JP2011175890A - Conductive film - Google Patents

Conductive film Download PDF

Info

Publication number
JP2011175890A
JP2011175890A JP2010039754A JP2010039754A JP2011175890A JP 2011175890 A JP2011175890 A JP 2011175890A JP 2010039754 A JP2010039754 A JP 2010039754A JP 2010039754 A JP2010039754 A JP 2010039754A JP 2011175890 A JP2011175890 A JP 2011175890A
Authority
JP
Japan
Prior art keywords
conductive
conductor
linear structure
base material
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010039754A
Other languages
Japanese (ja)
Inventor
Shigeji Yoshida
茂治 吉田
Osamu Watanabe
渡邊  修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2010039754A priority Critical patent/JP2011175890A/en
Publication of JP2011175890A publication Critical patent/JP2011175890A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductor with high precision in position detection and less malfunction when mounted on a display-related XY electrode, such as, an electromagnetic shield, a liquid crystal display device, an organic electroluminescent element, an electronic paper, or a touch panel electrode. <P>SOLUTION: A conductive film in which a conductor layer is provided on at least one side above a base material. The conductive film contains a conductive wire-like structure in the conductor layer and an average value of narrow angles at respective conductive wire-like structure intersections overlapping the ten conductive wire-like structures, respectively, selected randomly from the conductive wire-like structures is ≥50 and ≤90 degrees. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、導電性線状構造体によって構成された導電体である。さらに詳しくは、導電性線状構造体を無配向に重なり合わせた導電体であって、配線材料、導電ペースト、電極材料、電磁波シールド、環境触媒、燃料電池量高機能触媒、液晶表示装置、有機エレクトロルミネッセンス素子、電子ペーパーやタッチパネル電極などのディスプレイ関連の光学材料などに使用される導電性フィルムである。 The present invention is a conductor constituted by a conductive linear structure. More specifically, it is a conductor in which conductive linear structures are superposed in a non-oriented manner, including wiring materials, conductive pastes, electrode materials, electromagnetic wave shields, environmental catalysts, high-performance fuel cell catalysts, liquid crystal displays, organic It is a conductive film used for display-related optical materials such as electroluminescence elements, electronic paper, and touch panel electrodes.

導電性線状構造体を用いた導電性材料は、近年注目を浴びている材料の一つであって、特にカーボンナノチューブや銀ナノワイヤーなどのナノサイズの導電性線状構造体は様々な用途で今後の使用が見込まれることが知られている。これらの線状構造体を溶液中に分散させることで、室温、大気圧下での導電膜の塗布が可能であり、簡易なプロセスで導電体を形成することができる。また、屈曲性に富むため、柔軟な基材上に導電体を形成する場合であっても、基材の屈曲性に追従することができる。さらに、基材にフィルムを用いた場合には導電体を連続形成できることから、さらなるプロセスコストの低減が可能である。また、これらの導電性線状構造体の溶液中での分散性を向上させることで、透明性を向上させることが可能であり、透明基材上に導電体を形成することで屈曲性に富んだ透明導電フィルムを提供することができる。   Conductive materials using conductive linear structures are one of the materials that have been attracting attention in recent years. Especially, nano-sized conductive linear structures such as carbon nanotubes and silver nanowires have various applications. It is known that future use is expected. By dispersing these linear structures in the solution, the conductive film can be applied at room temperature and atmospheric pressure, and the conductor can be formed by a simple process. Moreover, since it is rich in flexibility, even when a conductor is formed on a flexible substrate, it is possible to follow the flexibility of the substrate. Furthermore, when a film is used for the base material, the conductor can be continuously formed, so that the process cost can be further reduced. Moreover, it is possible to improve transparency by improving the dispersibility of these conductive linear structures in a solution, and it is rich in flexibility by forming a conductor on a transparent substrate. A transparent conductive film can be provided.

導電性線状構造体を用いて導電体を形成する手法は提案されているが、線状構造体を溶液に分散させ基材に導電体を形成する場合、特許文献1に記載されているバーコート法では線状構造体が同一方向に配向する特性を有していることが示されている。また、特許文献2,および特許文献3に示されているスピンコート法でも同様の配向性が発生することが容易に想定される。このように線状構造体を溶液に分散させ、室温、大気圧下で基材に導電体を形成させる際に、配向性を任意で調整する技術確立が困難であり、特に無配向な導電体を形成させることが技術的な課題であった。   A method of forming a conductor using a conductive linear structure has been proposed. However, when the linear structure is dispersed in a solution to form a conductor on a substrate, the bar described in Patent Document 1 is used. The coating method shows that the linear structure has the property of being oriented in the same direction. In addition, it is easily assumed that the same orientation occurs in the spin coating methods disclosed in Patent Documents 2 and 3. In this way, it is difficult to establish a technique for arbitrarily adjusting the orientation when a linear structure is dispersed in a solution and a conductor is formed on a substrate at room temperature and atmospheric pressure. It was a technical challenge to form

特開2008−279434号公報JP 2008-279434 A 特開2009−120867号公報JP 2009-120867 A 特開2009−129607号公報JP 2009-129607 A

本発明は、導電性線状構造体を溶液に分散させ基材に室温、大気圧下で導電体を形成させる際に、導電性線状構造体の配向性が極めて小さい導電体を提供し、電磁波シールド、液晶表示装置、有機エレクトロルミネッセンス素子、電子ペーパーやタッチパネル電極などのディスプレイ関連のXY電極に搭載した際に、位置検出精度が高く、誤作動の少ない導電体を提供することを目的とする。また、導電性線状構造体を溶液に分散させた状態で室温、大気圧下にて導電体を形成することを可能とし、簡易なプロセスで導電体を提供することを目的とする。 The present invention provides a conductor in which the orientation of the conductive linear structure is extremely small when the conductive linear structure is dispersed in a solution to form a conductor on a substrate at room temperature and atmospheric pressure, An object of the present invention is to provide a conductor with high position detection accuracy and low malfunction when mounted on XY electrodes related to displays such as electromagnetic wave shields, liquid crystal display devices, organic electroluminescence elements, electronic paper and touch panel electrodes. . It is another object of the present invention to provide a conductor by a simple process that enables the conductor to be formed at room temperature and atmospheric pressure in a state where the conductive linear structure is dispersed in a solution.

本発明は、かかる課題を解決するために、次のような手段を採用する。すなわち、基材上の少なくとも一方に設けられる導電体が導電性線状構造体によって構成されており、その導電性線状構造体から無作為に選択した線状構造体10本にそれぞれに重なり合っている導電性線状構造体交点部の狭角の平均値が、50度以上90度以下であることを特徴としている。そして、その導電体を幅50mm、長さ50mmの大きさに、回転方向に30度間隔で切り出された合計12枚の導電膜の回転外側と内側の端子間抵抗値の最大値をRa、最小値をRbとし、平均値をRcとした場合に、(Ra−Rc)/Rcと(Rb−Rc)/Rcの値(以下、端子間抵抗比と略す。)が−0.3以上0.3以下であることを特徴とする導電膜であることを特徴とする。
The present invention employs the following means in order to solve such problems. That is, the conductor provided on at least one of the substrates is composed of a conductive linear structure, and overlaps each of ten linear structures randomly selected from the conductive linear structure. The average value of the narrow angle of the conductive linear structure intersections is 50 degrees or more and 90 degrees or less. Then, Ra is the maximum value of the resistance value between the outer and inner terminals of a total of 12 conductive films cut into the size of 50 mm in width and 50 mm in length at intervals of 30 degrees in the rotation direction. The value of (Ra−Rc) / Rc and (Rb−Rc) / Rc (hereinafter abbreviated as inter-terminal resistance ratio) is −0.3 or more when the value is Rb and the average value is Rc. It is a conductive film characterized by being 3 or less.

本発明によれば、導電性線状構造体の配向性の小さな導電体を形成し、同時に導電異方性が改善された導電体を提供することで、電磁波シールド、液晶表示装置、有機エレクトロルミネッセンス素子、電子ペーパーやタッチパネル電極などのディスプレイ関連のXY電極に搭載した際に、位置検出精度が高く、誤作動の少ない導電体を提供することが可能となる。また、導電性線状構造体を溶液に分散させた状態で室温、大気圧下にて導電体を形成することが可能であることから、簡易なプロセスで導電体を提供することが可能となる。 According to the present invention, an electromagnetic shield, a liquid crystal display device, an organic electroluminescence are provided by forming a conductive material having a small orientation of a conductive linear structure and simultaneously providing a conductive material having improved conductive anisotropy. When mounted on a display-related XY electrode such as an element, electronic paper, or a touch panel electrode, it is possible to provide a conductor with high position detection accuracy and few malfunctions. In addition, since the conductor can be formed at room temperature and atmospheric pressure in a state where the conductive linear structure is dispersed in the solution, the conductor can be provided by a simple process. .

