JP2011175937A - Sealed battery - Google Patents

Sealed battery Download PDF

Info

Publication number
JP2011175937A
JP2011175937A JP2010040784A JP2010040784A JP2011175937A JP 2011175937 A JP2011175937 A JP 2011175937A JP 2010040784 A JP2010040784 A JP 2010040784A JP 2010040784 A JP2010040784 A JP 2010040784A JP 2011175937 A JP2011175937 A JP 2011175937A
Authority
JP
Japan
Prior art keywords
valve body
battery
sealing plate
sealed battery
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010040784A
Other languages
Japanese (ja)
Inventor
Soji Yoshida
聡司 吉田
Eiji Okuya
英治 奥谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2010040784A priority Critical patent/JP2011175937A/en
Publication of JP2011175937A publication Critical patent/JP2011175937A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Gas Exhaust Devices For Batteries (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sealed battery with a safety mechanism in which no leakage of an electrolyte solution is caused by a shock of falling or the like. <P>SOLUTION: In the sealed battery provided with a safety mechanism in which a valve is crushed to discharge the gas inside the battery out of the battery, when a battery inner pressure rises, the valve is arranged on a sealing port plate for sealing an outer can bottom or an opening of the outer can, and the thickness of the valve is thinner than the thickness of the outer can bottom or the sealing port plate and moreover the valve has a crushing groove to open the valve, and a chamfering part of which the corners are chamfered are formed on at least part of a battery outside face of the body in an interface between the valve and the can bottom of the outer can where the valve is arranged or the body of the sealing port plate. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電池内圧上昇時に電池内のガスを排出する安全機構を備えた密閉型電池に関する。   The present invention relates to a sealed battery provided with a safety mechanism that discharges gas in the battery when the battery internal pressure increases.

近年、携帯電話、ノートパソコン等の移動情報端末の小型・軽量化が急速に進展しており、その駆動電源としての電池にはさらなる高容量化、高エネルギー密度化が要求されている。リチウムイオン二次電池に代表される非水電解質二次電池は、高いエネルギー密度を有し、高容量であるので、移動情報端末の駆動電源として広く利用されている。   In recent years, mobile information terminals such as mobile phones and notebook personal computers have been rapidly reduced in size and weight, and batteries as drive power sources are required to have higher capacity and higher energy density. Non-aqueous electrolyte secondary batteries represented by lithium ion secondary batteries have high energy density and high capacity, and are therefore widely used as drive power sources for mobile information terminals.

ところで非水電解質二次電池は、高温にさらされた場合や、適正でない充放電が行われた場合には、電極と電解液とが反応して電解液が分解し、分解により生成したガスにより電池内圧が上昇する。電池内圧の上昇が進行すると、電池が破裂に至る危険性があるので、電池内のガスを速やかに電池外に放出させる必要がある。   By the way, the non-aqueous electrolyte secondary battery, when exposed to high temperature or improper charging / discharging, reacts with the electrode and the electrolytic solution to decompose the electrolytic solution, and the gas generated by the decomposition Battery internal pressure increases. When the battery internal pressure increases, there is a risk that the battery may burst, so it is necessary to quickly release the gas in the battery to the outside of the battery.

そこで、電池内のガスを速やかに電池外に放出させる技術として、電池を封口する封口板に、電池内圧上昇時に破砕・開裂してガス排出孔を形成させるための溝を設ける技術が種々提案されている(例えば、特許文献1、2参照。)。   Therefore, as a technique for quickly releasing the gas in the battery to the outside of the battery, various techniques for providing a groove on the sealing plate for sealing the battery to form a gas discharge hole by crushing and cleaving when the battery internal pressure increases are proposed. (For example, refer to Patent Documents 1 and 2.)

特開2003−187774号公報JP 2003-187774 A 特開2007−141518号公報JP 2007-141518 A

特許文献1は、薄肉の弁体に、弁体を開放する環状の破砕溝と、この破砕溝の内方側領域に設けられた、破砕溝より残肉厚が大きく、一端は破砕溝に連結されている破砕補助溝と、を形成する技術である。   In Patent Document 1, a thin-walled valve body is provided with an annular crushing groove for opening the valve body, and the remaining thickness is larger than the crushing groove provided in an inner region of the crushing groove, and one end is connected to the crushing groove. This is a technique for forming a crushing auxiliary groove.

特許文献2は、封口板の板素材に設けた第1残厚t1を有する第1加工凹部の所定位置に第2残厚を有する第2加工凹部を設け、この第2加工凹部内にさらに薄い第3残厚t3を有しかつ外周辺に波形屈曲部の溝部を設け、この溝部の内周寄り位置に 湾曲部を形成し、所定の防爆圧以上の内圧発生時に溝部を切裂させて内圧を逃がすことにより安全弁を作動させるように構成した防爆構造に関する技術である。   In Patent Document 2, a second processed recess having a second remaining thickness is provided at a predetermined position of a first processed recess having a first remaining thickness t1 provided in a plate material of a sealing plate, and the second processed recess is thinner. It has a third remaining thickness t3 and is provided with a groove portion with a corrugated bent portion on the outer periphery. A curved portion is formed near the inner periphery of this groove portion. This technology relates to an explosion-proof structure that is configured to operate a safety valve by letting go.

しかしながら、上記特許文献1,2に係る技術では、電池内のガスを速やかに排出できるものの、落下等の衝撃によって誤作動して電解液が漏液することを十分に防止できないという問題があった。   However, the techniques according to Patent Documents 1 and 2 have a problem that although the gas in the battery can be discharged quickly, it is not possible to sufficiently prevent the electrolyte from leaking due to malfunction due to an impact such as dropping. .

本発明は、以上の事情に鑑みなされたものであって、衝撃等によって誤作動して電解液が漏れることを防止できるガス排出機構を備えた密閉型電池を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a sealed battery including a gas discharge mechanism that can prevent an electrolyte from leaking due to malfunction due to an impact or the like.

上記目的を達成するための本発明は、電池内部圧力が上昇したときに弁体が破砕して電池内のガスを電池外に放出する安全機構を備えた密閉型電池において、前記弁体は、外装缶底面又は外装缶の開口部を封口する封口板に設けられ、前記弁体の厚さは前記外装缶底面または前記封口板の厚さよりも薄く、且つ前記弁体を開放する破砕溝を有し、前記弁体と、前記弁体が設けられた外装缶の缶底面又は封口板の本体部と、の境界における前記本体部の電池外側面の少なくとも一部は、角が面取りされた面取り部が形成されていることを特徴とする。   In order to achieve the above object, the present invention provides a sealed battery having a safety mechanism in which a valve body is crushed when a battery internal pressure rises and discharges gas in the battery to the outside of the battery. Provided on a sealing plate that seals the bottom of the outer can or the opening of the outer can, the thickness of the valve body is smaller than the thickness of the bottom surface of the outer can or the sealing plate, and has a crushing groove that opens the valve body. In addition, at least a part of the battery outer surface of the main body portion at the boundary between the valve body and the bottom surface of the outer can or the main body portion of the sealing plate provided with the valve body is a chamfered portion with chamfered corners. Is formed.

