JP2010036280A - Manufacturing method of mems structure - Google Patents

Manufacturing method of mems structure Download PDF

Info

Publication number
JP2010036280A
JP2010036280A JP2008199883A JP2008199883A JP2010036280A JP 2010036280 A JP2010036280 A JP 2010036280A JP 2008199883 A JP2008199883 A JP 2008199883A JP 2008199883 A JP2008199883 A JP 2008199883A JP 2010036280 A JP2010036280 A JP 2010036280A
Authority
JP
Japan
Prior art keywords
die
mounting substrate
support structure
bonded
vibrator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008199883A
Other languages
Japanese (ja)
Inventor
Takao Kumada
貴夫 熊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2008199883A priority Critical patent/JP2010036280A/en
Publication of JP2010036280A publication Critical patent/JP2010036280A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of an MEMS structure which can prevent a vibrating part of a vibrator from being fixed at an unnecessary position. <P>SOLUTION: When the vibrator 10 having a support structure part 11 and the beam shaped vibrating part 12 is die-bonded to a mounting board 30 in such a way that the vibrating part 12 is opposed to the mounting board 30 with a space provided therebetween, a dam part 26a formed with a groove or a protrusion is formed on a surface of the mounting board 30 to be die-bonded to the support structure part 11 or a surface of the support structure part 11 to be die-bonded to the mounting board 30 and a bonding agent 31 is applied to the surface to be die-bonded to die-bond the support structure 11 to the mounting board 30. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、共振器などに用いられるMEMS構造体の製造方法であって、更に詳しくは、振動子を実装基板上にダイボンドしてなるMEMS構造体の製造方法に関する。   The present invention relates to a method for manufacturing a MEMS structure used for a resonator or the like, and more particularly to a method for manufacturing a MEMS structure in which a vibrator is die-bonded on a mounting substrate.

MEMS(Micro Electro Mechanical System)技術は、マイクロマシン技術の一つで、携帯電話などの小型電子機器に用いられる部品の製造技術として注目されている。   The MEMS (Micro Electro Mechanical System) technology is one of micromachine technologies, and has attracted attention as a manufacturing technology for components used in small electronic devices such as mobile phones.

MEMS技術により形成されたMEMS構造体の一つとして、振動子を実装基板上にダイボンドしてなるMEMS構造体がある。実装基板上にダイボンドされる振動子は、支持構造部と振動部とを備えており、振動部は、片持ち梁状や両持ち梁状の構造をとり、支持構造部に支持された振動部は空中に浮いた構造をなしている。そして、かかるMEMS構造体は、その振動子の機能を生かして、共振器や各種センサなどの用途に利用されている。   As one of the MEMS structures formed by the MEMS technology, there is a MEMS structure in which a vibrator is die-bonded on a mounting substrate. The vibrator die-bonded on the mounting substrate includes a support structure portion and a vibration portion. The vibration portion has a cantilever-like or doubly-supported structure and is supported by the support structure portion. Has a floating structure in the air. Such MEMS structures are used for applications such as resonators and various sensors by utilizing the function of the vibrator.

ところで、振動子を実装基板上にダイボンドするにあたり、接着剤をダイボンド面に塗工して振動子と実装基板とをダイボンドする方法が行われている(例えば、下記特許文献1など)。
特開平8−145686号公報
By the way, when die-bonding a vibrator on a mounting substrate, a method of die-bonding the vibrator and the mounting substrate by applying an adhesive on the die-bonding surface is performed (for example, Patent Document 1 below).
JP-A-8-145686

振動子と実装基板との接着強度を十分に得るためには、ダイボンド面に接着剤を比較的多量に塗布する必要がある。また、流動性の悪い接着剤を用いると、ダイボンド面への接着剤の塗工作業性が低下するので、MEMS構造体の生産性を向上させるには、すなわち流動性の高い接着剤を用いることが好ましい。   In order to obtain sufficient adhesive strength between the vibrator and the mounting substrate, it is necessary to apply a relatively large amount of adhesive to the die bond surface. Also, if an adhesive with poor fluidity is used, the workability of applying the adhesive to the die-bonding surface will be reduced, so to improve the productivity of the MEMS structure, that is, use an adhesive with high fluidity. Is preferred.

しかしながら、接着剤の塗工量を多くしたり、流動性の高い接着剤を使用すると、実装基板上に振動子をダイボンドした際、ダイボンド面から接着剤がはみ出て、周囲に接着剤が広がってしまう。そのため、特に、支持構造部と梁状の振動部とを備える振動子を、該振動子の振動部が、実装基板と間隔を空けて対向するように実装基板上にダイボンドする場合にあっては、ダイボンド面からはみ出した接着剤が振動子の振動部に付着して、振動部と実装基板や支持構造部との間に本来は不要な接着箇所が生じて振動部が固定されてしまい、振動子の所望の特性が得られなくなる、という製品不良が生じ易かった。   However, if the amount of adhesive applied is increased or an adhesive with high fluidity is used, when the vibrator is die-bonded on the mounting board, the adhesive protrudes from the die-bonding surface, and the adhesive spreads around. End up. Therefore, in particular, when a vibrator including a support structure portion and a beam-like vibrating portion is die-bonded on the mounting substrate so that the vibrating portion of the vibrator faces the mounting substrate with a space therebetween. The adhesive that protrudes from the die bond surface adheres to the vibration part of the vibrator, and an originally unnecessary bonding point is generated between the vibration part and the mounting substrate or the support structure part, and the vibration part is fixed, and the vibration part The product defect that the desired characteristics of the child could not be obtained easily occurred.

したがって、本発明の目的は、支持構造部と梁状の振動部とを備える振動子を、実装基板上に、振動部が実装基板と間隔を空けて対向するようにしてダイボンドするに際し、接着剤が必要以上に広がり、振動子の振動部が不必要な箇所で固定されてしまうことを防止できるMEMS構造体の製造方法を提供することにある。   Accordingly, an object of the present invention is to provide an adhesive for die-bonding a vibrator having a support structure portion and a beam-like vibration portion on a mounting substrate so that the vibration portion faces the mounting substrate with a space therebetween. It is an object of the present invention to provide a method for manufacturing a MEMS structure capable of preventing the vibration part of the vibrator from being unnecessarily spread and being fixed at an unnecessary portion.

上記目的を達成するため、本発明のMEMS構造体の製造方法の第一は、支持構造部と梁状の振動部とを備える振動子が、接着剤によって実装基板上に、前記振動部が前記実装基板と間隔を空けて対向するようにしてダイボンドされたMEMS構造体の製造方法であって、前記実装基板の前記支持構造部とダイボンドする面、又は、前記支持構造部の前記実装基板とダイボンドする面に、溝又は突起からなるダム部を形成し、前記ダイボンドする面に接着剤を塗工して、前記支持構造部と前記実装基板とをダイボンドすることを特徴とする。   In order to achieve the above object, according to a first method of manufacturing a MEMS structure of the present invention, a vibrator including a support structure part and a beam-like vibration part is formed on a mounting substrate by an adhesive, and the vibration part is A method of manufacturing a MEMS structure die-bonded so as to face a mounting substrate with a space therebetween, the surface of the mounting substrate being die-bonded to the support structure portion, or the mounting substrate and die-bonding surface of the support structure portion A dam portion made of a groove or a protrusion is formed on the surface to be bonded, an adhesive is applied to the surface to be die-bonded, and the support structure portion and the mounting substrate are die-bonded.

また、本発明のMEMS構造体の製造方法の第二は、支持構造部と梁状の振動部とを備える振動子が、接着剤によって実装基板上に、前記振動部が前記実装基板と間隔を空けて対向するようにしてダイボンドされたMEMS構造体の製造方法であって、前記実装基板の前記支持構造部とダイボンドする面、又は、前記支持構造部の前記実装基板とダイボンドする面に吸着材層を形成し、前記吸着材層に接着剤を塗工して、前記支持構造部と前記実装基板とをダイボンドすることを特徴とする。   In the second method of manufacturing a MEMS structure according to the present invention, a vibrator including a support structure portion and a beam-like vibration portion is placed on a mounting substrate by an adhesive, and the vibration portion is spaced from the mounting substrate. A method of manufacturing a MEMS structure die-bonded so as to face each other, wherein an adsorbent is provided on a surface of the mounting substrate that is die-bonded to the support structure portion or a surface of the support structure portion that is die-bonded to the mounting substrate. A layer is formed, an adhesive is applied to the adsorbent layer, and the support structure portion and the mounting substrate are die-bonded.