重なり合う導電性線状構造体交点部の狭角Narrow angle at the intersection of overlapping conductive linear structures 端子間抵抗値測定用に切り出された導電体の切り出し位置と端子間抵抗測定位置Conductor cut-out position and inter-terminal resistance measurement position cut out for terminal resistance measurement リニアリティ測定における電圧値と測定位置の関係Relationship between voltage value and measurement position in linearity measurement

本発明に用いられる支持基材としては、樹脂、ガラスなどを挙げることができる。厚み
250μm以下で巻き取り可能なフィルムであっても、厚み250μmを超える基板であってもよい。樹脂としては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)などのポリエステル、ポリイミド、ポリフェニレンスルフィド、アラミド、ポリプロピレン、ポリエチレン、ポリ乳酸、ポリ塩化ビニル、ポリカーボネート、ポリメタクリル酸メチル、脂環式アクリル樹脂、シクロオレフィン樹脂、トリアセチルセルロースなどを挙げることができる。ガラスとしては、通常のソーダガラスを用いることができる。また、これらの複数の基材を組み合わせて用いることもできる。例えば、樹脂とガラスを組み合わせた基材、2種以上の樹脂を積層した基材などの複合基材であってもよい。さらに、支持基材は、必要に応じ、表面処理を施してあっても良い。表面処理は、グロー放電、コロナ放電、プラズマ処理、火炎処理等の物理的処理、あるいは樹脂層を設けてあっても良い。フィルムの場合、易接着層のあるものでも良い。支持基材の種類は上述に限定されることはなく、用途に応じて透明性や耐久性やコスト等から最適なものを選ぶことができる。
Examples of the supporting substrate used in the present invention include resin and glass. Even a film that can be wound up with a thickness of 250 μm or less or a substrate with a thickness of more than 250 μm may be used. Examples of the resin include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyimide, polyphenylene sulfide, aramid, polypropylene, polyethylene, polylactic acid, polyvinyl chloride, polycarbonate, polymethyl methacrylate, and alicyclic acrylic resin. , Cycloolefin resin, triacetyl cellulose and the like. As the glass, ordinary soda glass can be used. Moreover, these several base materials can also be used in combination. For example, a composite substrate such as a substrate in which a resin and glass are combined and a substrate in which two or more kinds of resins are laminated may be used. Furthermore, the support substrate may be subjected to a surface treatment as necessary. The surface treatment may be provided with a physical treatment such as glow discharge, corona discharge, plasma treatment, flame treatment, or a resin layer. In the case of a film, a film having an easy adhesion layer may be used. The kind of the supporting substrate is not limited to the above, and an optimal one can be selected from transparency, durability, cost and the like according to the use.

次に、導電体層に含有される導電性線状構造体について説明する。本発明では導電体層に導電性線状構造体を含んでいることが必要である。本発明において、好ましく用いられる導電性線状構造体はカーボンナノチューブ(以下、CNTとも言う。)、金属ナノワイヤーであり、金属ナノワイヤーの金属組成としては特に制限は無く、貴金属元素、貴金属酸化物や卑金属元素の1種または複数の金属から構成されることができるが、貴金属(例えば、金、白金、銀、パラジウム、ロジウム、イリジウム、ルテニウム、オスミウム等)及び鉄、コバルト、銅、錫からなる群に属する少なくとも1種の金属を含むことが好ましく、導電性の観点から少なくとも銀を含むことがより好ましい。導電性線状構造体として用いることのできる貴金属や貴金属酸化物のナノワイヤーは、特表2009−505358号公報、特開2009−146747号公報、特開2009−070660号公報に記載されており、また金属酸化物のウィスカーや繊維状のような針状結晶としては、例えば、チタン酸カリウム繊維とスズ及びアンチモン系酸化物の複合酸化物であるデントールWKシリーズ(大塚化学(株)製)のWK200B、WK300R、WK500が市販されている。卑金属元素としては、カーボンナノチューブが挙げられ、そのカーボンナノチューブは単層、二層、三層以上の多層カーボンナノチューブのいずれでもよい。直径が0.3〜100nm、長さ0.1〜20μm程度のものが好ましく用いられる。カーボンナノチューブは光を吸収する特性があることから、カーボンナノチューブ導電体の透明性を高めるためには、直径10nm以下の単層CNT、二層CNTがより好ましい。   Next, the conductive linear structure contained in the conductor layer will be described. In the present invention, it is necessary that the conductive layer includes a conductive linear structure. In the present invention, the conductive linear structures preferably used are carbon nanotubes (hereinafter also referred to as CNT) and metal nanowires, and the metal composition of the metal nanowires is not particularly limited, and noble metal elements and noble metal oxides are used. Can be composed of one or a plurality of base metal elements, but is composed of noble metals (eg, gold, platinum, silver, palladium, rhodium, iridium, ruthenium, osmium, etc.) and iron, cobalt, copper, tin It is preferable to include at least one metal belonging to the group, and it is more preferable to include at least silver from the viewpoint of conductivity. Nanowires of noble metals and noble metal oxides that can be used as conductive linear structures are described in JP-T 2009-505358, JP-A 2009-146747, JP-A 2009-070660, Examples of the needle crystals such as whiskers or fibers of metal oxide include, for example, WK200B of DENTOR WK series (manufactured by Otsuka Chemical Co., Ltd.), which is a composite oxide of potassium titanate fiber, tin and antimony oxide. , WK300R and WK500 are commercially available. Examples of the base metal element include carbon nanotubes, and the carbon nanotubes may be single-walled, double-walled, or multi-walled carbon nanotubes having three or more layers. Those having a diameter of about 0.3 to 100 nm and a length of about 0.1 to 20 μm are preferably used. Since carbon nanotubes have the property of absorbing light, single-walled CNTs and double-walled CNTs having a diameter of 10 nm or less are more preferable in order to increase the transparency of the carbon nanotube conductor.

また、CNTの集合体にはアモルファスカーボンや触媒金属などの不純物は極力含まれないことが好ましい。これら不純物が含まれる場合は、酸処理や加熱処理などによって適宜精製することができる。このCNTは、アーク放電法、レーザーアプレーション法、触媒化学気相法(化学気相法の中で担体に遷移金属を担持した触媒を用いる方法)などによって合成、製造されるが、なかでもアモルファスカーボン等の不純物の生成を少なくできることが好ましい。   Moreover, it is preferable that impurities such as amorphous carbon and catalytic metal are not contained in the aggregate of CNTs as much as possible. When these impurities are contained, they can be appropriately purified by acid treatment or heat treatment. This CNT is synthesized and manufactured by arc discharge method, laser application method, catalytic chemical vapor phase method (a method using a catalyst in which a transition metal is supported on a carrier in a chemical vapor phase method), etc. It is preferable that the production of impurities such as carbon can be reduced.

