発明は、不良品の発生を低減し、生産性よくMEMS部品を製造可能なMEMS部品の製造方法を提供することにある。   Therefore, an object of the present invention is to provide a method of manufacturing a MEMS part that can reduce the occurrence of defective products and can manufacture a MEMS part with high productivity.

上記目的を達成するため、本発明のMEMS部品の製造方法は、第一の微小部品と、第二の微小部品とを接着剤で固定するMEMS部品の製造方法であって、前記第一の微小部品及び前記第二の微小部品のいずれか一方に、接着剤注入用の貫通孔を形成し、前記第一の微小部品と前記第二の微小部品とを密着させた後、前記貫通孔に接着剤を注入し、該接着剤を硬化することを特徴とする。   In order to achieve the above object, a method of manufacturing a MEMS component according to the present invention is a method of manufacturing a MEMS component in which a first micro component and a second micro component are fixed with an adhesive. A through hole for injecting adhesive is formed in one of the component and the second micro component, and the first micro component and the second micro component are brought into close contact with each other, and then bonded to the through hole. It is characterized by injecting an agent and curing the adhesive.

本発明のMEMS部品の製造方法は、前記接着剤として感光性硬化樹脂を用いることが好ましい。   In the MEMS component manufacturing method of the present invention, a photosensitive curable resin is preferably used as the adhesive.

本発明のMEMS部品の製造方法は、前記第一の微小部品が振動子を有する第1基板であり、前記第二の微小部品が静電容量検出電極が形成された第2基板であることが好ましい。   In the MEMS component manufacturing method of the present invention, the first micro component is a first substrate having a vibrator, and the second micro component is a second substrate on which a capacitance detection electrode is formed. preferable.

本発明のMEMS部品の製造方法は、前記第一の微小部品及び/又は前記第二の微小部品が透明材料で構成されていることが好ましい。   In the MEMS component manufacturing method of the present invention, it is preferable that the first microcomponent and / or the second microcomponent are made of a transparent material.

本発明のMEMS部品の製造方法によれば、第一の微小部品及び前記第二の微小部品のいずれか一方に接着剤注入用の貫通孔を形成して、第一の微小部品と第二の微小部品とを密着させた後に、前記貫通孔に接着剤を注入して該接着剤を硬化するので、接着剤の塗布量にバラつきがあっても、接着剤は貫通孔内に維持されて周囲への拡散を抑制できるので、不要な部分が接着剤で固定されるといったトラブルを抑制できる。
また、貫通孔内への接着剤の注入は、それぞれの微小部品どうしを密着させて設置位置等の位置ズレ調整をした後に行うことができるので、部品どうしの密接面への接着剤の進入を抑制でき、部品間隔が製品ごとにバラつくといったトラブルを抑制できる。
このため、本発明では、不良品の発生を抑え、生産性よくMEMS部品を製造できる。
According to the method for manufacturing a MEMS part of the present invention, a through hole for injecting an adhesive is formed in one of the first micro part and the second micro part, and the first micro part and the second micro part are formed. Since the adhesive is injected into the through-hole after the microparts are in close contact with each other and the adhesive is cured, the adhesive is maintained in the through-hole even if the amount of adhesive applied varies. Since diffusion to the surface can be suppressed, troubles such as fixing unnecessary portions with an adhesive can be suppressed.
In addition, the injection of the adhesive into the through hole can be performed after the minute parts are brought into close contact with each other and the positional deviation of the installation position, etc. is adjusted, so that the adhesive can enter the contact surface between the parts. It is possible to suppress the trouble that the interval between parts varies for each product.
For this reason, in this invention, generation | occurrence | production of inferior goods can be suppressed and a MEMS component can be manufactured with sufficient productivity.

本発明のMEMS部品の製造工程の概略断面図である。It is a schematic sectional drawing of the manufacturing process of the MEMS component of this invention. 図1の各製造工程をA−A矢視線から見た平面図である。It is the top view which looked at each manufacturing process of FIG. 1 from the AA arrow line. 従来のMEMS振動子デバイスの製造工程を示す概略断面図である。It is a schematic sectional drawing which shows the manufacturing process of the conventional MEMS vibrator device. 図3の各製造工程をA’−A’矢視線から見た平面図である。FIG. 4 is a plan view of each manufacturing process of FIG. 3 as viewed from the line A′-A ′.