本発明のMEMS構造体の製造方法の第一によれば、実装基板の支持構造部とダイボンドする面、又は、支持構造部の実装基板とダイボンドする面に、溝又は突起からなるダム部を形成したことで、流動性の高い接着剤を使用した場合であっても、該ダム部によってダイボンド面に塗工した接着剤の過剰流動を抑制でき、ダイボンド面の周囲に接着剤がはみ出して広がることを防止できる。このため、振動子の振動部が不必要な箇所で固定されることなく、実装基板上に振動子をダイボンドでき、安定した特性を備えたMEMS構造体を生産性よく製造できる。   According to the first method of manufacturing a MEMS structure of the present invention, a dam part formed of a groove or a protrusion is formed on a surface of the mounting substrate that is die-bonded to the supporting structure portion or a surface of the supporting structure portion that is die-bonded to the mounting substrate. Therefore, even when a highly fluid adhesive is used, excessive flow of the adhesive applied to the die bond surface by the dam portion can be suppressed, and the adhesive protrudes and spreads around the die bond surface. Can be prevented. Therefore, the vibrator can be die-bonded on the mounting substrate without fixing the vibration part of the vibrator at an unnecessary portion, and a MEMS structure having stable characteristics can be manufactured with high productivity.

また、本発明のMEMS構造体の製造方法の第二によれば、実装基板の支持構造部とダイボンドする面、又は、支持構造部の実装基板とダイボンドする面に吸着材層を形成したことで、流動性の高い接着剤を使用した場合であっても、ダイボンド面に塗工した接着剤は、該吸着材層に含浸するので、接着剤のダイボンド面からのはみ出しを抑制できる。このため、振動子の振動部が、不必要な箇所で固定されることなく、実装基板上に振動子をダイボンドでき、安定した特性を備えたMEMS構造体を生産性よく製造できる。なお、あらかじめ接着剤を含浸させた吸着材をダイボンド面に配置して、実装基板上に振動子をダイボンドしようとした場合、吸着材の位置調整をするには、ピンセットやコレットなどを用いて、吸着材の位置合わせをする必要があるが、吸着材には接着剤が含浸されているので、吸着材がピンセットなどに付着してピンセットから離れないなどの不具合が生じ易く、吸着材の設置位置の調整を精度良く行えない問題がある。これに対して、本発明のMEMS構造体の製造方法の第二においては、ダイボンド面に吸着材層を形成し、この吸着材層に接着剤を塗工して、支持構造部と実装基板とをダイボンドする構成であるため、上述のような吸着材の位置調整に関する問題がない。   Further, according to the second method for producing a MEMS structure of the present invention, the adsorbent layer is formed on the surface of the mounting substrate that is die-bonded to the support structure portion or the surface of the support structure portion that is die-bonded to the mounting substrate. Even when a highly fluid adhesive is used, the adhesive applied to the die bond surface is impregnated into the adsorbent layer, so that the adhesive can be prevented from protruding from the die bond surface. Therefore, the vibrator can be die-bonded on the mounting substrate without fixing the vibration part of the vibrator at an unnecessary portion, and a MEMS structure having stable characteristics can be manufactured with high productivity. In addition, when placing an adsorbent that has been impregnated with an adhesive in advance on the die bond surface and trying to die bond the vibrator on the mounting substrate, to adjust the position of the adsorbent, use tweezers or a collet, Although it is necessary to align the adsorbent, the adsorbent is impregnated with an adhesive, so that the adsorbent is likely to adhere to the tweezers and not easily separate from the tweezers. There is a problem that the adjustment cannot be performed with high accuracy. On the other hand, in the second manufacturing method of the MEMS structure of the present invention, an adsorbent layer is formed on the die bond surface, an adhesive is applied to the adsorbent layer, and the support structure portion, the mounting substrate, Therefore, there is no problem relating to the position adjustment of the adsorbent as described above.

本発明のMEMS構造体の製造方法の第一において、前記ダム部は、前記支持構造部をエッチングして形成する、あるいは、前記支持構造部又は前記実装基板に、金属、シリコン酸化物及びシリコン窒化物から選ばれる層を積層して形成することが好ましい。   In the first manufacturing method of the MEMS structure of the present invention, the dam portion is formed by etching the support structure portion, or metal, silicon oxide and silicon nitride are formed on the support structure portion or the mounting substrate. It is preferable to form by laminating layers selected from those.

本発明のMEMS構造体の製造方法の第二において、前記吸着材層は、金属メッシュ、金属焼結体、多孔質セラミックから選ばれる一種以上を、前記実装基板又は前記支持構造部に接合して形成することが好ましい。   2nd of the manufacturing method of the MEMS structure of this invention WHEREIN: The said adsorbent layer joins the 1 or more types chosen from a metal mesh, a metal sintered compact, and a porous ceramic to the said mounting substrate or the said support structure part. It is preferable to form.

本発明のMEMS構造体の製造方法の第一及び第二において、前記振動子が、支持層上に、絶縁層、半導体層の順に積層されてなるものであって、前記絶縁層を介して前記支持層に支持された支持部を基端として前記半導体層が梁状に形成された、前記半導体層からなる振動部を備えたものであることが好ましい。   In the first and second methods of manufacturing a MEMS structure according to the present invention, the vibrator is formed by laminating an insulating layer and a semiconductor layer in this order on a support layer, and the insulating layer is interposed through the insulating layer. It is preferable to include a vibrating portion made of the semiconductor layer in which the semiconductor layer is formed in a beam shape with a support portion supported by the support layer as a base end.

本発明によれば、実装基板上の振動子とのダイボンド面に塗布した接着剤が、ダイボンド面からはみ出して周囲に広がることを抑制できるので、振動子の振動部が不必要な箇所で固定されることなく、安定した特性を備えたMEMS構造体を生産性よく製造できる。   According to the present invention, since the adhesive applied to the die bond surface with the vibrator on the mounting substrate can be prevented from protruding from the die bond surface and spreading to the surroundings, the vibrator of the vibrator is fixed at an unnecessary portion. The MEMS structure having stable characteristics can be manufactured with high productivity.

まず、本発明のMEMS構造体の製造方法において、実装基板にダイボンドさせる振動子について説明する。この振動子は、支持構造部と梁状の振動部とを備えるものであれば特に限定はなく、例えば、図1に示す振動子10が一例として挙げられる。   First, a vibrator to be die-bonded to a mounting substrate in the method for manufacturing a MEMS structure according to the present invention will be described. The vibrator is not particularly limited as long as it includes a support structure portion and a beam-like vibration portion. For example, the vibrator 10 shown in FIG. 1 is given as an example.

図1の振動子10は、基体52の上に半導体層51が積層されたものから形成されており、支持構造部11と梁状の振動部12とを備えている。振動部12は、可動電極として機能するものであり、シリコンなどの材料で形成されている。そして、支持構造部11より水平方向に突出した梁部12aの先端に、梁部12aよりも幅の広い重錘部12bが形成された片持ち梁状の構造をなしている。また、支持構造部11には、振動部12(可動電極)の重錘部12bと対向する電極面を備えた、例えばシリコンなどの材料から形成された一対の固定電極14a,14bが、振動部12の両側に配置されている。そして、固定電極14a,14bの上面には、後段の電子回路と接続するための電極パッド13a,13bが形成されている。また、支持構造部11の振動部12の基端側には、振動部12(可動電極)と後段の電子回路とを接続するための電極パッド13cが形成されている。   The vibrator 10 shown in FIG. 1 is formed by laminating a semiconductor layer 51 on a base 52, and includes a support structure portion 11 and a beam-like vibration portion 12. The vibration part 12 functions as a movable electrode, and is formed of a material such as silicon. And the cantilever-like structure where the weight part 12b wider than the beam part 12a was formed in the front-end | tip of the beam part 12a protruded in the horizontal direction from the support structure part 11 is comprised. In addition, the support structure portion 11 includes a pair of fixed electrodes 14a and 14b made of a material such as silicon and having an electrode surface facing the weight portion 12b of the vibration portion 12 (movable electrode). 12 on both sides. Electrode pads 13a and 13b are formed on the upper surfaces of the fixed electrodes 14a and 14b to be connected to subsequent electronic circuits. In addition, an electrode pad 13 c for connecting the vibration part 12 (movable electrode) and a subsequent electronic circuit is formed on the base end side of the vibration part 12 of the support structure part 11.