導電体層には導電性線状構造体の他に樹脂を含んでもよく、その樹脂は1種類または2種類以上を混合して用いることができる。それら樹脂としては、例えば、ポリエーテルジオール、ポリエステルジオール、ポリカーボネートジオール、ポリビニルアルコール、部分けん化ポリビニルアルコール、アセトアセチル基変性ポリビニルアルコール、アセタール基変性ポリビニルアルコール、ブチラール基変性ポリビニルアルコール、シラノール基変性ポリビニルアルコール、エチレン−ビニルアルコール共重合体、エチレン−ビニルアルコール−酢酸ビニル共重合樹脂、ジメチルアミノエチルアクリレート、ジメチルアミノエチルメタクリレート、アクリル系樹脂、エポキシ樹脂、変性エポキシ系樹脂、フェノキシ樹脂、変性フェノキシ系樹脂、フェノキシエーテル樹脂、フェノキシエステル樹脂、フッ素系樹脂、メラミン樹脂、アルキッド樹脂、フェノール樹脂、ポリアクリルアミド、ポリアクリル酸、ポリスチレンスルホン酸、ポリエチレングリコール、ポリビニルピロリドンである。天然高分子は、例えば、多糖類であるデンプン、プルラン、デキストラン、デキストリン、グアーガム、キサンタンガム、アミロース、アミロペクチン、アルギン酸、アラビアガム、カラギーナン、コンドロイチン硫酸、ヒアルロン酸、カードラン、キチン、キトサン、セルロースおよびその誘導体から選択できる。誘導体とはエステルやエーテルなどの従来公知の化合物を意味する。   In addition to the conductive linear structure, the conductor layer may contain a resin, and the resin can be used alone or in combination of two or more. Examples of these resins include polyether diol, polyester diol, polycarbonate diol, polyvinyl alcohol, partially saponified polyvinyl alcohol, acetoacetyl group-modified polyvinyl alcohol, acetal group-modified polyvinyl alcohol, butyral group-modified polyvinyl alcohol, silanol group-modified polyvinyl alcohol, Ethylene-vinyl alcohol copolymer, ethylene-vinyl alcohol-vinyl acetate copolymer resin, dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate, acrylic resin, epoxy resin, modified epoxy resin, phenoxy resin, modified phenoxy resin, phenoxy Ether resin, phenoxy ester resin, fluorine resin, melamine resin, alkyd resin, phenol resin, poly Riruamido, polyacrylic acid, polystyrene sulfonic acid, polyethylene glycol, polyvinylpyrrolidone. Natural polymers include, for example, polysaccharides such as starch, pullulan, dextran, dextrin, guar gum, xanthan gum, amylose, amylopectin, alginic acid, gum arabic, carrageenan, chondroitin sulfate, hyaluronic acid, curdlan, chitin, chitosan, cellulose and the like It can be selected from derivatives. The derivative means a conventionally known compound such as ester or ether.

基材上に導電体層を形成する方法としては、真空蒸着、EB蒸着、スパッタ蒸着などのドライ法の他に、キャスト、スピンコート、ディップコート、バーコート、スプレー、ブレードコート、スリットダイコート、グラビアコート、リバースコート、スクリーン印刷、鋳型塗布、印刷転写、インクジェットなどのウエットコート法と、一般的な方法を挙げることができる。なかでも、ロールtoロールによる安価な大量生産が可能で、導電体を均一にかつ生産性良く形成できるスリットダイコートを使用したウエットコート法が好ましい。スリットダイにて導電性線状構造体を塗布する場合、スリット形状を決定するためにシムプレートを導入する。そのシムプレートの厚みは導電性線状構造の形状に合わせて選定する必要性がある。また、搭載するシムプレートの厚みに合わせたスリットダイ圧力損失を確保する必要性がある。たとえば、導電性線状構造体の長さの平均値が20〜40μmであり、直径が0.05〜1.0μmの範囲であることを特徴とする導電性線状構造体を溶液中に分散した塗剤を、スリットダイ塗工にて導電体を形成させる場合は、シムプレートの厚みを40μm以上100μm以下にすることが好ましく、より好ましくは60μm以上100μm以下のシムプレートを用いる方が良い。この際に必要となる圧力損失は、50kPa以上200kPa以下が好ましく、より好ましくは70kPa以上140kPa以下が良い。   As a method for forming a conductor layer on a substrate, in addition to dry methods such as vacuum deposition, EB deposition, sputter deposition, etc., casting, spin coating, dip coating, bar coating, spraying, blade coating, slit die coating, gravure Examples thereof include a wet coating method such as coating, reverse coating, screen printing, mold coating, printing transfer, and inkjet, and a general method. Among these, a wet coating method using a slit die coat capable of forming a conductor uniformly and with high productivity is preferable because it is possible to perform mass production at low cost by roll-to-roll. When applying a conductive linear structure with a slit die, a shim plate is introduced to determine the slit shape. The thickness of the shim plate needs to be selected according to the shape of the conductive linear structure. In addition, it is necessary to ensure a slit die pressure loss in accordance with the thickness of the shim plate to be mounted. For example, a conductive linear structure having a mean length of 20-40 μm and a diameter of 0.05-1.0 μm is dispersed in a solution. When the conductor is formed by slit die coating, the thickness of the shim plate is preferably 40 μm or more and 100 μm or less, more preferably 60 μm or more and 100 μm or less. The pressure loss required at this time is preferably 50 kPa to 200 kPa, more preferably 70 kPa to 140 kPa.

シムプレートの厚みに関しては、40μmより薄いシムプレートを用いた場合、導電性線状構造体がスリットダイ内部を通過する際に、導電性線状構造体の軸方向の長さが40μmよりも長い導電性線状構造体が容易に通過しにくくなることがあり、これに伴う導電性線状構造体の断列や凝集が発生することがある。この導電性線状構造体の断列や凝集は、成膜後の導電体中において導電性の不均一性を発生させることが容易に想像され、これによって導電異方性が誘発されることがある。また、シムプレートが狭いことからスリットダイ内部にて塗液供給方向に導電性線状構造体が配向し易くなることが想定される。40μm以上60μm未満のシムプレートを用いた場合は、導電性線状構造体の凝集や断列を防止することは可能であるが、スリットダイ圧力損失が大きくなるに従い導電性線状構造体の配向性の制御が困難となることがある。これは、シムプレートの厚みが40μm以上60μm未満であると、導電性線状構造体の軸方向の長さに対するスペースの確保が不十分であり、圧力損失が大きくなるとスリットダイ内部にて塗液供給方向に導電性線状構造体が配向し易くなることによるものと推定される。100μmよりも厚いシムプレートを用いた場合は、塗液を安定して供給可能な領域まで圧力損失を確保するために、スリットダイ内部に供給する単位時間あたりの塗液供給量を極端に多くする必要性が生じる場合がある。供給量が多くなった場合、必要膜厚以上の塗液供給を抑制するために、ロールtoロールの生産工程の場合は基材搬送速度を上げることとなる。100μmよりも厚いシムプレートの場合は、基材搬送速度が塗工を安定させる領域よりも極端に大きくなり、基材への塗液の塗布が不安定になることによって発生すると想定される塗工スジが発生しやすくなり、著しく外観品位を損なってしまうことがある。   Regarding the thickness of the shim plate, when a shim plate thinner than 40 μm is used, the length of the conductive linear structure in the axial direction is longer than 40 μm when the conductive linear structure passes through the slit die. The conductive linear structure may not easily pass through, and the conductive linear structure may be disconnected or agglomerated due to this. This disconnection or aggregation of the conductive linear structure is easily imagined to cause non-uniformity of conductivity in the conductor after film formation, which may induce conductivity anisotropy. is there. In addition, since the shim plate is narrow, it is assumed that the conductive linear structure is easily oriented in the coating liquid supply direction inside the slit die. When a shim plate of 40 μm or more and less than 60 μm is used, it is possible to prevent aggregation and disconnection of the conductive linear structure, but the orientation of the conductive linear structure increases as the slit die pressure loss increases. Gender control can be difficult. This is because when the thickness of the shim plate is 40 μm or more and less than 60 μm, it is insufficient to secure a space for the axial length of the conductive linear structure, and when the pressure loss increases, It is presumed that the conductive linear structure is easily oriented in the supply direction. When a shim plate thicker than 100 μm is used, the coating liquid supply amount per unit time supplied to the inside of the slit die is extremely increased in order to secure pressure loss to an area where the coating liquid can be stably supplied. There may be a need. In the case of a roll-to-roll production process, the substrate transport speed is increased in order to suppress the supply of coating liquid exceeding the required film thickness when the supply amount increases. In the case of a shim plate thicker than 100 μm, it is assumed that the substrate transport speed is extremely higher than the region where the coating is stabilized, and the coating is assumed to occur due to the unstable application of the coating liquid to the substrate. Streaks are likely to occur, and the appearance quality may be significantly impaired.