落下等の衝撃は、床面等と直接接触した封口板部分や外装缶部分に作用し、これが弁体へと伝播し、伝播した衝撃が蓄積することによって弁体が破砕して漏液を招く。ここで、直接衝撃を受ける部分が弁体に近いほど、また直接衝撃を受ける面積が大きいほど、弁体に伝播する衝撃が大きくなる。上記構成では、弁体と、弁体が設けられた外装缶又は封口板の本体部と、の境界における本体部の電池外側面の角部の少なくとも一部が面取りされているので、弁体近傍の外装缶又は封口板の本体部に衝撃が直接作用しにくく、また弁体近傍の外装缶又は封口板の本体部が衝撃を受ける面積が小さくなる。このため、弁体に伝播する衝撃も小さくなるので、落下等の衝撃による弁体の誤作動を防止できる。   Impact such as dropping acts on the sealing plate part and the outer can part that are in direct contact with the floor surface, etc., which propagates to the valve body, and the propagated impact accumulates, causing the valve body to break up and cause leakage. . Here, the impact transmitted to the valve body increases as the portion that receives the direct impact is closer to the valve body and as the area that receives the direct impact is larger. In the above configuration, since at least part of the corner of the battery outer surface of the main body at the boundary between the valve body and the main body of the outer can or the sealing plate provided with the valve body is chamfered, the vicinity of the valve body It is difficult for an impact to act directly on the main body of the outer can or the sealing plate, and the area of the main body of the outer can or the sealing plate near the valve body is reduced. For this reason, since the impact transmitted to the valve body is also reduced, it is possible to prevent malfunction of the valve body due to impact such as dropping.

また、前記弁体は、電池内側又は電池外側に突出したドーム部をさらに備え、前記破砕溝は、前記ドーム部を囲うように形成されている構成とすることができる。   In addition, the valve body may further include a dome portion protruding toward the inside or outside of the battery, and the crushing groove may be formed so as to surround the dome portion.

この構成では、ドーム部を形成する際の残留応力の効果によって破砕溝全体が確実に破砕されるようになるので、電池内部のガスをより速やかに排出することができる。   In this configuration, the entire crushing groove is reliably crushed by the effect of residual stress when forming the dome portion, so that the gas inside the battery can be discharged more quickly.

また、電池内側に突出したドーム部を設けると、当該ドーム部が落下等の衝撃による電解液や電極体の移動による電池内部圧力の変化を緩和するように作用する。このため、落下等の衝撃による電池内部圧力の変化に起因する弁体誤作動を防止できる。   Further, when the dome portion protruding inside the battery is provided, the dome portion acts so as to alleviate a change in the internal pressure of the battery due to the movement of the electrolytic solution or the electrode body due to an impact such as dropping. For this reason, it is possible to prevent a valve body malfunction caused by a change in the battery internal pressure due to an impact such as dropping.

また、前記弁体は、前記弁体が形成された外装缶の缶底面又は封口板の外側面と面一の仮想面と前記封口板の内側面と面一の仮想面との間にある構成とすることができる。   Further, the valve body is configured between the bottom surface of the outer can or the outer surface of the sealing plate on which the valve body is formed and the virtual surface that is flush with the inner surface of the sealing plate and the virtual surface that is flush with the sealing plate. It can be.

この構成によると、加工器具や接続端子等の接触による弁体の誤作動を防止できる。   According to this structure, the malfunction of the valve body by contact with a processing tool, a connection terminal, etc. can be prevented.

ここで、面取り部の電池の高さ方向に平行な断面形状は、多角形状、円弧状、楕円弧状、その他不定形状であってもよい。弁体に伝播する衝撃をより小さくするためには、面取り部20の電池の高さ方向に平行な断面形状は、図3(c)に示すように、弁体が設けられた封口板13の電池外表面と、弁体6の根元部までの距離をtとするとき、曲率半径が0.5t〜tのR形状(円弧状)とすることが好ましい。また、弁体6を封口板に設け、封口板と外装缶との嵌合部をレーザ溶接して封口する電池に本発明を適用する場合、面取り部20の末端はレーザ溶接部2aにかからないようにすることが好ましい。   Here, the cross-sectional shape parallel to the height direction of the battery in the chamfered portion may be a polygonal shape, an arc shape, an elliptical arc shape, or any other indefinite shape. In order to reduce the impact transmitted to the valve body, the cross-sectional shape of the chamfered portion 20 parallel to the height direction of the battery is such that the sealing plate 13 provided with the valve body has a cross-sectional shape as shown in FIG. When the distance between the outer surface of the battery and the root portion of the valve body 6 is t, it is preferable to have an R shape (arc shape) with a radius of curvature of 0.5 t to t. When the present invention is applied to a battery in which the valve body 6 is provided on the sealing plate and the fitting portion between the sealing plate and the outer can is sealed by laser welding, the end of the chamfered portion 20 does not cover the laser welding portion 2a. It is preferable to make it.

また、前記弁体の最も応力が集中する部位近傍には、前記面取り部が形成されている構成とすることができる。   Further, the chamfered portion may be formed in the vicinity of a portion of the valve body where stress is most concentrated.

弁体の最も応力が集中する部位は、衝撃等によって最も開裂しやすいので、この部位近傍には面取り部を設けることが好ましい。最も好ましくは、弁体を完全に囲うように、境界部全てに面取り部を形成する。ここで、弁体の最も応力が集中する部位は、次の(a)〜(c)順で決定することができる。   Since the portion of the valve body where stress is most concentrated is most easily cleaved by impact or the like, it is preferable to provide a chamfered portion in the vicinity of this portion. Most preferably, chamfers are formed at all the boundaries so as to completely surround the valve body. Here, the part where the stress is most concentrated on the valve body can be determined in the following order (a) to (c).

(a) 残肉厚が最も薄い部位
(b) 破砕溝同士が交わる交点
(c) 弁体が形成された封口板面または缶底面の縁部(封口板面または缶底面と、缶側面との境界部)に最も近い地点
(A) The portion where the remaining thickness is the thinnest (b) Intersection where the crushing grooves intersect (c) The edge of the sealing plate surface or can bottom surface where the disc is formed (the sealing plate surface or bottom surface of the can and The closest point to the boundary

上記方法によって決定される最も応力が集中する部位が複数ある場合には、全て部位の近傍に面取り部を設ける。   When there are a plurality of portions where stress is most concentrated determined by the above method, a chamfered portion is provided in the vicinity of all the portions.