このような振動子は、例えば、図2に示すような、支持層23上に、絶縁層22、半導体層21の順に積層された、いわゆるSOI(Silicon on Insulator)基板20を用いて形成することができる。この場合、半導体層21の部分が図1の半導体層51に対応し、絶縁層22および支持層23の部分が図1の基体52に対応する。SOI基板20としては、支持層23の厚さが200〜525μm、絶縁層22の厚さが0.2〜1.0μm、半導体層21の厚さが2〜30μmのものが一例として挙げられる。   Such a vibrator is formed using, for example, a so-called SOI (Silicon on Insulator) substrate 20 in which an insulating layer 22 and a semiconductor layer 21 are laminated in this order on a support layer 23 as shown in FIG. Can do. In this case, the semiconductor layer 21 corresponds to the semiconductor layer 51 in FIG. 1, and the insulating layer 22 and the support layer 23 correspond to the base 52 in FIG. An example of the SOI substrate 20 is one in which the support layer 23 has a thickness of 200 to 525 μm, the insulating layer 22 has a thickness of 0.2 to 1.0 μm, and the semiconductor layer 21 has a thickness of 2 to 30 μm.

そして、図3に示すように、SOI基板20の半導体層21表面に、所望の振動部および固定電極の形状となるようにレジストパターニングを行った後、エッチングガス(例えば、CとSFの混合ガス)を用いてドライエッチングして、半導体層21のうち、不要な部分を除去して、図1における支持構造部11と、振動部12(可動電極)と、固定電極14a,14bとの各構成材料となる残存部分21aだけを残す。次いで、図4に示すように、絶縁層22及び支持層23をそれぞれエッチングして、絶縁層22及び支持層23のうち、それぞれ不要な部分を除去し、図1における支持構造部11の構成材料となる残存部分22a及び23aだけを残すようにして、半導体層21の残存部分21aのうち、振動部12をなす残存部分21a2及び21a3の下方に空間24を形成する。ここで、図1における振動部12(可動電極)のうち、梁部12aは半導体層21の残存部分21a2から構成されるとともに、重錘部12bは半導体層21の残存部分21a3から構成される。また、図1における支持構造部11は、半導体層21の残存部分21a1と、絶縁層22の残存部分22aと、支持層23の残存部分23aとから構成される。さらに、図1における固定電極14a,14bは、半導体層21の残存部分21a4から構成されており、支持構造部11の絶縁層22の残存部分22aの上面に、半導体層21の残存部分21a1とは溝15a1,15a2,15b1,15b2で分離された状態で配置される。 Then, as shown in FIG. 3, after resist patterning is performed on the surface of the semiconductor layer 21 of the SOI substrate 20 so as to have a desired vibration part and fixed electrode shape, an etching gas (for example, C 4 F 8 and SF is used). 6 ), unnecessary portions of the semiconductor layer 21 are removed, and the support structure portion 11, the vibration portion 12 (movable electrode), and the fixed electrodes 14a and 14b in FIG. Only the remaining part 21a which becomes each constituent material is left. Next, as shown in FIG. 4, the insulating layer 22 and the support layer 23 are etched to remove unnecessary portions of the insulating layer 22 and the support layer 23, respectively, and the constituent material of the support structure portion 11 in FIG. 1. Thus, a space 24 is formed below the remaining portions 21a2 and 21a3 forming the vibrating portion 12 among the remaining portions 21a of the semiconductor layer 21 so as to leave only the remaining portions 22a and 23a. Here, in the vibrating portion 12 (movable electrode) in FIG. 1, the beam portion 12 a is configured by the remaining portion 21 a 2 of the semiconductor layer 21, and the weight portion 12 b is configured by the remaining portion 21 a 3 of the semiconductor layer 21. The support structure 11 in FIG. 1 includes a remaining portion 21a1 of the semiconductor layer 21, a remaining portion 22a of the insulating layer 22, and a remaining portion 23a of the support layer 23. Further, the fixed electrodes 14a and 14b in FIG. 1 are configured by the remaining portion 21a4 of the semiconductor layer 21, and the remaining portion 21a1 of the semiconductor layer 21 is formed on the upper surface of the remaining portion 22a of the insulating layer 22 of the support structure portion 11. It arrange | positions in the state isolate | separated by groove | channel 15a1, 15a2, 15b1, 15b2.

そして、上述の固定電極用の電極パッド13a,13bおよび可動電極用の電極パッド13cを形成した上で、振動子のMEMS構造が多数作りこまれたSOI基板をダイシングしてチップ化することで、振動子を製造できる。なお、図1の振動子10における半導体層51のうち、溝15a2,15b2を介して固定電極14a,14bと対向している半導体層部分(図4における半導体層21の残存部分21a1)の上面にも図示のように電極パッド13dを形成しておき、後段の電子回路との接続により、上記半導体層部分(図4の残存部分21a1)の電位を例えば振動部12(可動電極)などと同じ電位にすることができるようにしておくとよい。   Then, after forming the electrode pads 13a and 13b for the fixed electrodes and the electrode pad 13c for the movable electrodes, the SOI substrate on which a large number of MEMS structures of the vibrator are formed is diced to form a chip. A vibrator can be manufactured. In the semiconductor layer 51 in the vibrator 10 of FIG. 1, on the upper surface of the semiconductor layer portion (remaining portion 21a1 of the semiconductor layer 21 in FIG. 4) facing the fixed electrodes 14a and 14b via the grooves 15a2 and 15b2. As shown in the figure, the electrode pad 13d is formed, and the potential of the semiconductor layer portion (remaining portion 21a1 in FIG. 4) is set to the same potential as that of the vibrating portion 12 (movable electrode) or the like by connection with the subsequent electronic circuit. It is good to be able to make it.

また、本発明における振動子は、上述のようなSOI基板を用いて形成された振動子に限定されるものでなく、例えば、支持構造部をなすガラス基板などからなる絶縁性の基体に、所望の振動部(可動電極)および固定電極の形状に形成される金属層や半導体層を積層して製造することもできる。   In addition, the vibrator according to the present invention is not limited to the vibrator formed using the SOI substrate as described above. For example, the vibrator may be formed on an insulating base made of a glass substrate or the like forming a support structure. It can also be manufactured by laminating a metal layer or a semiconductor layer formed in the shape of the vibrating part (movable electrode) and the fixed electrode.

また、図1に示す振動子10は、振動部12の一端が支持構造部11に固定された片持ち梁状の構造をなしているが、振動部12の両端を支持構造部11に固定して、両持ち梁状としてもよい。   The vibrator 10 shown in FIG. 1 has a cantilever structure in which one end of the vibration part 12 is fixed to the support structure part 11, but both ends of the vibration part 12 are fixed to the support structure part 11. Alternatively, it may be a doubly supported beam.