本発明のMEMS部品の製造方法について、振動子を有する第1基板と、静電容量検出電極が形成された第2基板とを接合してMEMS振動子デバイスを製造する場合を例に挙げて説明する。図1(a)〜(d)は、本発明のMEMS部品の製造工程の概略断面図であり、図2(a)〜(d)は図1(a)〜(d)のA−A矢視線から見た平面図である。   The MEMS component manufacturing method of the present invention will be described by taking as an example a case where a MEMS vibrator device is manufactured by bonding a first substrate having a vibrator and a second substrate on which a capacitance detection electrode is formed. To do. 1 (a) to 1 (d) are schematic cross-sectional views of the manufacturing process of the MEMS component of the present invention, and FIGS. 2 (a) to 2 (d) are arrows AA in FIGS. 1 (a) to (d). It is the top view seen from eyes | visual_axis.

上記第1基板10は、図1,2に示すように、振動子11と電極パッド12とを備えている。このような第1基板10は、例えば以下のようにして製造できる。   The first substrate 10 includes a vibrator 11 and an electrode pad 12 as shown in FIGS. Such a 1st board | substrate 10 can be manufactured as follows, for example.

すなわち、シリコン、Ge,SiGe,SiC,GaAs,GaN,カーボンから選ばれる1種以上で構成される第1基板材料の電極パッド12を形成すべき位置に、チタン、Al,W,Ta,Au,Ge,Niから選ばれる一種またはこれらの合金をスパッタリングして金属膜を形成し、該金属膜を所望の電極形状にレジストパターニングを行った後、BCl、SFなどのエッチングガスを用いてドライエッチングして電極パッド12を形成する。 That is, titanium, Al, W, Ta, Au, titanium, Al, W, Ta, Au, are formed at positions where the electrode pads 12 of the first substrate material composed of one or more selected from silicon, Ge, SiGe, SiC, GaAs, GaN, and carbon are to be formed. A metal film is formed by sputtering one or an alloy selected from Ge and Ni, and the metal film is subjected to resist patterning into a desired electrode shape, and then dried using an etching gas such as BCl 3 or SF 3. The electrode pad 12 is formed by etching.

次に、上記基板材料の振動子を形成すべき部分を所望の振動子形状にレジストパターニングし、エッチングガス(第1基板材料としてシリコンを用いた場合は、CとSFの混合ガスが好ましく用いられる)を用いてドライエッチングして振動子11を形成する。このようにして、第1基板10を製造できる。 Next, a portion of the substrate material on which the vibrator is to be formed is resist-patterned into a desired vibrator shape, and an etching gas (a mixed gas of C 4 F 8 and SF 6 when silicon is used as the first substrate material) Is preferably used) to form the vibrator 11 by dry etching. In this way, the first substrate 10 can be manufactured.

上記第2基板20は、図1,2に示すように、そのほぼ中央に静電容量検出電極21が形成されている。また、第2基板20の両側には、接着剤注入用の貫通孔22,22が形成されている。このような第2基板20は、例えば以下のようにして製造できる。   As shown in FIGS. 1 and 2, the second substrate 20 has a capacitance detection electrode 21 formed substantially at the center thereof. Further, through holes 22 and 22 for injecting adhesive are formed on both sides of the second substrate 20. Such a 2nd board | substrate 20 can be manufactured as follows, for example.

すなわち、ガラス、サファイア、AlN、SiC、GaNから選ばれる1種以上で構成される第2基板材料の貫通孔部を形成すべき位置を所望の形状にレジストパターニングし、サンドブラストを用いて貫通孔22、静電容量検出電極21用穴部(VIAホール)を形成する。次に、チタン、Al,W,Au,Ni,Taから選ばれる一種またはこれらの合金を、静電容量検出電極21を形成する位置、および、静電容量検出電極21用穴部側面にスパッタリングして金属膜を形成し、該金属膜を所望の電極形状にレジストパターニングを行った後、BCl、SFなどのエッチングガスを用いてドライエッチングして静電容量検出電極21を形成する。このようにして、第2基板20を製造できる。 That is, a resist pattern is formed at a position where a through hole portion of a second substrate material made of at least one selected from glass, sapphire, AlN, SiC, and GaN is to be formed into a desired shape, and the through hole 22 is formed using sand blasting. Then, a hole (VIA hole) for the capacitance detection electrode 21 is formed. Next, one kind or an alloy selected from titanium, Al, W, Au, Ni, and Ta is sputtered on the position where the capacitance detection electrode 21 is formed and on the side surface of the hole for the capacitance detection electrode 21. After forming a metal film and resist patterning the metal film into a desired electrode shape, the capacitance detection electrode 21 is formed by dry etching using an etching gas such as BCl 3 or SF 3 . In this way, the second substrate 20 can be manufactured.