圧力損失が50kPa未満であると、スリットダイ内の圧力分布が不均一となり、スリットダイ吐出部から塗液の安定供給ができず、導電膜の均一性が保たれなくなり、導電異方性が大きくなることがある。圧力損失が70kPa未満であると、スリットダイ内の圧力分布は均一となるが、ロールtoロールの生産工程において、長時間安定して塗工を続けるのに必要な圧力分布としては不十分であり、導電膜の局所的な厚みの均一性が保たれないことによる塗工スジが発生し易くなり、その領域の導電異方性が大きくなる。また、140kPaより大きい場合は、導電性線状構造がスリットダイ内部にて、塗液供給方向に配向し易くなりスリットダイ先端での塗液塗布部分にて導電性線状構造体の配向性の制御が困難となることがある。200kPaより大きい場合は、スリットダイ内部の壁面との剪断速度が大きくなり、導電性線状構造体の断列が発生しやすくなり、導電膜の膜厚は均一であっても、導電性が不均一となり、導電異方性が大きくなることがある。   When the pressure loss is less than 50 kPa, the pressure distribution in the slit die becomes non-uniform, the coating liquid cannot be stably supplied from the slit die discharge part, the uniformity of the conductive film cannot be maintained, and the conductive anisotropy is large. May be. If the pressure loss is less than 70 kPa, the pressure distribution in the slit die will be uniform, but in the roll-to-roll production process, it is insufficient as the pressure distribution required to continue coating stably for a long time. Further, coating streaks due to the inability to maintain the uniformity of the local thickness of the conductive film are likely to occur, and the conductive anisotropy of the region increases. When the pressure is higher than 140 kPa, the conductive linear structure is easily oriented in the coating liquid supply direction inside the slit die, and the orientation of the conductive linear structure at the coating liquid application portion at the tip of the slit die is increased. Control can be difficult. When the pressure is higher than 200 kPa, the shear rate with the wall surface inside the slit die increases, and the conductive linear structure is likely to be disconnected. Even if the film thickness is uniform, the conductivity is not good. It may become uniform and the conductive anisotropy may increase.

基材上に形成された導電体層に含まれる導電性線状構造体は、導電性を確保するために互いに重なり合う構造を有しており、その重なり合う点の狭角の平均値が50度以上90度以下であることが必要であり、60度以上90度以下であることが好ましい。狭角の平均値が小さくなることは、導電性線状構造体が同一方向に配向することを示しており、50度未満であると導電性線状構造体が同一方向に配向することによる導電異方性が大きくなる。具体的には、電界放射型走査電子顕微鏡(日本電子株式会社製 JSM−6700−F)を用いて加速電圧3.0kVにて導電体に含まれる導電性線状構造体を観察し、無作為に選択した導電性線状構造体が他の導電性線状構造体と重なり合う交点の接線角度を測定し、その狭角側の角度の平均値が上記の範囲に有ることが必要である。   The conductive linear structures included in the conductor layer formed on the substrate have a structure that overlaps each other in order to ensure conductivity, and the average value of the narrow angles of the overlapping points is 50 degrees or more. It must be 90 degrees or less, and preferably 60 degrees or more and 90 degrees or less. A decrease in the average value of the narrow angle indicates that the conductive linear structures are oriented in the same direction. When the angle is less than 50 degrees, the conductive linear structures are oriented in the same direction. Anisotropy increases. Specifically, the conductive linear structure contained in the conductor was observed at random using a field emission scanning electron microscope (JSM-6700-F, manufactured by JEOL Ltd.) at an accelerating voltage of 3.0 kV. It is necessary that the tangential angle of the intersection where the conductive linear structure selected in the above overlaps with another conductive linear structure is measured, and the average value of the angles on the narrow angle side is within the above range.

さらに、得られた導電体を幅50mm、長さ50mmの大きさに、回転方向に30度間隔で、正方形の2片が回転方向の接線と平行、他の2片が直径方向と平行となるように切り出された合計12枚の導電体の回転外側と内側の端子間抵抗値の最大値をRa、最小値をRbとし、平均値をRcとした場合に、(Ra−Rc)/Rcと(Rb−Rc)/Rcの値が各々−0.3以上0.3以下であることが好ましく、−0.1以上0.1以下であることがより好ましい形態である。重なり合う導電性線状構造体の狭角の平均値が50度未満の場合は、これらの値が−0.3より低く0.3より大きくなり、導電体を配線材料、導電ペースト、電極材料として無作為な方向で切り出して使用した場合に、使用される回路に任意の電流量を均一に送電することが困難となることがある。また、−0.1以上0.1以下であるである場合は、電磁波シールド、液晶表示装置、有機エレクトロルミネッセンス素子、電子ペーパーやタッチパネル電極などのディスプレイ関連の光学材料などに使用する場合に、位置検出精度のずれなどの導電異方性が誘発する不具合をソフトウェアによって補正を行う必要性がなくなるので好ましい。このソフトウェア補正には特別に高度な技術を必要としないため、技術的にはディスプレイ関連の光学材料に使用することができるが、ソフトウェアを導入するためにコスト高となる。これは、コスト競争力が重要視される近年の光学部材としてはコスト競争力に欠ける。ソフトウェアによる補正を必要としない導電異方性の少ない導電体は、先に記述した導電体の端子間抵抗値の比が−0.1以上0.1以下の範囲内であり、この範囲内の導電体を形成するためには、導電性線状構造体が重なり合う狭角の平均値が60度以上90度以下である必要性がある。   Furthermore, the obtained conductor is 50 mm in width and 50 mm in length, spaced at 30 degrees in the rotation direction, two square pieces are parallel to the tangent line in the rotation direction, and the other two pieces are parallel to the diameter direction. (Ra−Rc) / Rc, where Ra is the maximum resistance value between the outer and inner terminals of the 12 conductors cut out in total, Rb is the minimum value, and Rc is the average value. The value of (Rb-Rc) / Rc is preferably from -0.3 to 0.3, more preferably from -0.1 to 0.1. When the average value of the narrow angles of the overlapping conductive linear structures is less than 50 degrees, these values are lower than -0.3 and higher than 0.3, and the conductor is used as a wiring material, conductive paste, or electrode material. When cut out in random directions and used, it may be difficult to uniformly transmit an arbitrary amount of current to the circuit used. Moreover, when it is -0.1 or more and 0.1 or less, when using for display related optical materials, such as an electromagnetic wave shield, a liquid crystal display device, an organic electroluminescent element, an electronic paper, and a touch-panel electrode, a position This is preferable because it is not necessary to correct defects caused by conductive anisotropy such as a detection accuracy deviation by software. Since this software correction does not require any special advanced technology, it can be technically used for display-related optical materials, but it is expensive to introduce software. This lacks cost competitiveness as a recent optical member in which cost competitiveness is regarded as important. A conductor with low conductivity anisotropy that does not require correction by software has a ratio of resistance values between terminals of the conductor described above in the range of −0.1 or more and 0.1 or less. In order to form the conductor, it is necessary that the average value of the narrow angle at which the conductive linear structures overlap is 60 degrees or more and 90 degrees or less.

端子間抵抗値測定は導電体の体積抵抗値を知るために行う。4端子方式や渦電流方式を備えた測定機でも体積抵抗値は測定可能であるが、一定の電位方向に対する体積抵抗値を知るためには端子間抵抗値を測定する方が好ましい。そして、回転方向に等間隔で導電体の体積抵抗値を測定することで、導電体面内の体積抵抗値のバラツキを知ることができる。   The inter-terminal resistance value measurement is performed to know the volume resistance value of the conductor. Although the volume resistance value can be measured even with a measuring machine equipped with a four-terminal method or an eddy current method, it is preferable to measure the resistance value between terminals in order to know the volume resistance value with respect to a certain potential direction. Then, by measuring the volume resistance value of the conductor at regular intervals in the rotation direction, it is possible to know the variation of the volume resistance value in the conductor plane.

導電体のリニアリティは5%以下であることが好ましく、電磁波シールド、液晶表示装置、有機エレクトロルミネッセンス素子、電子ペーパーやタッチパネル電極などのディスプレイ関連の用いる際は1.5%以下であることがより好ましい。リニアリティーとは、図3に示すように、任意の2点間における直線的理論値から導き出された値と実測値との差を示したもので、この数字が大きいほど得られた導電体の直線性が低いことを示している。配線材料、導電ペースト、電極材料に用いる場合ではこのリニアリティが5%より大きい場合は、一定の印可電圧に対して各回路全てに任意の電流量を送電することが困難となり、回路内抵抗の制御が困難となる。特に、電磁波シールド、液晶表示装置、有機エレクトロルミネッセンス素子、電子ペーパーやタッチパネル電極に用いる場合には、より正確に電流量を制御する必要性があり、ディスプレイ関連に用いられる導電体には1.5%以下のリニアリティが必要とされる。抵抗膜式タッチパネル用電極に用いた場合を例として説明すると、リニアリティーが大きい場合は検出箇所が任意の位置とは異なる箇所となり、誤検出となる。特に、近年の高精細化が進むタッチパネルにおいては、より位置検出精度が高いことが望まれている。   The linearity of the conductor is preferably 5% or less, and more preferably 1.5% or less when used for displays such as electromagnetic wave shields, liquid crystal display devices, organic electroluminescence elements, electronic paper, and touch panel electrodes. . As shown in FIG. 3, the linearity indicates a difference between a value derived from a linear theoretical value between two arbitrary points and an actual measurement value. It shows that the nature is low. If this linearity is greater than 5% when used as a wiring material, conductive paste, or electrode material, it will be difficult to transmit an arbitrary amount of current to all the circuits for a certain applied voltage, and control of the resistance in the circuit It becomes difficult. In particular, when used for an electromagnetic wave shield, a liquid crystal display device, an organic electroluminescence element, electronic paper or a touch panel electrode, it is necessary to control the amount of current more accurately. % Linearity is required. The case where it is used as an electrode for a resistive film type touch panel will be described as an example. When the linearity is large, the detection location becomes a location different from an arbitrary location, resulting in erroneous detection. In particular, it is desired that the position detection accuracy be higher in a touch panel that has recently been improved in definition.