また、図1に示す振動子10は、固定電極(駆動電極)14a,14bに交流電圧を与えることで、可動電極である振動部12と、固定電極(駆動電極)14a,14bとの間に発生した静電力により、振動部12を固定電極(駆動電極)14a,14b間で水平方向(左右方向)に振動させる静電容量型の振動子であり、これを共振子として様々な用途に合わせて用いることができる。なお、本発明における振動子は、駆動方式として、上記の静電容量型に限定されるものでなく、圧電素子を振動部12の上方あるいは左右の側面などに配置してなる圧電駆動型の振動子や、磁気駆動型の振動子であってもよい。   In addition, the vibrator 10 shown in FIG. 1 applies an AC voltage to the fixed electrodes (drive electrodes) 14a and 14b, so that the vibration unit 12 that is a movable electrode and the fixed electrodes (drive electrodes) 14a and 14b are interposed. This is a capacitive vibrator that vibrates the vibrating part 12 in the horizontal direction (left-right direction) between the fixed electrodes (drive electrodes) 14a and 14b by the generated electrostatic force. This is used as a resonator for various applications. Can be used. Note that the vibrator according to the present invention is not limited to the above-described capacitance type as a driving method, but is a piezoelectric driving type vibration in which a piezoelectric element is disposed above the vibration unit 12 or on the left and right side surfaces. It may be a child or a magnetic drive type vibrator.

また、図1に示す振動子10は、固定電極(駆動電極)14a,14bに交流電圧を与えることで、振動部(可動電極)12と固定電極(駆動電極)14a,14bとの間に発生した静電力により、振動部12を固定電極(駆動電極)14a,14b間で水平方向(左右方向)に振動させる静電容量型の振動子であるが、この図1の構成において、振動部12(可動電極)の上方向(あるいは下方向)に間隙を空けて対向するようにして図示されない検出電極を設け、この検出電極と振動部12(可動電極)との間の静電容量を検出する容量検出回路を設けることにより、角速度センサを構成することができる。このような角速度センサは、固定電極(駆動電極)14a,14bに交流電圧の駆動信号を印加すると、振動部(可動電極)12が固定周波数で水平方向(左右方向)に強制振動する。このとき、振動部(可動電極)12を軸とした角速度が加わると、振動部(可動電極)12が強制振動方向に対して直行する方向(上下方向)に角速度に比例したコリオリ振動を始め、振動部(可動電極)12と検出電極との間の静電容量が変化する。この静電容量の変化を容量検出回路で検出することにより角速度を測定することができる。   Further, the vibrator 10 shown in FIG. 1 is generated between the vibration part (movable electrode) 12 and the fixed electrodes (drive electrodes) 14a and 14b by applying an AC voltage to the fixed electrodes (drive electrodes) 14a and 14b. 1 is a capacitance type vibrator that vibrates the vibrating part 12 in the horizontal direction (left-right direction) between the fixed electrodes (drive electrodes) 14a and 14b by the electrostatic force. In the configuration of FIG. A detection electrode (not shown) is provided so as to face the upper direction (or the lower direction) of the (movable electrode) with a gap therebetween, and the capacitance between the detection electrode and the vibrating portion 12 (movable electrode) is detected. By providing the capacitance detection circuit, an angular velocity sensor can be configured. In such an angular velocity sensor, when an AC voltage drive signal is applied to the fixed electrodes (drive electrodes) 14a and 14b, the vibration part (movable electrode) 12 is forcibly vibrated in the horizontal direction (left-right direction) at a fixed frequency. At this time, when an angular velocity about the vibrating portion (movable electrode) 12 is applied, Coriolis vibration proportional to the angular velocity is started in a direction (vertical direction) in which the vibrating portion (movable electrode) 12 is orthogonal to the forced vibration direction, The capacitance between the vibration part (movable electrode) 12 and the detection electrode changes. The angular velocity can be measured by detecting this change in capacitance with a capacitance detection circuit.

また、図1の構成において、固定電極14a,14bに交流電圧の駆動信号を印加して振動部(可動電極)12を強制振動させる代わりに、固定電極14a,14bを検出電極とし、この固定電極(検出電極)14a,14bと振動部12(可動電極)との間の静電容量を検出する容量検出回路を設けることにより、加速度センサを構成することができる。この加速度センサでは、加速度等の外力が加わると、振動部12(可動電極)が動き、振動部(可動電極)12と固定電極(検出電極)14a,14bとの間の静電容量が変化する。この静電容量の変化を容量検出回路で検出することにより加速度を測定することができる。   Further, in the configuration of FIG. 1, instead of applying an AC voltage drive signal to the fixed electrodes 14a and 14b to forcibly vibrate the vibrating portion (movable electrode) 12, the fixed electrodes 14a and 14b are used as detection electrodes. An acceleration sensor can be configured by providing a capacitance detection circuit that detects the capacitance between the (detection electrodes) 14a and 14b and the vibrating portion 12 (movable electrode). In this acceleration sensor, when an external force such as acceleration is applied, the vibration part 12 (movable electrode) moves, and the capacitance between the vibration part (movable electrode) 12 and the fixed electrodes (detection electrodes) 14a and 14b changes. . The acceleration can be measured by detecting this change in capacitance with a capacitance detection circuit.

次に、本発明のMEMS構造体の製造方法の第1の実施形態について説明する。   Next, a first embodiment of a method for manufacturing a MEMS structure according to the present invention will be described.

図5は、本発明のMEMS構造体の製造方法の第1の実施形態の概略工程図である。第1の実施形態では、実装基板30の支持構造部11とダイボンドする面、又は、支持構造部11の実装基板30とダイボンドする面のいずれか一方に、溝からなるダム部26aを形成する。そして、ダイボンドする面に接着剤を塗工し、振動部12が実装基板30と所定間隔を空けて対向するように、支持構造部11と実装基板30とをダイボンドする。以下、図5(a)〜(c)を用いて説明する。   FIG. 5 is a schematic process diagram of the first embodiment of the method for manufacturing a MEMS structure according to the present invention. In the first embodiment, the dam portion 26a formed of a groove is formed on either the surface of the mounting substrate 30 that is die-bonded to the support structure portion 11 or the surface of the support structure portion 11 that is die-bonded to the mounting substrate 30. Then, an adhesive is applied to the surface to be die-bonded, and the support structure portion 11 and the mounting substrate 30 are die-bonded so that the vibration portion 12 faces the mounting substrate 30 with a predetermined interval. Hereinafter, description will be made with reference to FIGS.

まず、図5(a)に示すように、振動子10の支持構造部11の実装基板30とダイボンドする面に、接着剤広がり防止用の溝をレジストパターニングし、エッチングガス(例えば、CとSFの混合ガス)を用いてドライエッチングし、不要な支持層23を除去して、支持構造部11に溝からなるダム部26aを形成する。このダム部26aは、SOI基板を用いて振動子を形成する場合、振動部12(梁部12aおよび重錘部12b)をなす半導体層21(残存部分21a2および21a3)の下方に空間24を形成する際に、支持層23をエッチングして形成してもよい。したがって、SOI基板をエッチングして振動子を製造する場合においては、SOI基板のエッチング時(不要な支持層23の除去時)に、溝からなるダム部を形成することができるので、MEMS構造体の製造工程をより簡略化できる。 First, as shown in FIG. 5A, a groove for preventing adhesive spread is resist-patterned on the surface of the support structure 11 of the vibrator 10 that is die-bonded to the mounting substrate 30, and an etching gas (for example, C 4 F) is formed. 8 and a mixed gas of SF 6 ), the unnecessary support layer 23 is removed, and a dam portion 26 a including a groove is formed in the support structure portion 11. The dam portion 26a forms a space 24 below the semiconductor layer 21 (remaining portions 21a2 and 21a3) forming the vibrating portion 12 (the beam portion 12a and the weight portion 12b) when a vibrator is formed using an SOI substrate. In this case, the support layer 23 may be formed by etching. Therefore, in the case of manufacturing a vibrator by etching an SOI substrate, a dam portion formed of a groove can be formed when the SOI substrate is etched (when unnecessary support layer 23 is removed). The manufacturing process can be further simplified.

次に、図5(b)に示すように、接着剤31を、ダイボンドする面に塗工する。この実施形態では、接着剤31は、実装基板30側に塗工しているが、支持構造部11側に塗工してもよい。   Next, as shown in FIG. 5B, the adhesive 31 is applied to the surface to be die-bonded. In this embodiment, the adhesive 31 is applied to the mounting substrate 30 side, but may be applied to the support structure 11 side.