以上に説明したように、本発明によると、衝撃等によって誤作動して電解液が漏れることを防止できるガス排出機構を備えた密閉型電池を実現できる。   As described above, according to the present invention, it is possible to realize a sealed battery equipped with a gas discharge mechanism that can prevent an electrolyte from leaking due to malfunction due to an impact or the like.

図1は、本発明に係る電池の斜視図である。FIG. 1 is a perspective view of a battery according to the present invention. 図2は、図1のA−A線部分断面図である。2 is a partial cross-sectional view taken along line AA in FIG. 図3は、本発明に係る密閉型電池の弁体を示す図であって、図3(a)は平面図、図3(b)は図3(a)のA−A’線断面図、図3(c)は図3(a)のB−B’線断面図である。FIG. 3 is a view showing a valve body of a sealed battery according to the present invention, in which FIG. 3 (a) is a plan view, FIG. 3 (b) is a cross-sectional view taken along the line AA ′ of FIG. FIG. 3C is a cross-sectional view taken along the line BB ′ of FIG. 図4は、本発明に用いる弁体の変形例を示す平面図である。FIG. 4 is a plan view showing a modification of the valve body used in the present invention. 図5は、面取り部の形成箇所の変形例を示す平面図である。FIG. 5 is a plan view showing a modified example of the location where the chamfered portion is formed. 図6は、比較例1に係る密閉型電池の弁体を示す図であって、図6(a)は平面図、図6(b)は図6(a)のA−A’線断面図、図6(c)は図6(a)のB−B’線断面図である。6A and 6B are diagrams showing a valve body of a sealed battery according to Comparative Example 1, in which FIG. 6A is a plan view, and FIG. 6B is a cross-sectional view taken along line AA ′ in FIG. FIG. 6C is a cross-sectional view taken along line BB ′ of FIG.

(実施の形態)
本発明を実施するための形態を、図面に基づいて、以下に説明する。図1は本発明に係る密閉型電池の斜視図であり、図2は図1のA−A線断面図であり、図3は、本発明に係る安全機構を示す図であって、図3(a)は平面図、図3(b)は図3(a)のA−A’線断面図、図3(c)は図3(a)のB−B’線断面図である。
(Embodiment)
EMBODIMENT OF THE INVENTION The form for implementing this invention is demonstrated below based on drawing. 1 is a perspective view of a sealed battery according to the present invention, FIG. 2 is a cross-sectional view taken along line AA of FIG. 1, and FIG. 3 is a diagram illustrating a safety mechanism according to the present invention. 3A is a plan view, FIG. 3B is a cross-sectional view taken along line AA ′ in FIG. 3A, and FIG. 3C is a cross-sectional view taken along line BB ′ in FIG.

図1、図2に示すように、本発明に係る密閉型電池は、外装缶2の開口部に、封口体1が嵌合され、当該嵌合部がレーザ溶接されることにより密閉されてなる。また、図1、図2に示すように、本発明に係る密閉型電池用封口体1は、電池内圧が異常に上昇したときに電池内部のガスを電池外部に排出する弁体6と、電解液を外装缶2内部に注液するための注液孔を封止する押さえ板と突状部とを有する封止栓8と、電極外部端子(端子板)11と、を有している。なお、注液孔及び封止栓8は、本発明の必須の構成要素ではない。   As shown in FIGS. 1 and 2, the sealed battery according to the present invention is hermetically sealed by sealing the sealing body 1 in the opening of the outer can 2 and laser welding the fitting. . As shown in FIGS. 1 and 2, the sealed battery sealing body 1 according to the present invention includes a valve body 6 that discharges gas inside the battery to the outside of the battery when the internal pressure of the battery rises abnormally, and electrolysis. It has a sealing plug 8 having a pressing plate and a projecting portion for sealing a liquid injection hole for injecting liquid into the outer can 2, and an electrode external terminal (terminal plate) 11. The liquid injection hole and the sealing plug 8 are not essential components of the present invention.

図2に示すように、本発明に係る密閉型電池用封口体は、封口板13と、端子板11と、絶縁ガスケット12と、端子リベット15と、絶縁板14とを有している。封口体1は、端子板11、絶縁ガスケット12、封口板13、及び絶縁板14それぞれに設けられた貫通孔に端子リベット15を挿入し、端子リベット15の先端部を押しつぶしてかしめることにより、上記各部材が固定される構造である。電極外部端子は、電流取り出しに関与する端子リベット15、端子板11と、これらを固定するための絶縁板14、絶縁ガスケット12とで構成される。なお、封口体は、この構成に限定されるものではない。   As shown in FIG. 2, the sealed battery sealing body according to the present invention includes a sealing plate 13, a terminal plate 11, an insulating gasket 12, a terminal rivet 15, and an insulating plate 14. The sealing body 1 is formed by inserting a terminal rivet 15 into a through hole provided in each of the terminal plate 11, the insulating gasket 12, the sealing plate 13, and the insulating plate 14, and crushing and crimping the tip of the terminal rivet 15. It is the structure where each said member is fixed. The electrode external terminal includes a terminal rivet 15 and a terminal plate 11 which are involved in current extraction, and an insulating plate 14 and an insulating gasket 12 for fixing them. Note that the sealing body is not limited to this configuration.

図2に示すように、外装缶2内部には、正極と負極とを有する電極体3が収容されており、電極体3と封口板13との間には、両者を絶縁する絶縁部材4が配置されている。また、電極体3と、端子板11とが、集電タブ31及び端子リベット15を介して接続されることにより、電流が外部に取り出される構造である。   As shown in FIG. 2, an electrode body 3 having a positive electrode and a negative electrode is accommodated in the outer can 2, and an insulating member 4 that insulates the electrode body 3 and the sealing plate 13 is provided between the electrode body 3 and the sealing plate 13. Has been placed. In addition, the electrode body 3 and the terminal plate 11 are connected via the current collecting tab 31 and the terminal rivet 15, whereby a current is taken out to the outside.