本発明の導電体層の表面抵抗は1Ω/□以上、1×10Ω/□以下であることが好ましい。この範囲にあることで、低抵抗領域では配線材料、導電ペースト、電極材料に使用することが可能であり、その他の領域において、電磁波シールド、液晶表示装置、有機エレクトロルミネッセンス素子、電子ペーパーやタッチパネル電極タッチパネル用の導電体として好ましく用いることができる。 The surface resistance of the conductor layer of the present invention is preferably 1Ω / □ or more and 1 × 10 4 Ω / □ or less. By being in this range, it can be used for wiring materials, conductive pastes, and electrode materials in the low resistance region, and in other regions, it is used for electromagnetic shielding, liquid crystal display devices, organic electroluminescence elements, electronic paper and touch panel electrodes. It can be preferably used as a conductor for a touch panel.

導電体の厚さには、特に制限はなく、目的に応じて適宜選択することができるが、厚さが薄くなるほど透明性が向上するため、使用用途に応じた透明導電性を付与する範囲で成膜することができる。このような透明性を向上させた導電体を透明基材の表面に設けることで、可視光線・近赤外光吸収フィルター、あるいは導電性被膜などの機能材料として利用することができる。   The thickness of the conductor is not particularly limited and can be appropriately selected according to the purpose. However, since the transparency is improved as the thickness is reduced, the thickness of the conductor is within a range that provides transparent conductivity according to the intended use. A film can be formed. By providing such a conductor with improved transparency on the surface of a transparent substrate, it can be used as a functional material such as a visible light / near infrared light absorption filter or a conductive film.

導電体には、必要に応じてハードコート層やノングレアコート層、バリアコート層、アンカーコート層、キャリア輸送層、キャリア蓄積層などの各種機能性層を付与することもできる。これらの層は、導電体を形成している側、もしくは基材を挟んで反対側に設けてもどちらでもよく、使用に応じた付与形式をとることができる。   Various functional layers such as a hard coat layer, a non-glare coat layer, a barrier coat layer, an anchor coat layer, a carrier transport layer, and a carrier accumulation layer can be added to the conductor as necessary. These layers may be provided on the side on which the conductor is formed or on the opposite side across the base material, and can be applied according to the use.

本発明の導電体は、導電性線状構造体の分散液を18MΩ・cmの超純水と50%の割合で混合し、スリットダイを用いて厚み80μmのシムプレートを用いて、圧力損失100kPaでPETフィルムに塗布し、100℃で30秒間乾燥させることで得た。   The conductor of the present invention is obtained by mixing a dispersion of a conductive linear structure with 18 MΩ · cm of ultrapure water at a ratio of 50%, using a shim plate with a thickness of 80 μm using a slit die, and a pressure loss of 100 kPa. Was applied to a PET film and dried at 100 ° C. for 30 seconds.

以下、本発明を実施例に基づき、具体的に説明する。ただし、本発明は下記実施例に限定されるものではない。まず、各実施例および比較例における評価方法を説明する。   Hereinafter, the present invention will be specifically described based on examples. However, the present invention is not limited to the following examples. First, an evaluation method in each example and comparative example will be described.

(1)導電体に含まれる導電性線状構造体の狭角測定
電界放射型走査電子顕微鏡(日本電子株式会社製 JSM−6700−F)を用いて加速電圧3.0kVにて導電体に含まれる導電性線状構造体を観察し、無作為に選択した導電性線状構造体が他の導電性線状構造体と重なり合う交点の接線角度を各々測定し、その狭角側の角度の平均値を算出した。同様の作業を10本の導電性線状構造体に対して実施し、その10本の平均値を算出した。
(1) Narrow angle measurement of a conductive linear structure contained in a conductor Included in a conductor at an acceleration voltage of 3.0 kV using a field emission scanning electron microscope (JSM-6700-F manufactured by JEOL Ltd.) Measure the tangent angle at the intersection where the randomly selected conductive linear structure overlaps with another conductive linear structure, and average the angle on the narrow angle side. The value was calculated. The same operation was performed on 10 conductive linear structures, and the average value of the 10 was calculated.

(2)端子間抵抗測定
導電性フィルムを50mm×50mmのサイズに回転方向に30度間隔で、正方形の2片が回転方向の接線と平行、他の2片が直径方向と平行となるように切り出された合計12枚の導電体の回転外側と内側の端部5mm幅に太陽インキ株式会社製導電ペーストECM−100AF(商標登録)を80μmの厚みになるように塗布し、90℃で60分加熱乾固させ、その乾固した導電ペースト部を株式会社カスタム製デジタルテスタCDM−17D(商標登録)を用いて測定した。
(2) Inter-terminal resistance measurement The conductive film is 50 mm × 50 mm in size with an interval of 30 degrees in the rotational direction so that the two square pieces are parallel to the tangent line in the rotational direction and the other two pieces are parallel to the diameter direction. A conductive paste ECM-100AF (registered trademark) manufactured by Taiyo Ink Co., Ltd. was applied to a width of 5 mm on the outer and inner ends of a total of 12 conductors that had been cut out so as to have a thickness of 80 μm, and 60 minutes at 90 ° C. After heating to dryness, the dried conductive paste portion was measured using a custom digital tester CDM-17D (registered trademark).

(3)リニアリティ測定
導電性フィルムを50mm×50mmのサイズに回転方向に30度間隔で、正方形の2片が回転方向の接線と平行、他の2片が直径方向と平行となるように切り出された合計12枚の導電体の回転外側と内側の端部5mm幅に太陽インキ株式会社製導電ペーストECM−100AF(商標登録)を80μmの厚みになるように塗布し、90℃で60分加熱乾固させた。その乾固した導電ペースト部の両端部を、菊水電子工業株式会社製直流安定化電源装置 PMC18−5(商標登録)を用いて5Vの電圧を印加し、定開始位置Aの出力電圧をEA 、測定終了位置Bの出力電圧をEB 、測定点の出力電圧をEx 、理論値をExx とすると、リニアリティは下記数式を用いた計算から得られ、合計12枚の導電体のリニアリティの最大値を判断対象とした。図3に電圧値と測定位置との関係を示すグラフを示す。同図に示す実線は実測値を示し、破線は理論値を示す。電圧の測定には株式会社カスタム製デジタルテスタCDM−17D(商標登録)を用いた。
(3) Linearity measurement The conductive film was cut to a size of 50 mm x 50 mm at intervals of 30 degrees in the rotation direction, with the two square pieces parallel to the rotation direction tangent and the other two pieces parallel to the diameter direction. The conductive paste ECM-100AF (registered trademark) made by Taiyo Ink Co., Ltd. was applied to the outer 5 mm width of the outer and inner edges of a total of 12 conductors to a thickness of 80 μm and dried at 90 ° C. for 60 minutes. Solidified. A voltage of 5 V is applied to both ends of the dried conductive paste portion using a DC stabilized power supply device PMC18-5 (trademark registration) manufactured by Kikusui Electronics Co., Ltd., and the output voltage at the constant start position A is set to EA, Assuming that the output voltage at the measurement end position B is EB, the output voltage at the measurement point is Ex, and the theoretical value is Exx, the linearity is obtained from the calculation using the following formula, and the maximum value of the linearity of 12 conductors in total is determined. Targeted. FIG. 3 shows a graph showing the relationship between the voltage value and the measurement position. The solid line shown in the figure shows actual measurement values, and the broken line shows theoretical values. A custom digital tester CDM-17D (registered trademark) was used for voltage measurement.

XX(理論値)=X(E−E)/(B−A)+E
リニアリティ(%)={(EXX−E)/(E−E)}×100。
E XX (theoretical value) = X (E B -E A ) / (B-A) + E A
Linearity (%) = {(E XX −E X ) / (E B −E A )} × 100.