接着剤31としては、特に限定はなく、用途に応じて適宜選択できる。例えば、銀、ニッケル、カーボンなどの導電性フィラーをエポキシ、ポリウレタン、シリコーンなどの樹脂に添加kしてなる導電性接着剤や、ポリエポキシ樹脂、ポリイミド樹脂、ポリウレタン樹脂、シリコーン樹脂などを主成分とした非導電性接着剤が挙げられる。   There is no limitation in particular as the adhesive agent 31, and it can select suitably according to a use. For example, the main components are conductive adhesives made by adding conductive fillers such as silver, nickel, and carbon to resins such as epoxy, polyurethane, and silicone, and polyepoxy resins, polyimide resins, polyurethane resins, and silicone resins. Non-conductive adhesive.

接着剤31の塗工量は、支持構造部11に形成されたダム部26aの容積以下が好ましく、ダム部26aの容積の40〜100%がより好ましい。接着剤の塗工量が少なすぎると、振動子10と実装基板30との接合強度が十分得られないことがある。また、ダム部26aの容積を超える塗工量であると、ダイボンド面から接着剤31が周囲にはみ出す恐れがある。   The coating amount of the adhesive 31 is preferably equal to or less than the volume of the dam portion 26a formed in the support structure portion 11, and more preferably 40 to 100% of the volume of the dam portion 26a. If the amount of adhesive applied is too small, the bonding strength between the vibrator 10 and the mounting substrate 30 may not be sufficiently obtained. Further, if the coating amount exceeds the volume of the dam portion 26a, the adhesive 31 may protrude from the die bond surface to the surroundings.

次に、図5(c)に示すように、振動部12が実装基板30と所定間隔を空けて対向するように、支持構造部11と実装基板30とをダイボンドする。ダイボンド面に塗工した接着剤31は、ダム部26a内に封止されるので、流動性の高い接着剤を用いた場合であっても、ダイボンド面の周囲に接着剤が流れ出にくくなる。その結果、本来は接着の不要な箇所である、振動部12と実装基板30との間、および、振動部12と支持構造部11の側面部との間に接着剤31が介在して、振動子10の振動部12が不必要な箇所で固定されることがなくなり、安定した特性を備えたMEMS構造体を生産性よく製造できる。   Next, as shown in FIG. 5C, the support structure portion 11 and the mounting substrate 30 are die-bonded so that the vibrating portion 12 faces the mounting substrate 30 with a predetermined interval. Since the adhesive 31 applied to the die bond surface is sealed in the dam portion 26a, the adhesive does not easily flow out around the die bond surface even when a highly fluid adhesive is used. As a result, the adhesive 31 is interposed between the vibration part 12 and the mounting substrate 30 and the side part of the support structure part 11, which are originally places that do not require adhesion, and vibration is caused. The vibrating portion 12 of the child 10 is not fixed at an unnecessary portion, and a MEMS structure having stable characteristics can be manufactured with high productivity.

なお、上記実施例では、支持構造部11をエッチングして、支持構造部11側に溝からなるダム部26aを形成したが、実装基板30の支持構造部11とダイボンドする面に、接着剤広がり防止用の溝をレジストパターニングしてエッチングし、実装基板30の表面に溝からなるダム部26aを形成してもよい。ただし、振動子10を実装基板30にダイボンドする際の位置決めのしやすさや、エッチング工程の手間などの観点から、ダム部26aは、振動子10の支持構造部11側に形成することが好ましい。   In the above embodiment, the support structure portion 11 is etched to form the groove dam portion 26 a on the support structure portion 11 side. However, the adhesive spreads on the surface of the mounting substrate 30 that is die-bonded to the support structure portion 11. The prevention groove may be resist-patterned and etched to form a dam portion 26 a made of a groove on the surface of the mounting substrate 30. However, it is preferable to form the dam part 26a on the support structure part 11 side of the vibrator 10 from the viewpoint of ease of positioning when the vibrator 10 is die-bonded to the mounting substrate 30 and labor of the etching process.

図6は、本発明のMEMS構造体の製造方法の第2の実施形態の概略工程図である。第2の実施形態では、実装基板30の支持構造部11とダイボンドする面、又は、支持構造部11の実装基板30とダイボンドする面に、突起27からなるダム部26bを形成し、ダイボンドする面に接着剤を塗工して、振動部12が実装基板30と所定間隔を空けて対向するように、支持構造部11と実装基板30とをダイボンドする。以下、図6(a)〜(c)を用いて説明する。   FIG. 6 is a schematic process diagram of a second embodiment of the method for manufacturing a MEMS structure according to the present invention. In the second embodiment, the dam part 26b including the protrusions 27 is formed on the surface of the mounting substrate 30 that is die-bonded to the support structure 11 or the surface of the support structure 11 that is die-bonded to the mounting substrate 30, and the surface is die-bonded. The support structure portion 11 and the mounting substrate 30 are die-bonded so that the vibrating portion 12 faces the mounting substrate 30 with a predetermined interval. Hereinafter, a description will be given with reference to FIGS.

まず、図6(a)に示すように、振動子10の支持構造部11側の支持層23(残存部23a)の実装基板30とダイボンドする面に、金属、シリコン酸化物及びシリコン窒化物から選ばれる層を積層して突起27を形成し、該突起27で囲まれたダム部26bを形成する。   First, as shown in FIG. 6A, the surface of the support layer 23 (remaining portion 23a) on the support structure portion 11 side of the vibrator 10 that is die-bonded to the mounting substrate 30 is made of metal, silicon oxide, and silicon nitride. The selected layer is laminated to form the protrusion 27, and the dam portion 26 b surrounded by the protrusion 27 is formed.

突起27の形成方法としては、特に限定はなく、スパッタリング法、CVD法、スクリーン印刷等の方法が一例として挙げられる。   The method for forming the protrusion 27 is not particularly limited, and examples thereof include a sputtering method, a CVD method, and a screen printing method.

次に、図6(b)に示すように、接着剤31を、ダイボンドする面に塗工する。この実施形態では、接着剤31は、実装基板30側に塗工しているが、支持構造部11側に塗工してもよい。   Next, as shown in FIG. 6B, the adhesive 31 is applied to the surface to be die-bonded. In this embodiment, the adhesive 31 is applied to the mounting substrate 30 side, but may be applied to the support structure 11 side.

次に、図6(c)に示すように、振動部12が実装基板30と所定間隔を空けて対向するように、支持構造部11と実装基板30とをダイボンドする。ダイボンド面に塗工した接着剤31は、ダム部26b内に封止されるので、流動性の高い接着剤を用いた場合であっても、ダイボンド面の周囲に流れ出ることがなくなる。その結果、本来は接着の不要な箇所である、振動部12と実装基板30との間、および、振動部12と支持構造部11の側面部との間に接着剤31が介在して、振動子10の振動部12が不必要な箇所で固定されることを防止でき、安定した特性を備えたMEMS構造体を生産性よく製造できる。   Next, as shown in FIG. 6C, the support structure portion 11 and the mounting substrate 30 are die-bonded so that the vibration portion 12 faces the mounting substrate 30 with a predetermined interval. Since the adhesive 31 applied to the die bond surface is sealed in the dam portion 26b, even if a highly fluid adhesive is used, it does not flow out around the die bond surface. As a result, the adhesive 31 is interposed between the vibration part 12 and the mounting substrate 30 and the side part of the support structure part 11, which are originally places that do not require adhesion, and vibration is caused. It is possible to prevent the vibrating portion 12 of the child 10 from being fixed at an unnecessary portion, and to manufacture a MEMS structure having stable characteristics with high productivity.