ここで、前記絶縁板4には、開放孔17が形成されており、この開放孔17上には、図1及び図2に示すように、前記封口板13と一体形成された弁体6(封口板13と同様にアルミニウム合金から成る)が配置されている。この弁体6は、図3(b)、(c)に示すように、封口板13の本体部の肉厚よりも薄肉となっている。また、当該弁体6には電池内側方向に突出したドーム形状を成すドーム部6bが形成されており、このドーム部6bの周縁には弁体の破砕を容易にするための破砕溝6aが形成されている。また、弁体6全体が、前記封口板13の外側面と面一の仮想面18aと前記封口板1の内側面と面一の仮想面18bとの間に形成されている(図3(c)参照)。   Here, an opening hole 17 is formed in the insulating plate 4, and a valve body 6 (integrally formed with the sealing plate 13 is formed on the opening hole 17 as shown in FIGS. 1 and 2. As with the sealing plate 13, an aluminum alloy is disposed. As shown in FIGS. 3B and 3C, the valve body 6 is thinner than the thickness of the main body portion of the sealing plate 13. Further, the valve body 6 is formed with a dome portion 6b having a dome shape projecting inward of the battery, and a crushing groove 6a for facilitating the crushing of the valve body is formed at the periphery of the dome portion 6b. Has been. Further, the entire valve body 6 is formed between a virtual surface 18a flush with the outer surface of the sealing plate 13, and a virtual surface 18b flush with the inner side surface of the sealing plate 1 (FIG. 3 (c). )reference).

以下、本発明に係る密閉型電池の製造方法について説明する。   Hereinafter, the manufacturing method of the sealed battery according to the present invention will be described.

〈正極の作製〉
正極活物質としてのコバルト酸リチウム(LiCoO2)粉末9質量部と、導電剤としての人造黒鉛粉末1質量部とを混合して、正極合剤を調製する。この正極合剤と、ポリフッ化ビニリデンをN−メチル−2−ピロリドン(NMP)に5質量%溶かした結着剤溶液とを、乾燥後の固形分質量比が正極合剤:ポリフッ化ビニリデン=95:5となるように混練して、正極活物質スラリーを調製する。
<Preparation of positive electrode>
9 parts by mass of lithium cobalt oxide (LiCoO 2 ) powder as a positive electrode active material and 1 part by mass of artificial graphite powder as a conductive agent are mixed to prepare a positive electrode mixture. The positive electrode mixture and a binder solution obtained by dissolving 5% by mass of polyvinylidene fluoride in N-methyl-2-pyrrolidone (NMP) have a solid content mass ratio after drying of the positive electrode mixture: polyvinylidene fluoride = 95. : Knead | mixing so that it may become 5, and prepare a positive electrode active material slurry.

このスラリーを、正極集電体としてのアルミ箔(箔厚み:15μm)の両面に塗布する。この後、乾燥し、その後圧縮して正極板を作製する。その後、正極板を電池高さに合うように裁断して正極となす。   This slurry is applied to both surfaces of an aluminum foil (foil thickness: 15 μm) as a positive electrode current collector. Then, it dries and compresses after that and produces a positive electrode plate. Thereafter, the positive electrode plate is cut to fit the battery height to form a positive electrode.

〈負極の作製〉
リン片状天然黒鉛(d002値:3.356Å,Lc値:1000Å,平均粒径:20μm)と、スチレン−ブタジエンゴム(SBR)のディスパージョン(固形分:48%)を水に分散させ、増粘剤であるカルボキシメチルセルロース(CMC)を添加して負極活物質スラリーを調製する。固形分質量組成比は、例えば黒鉛:SBR:CMC=100:3: 2となるように調製する。
<Preparation of negative electrode>
Scattered natural graphite (d002 value: 3.356 mm, Lc value: 1000 mm, average particle size: 20 μm) and styrene-butadiene rubber (SBR) dispersion (solid content: 48%) are dispersed in water to increase A negative electrode active material slurry is prepared by adding carboxymethylcellulose (CMC) as a sticking agent. The solid content mass composition ratio is prepared so as to be, for example, graphite: SBR: CMC = 100: 3: 2.

このスラリーを負極集電体としての銅箔(箔厚み:10μm)の両面に塗布した後、乾燥させ、その後圧縮し、負極板を作製する。その後負極板を電池高さに合うように裁断した後、集電タブを取り付けて負極となす。   After apply | coating this slurry to both surfaces of the copper foil (foil thickness: 10 micrometers) as a negative electrode collector, it is made to dry and is compressed after that, and a negative electrode plate is produced. Thereafter, the negative electrode plate is cut to fit the battery height, and then a current collecting tab is attached to form a negative electrode.

〈電極体の作製〉
上記正極及び負極を、ポリエチレン製微多孔膜からなるセパレータを介して巻回し、この後プレスして、更に正極最外周に集電タブを取り付けることにより、偏平渦巻状の電極体3を作製する。
<Production of electrode body>
The above-described positive electrode and negative electrode are wound through a separator made of a polyethylene microporous film, and then pressed, and a current collecting tab is attached to the outermost periphery of the positive electrode, thereby producing a flat spiral electrode body 3.

〈電解液の調製〉
非水電解質として、エチレンカーボネート(EC)とジエチルカーボネート(DEC)との体積比50:50(25℃)の混合溶媒に、LiPF6を1モル/リットルとなるように溶かして、電解液となす。
<Preparation of electrolyte>
As a non-aqueous electrolyte, LiPF 6 is dissolved in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) in a volume ratio of 50:50 (25 ° C.) so as to be 1 mol / liter to obtain an electrolytic solution. .

〈封口板の作製〉
封口板13(板厚1.0mm)の天面(電池外側面)から深さtが0.4mmとなるように、板厚が40μmの薄肉部(1.8×5.0mmサイズの小判形状(両端が半径0.9mmの半円形状、線分長さ3.2mm))を鍛造加工にて成形する。このとき、鍛造加工に用いるパンチの先端を所定のR形状にしておくことにより、封口板本体部と薄肉部との境界における封口板本体部の天面側角部を面取りする(R形状になる)ように成形して、面取り部20を形成する。その後、この薄肉部にコイニング加工して、ドーム部6b及び破砕溝6aとを一体成型して、弁体6を備える封口板13を作製する。
<Preparation of sealing plate>
Thin portion (1.8 × 5.0 mm size oval shape) with a thickness of 40 μm so that the depth t is 0.4 mm from the top surface (battery outer surface) of the sealing plate 13 (plate thickness 1.0 mm). (Semi-circular shape with a radius of 0.9 mm at both ends and a line segment length of 3.2 mm) is formed by forging. At this time, by setting the tip of the punch used for forging to a predetermined R shape, the top side corner of the sealing plate main body at the boundary between the sealing plate main body and the thin-walled portion is chamfered (R-shaped. ) To form the chamfered portion 20. Thereafter, the thin portion is coined, and the dome portion 6b and the crushing groove 6a are integrally molded to produce the sealing plate 13 including the valve body 6.

なお、面取り部20の形成方法については、上記方法に限定されるものではなく、たとえば従来と同様にして弁体6を形成した後、切削加工や化学的腐食を行う方法を採用することができる。   In addition, about the formation method of the chamfer part 20, it is not limited to the said method, For example, after forming the valve body 6 like the past, the method of cutting and chemical corrosion can be employ | adopted. .