次に、本発明に用いた導電材料について説明する。   Next, the conductive material used in the present invention will be described.

(1)導電性線状構造体の分散液
特表2009−505358号公報の例1(銀ナノワイヤーの合成)に開示されている方法にて銀ナノワイヤーを得た。次いで、同特表2009−505358号公報の例8(ナノワイヤー分散)に開示されている方法にて銀ナノワイヤー分散塗液を得た。
(1) Dispersion liquid of conductive linear structure A silver nanowire was obtained by the method disclosed in Example 1 (synthesis of silver nanowire) of JP-T-2009-505358. Next, a silver nanowire-dispersed coating liquid was obtained by the method disclosed in Example 8 (nanowire dispersion) of JP-T-2009-505358.

実施例1
厚み125μmのポリエチレンレテフタレートフィルム、ルミラー(登録商標)U34(東レ(株)製)を基材として、スリットダイコートを用いて基材片面に銀ナノワイヤー分散液をシムプレート厚み40μm、圧力損失50kPaの条件にて塗布し、乾燥温度100℃で1分間乾燥し、導電体を設けた。
Example 1
Using a polyethylene terephthalate film having a thickness of 125 μm and Lumirror (registered trademark) U34 (manufactured by Toray Industries, Inc.) as a base material, a silver nanowire dispersion liquid is applied to one side of the base material using a slit die coat with a shim plate thickness of 40 μm and a pressure loss of 50 kPa. It apply | coated on conditions, and it dried for 1 minute at the drying temperature of 100 degreeC, and provided the conductor.

実施例2
厚み125μmのポリエチレンレテフタレートフィルム、ルミラー(登録商標)U34(東レ(株)製)を基材として、スリットダイコートを用いて基材片面に銀ナノワイヤー分散液をシムプレート厚み40μm、圧力損失100kPaの条件にて塗布し、乾燥温度100℃で1分間乾燥し、導電体を設けた。
Example 2
Using a polyethylene terephthalate film with a thickness of 125 μm and Lumirror (registered trademark) U34 (manufactured by Toray Industries, Inc.) as a base material, a silver nanowire dispersion is applied to one side of the base material using a slit die coat with a shim plate thickness of 40 μm and a pressure loss of 100 kPa. It apply | coated on conditions, it dried for 1 minute at the drying temperature of 100 degreeC, and provided the conductor.

実施例3
厚み125μmのポリエチレンレテフタレートフィルム、ルミラー(登録商標)U34(東レ(株)製)を基材として、スリットダイコートを用いて基材片面に銀ナノワイヤー分散液をシムプレート厚み40μm、圧力損失170kPaの条件にて塗布し、乾燥温度100℃で1分間乾燥し、導電体を設けた。
Example 3
Using a polyethylene terephthalate film with a thickness of 125 μm, Lumirror (registered trademark) U34 (manufactured by Toray Industries, Inc.) as a base material, a silver nanowire dispersion is applied to one side of the base material using a slit die coat with a shim plate thickness of 40 μm and a pressure loss of 170 kPa. It apply | coated on conditions, and it dried for 1 minute at the drying temperature of 100 degreeC, and provided the conductor.

実施例4
厚み125μmのポリエチレンレテフタレートフィルム、ルミラー(登録商標)U34(東レ(株)製)を基材として、スリットダイコートを用いて基材片面に銀ナノワイヤー分散液をシムプレート厚み40μm、圧力損失200kPaの条件にて塗布し、乾燥温度100℃で1分間乾燥し、導電体を設けた。
Example 4
Using a polyethylene terephthalate film with a thickness of 125 μm, Lumirror (registered trademark) U34 (manufactured by Toray Industries, Inc.) as a base material, a silver nanowire dispersion is applied to one side of the base material using a slit die coat with a shim plate thickness of 40 μm and a pressure loss of 200 kPa. It apply | coated on conditions, and it dried for 1 minute at the drying temperature of 100 degreeC, and provided the conductor.

実施例5
厚み125μmのポリエチレンレテフタレートフィルム、ルミラー(登録商標)U34(東レ(株)製)を基材として、スリットダイコートを用いて基材片面に銀ナノワイヤー分散液をシムプレート厚み70μm、圧力損失50kPaの条件にて塗布し、乾燥温度100℃で1分間乾燥し、導電体を設けた。
Example 5
Using a polyethylene terephthalate film with a thickness of 125 μm and Lumirror (registered trademark) U34 (manufactured by Toray Industries, Inc.) as a base material, a silver nanowire dispersion is applied to one side of the base material using a slit die coat with a shim plate thickness of 70 μm and a pressure loss of 50 kPa. It apply | coated on conditions, and it dried for 1 minute at the drying temperature of 100 degreeC, and provided the conductor.

実施例6
厚み125μmのポリエチレンレテフタレートフィルム、ルミラー(登録商標)U34(東レ(株)製)を基材として、スリットダイコートを用いて基材片面に銀ナノワイヤー分散液をシムプレート厚み70μm、圧力損失100kPaの条件にて塗布し、乾燥温度100℃で1分間乾燥し、導電体を設けた。
Example 6
Using a polyethylene terephthalate film with a thickness of 125 μm, Lumirror (registered trademark) U34 (manufactured by Toray Industries, Inc.) as a base material, a silver nanowire dispersion is applied to one side of the base material using a slit die coat with a shim plate thickness of 70 μm and a pressure loss of 100 kPa. It apply | coated on conditions, and it dried for 1 minute at the drying temperature of 100 degreeC, and provided the conductor.

実施例7
厚み125μmのポリエチレンレテフタレートフィルム、ルミラー(登録商標)U34(東レ(株)製)を基材として、スリットダイコートを用いて基材片面に銀ナノワイヤー分散液をシムプレート厚み70μm、圧力損失170kPaの条件にて塗布し、乾燥温度100℃で1分間乾燥し、導電体を設けた。
Example 7
Using a polyethylene terephthalate film with a thickness of 125 μm, Lumirror (registered trademark) U34 (manufactured by Toray Industries, Inc.) as a base material, a silver nanowire dispersion is applied to one side of the base material using a slit die coat with a shim plate thickness of 70 μm and a pressure loss of 170 kPa. It apply | coated on conditions, and it dried for 1 minute at the drying temperature of 100 degreeC, and provided the conductor.

実施例8
厚み125μmのポリエチレンレテフタレートフィルム、ルミラー(登録商標)U34(東レ(株)製)を基材として、スリットダイコートを用いて基材片面に銀ナノワイヤー分散液をシムプレート厚み70μm、圧力損失200kPaの条件にて塗布し、乾燥温度100℃で1分間乾燥し、導電体を設けた。
Example 8
Using a polyethylene terephthalate film with a thickness of 125 μm, Lumirror (registered trademark) U34 (manufactured by Toray Industries, Inc.) as a base material, a silver nanowire dispersion is applied to one side of the base material using a slit die coat with a shim plate thickness of 70 μm and a pressure loss of 200 kPa. It apply | coated on conditions, and it dried for 1 minute at the drying temperature of 100 degreeC, and provided the conductor.

実施例9
厚み125μmのポリエチレンレテフタレートフィルム、ルミラー(登録商標)U34(東レ(株)製)を基材として、スリットダイコートを用いて基材片面に銀ナノワイヤー分散液をシムプレート厚み100μm、圧力損失50kPaの条件にて塗布し、乾燥温度100℃で1分間乾燥し、導電体を設けた。
Example 9
Using a polyethylene terephthalate film with a thickness of 125 μm, Lumirror (registered trademark) U34 (manufactured by Toray Industries, Inc.) as a base material, a silver nanowire dispersion is applied to one side of the base material using a slit die coat with a shim plate thickness of 100 μm and a pressure loss of 50 kPa. It apply | coated on conditions, and it dried for 1 minute at the drying temperature of 100 degreeC, and provided the conductor.

実施例10
厚み125μmのポリエチレンレテフタレートフィルム、ルミラー(登録商標)U34(東レ(株)製)を基材として、スリットダイコートを用いて基材片面に銀ナノワイヤー分散液をシムプレート厚み100μm、圧力損失100kPaの条件にて塗布し、乾燥温度100℃で1分間乾燥し、導電体を設けた。
Example 10
Using a polyethylene terephthalate film with a thickness of 125 μm and Lumirror (registered trademark) U34 (manufactured by Toray Industries, Inc.) as a base material, a silver nanowire dispersion is applied to one side of the base material using a slit die coat with a shim plate thickness of 100 μm and a pressure loss of 100 kPa. It apply | coated on conditions, and it dried for 1 minute at the drying temperature of 100 degreeC, and provided the conductor.