なお、上記実施例では、支持構造部11に突起27を形成して、該突起27でかこまれたダム部を形成したが、実装基板30の支持構造部11とダイボンドする面に、金属、シリコン酸化物及びシリコン窒化物から選ばれる層を積層して突起を形成し、該突起で囲まれたダム部26bを形成してもよい。ただし、振動子10を実装基板30にダイボンドする際の位置決めのしやすさなどの観点から、ダム部26bは、振動子10の支持構造部11に形成することが好ましい。   In the above embodiment, the protrusion 27 is formed on the support structure portion 11 and the dam portion is formed by the protrusion 27. However, the surface of the mounting substrate 30 that is die-bonded to the support structure portion 11 is made of metal, silicon. A layer selected from an oxide and silicon nitride may be stacked to form a protrusion, and the dam portion 26b surrounded by the protrusion may be formed. However, from the viewpoint of ease of positioning when the vibrator 10 is die-bonded to the mounting substrate 30, the dam portion 26 b is preferably formed in the support structure portion 11 of the vibrator 10.

次に、本発明のMEMS構造体の製造方法の第3の実施形態について説明する。   Next, a third embodiment of the method for manufacturing a MEMS structure according to the present invention will be described.

図7は、本発明のMEMS構造体の製造方法の第3の実施形態の概略工程図である。第3の実施形態では、実装基板30の支持構造部11とダイボンドする面、又は、支持構造部11の実装基板30とダイボンドする面に、吸着材層28を形成する。そして、吸着材層28に接着剤を塗工し、振動部12が実装基板30と所定間隔を空けて対向するように、支持構造部11と実装基板30とをダイボンドする。以下、図7(a)〜(c)を用いて説明する。   FIG. 7 is a schematic process diagram of the third embodiment of the method for manufacturing a MEMS structure according to the present invention. In the third embodiment, the adsorbent layer 28 is formed on the surface of the mounting substrate 30 that is die-bonded to the support structure 11 or the surface of the support structure 11 that is die-bonded to the mounting substrate 30. Then, an adhesive is applied to the adsorbent layer 28, and the support structure portion 11 and the mounting substrate 30 are die-bonded so that the vibration portion 12 faces the mounting substrate 30 with a predetermined interval. Hereinafter, a description will be given with reference to FIGS.

まず、図7(a)に示すように、振動子10の支持構造部11部側の支持層23(残存部23a)の実装基板30とダイボンドする面に、吸着材を接合して、吸着材層28を形成する。   First, as shown in FIG. 7A, an adsorbent is bonded to the surface of the support layer 23 (remaining portion 23a) on the support structure portion 11 side of the vibrator 10 that is die-bonded to the mounting substrate 30, and the adsorbent Layer 28 is formed.

吸着材としては、金属メッシュ、金属焼結体、多孔質セラミックなどが挙げられる。   Examples of the adsorbent include a metal mesh, a metal sintered body, and a porous ceramic.

吸着材の厚さは、塗工された接着剤を含浸しきれるような厚みにすることが好ましい。接着剤の塗工量は、接着剤の種類に応じて適宜調整できる。   The thickness of the adsorbent is preferably set so that it can be completely impregnated with the coated adhesive. The amount of adhesive applied can be adjusted as appropriate according to the type of adhesive.

吸着材の接合方法としては、以下の(1)〜(4)の方法が一例として挙げられる。   Examples of the adsorbent bonding method include the following methods (1) to (4).

(1)接着剤により支持構造部11と吸着材とを接合する方法
(2)接合部を加熱加圧し、熱圧着により支持構造部11と吸着材とを接合する方法
(3)接合部に超音波を印加し、支持構造部11と吸着材との界面の摩擦熱を利用した、超音波接合により支持構造部11と吸着材とを接合する方法
(4)熱共晶接合により支持構造部11と吸着材とを接合する方法(ただし、吸着材が金属材料からなる場合のみ)
(1) Method of joining support structure 11 and adsorbent with adhesive (2) Method of heating and pressurizing joint and joining support structure 11 and adsorbent by thermocompression (3) A method of joining the support structure portion 11 and the adsorbent by ultrasonic bonding using sound waves and utilizing frictional heat at the interface between the support structure portion 11 and the adsorbent (4) Support structure portion 11 by thermal eutectic bonding Method of joining the adsorbent and the adsorbent (only when the adsorbent is made of a metal material)

次に、図7(b)に示すように、接着剤31を、吸着材層28に塗工する。   Next, as shown in FIG. 7B, the adhesive 31 is applied to the adsorbent layer 28.

次に、図7(c)に示すように、振動部12が実装基板30と所定間隔を空けて対向するように、支持構造部11と実装基板30とをダイボンドする。吸着材層28に塗工された接着剤31は、吸着材層28に含浸されるので、接着剤31がダイボンド面の周囲に流れ出にくくなる。このため、本来は接着の不要な箇所である、振動部12と実装基板30との間、および、振動部12と支持構造部11の側面部との間に接着剤31が介在して、振動子の振動部が不必要な箇所で固定されることなく、実装基板上に振動子をダイボンドできる。   Next, as illustrated in FIG. 7C, the support structure portion 11 and the mounting substrate 30 are die-bonded so that the vibration portion 12 faces the mounting substrate 30 with a predetermined interval. Since the adhesive 31 applied to the adsorbent layer 28 is impregnated in the adsorbent layer 28, the adhesive 31 is less likely to flow out around the die bond surface. For this reason, the adhesive 31 is interposed between the vibration part 12 and the mounting substrate 30 and the vibration part 12 and the side surface part of the support structure part 11, which are originally unnecessary portions for adhesion, and vibration is caused. The vibrator can be die-bonded on the mounting substrate without the child vibration portion being fixed at an unnecessary portion.

なお、上記実施例では、支持構造部11の実装基板30とのダイボンドする面に吸着材を接合して、吸着材層を形成したが、実装基板30の支持構造部11とダイボンドする面に、吸着材を接合して、実装基板30側に吸着材層を形成してもよい。ただし、振動子10を実装基板30にダイボンドする際の位置決めのしやすさなどの観点から、吸着材層28は、振動子10の支持構造部11に形成することが好ましい。   In the above-described embodiment, the adsorbent is bonded to the surface of the support structure 11 that is die-bonded to the mounting substrate 30 to form the adsorbent layer, but the surface of the mounting substrate 30 that is die-bonded to the support structure 11 is The adsorbent layer may be formed on the mounting substrate 30 side by bonding the adsorbent. However, the adsorbent layer 28 is preferably formed on the support structure portion 11 of the vibrator 10 from the viewpoint of ease of positioning when the vibrator 10 is die-bonded to the mounting substrate 30.

次に、MEMS構造体の製造方法の比較例について説明する。   Next, a comparative example of a method for manufacturing a MEMS structure will be described.

図8は、MEMS構造体の製造方法の比較例の概略工程図である。この比較例は、接着剤はみ出し防止手段、すなわち、ダム部26a,26bあるいは吸着材層28のような、接着剤がダイボンド面からはみ出すことを防止する手段を形成しない点で、上述の第1〜3の実施形態と異なっており、それ以外の点では、第1〜3の実施形態と同様である。   FIG. 8 is a schematic process diagram of a comparative example of a method for manufacturing a MEMS structure. This comparative example does not form means for preventing the adhesive from protruding, that is, means for preventing the adhesive from protruding from the die bond surface, such as the dam portions 26a and 26b or the adsorbent layer 28. The third embodiment is different from the third embodiment, and is otherwise the same as the first to third embodiments.

そして、この比較例では、図8(b)のように、実装基板30の支持構造部11とダイボンドする面に接着剤31を塗工し、図8(c)のように、振動部12が実装基板30と所定間隔を空けて対向するように、支持構造部11と実装基板30とをダイボンドするが、このダイボンドした状態において、振動部12と実装基板30および支持構造部11との間に本来は不要な接着箇所が生じて振動部が固定されてしまう可能性がある。   In this comparative example, as shown in FIG. 8B, the adhesive 31 is applied to the surface of the mounting substrate 30 that is die-bonded to the support structure 11, and the vibrating portion 12 is formed as shown in FIG. The support structure portion 11 and the mounting substrate 30 are die-bonded so as to face the mounting substrate 30 with a predetermined interval. In this die-bonded state, the vibration portion 12 is mounted between the mounting substrate 30 and the support structure portion 11. There is a possibility that an originally unnecessary bonding portion is generated and the vibration portion is fixed.