〈封口体の組み立て〉
この後、絶縁板14、上記封口板13、絶縁ガスケット12、端子板11のそれぞれに設けられた貫通孔に端子リベット15を挿入する。この後、端子リベット15の先端部を押しつぶすことにより、端子板11、絶縁ガスケット12、絶縁板14及び端子リベット15を封口板13に固定して、封口体1を得る。
<Assembly of sealing body>
Thereafter, terminal rivets 15 are inserted into through holes provided in the insulating plate 14, the sealing plate 13, the insulating gasket 12, and the terminal plate 11. Thereafter, by crushing the tip of the terminal rivet 15, the terminal plate 11, the insulating gasket 12, the insulating plate 14, and the terminal rivet 15 are fixed to the sealing plate 13 to obtain the sealing body 1.

〈電池の組み立て〉
上記電極体3に取り付けられた負極集電タブ31と、端子リベット15とを接続する。この電極体3をアルミニウム合金製の有底角形の外装缶2に挿入した後、外装缶2と封口体1との間に上記電極体3に取り付けられた正極集電タブを挟み込む。この後、外装缶2の開口部と上記封口体1とをレーザ溶接し、封口体1の注液孔から上記電解液を注液する。この後、注液孔を押さえ板と突状部とを有する封止栓8で密閉し、封口板13と封止栓8の押さえ板の外周縁とをレーザ溶接することにより、4.0(厚み)×42(幅)×61mm(高さ)の本実施の形態に係る非水電解質二次電池を作製する。
<Assembly of battery>
The negative electrode current collecting tab 31 attached to the electrode body 3 is connected to the terminal rivet 15. After this electrode body 3 is inserted into a bottomed rectangular outer can 2 made of aluminum alloy, a positive electrode current collecting tab attached to the electrode body 3 is sandwiched between the outer can 2 and the sealing body 1. Thereafter, the opening of the outer can 2 and the sealing body 1 are laser welded, and the electrolytic solution is injected from the liquid injection hole of the sealing body 1. Thereafter, the liquid injection hole is sealed with a sealing plug 8 having a pressing plate and a protruding portion, and the sealing plate 13 and the outer peripheral edge of the pressing plate of the sealing plug 8 are laser welded to 4.0 ( A non-aqueous electrolyte secondary battery according to the present embodiment of (thickness) × 42 (width) × 61 mm (height) is manufactured.

(実施例1)
上記実施の形態と同様にして、実施例1に係る電池を作製した。
Example 1
A battery according to Example 1 was fabricated in the same manner as in the above embodiment.

(実施例2)
電池サイズを3.6(厚み)×44(幅)×61mm(高さ)とし、上記実施の形態と同様にして、電池を作製した。作製した電池は、電池の端子版11と封口板13に図示しないリード板をそれぞれ取り付けた。リード板には外部端子を備える保護回路基板(不図示)を接続した。電池に接続された保護回路基板を、外部端子が外部に露出するように、そして樹脂製キャップ(不図示)で覆うように封口板13の上に固定した。さらに電池の缶底には樹脂製カバー(不図示)を取り付けた。そして、外装缶2の側面の全面全周を覆うように、片面に粘着剤が塗布されたラベル(不図示)を貼り付けて実施例2に係るパック電池(不図示)を作製した。
(Example 2)
The battery size was 3.6 (thickness) × 44 (width) × 61 mm (height), and a battery was fabricated in the same manner as in the above embodiment. In the produced battery, lead plates (not shown) were attached to the terminal plate 11 and the sealing plate 13 of the battery, respectively. A protection circuit board (not shown) having external terminals was connected to the lead plate. The protection circuit board connected to the battery was fixed on the sealing plate 13 so that the external terminals were exposed to the outside and covered with a resin cap (not shown). Further, a resin cover (not shown) was attached to the bottom of the battery. Then, a battery pack (not shown) according to Example 2 was manufactured by attaching a label (not shown) coated with an adhesive on one side so as to cover the entire circumference of the side surface of the outer can 2.

(比較例1)
図6(a)〜(c)に示すように、面取り部を形成しなかったこと以外は、前記実施例1と同様にして比較例1に係る電池を作製した。
(Comparative Example 1)
As shown in FIGS. 6A to 6C, a battery according to Comparative Example 1 was fabricated in the same manner as in Example 1 except that the chamfered portion was not formed.

(比較例2)
図6(a)〜(c)に示すように、面取り部を形成しなかったこと以外は、前記実施例2と同様にして比較例2に係るパック電池を作製した。
(Comparative Example 2)
As shown in FIGS. 6A to 6C, a battery pack according to Comparative Example 2 was fabricated in the same manner as in Example 2 except that the chamfered portion was not formed.

(落下試験1)
上記実施例1、比較例1の電池をそれぞれ10個用意した。これらの電池を、所定の高さから、上面を下方に向けて、1.65mの高さからコンクリート製の床に50回落下させた。そして、弁体からの漏液発生に至るまでの落下回数を目視にて測定した。試験結果を下記表1に示す。尚、試料数は、各電池10個である。
(Drop test 1)
Ten batteries of Example 1 and Comparative Example 1 were prepared. These batteries were dropped 50 times from a height of 1.65 m onto a concrete floor from a predetermined height with the upper surface facing downward. Then, the number of drops until the occurrence of leakage from the valve body was visually measured. The test results are shown in Table 1 below. The number of samples is 10 batteries.

(落下試験2)
上記実施例2、比較例2のパック電池をそれぞれ10個用意した。これらのパック電池を、1.65mの高さから、正面、背面、右側面、左側面、上面、底面をそれぞれ下方に向けて、コンクリート製の床に落下させた。この落下を、6面の落下を1サイクルとして、40サイクル行った。そして、弁体からの漏液発生に至るまでの落下サイクル数を目視にて測定した。試験結果を下記表2に示す。
(Drop test 2)
Ten battery packs of Example 2 and Comparative Example 2 were prepared. These battery packs were dropped from a height of 1.65 m onto a concrete floor with the front, back, right side, left side, top, and bottom facing down. This fall was performed 40 cycles, with 6 faces being taken as one cycle. And the number of fall cycles until it came to the liquid leak generation | occurrence | production from a valve body was measured visually. The test results are shown in Table 2 below.

Figure 2011175937
Figure 2011175937

Figure 2011175937
Figure 2011175937

表1から、比較例1では40回以下で全ての電池に漏液が発生していたのに対し、実施例1では、50回の落下による漏液が発生していないことがわかる。   From Table 1, it can be seen that in Comparative Example 1, leakage occurred in all the batteries in 40 times or less, whereas in Example 1, leakage due to 50 times of dropping did not occur.

また、表2から、比較例2では35サイクル以下で全ての電池に漏液が発生していたのに対し、実施例2では、10個中8個は漏液が発生していないことがわかる。   Moreover, from Table 2, it was found that leaks occurred in all batteries in 35 cycles or less in Comparative Example 2, whereas no leaks occurred in 8 out of 10 in Example 2. .