本発明において、第1基板材料及び/又は第2基板材料は、透明材料で構成されていることが好ましい。第1基板及び/又は第2基板材料が透明材料で構成されていれば、第1基板10と第2基板20と接合する際において、可視光を用いて光学的に位置合わせを確認してから接着剤を注入して接着固定できるので、位置合わせ不良による不良品の発生を抑制できる。第1基板材料及び第2基板材料が透明材料で構成されていれば、設置位置を微調整しやすくなり、位置合わせ不良による不良品が極めて発生し難くなる。   In the present invention, the first substrate material and / or the second substrate material is preferably composed of a transparent material. If the first substrate and / or the second substrate material is made of a transparent material, the first substrate 10 and the second substrate 20 may be bonded to each other after optical alignment is confirmed using visible light. Since the adhesive can be injected and fixed, the generation of defective products due to poor alignment can be suppressed. If the first substrate material and the second substrate material are made of a transparent material, it is easy to finely adjust the installation position, and a defective product due to misalignment is extremely difficult to occur.

次に、本発明のMEMS部品の製造方法について説明する。   Next, the manufacturing method of the MEMS component of this invention is demonstrated.

まず、第1基板10の上方に第2基板20を配置し(図1(a)、図2(a))、これらを部品合わせして密着させ、必要に応じて設置位置の微調整などの位置ズレ調整を行う(図1(b)、図2(b))。第1基板材料及び/又は第2基板材料が透明材料で構成されていた場合は、可視光などを用いて光学的に位置ズレ調整を行うことができ、位置ズレを精度よく調整できる。   First, the 2nd board | substrate 20 is arrange | positioned above the 1st board | substrate 10 (FIG. 1 (a), FIG. 2 (a)), these are match | combined and it adheres, and fine adjustment of an installation position etc. are carried out as needed. Position misalignment adjustment is performed (FIGS. 1B and 2B). In the case where the first substrate material and / or the second substrate material is made of a transparent material, the positional deviation can be adjusted optically using visible light or the like, and the positional deviation can be adjusted with high accuracy.

そして、必要に応じて位置ズレ調整を終えた後、第1基板10と第2基板20とを密着させた状態で、第2基板に形成された貫通孔22内に、接着剤塗布ノズル8より接着剤7を注入する(図3(c)、図4(c))。そして、加熱、光照射などを行って、貫通孔22内に注入した接着剤7を硬化することで、第1基板10と第2基板20とが接着固定されてMEMS振動子デバイスが製造される(図3(d)、図4(d))。   Then, after adjusting the positional deviation as necessary, the adhesive application nozzle 8 is inserted into the through hole 22 formed in the second substrate in a state where the first substrate 10 and the second substrate 20 are in close contact with each other. Adhesive 7 is injected (FIGS. 3C and 4C). Then, the adhesive 7 injected into the through hole 22 is cured by heating, light irradiation, etc., whereby the first substrate 10 and the second substrate 20 are bonded and fixed, and the MEMS vibrator device is manufactured. (FIG. 3D, FIG. 4D).

接着剤7の種類は、特に限定はなく、用途に応じて適宜選択できる。例えば、銀、ニッケル、カーボンなどの導電性フィラーをエポキシ、ポリウレタン、シリコーンなどの樹脂に添加してなる導電性接着剤や、ポリエポキシ樹脂、ポリイミド樹脂、ポリウレタン樹脂、シリコーン樹脂などを主成分とした非導電性接着剤が挙げられる。好ましくは、感光性硬化樹脂である。感光性硬化樹脂は光照射により硬化するので、簡単な工程で第1基板10と第2基板20とを接着固定できる。   The type of the adhesive 7 is not particularly limited and can be appropriately selected depending on the application. For example, conductive adhesives made by adding conductive fillers such as silver, nickel, and carbon to resins such as epoxy, polyurethane, and silicone, and polyepoxy resin, polyimide resin, polyurethane resin, silicone resin, etc. as the main component Non-conductive adhesives can be mentioned. A photosensitive curable resin is preferable. Since the photosensitive curable resin is cured by light irradiation, the first substrate 10 and the second substrate 20 can be bonded and fixed by a simple process.