すなわち、この比較例では、第1〜3の実施形態におけるダム部26a,26bあるいは吸着材層28のような接着剤はみ出し防止手段を形成しないので、接着剤の流動性や塗工量にもよるが、図8(c)のように、実装基板30上に振動子10をダイボンドした際、接着剤31がダイボンド面(実装基板30の実装面におけるダイボンド領域)からはみ出し、実装基板30の実装面におけるダイボンド領域外の部分、そして、支持構造部11の側面、および、振動部12の下面さらには側面に達するまで広がる。このため、図8(c)において不要接合箇所31a、31bとして示すように、本来は接着の不要な箇所である、振動部12と実装基板30との間、および、振動部12と支持構造部11の側面部との間に接着剤31が介在することになり、振動部12を不必要な箇所で固定してしまい、振動子の所望の特性が得られなくなる、という不良が発生する可能性がある。なお、このような不良発生の問題は、支持構造部11の実装基板30とダイボンドする面に接着剤31を塗工した場合でも同様である。   That is, in this comparative example, since the adhesive protrusion means such as the dam portions 26a and 26b or the adsorbent layer 28 in the first to third embodiments is not formed, it depends on the fluidity and the coating amount of the adhesive. However, as shown in FIG. 8C, when the vibrator 10 is die-bonded on the mounting substrate 30, the adhesive 31 protrudes from the die-bonding surface (the die-bonding region on the mounting surface of the mounting substrate 30), and the mounting surface of the mounting substrate 30. The portion extends outside the die bond region, the side surface of the support structure 11, and the lower surface and side surfaces of the vibration portion 12. For this reason, as shown as unnecessary joint portions 31a and 31b in FIG. 8 (c), between the vibration portion 12 and the mounting substrate 30 and the vibration portion 12 and the support structure portion, which are originally unnecessary portions for adhesion. Therefore, there is a possibility that the adhesive 31 is interposed between the side surface portion 11 and the vibration portion 12 is fixed at an unnecessary portion, and a desired characteristic of the vibrator cannot be obtained. There is. Such a problem of occurrence of defects is the same even when the adhesive 31 is applied to the surface of the support structure 11 that is die-bonded to the mounting substrate 30.

また、上述の比較例で説明した、振動部と実装基板や支持構造部との間に本来は不要な接着箇所が生じて振動部が固定されてしまう問題は、図8(a)ようなSOI基板を用いて形成された振動子が、接着剤によって実装基板上にダイボンドされてなるMEMS構造体の製造方法だけではなく、支持構造部と梁状の振動部とを備える振動子が、接着剤によって実装基板上に、振動部が実装基板と間隔を空けて対向するようにしてダイボンドされてなるMEMS構造体の製造方法に共通する問題となっている。   In addition, the problem that an originally unnecessary bonding portion is generated between the vibration part and the mounting substrate or the support structure part described in the comparative example, and the vibration part is fixed, is an SOI as shown in FIG. In addition to a method for manufacturing a MEMS structure in which a vibrator formed using a substrate is die-bonded on a mounting substrate with an adhesive, a vibrator including a support structure portion and a beam-like vibration portion is an adhesive. Therefore, the problem is common to the manufacturing method of the MEMS structure in which the vibration part is die-bonded on the mounting substrate so as to face the mounting substrate with a gap.

そして、上記図8の比較例に対して、本発明によるMEMS構造体の製造方法では、上述の第1〜3の実施形態で説明したように、ダム部26a,26bあるいは吸着材層28のような接着剤はみ出し防止手段を形成していることにより、振動部と実装基板や支持構造部との間に本来は不要な接着箇所が生じて振動部が固定されてしまい、不良が発生するという問題がなく、安定した特性を備えたMEMS構造体を生産性よく製造することが可能となる。   In the MEMS structure manufacturing method according to the present invention with respect to the comparative example shown in FIG. 8, the dam portions 26a and 26b or the adsorbent layer 28 are used as described in the first to third embodiments. By forming the adhesive sticking out prevention means, a problem arises in that a vibration part is originally fixed between the vibration part and the mounting substrate or the support structure part, and the vibration part is fixed, resulting in a defect. Therefore, a MEMS structure having stable characteristics can be manufactured with high productivity.

振動子の一実施形態を示す斜視図であるIt is a perspective view showing one embodiment of a vibrator. 振動子の製造に用いるSOI基板の概略断面図である。It is a schematic sectional drawing of the SOI substrate used for manufacture of a vibrator. SOI基板を用いた振動子の製造工程のうち半導体層をエッチングする工程を表す概略図であって、図3(a)は同(b)のA−A線断面図であり、図3(b)は平面図である。FIG. 3A is a schematic diagram illustrating a process of etching a semiconductor layer in a manufacturing process of a vibrator using an SOI substrate, and FIG. 3A is a cross-sectional view taken along line AA in FIG. ) Is a plan view. SOI基板を用いた振動子の製造工程のうち絶縁層および支持層をそれぞれエッチングする工程を表す概略図であって、図3(a)は同(b)のA−A線断面図であり、図3(b)は平面図である。It is the schematic showing the process of etching an insulating layer and a support layer, respectively, among the manufacturing processes of the vibrator | oscillator using an SOI substrate, Comprising: Fig.3 (a) is the sectional view on the AA line of the same (b), FIG. 3B is a plan view. 本発明のMEMS構造体の製造方法の第1の実施形態の概略工程図である。It is a schematic process drawing of a 1st embodiment of a manufacturing method of a MEMS structure of the present invention. 本発明のMEMS構造体の製造方法の第2の実施形態の概略工程図である。It is a schematic process drawing of 2nd Embodiment of the manufacturing method of the MEMS structure of this invention. 本発明のMEMS構造体の製造方法の第3の実施形態の概略工程図である。It is a schematic process drawing of 3rd Embodiment of the manufacturing method of the MEMS structure of this invention. MEMS構造体の製造方法の比較例の概略工程図である。It is a schematic process drawing of the comparative example of the manufacturing method of a MEMS structure.

符号の説明Explanation of symbols

10:振動子
11:支持構造部
13a,13b,13c,13d:電極パッド
14a,14b:固定電極
20:SOI基板
21:半導体層
22:絶縁層
23:支持層
26a,26b:ダム部
27:突起
28:吸着材層
30:実装基板
31:接着剤
10: vibrator 11: support structure parts 13a, 13b, 13c, 13d: electrode pads 14a, 14b: fixed electrode 20: SOI substrate 21: semiconductor layer 22: insulating layer 23: support layers 26a, 26b: dam part 27: protrusion 28: Adsorbent layer 30: Mounting substrate 31: Adhesive

Claims (6)