また、電池(実施例1)の状態だけでなく、電池を加工したパック電池(実施例2)の状態であっても、落下による漏液の発生が抑制されていることがわかる。   Moreover, it turns out that generation | occurrence | production of the liquid leakage by the fall is suppressed not only in the state of a battery (Example 1) but in the state of the pack battery (Example 2) which processed the battery.

これらのことは、次のように考えられる。電池に落下等の衝撃が加えられると、この衝撃が弁体にも伝播し、弁体に加えられた衝撃が蓄積して弁体が破壊されて漏液する。ここで、直接衝撃を受ける部分が弁体に近いほど、また直接衝撃を受ける面積が大きいほど、弁体に伝播する衝撃が大きくなる。実施例1,2では、弁体6と、弁体6が設けられた封口板13の本体部と、の境界における本体部の電池外側面の角部が面取りされた面取り部20が形成されているので、弁体6近傍の封口板13の本体部に衝撃が直接作用しにくく、また弁体6近傍の封口板13の本体部が衝撃を受ける面積が小さくなる(図3参照)。このため、弁体に伝播する衝撃が面取り部を有さない比較例1,2(図6参照)よりも小さくなり、落下衝撃による弁体の誤作動が比較例1,2よりも顕著に起こりにくくなる。   These are considered as follows. When an impact such as a drop is applied to the battery, the impact is propagated to the valve body, the impact applied to the valve body is accumulated, the valve body is destroyed, and the liquid leaks. Here, the impact transmitted to the valve body increases as the portion that receives the direct impact is closer to the valve body and as the area that receives the direct impact is larger. In Examples 1 and 2, the chamfered portion 20 is formed by chamfering the corners of the battery outer surface of the main body portion at the boundary between the valve body 6 and the main body portion of the sealing plate 13 provided with the valve body 6. Therefore, it is difficult for an impact to act directly on the main body of the sealing plate 13 near the valve body 6, and the area of the main body of the sealing plate 13 near the valve body 6 is reduced (see FIG. 3). For this reason, the impact propagating to the valve body is smaller than those of Comparative Examples 1 and 2 (see FIG. 6) having no chamfered portion, and the malfunction of the valve body due to the drop impact occurs more markedly than Comparative Examples 1 and 2. It becomes difficult.

〔追加事項〕
上記実施の形態では、弁体の平面形状をトラック形状としたが、図4(a)に示すような真円形状や、図4(b)に示すような楕円形状とすることができ、またこれら以外のオーバル形状としてもよい。
〔extra content〕
In the above embodiment, the planar shape of the valve body is a track shape, but it can be a perfect circle shape as shown in FIG. 4A or an elliptical shape as shown in FIG. Other oval shapes may be used.

上記実施の形態では、弁体全体を囲うように面取り部を設けたが、一部のみに設ける構成であってもよい。この場合、少なくとも弁体の最も応力が集中する部位近傍には、面取り部を設けることが好ましい。ここで、弁体の最も応力が集中する部位は、次の(a)〜(c)順で決定することができる。   In the said embodiment, although the chamfering part was provided so that the whole valve body might be enclosed, the structure provided only in a part may be sufficient. In this case, it is preferable to provide a chamfered portion at least near the portion of the valve body where the stress is most concentrated. Here, the part where the stress is most concentrated on the valve body can be determined in the following order (a) to (c).

(a) 残肉厚が最も薄い部位
(b) 破砕溝同士が交わる交点
(c) 弁体が形成された封口板面または缶底面の縁部(封口板面または缶底面と、缶側面との境界部)に最も近い地点
(A) The portion where the remaining thickness is the thinnest (b) Intersection where the crushing grooves intersect (c) The edge of the sealing plate surface or can bottom surface where the disc is formed (the sealing plate surface or bottom surface of the can and The closest point to the boundary

上記方法によって決定される最も応力が集中する部位が複数ある場合には、少なくとも全て最も応力が集中する部位の近傍に面取り部を設ける。   When there are a plurality of portions where stress is most concentrated, which is determined by the above method, at least all of the portions are chamfered in the vicinity of the portion where stress is most concentrated.

たとえば、弁体が形成された封口板面または缶底面の縁部からの距離が等しい位置に破砕溝が交わる交点が2つ存在し、一方の残肉厚のほうが薄い場合、図5(a)に示すように、残肉厚の薄い方の交点(同図では上側)近傍に面取り部20を設ける。   For example, when there are two intersecting points where the crushing grooves intersect at the same distance from the edge of the sealing plate surface or the bottom surface of the can on which the valve body is formed, and one of the remaining thicknesses is thinner, FIG. As shown, the chamfered portion 20 is provided in the vicinity of the intersection (the upper side in the figure) of the thinner remaining thickness.

弁体が形成された封口板面または缶底面の縁部からの距離が等しい位置に破砕溝が交わる交点が2つ存在し、残肉厚が等しい場合、当該2つの交点近傍に面取り部20を設ける。   If there are two intersections where the crushing grooves intersect at the same distance from the edge of the sealing plate surface or the bottom of the can where the valve body is formed, and the remaining thickness is equal, the chamfered portion 20 is located near the two intersections. Provide.

トラック形状である場合には、好ましくは当該最も応力が集中する部位を含んだ長辺部分に近接する部分全てに面取り部を設ける。また、図4(a)に示すように真円形状の場合、好ましくは、弁体6における封口板13の長辺に平行な軸(長軸)と、封口板13の短辺に平行な軸(短軸)との交点を中心点として、短軸を含んだ左右それぞれ45°の範囲に設ける。また、図4(b)に示すように楕円形状の場合、長軸と短軸との交点を中心点とし、短軸を含んだ左右それぞれ60°の範囲に設ける。   In the case of the track shape, a chamfered portion is preferably provided in all the portions close to the long side portion including the portion where the stress is most concentrated. Further, in the case of a perfect circle shape as shown in FIG. 4A, preferably, an axis (long axis) parallel to the long side of the sealing plate 13 in the valve body 6 and an axis parallel to the short side of the sealing plate 13 are used. Centering on the intersection with (short axis), it is provided in the range of 45 ° on both the left and right sides including the short axis. Also, as shown in FIG. 4B, in the case of an elliptical shape, the intersection point between the major axis and the minor axis is set as the center point, and the left and right ranges including the minor axis are provided in a range of 60 °.

また、弁体の厚みは、封口板厚みの0.1〜20%の範囲、40μm〜100μmとすることができる。   Moreover, the thickness of a valve body can be made into the range of 0.1-20% of sealing plate thickness, and 40 micrometers-100 micrometers.