接着剤の注入量は、貫通孔22の容積以下が好ましく、貫通孔22の容積の30〜80%がより好ましく、50〜60%が特に好ましい。接着剤の注入量が少なすぎると、第1基板10と第2基板20との接合強度が十分得られないことがある。貫通孔22の容積を超えて接着剤を注入すると、接着剤が貫通孔22から溢れて周囲に拡散し易くなる。接着剤の注入量が貫通孔22の容積の30〜80%であれば、接着剤が周囲に拡散することがなく、第1基板10と第2基板20との接着強度を十分確保できる。   The injection amount of the adhesive is preferably equal to or less than the volume of the through hole 22, more preferably 30 to 80%, and particularly preferably 50 to 60% of the volume of the through hole 22. If the injection amount of the adhesive is too small, the bonding strength between the first substrate 10 and the second substrate 20 may not be sufficiently obtained. When the adhesive is injected beyond the volume of the through hole 22, the adhesive overflows from the through hole 22 and easily diffuses around. If the injection amount of the adhesive is 30 to 80% of the volume of the through-hole 22, the adhesive does not diffuse to the surroundings, and sufficient adhesive strength between the first substrate 10 and the second substrate 20 can be ensured.

このように、本発明によれば、第2基板20に接着剤注入用の貫通孔22を形成して、第1基板10と第2基板20とを密着させた後に、第2基板20に形成された貫通孔22に接着剤7を注入して該接着剤7を硬化するので、接着剤7の塗布量にバラつきがあっても、接着剤7は貫通孔22内に維持されるので、接着剤7が周囲に拡散することがない。また、貫通孔22内への接着剤7の注入は、第1基板10と第2基板20とを密着させて位置ズレ調整をした後に行うので、第1基板10と第2基板20との密接面に接着剤7が進入することがない。このため、不良品の発生を抑え、生産性よくMEMS部品を製造できる。   As described above, according to the present invention, the through hole 22 for injecting the adhesive is formed in the second substrate 20, and the first substrate 10 and the second substrate 20 are brought into close contact with each other, and then formed in the second substrate 20. Since the adhesive 7 is injected into the formed through-hole 22 and the adhesive 7 is cured, the adhesive 7 is maintained in the through-hole 22 even if the application amount of the adhesive 7 varies. The agent 7 does not diffuse around. In addition, since the adhesive 7 is injected into the through hole 22 after the first substrate 10 and the second substrate 20 are brought into close contact with each other and the positional deviation is adjusted, the close contact between the first substrate 10 and the second substrate 20 is performed. The adhesive 7 does not enter the surface. For this reason, it is possible to suppress the generation of defective products and manufacture MEMS parts with high productivity.

なお、この実施形態では、接着剤注入用の貫通孔22は、第2基板20側に形成されているが、第1基板10側に形成されていてもよい。第1基板10及び第2基板20の双方に形成されていてもよい。   In this embodiment, the through hole 22 for injecting the adhesive is formed on the second substrate 20 side, but may be formed on the first substrate 10 side. It may be formed on both the first substrate 10 and the second substrate 20.

また、この実施形態では、振動子11を有する第1基板10と、静電容量検出電極21が形成された第2基板20とを接合してMEMS振動子デバイスを製造する場合を例に挙げて説明したが、これらのMEMS部品に限定されるものではなく、電気回路(制御部)と微細な機械構造(駆動部)を一つの基板上に集積させた部品であればいずれのMEMS部品であってもよく、例えば、プリンタヘッド、圧力センサ、加速度センサ、容量センサ、ジャイロスコープなどの各種MEMS部品の製造に適用することもできる。   In this embodiment, a case where a MEMS vibrator device is manufactured by joining the first substrate 10 having the vibrator 11 and the second substrate 20 on which the capacitance detection electrode 21 is formed is taken as an example. As described above, the present invention is not limited to these MEMS parts. Any MEMS part can be used as long as it is a part in which an electric circuit (control unit) and a fine mechanical structure (drive unit) are integrated on one substrate. For example, the present invention can be applied to manufacture of various MEMS parts such as a printer head, a pressure sensor, an acceleration sensor, a capacitance sensor, and a gyroscope.

1:シリコン基板
2:振動子
3:電極パッド
4:静電容量検出電極
5:ガラス基板
7:接着剤
8:接着剤塗布ノズル
10:第1基板
11:振動子
12:電極パッド
20:第2基板
21:静電容量検出電極
22:貫通孔
1: silicon substrate 2: vibrator 3: electrode pad 4: capacitance detection electrode 5: glass substrate 7: adhesive 8: adhesive application nozzle 10: first substrate 11: vibrator 12: electrode pad 20: second Substrate 21: Capacitance detection electrode 22: Through hole

Claims (4)