支持構造部と梁状の振動部とを備える振動子が、接着剤によって実装基板上に、前記振動部が前記実装基板と間隔を空けて対向するようにしてダイボンドされたMEMS構造体の製造方法であって、
前記実装基板の前記支持構造部とダイボンドする面、又は、前記支持構造部の前記実装基板とダイボンドする面に、溝又は突起からなるダム部を形成し、
前記ダイボンドする面に接着剤を塗工して、前記支持構造部と前記実装基板とをダイボンドする
ことを特徴とするMEMS構造体の製造方法。
A method of manufacturing a MEMS structure in which a vibrator having a support structure portion and a beam-like vibration portion is die-bonded on a mounting substrate with an adhesive so that the vibration portion faces the mounting substrate with a space therebetween Because
Forming a dam part consisting of a groove or a protrusion on the surface of the mounting substrate that is die-bonded to the support structure portion, or on the surface of the support structure portion that is die-bonded to the mounting substrate,
A method for manufacturing a MEMS structure, comprising: applying an adhesive to the surface to be die-bonded, and die-bonding the support structure portion and the mounting substrate.
前記ダム部は、前記支持構造部をエッチングして形成する、請求項1に記載のMEMS構造体の製造方法。   The method for manufacturing a MEMS structure according to claim 1, wherein the dam portion is formed by etching the support structure portion. 前記ダム部は、前記支持構造部又は前記実装基板に、金属、シリコン酸化物及びシリコン窒化物から選ばれる層を積層して形成する、請求項1に記載のMEMS構造体の製造方法。   2. The method for manufacturing a MEMS structure according to claim 1, wherein the dam portion is formed by laminating a layer selected from a metal, silicon oxide, and silicon nitride on the support structure portion or the mounting substrate. 支持構造部と梁状の振動部とを備える振動子が、接着剤によって実装基板上に、前記振動部が前記実装基板と間隔を空けて対向するようにしてダイボンドされたMEMS構造体の製造方法であって、
前記実装基板の前記支持構造部とダイボンドする面、又は、前記支持構造部の前記実装基板とダイボンドする面に吸着材層を形成し、
前記吸着材層に接着剤を塗工して、前記支持構造部と前記実装基板とをダイボンドする
ことを特徴とするMEMS構造体の製造方法。
A method of manufacturing a MEMS structure in which a vibrator having a support structure portion and a beam-like vibration portion is die-bonded on a mounting substrate with an adhesive so that the vibration portion faces the mounting substrate with a space therebetween Because
Forming an adsorbent layer on the surface of the mounting substrate that is die-bonded to the support structure portion or the surface of the support structure portion that is die-bonded to the mounting substrate;
A method for manufacturing a MEMS structure, comprising: applying an adhesive to the adsorbent layer and die-bonding the support structure portion and the mounting substrate.
前記吸着材層は、金属メッシュ、金属焼結体、多孔質セラミックから選ばれる一種以上を、前記実装基板又は前記支持構造部に接合して形成する、請求項4に記載のMEMS構造体の製造方法。   The manufacturing method of the MEMS structure according to claim 4, wherein the adsorbent layer is formed by joining at least one selected from a metal mesh, a metal sintered body, and a porous ceramic to the mounting substrate or the support structure portion. Method. 前記振動子が、支持層上に、絶縁層、半導体層の順に積層されてなるものであって、前記絶縁層を介して前記支持層に支持された支持部を基端として前記半導体層が梁状に形成された、前記半導体層からなる振動部を備えたものである、請求項1〜5のいずれか1項に記載のMEMS構造体の製造方法。   The vibrator is formed by laminating an insulating layer and a semiconductor layer in this order on a support layer, and the semiconductor layer is a beam with a support portion supported by the support layer via the insulating layer as a base end. The manufacturing method of the MEMS structure of any one of Claims 1-5 provided with the vibration part which consists of the said semiconductor layer formed in the shape.
JP2008199883A 2008-08-01 2008-08-01 Manufacturing method of mems structure Pending JP2010036280A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008199883A JP2010036280A (en) 2008-08-01 2008-08-01 Manufacturing method of mems structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008199883A JP2010036280A (en) 2008-08-01 2008-08-01 Manufacturing method of mems structure

Publications (1)

Publication Number Publication Date
JP2010036280A true JP2010036280A (en) 2010-02-18

Family

ID=42009356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008199883A Pending JP2010036280A (en) 2008-08-01 2008-08-01 Manufacturing method of mems structure

Country Status (1)

Country Link
JP (1) JP2010036280A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012070166A1 (en) * 2010-11-24 2012-05-31 パナソニック株式会社 Converter module and method for producing same
JP2013512792A (en) * 2009-12-08 2013-04-18 フリースケール セミコンダクター インコーポレイテッド Microelectromechanical system (MEMS) with gap stop and method therefor
CN103288038A (en) * 2012-02-24 2013-09-11 视频有限公司 Moisture-resistant package
WO2014011167A1 (en) * 2012-07-11 2014-01-16 Hewlett-Packard Development Company, L.P. Semiconductor secured to substrate via hole in substrate
US9686864B2 (en) 2012-07-31 2017-06-20 Hewlett-Packard Development Company, L.P. Device including interposer between semiconductor and substrate
US10150460B2 (en) 2012-09-11 2018-12-11 Jaguar Land Rover Limited Method for determining the charge in a vehicle battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07321344A (en) * 1994-05-26 1995-12-08 Matsushita Electric Works Ltd Pressure sensor and mounting method for pressure sensor chip
JPH09222372A (en) * 1996-02-19 1997-08-26 Mitsubishi Electric Corp Semiconductor sensor
JPH11199834A (en) * 1998-01-09 1999-07-27 Sony Corp Adhesive film and semiconductor package
JP2003145751A (en) * 2001-11-07 2003-05-21 Ricoh Co Ltd Micro pump, ink jet recording head using the micro pump, and ink jet recorder
JP2004233072A (en) * 2003-01-28 2004-08-19 Hitachi Metals Ltd Acceleration sensor
JP2008027812A (en) * 2006-07-24 2008-02-07 Toshiba Corp Mems switch
JP2008145385A (en) * 2006-12-13 2008-06-26 Sony Corp Inertia sensor, manufacturing method of same, and structured substrate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07321344A (en) * 1994-05-26 1995-12-08 Matsushita Electric Works Ltd Pressure sensor and mounting method for pressure sensor chip
JPH09222372A (en) * 1996-02-19 1997-08-26 Mitsubishi Electric Corp Semiconductor sensor
JPH11199834A (en) * 1998-01-09 1999-07-27 Sony Corp Adhesive film and semiconductor package
JP2003145751A (en) * 2001-11-07 2003-05-21 Ricoh Co Ltd Micro pump, ink jet recording head using the micro pump, and ink jet recorder
JP2004233072A (en) * 2003-01-28 2004-08-19 Hitachi Metals Ltd Acceleration sensor
JP2008027812A (en) * 2006-07-24 2008-02-07 Toshiba Corp Mems switch
JP2008145385A (en) * 2006-12-13 2008-06-26 Sony Corp Inertia sensor, manufacturing method of same, and structured substrate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013512792A (en) * 2009-12-08 2013-04-18 フリースケール セミコンダクター インコーポレイテッド Microelectromechanical system (MEMS) with gap stop and method therefor
WO2012070166A1 (en) * 2010-11-24 2012-05-31 パナソニック株式会社 Converter module and method for producing same
CN103288038A (en) * 2012-02-24 2013-09-11 视频有限公司 Moisture-resistant package
WO2014011167A1 (en) * 2012-07-11 2014-01-16 Hewlett-Packard Development Company, L.P. Semiconductor secured to substrate via hole in substrate
US9686864B2 (en) 2012-07-31 2017-06-20 Hewlett-Packard Development Company, L.P. Device including interposer between semiconductor and substrate
US10150460B2 (en) 2012-09-11 2018-12-11 Jaguar Land Rover Limited Method for determining the charge in a vehicle battery

Similar Documents

Publication Publication Date Title
JP5682267B2 (en) Angular velocity sensor
US7468552B2 (en) Physical quantity sensor
JP5177015B2 (en) Packaged device and packaged device manufacturing method
JP2010036280A (en) Manufacturing method of mems structure
JP5345346B2 (en) Mounting method of micro electro mechanical system
JP2006023190A (en) Angular velocity detection device
JP2007101531A (en) Dynamic amount sensor
JP2009002834A (en) Angular rate detecting device
JP4640459B2 (en) Angular velocity sensor
JP2005283424A (en) Dynamic quantity sensor unit
JP4812000B2 (en) Mechanical quantity sensor
JP5451396B2 (en) Angular velocity detector
JP2009002964A (en) Rotation rate sensor
JP2012049335A (en) Sealing type device and method for manufacturing the same
JP2005020411A (en) Manufacturing method of silicon microphone
JP2008185369A (en) Angular velocity sensor, its manufacturing method, electronic apparatus, and circuit board
KR101118627B1 (en) Mems microphone and manufacturing method the same
JP5167848B2 (en) Support substrate and method of manufacturing capacitive mechanical quantity detection sensor using the same
JP2009094690A (en) Oscillator and oscillator having the same
JP6533518B2 (en) Angular velocity sensor
JP5262658B2 (en) Mechanical quantity sensor and manufacturing method thereof
Khan et al. Fabrication technology of quartz glass resonator using sacrificial metal support structure
JP2007069320A (en) Function element and its manufacturing method
JP6702053B2 (en) Gyro sensor and electronic equipment
JP5381235B2 (en) MEMS structure, MEMS device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130507