また、弁体は、封口板以外に、外装缶の缶底面に設けることもできる。また、本発明は、角形外装缶を用いる電池以外に、円筒形外装缶を用いる電池にも適用できる。   In addition to the sealing plate, the valve body can be provided on the bottom surface of the outer can. Further, the present invention can be applied to a battery using a cylindrical outer can in addition to a battery using a rectangular outer can.

また、封口板及び弁体の材質としてはアルミニウム合金に限定するものではなく、鉄、ステンレススチール、純アルミニウム等を用いてもよい。中でも軽量な純アルミニウムやアルミニウム合金を用いると、重量エネルギー密度が向上するので好ましい。また、本発明は非水電解質二次電池に限定するものではなく、非水電解質一次電池等に用いることができる。   Further, the material of the sealing plate and the valve body is not limited to the aluminum alloy, and iron, stainless steel, pure aluminum or the like may be used. Among them, it is preferable to use light pure aluminum or aluminum alloy because the weight energy density is improved. The present invention is not limited to non-aqueous electrolyte secondary batteries, and can be used for non-aqueous electrolyte primary batteries.

また、本発明を前記非水電解液二次電池に適用する場合には、正極材料としては前記コバルト酸リチウムの他、例えば、ニッケル酸リチウム、マンガン酸リチウム、ニッケルマンガン酸リチウム、ニッケルマンガンコバルト酸リチウム、鉄酸リチウム、オリビン構造を有するリチウム鉄リン酸塩或いはこれらの混合物、これらの化合物の結晶格子内に他の元素が含まれている化合物等が好適に用いられる。また、負極材料としては炭素材料の他、リチウム金属、リチウム合金、珪素、珪素化合物、或いはリチウムイオンを吸蔵脱離することができる金属酸化物(スズ酸化物等)等やこれらの混合物が好適に用いられる。   In addition, when the present invention is applied to the non-aqueous electrolyte secondary battery, as the positive electrode material, in addition to the lithium cobaltate, for example, lithium nickelate, lithium manganate, lithium nickel manganate, nickel manganese cobaltate Lithium, lithium ferrate, lithium iron phosphate having an olivine structure or a mixture thereof, a compound containing other elements in the crystal lattice of these compounds, and the like are preferably used. As the negative electrode material, a carbon material, a lithium metal, a lithium alloy, silicon, a silicon compound, a metal oxide (such as tin oxide) capable of occluding and desorbing lithium ions, and a mixture thereof are preferably used. Used.

更に、電解液の溶媒としては前記のものに限らず、プロピレンカーボネート・エチレンカーボネート・ブチレンカーボネート・ビニレンカーボネートに代表される環状カーボネート、γ−ブチロラクトン・γ−バレロラクトンに代表されるラクトン、ジエチルカーボネート・ジメチルカーボネート・メチルエチルカーボネートに代表される鎖状カーボネート、テトラヒドロフラン・1,2−ジメトキシエタン・ジエチレングリコールジメチルエーテル・1,3−ジオキソラン・2−メトキシテトラヒドロフラン・ジエチルエーテルに代表されるエーテル等を単独で、あるいは二種以上混合して用いることができる。また、電解液の電解質としては、前記LiPF6の他、LiAsF6、LiClO4、LiBF4、LiCF3SO3、LiN(CF3SO22等を用いることができる。 Furthermore, the solvent of the electrolytic solution is not limited to the above, but cyclic carbonates typified by propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate, lactones typified by γ-butyrolactone, γ-valerolactone, diethyl carbonate, A chain carbonate represented by dimethyl carbonate and methyl ethyl carbonate, an ether represented by tetrahydrofuran, 1,2-dimethoxyethane, diethylene glycol dimethyl ether, 1,3-dioxolane, 2-methoxytetrahydrofuran, and diethyl ether alone, or Two or more kinds can be mixed and used. In addition to LiPF 6 , LiAsF 6 , LiClO 4 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 or the like can be used as the electrolyte of the electrolytic solution.

以上説明したように、本発明によれば、衝撃等によって誤作動して電解液が漏れることを防止できるガス排出機構を備えた密閉型電池を実現できる。よって、産業上の利用可能性は大きい。   As described above, according to the present invention, it is possible to realize a sealed battery equipped with a gas discharge mechanism that can prevent malfunction due to impact or the like and leakage of the electrolyte. Therefore, industrial applicability is great.

1:封口体
2:外装缶
2a:レーザ溶接部
3:電極体
4:絶縁板
6:弁体
6a:破砕溝
6b:ドーム部
8:封止栓
11:端子板
12:絶縁ガスケット
13:封口板
14:絶縁板
15:端子リベット
17:開放孔
18a:仮想面
18b:仮想面
20:面取り部
31:集電タブ
1: Sealing body 2: Exterior can 2a: Laser welding part 3: Electrode body 4: Insulating plate 6: Valve body 6a: Crushing groove 6b: Dome part 8: Seal plug 11: Terminal board 12: Insulating gasket 13: Sealing board 14: Insulating plate 15: Terminal rivet 17: Open hole 18a: Virtual surface 18b: Virtual surface 20: Chamfered portion 31: Current collecting tab

Claims (6)