実施例11
厚み125μmのポリエチレンレテフタレートフィルム、ルミラー(登録商標)U34(東レ(株)製)を基材として、スリットダイコートを用いて基材片面に銀ナノワイヤー分散液をシムプレート厚み100μm、圧力損失170kPaの条件にて塗布し、乾燥温度100℃で1分間乾燥し、導電体を設けた。
Example 11
Using a polyethylene terephthalate film having a thickness of 125 μm and Lumirror (registered trademark) U34 (manufactured by Toray Industries, Inc.) as a base material, a silver nanowire dispersion is applied to one side of the base material using a slit die coat with a shim plate thickness of 100 μm and a pressure loss of 170 kPa. It apply | coated on conditions, and it dried for 1 minute at the drying temperature of 100 degreeC, and provided the conductor.

実施例12
厚み125μmのポリエチレンレテフタレートフィルム、ルミラー(登録商標)U34(東レ(株)製)を基材として、スリットダイコートを用いて基材片面に銀ナノワイヤー分散液をシムプレート厚み100μm、圧力損失200kPaの条件にて塗布し、乾燥温度100℃で1分間乾燥し、導電体を設けた。
Example 12
Using a polyethylene terephthalate film with a thickness of 125 μm, Lumirror (registered trademark) U34 (manufactured by Toray Industries, Inc.) as a base material, a silver nanowire dispersion is applied to one side of the base material using a slit die coat with a shim plate thickness of 100 μm and a pressure loss of 200 kPa. It apply | coated on conditions, and it dried for 1 minute at the drying temperature of 100 degreeC, and provided the conductor.

比較例1
厚み125μmのポリエチレンレテフタレートフィルム、ルミラー(登録商標)U34(東レ(株)製)を基材として、スリットダイコートを用いて基材片面に銀ナノワイヤー分散液をシムプレート厚み30μm、圧力損失50kPaの条件にて塗布し、乾燥温度100℃で1分間乾燥し、導電体を設けた。
Comparative Example 1
Using a polyethylene terephthalate film with a thickness of 125 μm, Lumirror (registered trademark) U34 (manufactured by Toray Industries, Inc.) as a base material, a silver nanowire dispersion liquid is applied to one side of the base material using a slit die coat with a shim plate thickness of 30 μm and a pressure loss of 50 kPa. It apply | coated on conditions, it dried for 1 minute at the drying temperature of 100 degreeC, and provided the conductor.

比較例2
厚み125μmのポリエチレンレテフタレートフィルム、ルミラー(登録商標)U34(東レ(株)製)を基材として、スリットダイコートを用いて基材片面に銀ナノワイヤー分散液をシムプレート厚み30μm、圧力損失100kPaの条件にて塗布し、乾燥温度100℃で1分間乾燥し、導電体を設けた。
Comparative Example 2
Using a polyethylene terephthalate film with a thickness of 125 μm and Lumirror (registered trademark) U34 (manufactured by Toray Industries, Inc.) as a base material, a silver nanowire dispersion is applied to one side of the base material using a slit die coat with a shim plate thickness of 30 μm and a pressure loss of 100 kPa. It apply | coated on conditions, and it dried for 1 minute at the drying temperature of 100 degreeC, and provided the conductor.

比較例3
厚み125μmのポリエチレンレテフタレートフィルム、ルミラー(登録商標)U34(東レ(株)製)を基材として、スリットダイコートを用いて基材片面に銀ナノワイヤー分散液をシムプレート厚み40μm、圧力損失45kPaの条件にて塗布し、乾燥温度100℃で1分間乾燥し、導電体を設けた。
Comparative Example 3
Using a polyethylene terephthalate film with a thickness of 125 μm, Lumirror (registered trademark) U34 (manufactured by Toray Industries, Inc.) as a base material, a silver nanowire dispersion is applied to one side of the base material using a slit die coat with a shim plate thickness of 40 μm and a pressure loss of 45 kPa. It apply | coated on conditions, and it dried for 1 minute at the drying temperature of 100 degreeC, and provided the conductor.

比較例4
厚み125μmのポリエチレンレテフタレートフィルム、ルミラー(登録商標)U34(東レ(株)製)を基材として、スリットダイコートを用いて基材片面に銀ナノワイヤー分散液をシムプレート厚み40μm、圧力損失210kPaの条件にて塗布し、乾燥温度100℃で1分間乾燥し、導電体を設けた。
Comparative Example 4
Using a polyethylene terephthalate film with a thickness of 125 μm, Lumirror (registered trademark) U34 (manufactured by Toray Industries, Inc.) as a base material, a silver nanowire dispersion is applied to one side of the base material using a slit die coat with a shim plate thickness of 40 μm and a pressure loss of 210 kPa. It apply | coated on conditions, it dried for 1 minute at the drying temperature of 100 degreeC, and provided the conductor.

比較例5
厚み125μmのポリエチレンレテフタレートフィルム、ルミラー(登録商標)U34(東レ(株)製)を基材として、スリットダイコートを用いて基材片面に銀ナノワイヤー分散液をシムプレート厚み100μm、圧力損失45kPaの条件にて塗布し、乾燥温度100℃で1分間乾燥し、導電体を設けた。
Comparative Example 5
Using a polyethylene terephthalate film with a thickness of 125 μm and Lumirror (registered trademark) U34 (manufactured by Toray Industries, Inc.) as a base material, a silver nanowire dispersion is applied to one side of the base material using a slit die coat with a shim plate thickness of 100 μm and a pressure loss of 45 kPa. It apply | coated on conditions, and it dried for 1 minute at the drying temperature of 100 degreeC, and provided the conductor.

比較例6
厚み125μmのポリエチレンレテフタレートフィルム、ルミラー(登録商標)U34(東レ(株)製)を基材として、スリットダイコートを用いて基材片面に銀ナノワイヤー分散液をシムプレート厚み100μm、圧力損失210kPaの条件にて塗布し、乾燥温度100℃で1分間乾燥し、導電体を設けた。
Comparative Example 6
Using a polyethylene terephthalate film with a thickness of 125 μm, Lumirror (registered trademark) U34 (manufactured by Toray Industries, Inc.) as a base material, a silver nanowire dispersion is applied to one side of the base material using a slit die coat with a shim plate thickness of 100 μm and a pressure loss of 210 kPa. It apply | coated on conditions, and it dried for 1 minute at the drying temperature of 100 degreeC, and provided the conductor.

比較例7
厚み125μmのポリエチレンレテフタレートフィルム、ルミラー(登録商標)U34(東レ(株)製)を基材として、スリットダイコートを用いて基材片面に銀ナノワイヤー分散液をシムプレート厚み110μm、圧力損失100kPaの条件にて塗布し、乾燥温度100℃で1分間乾燥し、導電体を設けた。
Comparative Example 7
Using a polyethylene terephthalate film with a thickness of 125 μm and Lumirror (registered trademark) U34 (manufactured by Toray Industries, Inc.) as a base material, a silver nanowire dispersion is applied to a single side of the base material using a slit die coat with a shim plate thickness of 110 μm and a pressure loss of 100 kPa. It apply | coated on conditions, and it dried for 1 minute at the drying temperature of 100 degreeC, and provided the conductor.

比較例8
厚み125μmのポリエチレンレテフタレートフィルム、ルミラー(登録商標)U34(東レ(株)製)を基材として、スリットダイコートを用いて基材片面に銀ナノワイヤー分散液をシムプレート厚み110μm、圧力損失200kPaの条件にて塗布し、乾燥温度100℃で1分間乾燥し、導電体を設けた。
Comparative Example 8
Using a polyethylene terephthalate film with a thickness of 125 μm, Lumirror (registered trademark) U34 (manufactured by Toray Industries, Inc.) as a base material, a silver nanowire dispersion is applied to one side of the base material using a slit die coat with a shim plate thickness of 110 μm and a pressure loss of 200 kPa. It apply | coated on conditions, it dried for 1 minute at the drying temperature of 100 degreeC, and provided the conductor.