第一の微小部品と、第二の微小部品とを接着剤で固定するMEMS部品の製造方法であって、
前記第一の微小部品及び前記第二の微小部品のいずれか一方に、接着剤注入用の貫通孔を形成し、
前記第一の微小部品と前記第二の微小部品とを密着させた後、前記貫通孔に接着剤を注入し、該接着剤を硬化することを特徴とするMEMS部品の製造方法。
A method for manufacturing a MEMS component in which a first micro component and a second micro component are fixed with an adhesive,
A through hole for injecting an adhesive is formed in one of the first microcomponent and the second microcomponent,
A method of manufacturing a MEMS component, comprising: bonding an adhesive into the through hole after the first microcomponent and the second microcomponent are brought into close contact with each other; and curing the adhesive.
前記接着剤として感光性硬化樹脂を用いる、請求項1に記載のMEMS部品の製造方法。   The method for manufacturing a MEMS component according to claim 1, wherein a photosensitive curable resin is used as the adhesive. 前記第一の微小部品が振動子を有する第1基板であり、前記第二の微小部品が静電容量検出電極が形成された第2基板である、請求項1又は2に記載のMEMS部品の製造方法。   3. The MEMS component according to claim 1, wherein the first micro component is a first substrate having a vibrator, and the second micro component is a second substrate on which a capacitance detection electrode is formed. Production method. 前記第一の微小部品及び/又は前記第二の微小部品が透明材料で構成されている、請求項1〜3のいずれか1項に記載のMEMS部品の製造方法。   The manufacturing method of the MEMS component according to any one of claims 1 to 3, wherein the first microcomponent and / or the second microcomponent is made of a transparent material.
JP2010046060A 2010-03-03 2010-03-03 Manufacturing method of mems parts Pending JP2011177851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010046060A JP2011177851A (en) 2010-03-03 2010-03-03 Manufacturing method of mems parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010046060A JP2011177851A (en) 2010-03-03 2010-03-03 Manufacturing method of mems parts

Publications (1)

Publication Number Publication Date
JP2011177851A true JP2011177851A (en) 2011-09-15

Family

ID=44689954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010046060A Pending JP2011177851A (en) 2010-03-03 2010-03-03 Manufacturing method of mems parts

Country Status (1)

Country Link
JP (1) JP2011177851A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09503569A (en) * 1994-01-25 1997-04-08 フォルシュングスツェントルム カールスルーエ ゲゼルシャフト ミット ベシュレンクテル ハフツング Micro diaphragm pump
JP2008152254A (en) * 2006-12-14 2008-07-03 Robert Bosch Gmbh Micromirror device
JP2009176955A (en) * 2008-01-24 2009-08-06 Fujikura Ltd Semiconductor device and method of manufacturing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09503569A (en) * 1994-01-25 1997-04-08 フォルシュングスツェントルム カールスルーエ ゲゼルシャフト ミット ベシュレンクテル ハフツング Micro diaphragm pump
JP2008152254A (en) * 2006-12-14 2008-07-03 Robert Bosch Gmbh Micromirror device
JP2009176955A (en) * 2008-01-24 2009-08-06 Fujikura Ltd Semiconductor device and method of manufacturing same

Similar Documents

Publication Publication Date Title
US9627347B2 (en) Method of manufacturing semiconductor device and semiconductor device manufacturing apparatus
TWI291219B (en) Packaging for an interferometric modulator
JP5045769B2 (en) Manufacturing method of sensor device
JP2009260247A (en) Electronic part, and method of manufacturing electronic part
WO2001032555A1 (en) Substrate with feedthrough and method for manufacturing the same
JP2005014141A (en) Method of manufacturing compound element
JP2010036280A (en) Manufacturing method of mems structure
JP6433604B2 (en) Non-reciprocal circuit device, non-reciprocal circuit device and manufacturing method thereof
JP2005302915A (en) Component mounting board and component mounting structure
JP2012182361A (en) Electronic component and manufacturing method of the same
JP5520097B2 (en) Manufacturing method of microstructure
JPWO2009022498A1 (en) Manufacturing method of electronic parts
JP5584165B2 (en) Ink jet head and method of manufacturing ink jet head
JP4133756B2 (en) Connection method of printed wiring board
JP2011177851A (en) Manufacturing method of mems parts
JP6355013B2 (en) Mounting structure having hollow portion and method for manufacturing the same
JP2012186761A (en) Electronic component and manufacturing method thereof
JP2010199190A (en) Bonding method and device manufacturing method
JP2010186770A (en) Sensor device
JP2010021216A (en) Method for bonding flexible printed board
JP2008261951A (en) Deformable mirror
JP3813766B2 (en) Printed circuit board connection structure
JP2006269796A (en) Pin structure of wiring board
CN109906506A (en) Electronic component and its manufacturing method
JP2009160673A (en) Manufacturing method of micro device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140603