電池内部圧力が上昇したときに弁体が破砕して電池内のガスを電池外に放出する安全機構を備えた密閉型電池において、
前記弁体は、外装缶底面又は外装缶の開口部を封口する封口板に設けられ、前記弁体の厚さは前記外装缶底面または前記封口板の厚さよりも薄く、且つ前記弁体を開放する破砕溝を有し、
前記弁体と、前記弁体が設けられた外装缶の缶底面又は封口板の本体部と、の境界における前記本体部の電池外側面の少なくとも一部は、角が面取りされた面取り部が形成されている、
ことを特徴とする密閉型電池。
In a sealed battery equipped with a safety mechanism that breaks the valve body when the battery internal pressure rises and releases the gas in the battery to the outside of the battery,
The valve body is provided on a sealing plate that seals the bottom surface of the outer can or the opening of the outer can, and the thickness of the valve body is smaller than the thickness of the bottom surface of the outer can or the sealing plate, and the valve body is opened. Crushing groove to
At least a part of the battery outer surface of the main body at the boundary between the valve body and the bottom of the outer can or the main body of the sealing plate provided with the valve body is formed as a chamfered portion with chamfered corners. Being
A sealed battery characterized by that.
請求項1に記載の密閉型電池において、
前記弁体は、封口板に形成されている、
ことを特徴とする密閉型電池。
The sealed battery according to claim 1,
The valve body is formed on a sealing plate,
A sealed battery characterized by that.
請求項1又は2に記載の密閉型電池において、
前記弁体は、電池内側又は電池外側に突出したドーム部をさらに備え、
前記破砕溝は、前記ドーム部を囲うように形成されている。
ことを特徴とする密閉型電池。
The sealed battery according to claim 1 or 2,
The valve body further includes a dome portion protruding to the inside or outside of the battery,
The crushing groove is formed so as to surround the dome portion.
A sealed battery characterized by that.
請求項1、2又は3に記載の密閉型電池において、
前記弁体は、前記弁体が形成された外装缶の缶底面又は封口板の外側面と面一の仮想面と前記封口板の内側面と面一の仮想面との間にある、
ことを特徴とする密閉型電池。
The sealed battery according to claim 1, 2, or 3,
The valve body is between the bottom surface of the outer can of the outer can in which the valve body is formed or the outer surface of the sealing plate and the virtual surface that is flush with the inner surface of the sealing plate and the virtual surface that is flush with the sealing plate.
A sealed battery characterized by that.
請求項1ないし4いずれか1項に記載の密閉型電池において、
前記面取り部の前記密閉型電池の高さ方向に平行な断面形状が、前記弁体が設けられた外装缶の缶底面又は封口板の電池外表面と、前記弁体の根元部までの距離をtとするとき、曲率半径が0.5t〜tのR形状である、
ことを特徴とする密閉型電池。
The sealed battery according to any one of claims 1 to 4,
The cross-sectional shape parallel to the height direction of the sealed battery of the chamfered portion is the distance between the bottom surface of the outer can where the valve body is provided or the battery outer surface of the sealing plate and the root portion of the valve body. where t is an R shape with a radius of curvature of 0.5 to t.
A sealed battery characterized by that.
請求項1ないし5いずれか1項に記載の密閉型電池において、
前記弁体の最も応力が集中する部位近傍には、前記面取り部が形成されている、
ことを特徴とする密閉型電池。
The sealed battery according to any one of claims 1 to 5,
The chamfered portion is formed in the vicinity of the portion of the valve body where stress is most concentrated,
A sealed battery characterized by that.
JP2010040784A 2010-02-25 2010-02-25 Sealed battery Pending JP2011175937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010040784A JP2011175937A (en) 2010-02-25 2010-02-25 Sealed battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010040784A JP2011175937A (en) 2010-02-25 2010-02-25 Sealed battery

Publications (1)

Publication Number Publication Date
JP2011175937A true JP2011175937A (en) 2011-09-08

Family

ID=44688604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010040784A Pending JP2011175937A (en) 2010-02-25 2010-02-25 Sealed battery

Country Status (1)

Country Link
JP (1) JP2011175937A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014041718A (en) * 2012-08-21 2014-03-06 Kojima Press Industry Co Ltd Case for secondary battery and secondary battery
JP2015149161A (en) * 2014-02-05 2015-08-20 株式会社Gsユアサ Power storage element, and safety valve
JP2020055587A (en) * 2018-10-01 2020-04-09 大日本印刷株式会社 Valve structure, storage body with the same and power storage device with valve structure
CN113422133A (en) * 2021-05-11 2021-09-21 江苏正力新能电池技术有限公司 Structure for preventing battery thermal runaway, battery shell and battery
WO2022202291A1 (en) * 2021-03-23 2022-09-29 三洋電機株式会社 Non-aqueous electrolyte secondary battery
WO2023190978A1 (en) * 2022-03-30 2023-10-05 ビークルエナジージャパン株式会社 Battery
WO2023220882A1 (en) * 2022-05-16 2023-11-23 宁德时代新能源科技股份有限公司 End cover, battery cell, battery, and power consuming apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001023596A (en) * 1999-07-09 2001-01-26 Serumu:Kk Explosion-proof construction of secondary battery
JP2003187774A (en) * 2001-12-20 2003-07-04 Sanyo Electric Co Ltd Safety valve of battery
JP2009259606A (en) * 2008-04-17 2009-11-05 Toyota Motor Corp Manufacturing method of internal pressure release valve, and sealed battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001023596A (en) * 1999-07-09 2001-01-26 Serumu:Kk Explosion-proof construction of secondary battery
JP2003187774A (en) * 2001-12-20 2003-07-04 Sanyo Electric Co Ltd Safety valve of battery
JP2009259606A (en) * 2008-04-17 2009-11-05 Toyota Motor Corp Manufacturing method of internal pressure release valve, and sealed battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014041718A (en) * 2012-08-21 2014-03-06 Kojima Press Industry Co Ltd Case for secondary battery and secondary battery
JP2015149161A (en) * 2014-02-05 2015-08-20 株式会社Gsユアサ Power storage element, and safety valve
JP2020055587A (en) * 2018-10-01 2020-04-09 大日本印刷株式会社 Valve structure, storage body with the same and power storage device with valve structure
JP7367301B2 (en) 2018-10-01 2023-10-24 大日本印刷株式会社 Valve structure, container including the same, and electricity storage device with valve structure
WO2022202291A1 (en) * 2021-03-23 2022-09-29 三洋電機株式会社 Non-aqueous electrolyte secondary battery
CN113422133A (en) * 2021-05-11 2021-09-21 江苏正力新能电池技术有限公司 Structure for preventing battery thermal runaway, battery shell and battery
WO2023190978A1 (en) * 2022-03-30 2023-10-05 ビークルエナジージャパン株式会社 Battery
WO2023220882A1 (en) * 2022-05-16 2023-11-23 宁德时代新能源科技股份有限公司 End cover, battery cell, battery, and power consuming apparatus

Similar Documents

Publication Publication Date Title
JP4953551B2 (en) Sealed battery
KR100883179B1 (en) Sealed and square type battery
JP6250567B2 (en) Sealed battery
JP6538650B2 (en) Cylindrical sealed battery
WO2014045569A1 (en) Sealed secondary battery
JP2011175937A (en) Sealed battery
JP2010055906A (en) Nonaqueous electrolyte secondary battery
WO2014119309A1 (en) Hermetic battery
JP2007265846A (en) Cylindrical battery and its manufacturing method
JP2010232089A (en) Sealed cell
JPWO2018180828A1 (en) Cylindrical battery
JP2009087727A (en) Battery
JP2001313022A (en) Nonaqueous electrolyte secondary battery
JP2004079330A (en) Sealed battery with cleavage groove
JP2010238558A (en) Sealed square battery
JP2006278184A (en) Square battery and its manufacturing method
JP2005243336A (en) Battery equipped with spiral electrode group
JP6241529B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP6037713B2 (en) Nonaqueous electrolyte secondary battery
JP5869354B2 (en) Exterior can for prismatic lithium ion secondary battery and prismatic lithium ion secondary battery
JP5412919B2 (en) Sealed battery and method for manufacturing sealed battery
WO2013094207A1 (en) Sealed battery
JP2004039294A (en) Sealed battery having cleavage groove
JP2009302019A (en) Sealed battery
JP4624004B2 (en) battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140701