Figure 2011175890
Figure 2011175890

実施例1〜12、比較例1〜8より、得られた導電体に含まれる互いに重なり合う導電性線状構造体交点部の各々の狭角の平均値が50度以上90度以下である場合は、得られた導電体の端子間抵抗値の面内バラツキが小さく、リニアリティは5%以下に抑えられているが、狭角の平均値が50度未満である場合は、端子間抵抗値の面内バラツキが大きくなり、必然的にリニアリティは大きくなり、5%以上を超過している。液晶表示装置、有機エレクトロルミネッセンス素子、電子ペーパーやタッチパネル電極などのディスプレイ関連のXY電極として導電体を用いる場合、出力電圧分布が図3の理論値(理論線)のようになっているものとして設計される。よって、電圧値が図3の実測値(実測線)のように理論値からずれると、実際の使用時に出力位置が同調しなくなる。理論線からのずれがリニアリティであり、その値が大きいほど、出力位置が想定範囲を超え、出力色相や検出位置のずれが大きくなる。   From Examples 1-12 and Comparative Examples 1-8, when the average value of each narrow angle of the overlapping portions of the conductive linear structures included in the obtained conductor is 50 degrees or more and 90 degrees or less The in-plane variation of the resistance value between the terminals of the obtained conductor is small and the linearity is suppressed to 5% or less. However, when the average value of the narrow angle is less than 50 degrees, the resistance value between the terminals The internal variation is large, and the linearity is inevitably large, exceeding 5%. When a conductor is used as a display-related XY electrode such as a liquid crystal display device, an organic electroluminescence element, electronic paper, or a touch panel electrode, the output voltage distribution is designed as the theoretical value (theoretical line) in FIG. Is done. Therefore, if the voltage value deviates from the theoretical value as shown in the actual measurement value (measurement line) in FIG. 3, the output position is not synchronized during actual use. The deviation from the theoretical line is linearity, and the larger the value is, the more the output position exceeds the assumed range and the deviation of the output hue and detection position becomes larger.

本発明の、導電異方性の小さな導電体を、任意の抵抗領域で様々な基材に設けることで、配線材料、導電ペースト、電極材料、電磁波シールド、環境触媒、燃料電池量高機能触媒、液晶表示装置、有機エレクトロルミネッセンス素子、電子ペーパーやタッチパネル電極などのディスプレイ関連の光学材料などに使用が可能となる。   By providing a conductor with small conductivity anisotropy of the present invention on various substrates in an arbitrary resistance region, wiring material, conductive paste, electrode material, electromagnetic wave shield, environmental catalyst, fuel cell quantity high-performance catalyst, It can be used for liquid crystal display devices, organic electroluminescence elements, display-related optical materials such as electronic paper and touch panel electrodes.

1 導電性線状構造体
2 導電性線状構造体同士が重なり合う狭角
3 導電体
4 導電ペースト
DESCRIPTION OF SYMBOLS 1 Conductive linear structure 2 Narrow angle where conductive linear structures overlap 3 Conductor 4 Conductive paste

Claims (2)

基材上の少なくとも一方に導電体層が設けられた導電性フィルムであって、導電体層中に導電性線状構造体を含有してなり、該導電性線状構造体から無作為に10本選択した導電性線状構造体のそれぞれに重なり合っている各々の導電性線状構造体交点部の狭角についての平均値が、50度以上90度以下である導電性フィルム。 A conductive film in which a conductive layer is provided on at least one side of a base material, the conductive layer containing a conductive linear structure, and 10 randomly from the conductive linear structure. The conductive film whose average value about the narrow angle of each conductive linear structure intersection part which overlaps with each of this selected conductive linear structure is 50 to 90 degree | times. 導電性フィルムの任意の一点を中心として、幅50mm、長さ50mmの大きさに、回転方向に30度間隔で、正方形の2片が回転方向の接線と平行、他の2片が直径方向と平行となるように切り出された合計12枚の導電体フィルムの回転外側と内側の導電体層の端子間抵抗値の最大値をRa、最小値をRbとし、平均値をRcとした場合に、(Ra−Rc)/Rcと(Rb−Rc)/Rcの値が−0.3以上0.3以下である導電性フィルム。   Centering on an arbitrary point of the conductive film, the width is 50 mm, the length is 50 mm, and the square two pieces are parallel to the tangential line in the rotation direction at intervals of 30 degrees in the rotation direction, and the other two pieces are in the diameter direction When the maximum value of the resistance value between terminals of the outer and inner conductive layers of a total of 12 conductive films cut out in parallel is Ra, the minimum value is Rb, and the average value is Rc, A conductive film having values of (Ra-Rc) / Rc and (Rb-Rc) / Rc of from -0.3 to 0.3.
JP2010039754A 2010-02-25 2010-02-25 Conductive film Pending JP2011175890A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010039754A JP2011175890A (en) 2010-02-25 2010-02-25 Conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010039754A JP2011175890A (en) 2010-02-25 2010-02-25 Conductive film

Publications (1)

Publication Number Publication Date
JP2011175890A true JP2011175890A (en) 2011-09-08

Family

ID=44688567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010039754A Pending JP2011175890A (en) 2010-02-25 2010-02-25 Conductive film

Country Status (1)

Country Link
JP (1) JP2011175890A (en)

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006035772A (en) * 2004-07-29 2006-02-09 Takiron Co Ltd In-mold molding conductive film
JP2006035776A (en) * 2004-07-29 2006-02-09 Takiron Co Ltd Antistatic resin molded product
JP2006272876A (en) * 2005-03-30 2006-10-12 Takiron Co Ltd Electroconductive element
JP2007112133A (en) * 2003-01-30 2007-05-10 Takiron Co Ltd Electroconductive shaped article
JP2008108575A (en) * 2006-10-25 2008-05-08 Kuraray Co Ltd Transparent conductive film, transparent electrode substrate, and manufacturing method of liquid crystal orientation film using this
JP2008204872A (en) * 2007-02-21 2008-09-04 Hokkaido Univ Transparent conductive film material and transparent laminate
JP2008269796A (en) * 2007-04-16 2008-11-06 Nissha Printing Co Ltd Transparent thin plate
JP2009004726A (en) * 2006-09-28 2009-01-08 Fujifilm Corp Method for production of conductive film and transparent conductive film
WO2009008486A1 (en) * 2007-07-10 2009-01-15 Japan Science And Technology Agency Transparent electroconductive thin film and process for producing the transparent electroconductive thin film
JP2009505358A (en) * 2005-08-12 2009-02-05 カンブリオス テクノロジーズ コーポレイション Transparent conductors based on nanowires
JP2009070660A (en) * 2007-09-12 2009-04-02 Kuraray Co Ltd Transparent conductive film and its manufacturing method
WO2009107758A1 (en) * 2008-02-29 2009-09-03 東レ株式会社 Substrate with a transparent conductive film, method of manufacturing the same, and touch panel using the same
JP2009231029A (en) * 2008-03-22 2009-10-08 Konica Minolta Holdings Inc Method of manufacturing transparent conductive film, and transparent conductive film
JP2009277466A (en) * 2008-05-14 2009-11-26 Konica Minolta Holdings Inc Transparent conductive film and its manufacturing method
JP2009302035A (en) * 2008-05-16 2009-12-24 Fujifilm Corp Conductive film, and transparent heating element
JP2010003667A (en) * 2008-05-19 2010-01-07 Fujifilm Corp Conductive film and transparent heating element
JP2010033775A (en) * 2008-07-25 2010-02-12 Touch Panel Kenkyusho:Kk Transparent conductive composite film and sheet

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007112133A (en) * 2003-01-30 2007-05-10 Takiron Co Ltd Electroconductive shaped article
JP2006035776A (en) * 2004-07-29 2006-02-09 Takiron Co Ltd Antistatic resin molded product
JP2006035772A (en) * 2004-07-29 2006-02-09 Takiron Co Ltd In-mold molding conductive film
JP2006272876A (en) * 2005-03-30 2006-10-12 Takiron Co Ltd Electroconductive element
JP2009505358A (en) * 2005-08-12 2009-02-05 カンブリオス テクノロジーズ コーポレイション Transparent conductors based on nanowires
JP2009004726A (en) * 2006-09-28 2009-01-08 Fujifilm Corp Method for production of conductive film and transparent conductive film
JP2008108575A (en) * 2006-10-25 2008-05-08 Kuraray Co Ltd Transparent conductive film, transparent electrode substrate, and manufacturing method of liquid crystal orientation film using this
JP2008204872A (en) * 2007-02-21 2008-09-04 Hokkaido Univ Transparent conductive film material and transparent laminate
JP2008269796A (en) * 2007-04-16 2008-11-06 Nissha Printing Co Ltd Transparent thin plate
WO2009008486A1 (en) * 2007-07-10 2009-01-15 Japan Science And Technology Agency Transparent electroconductive thin film and process for producing the transparent electroconductive thin film
JP2009070660A (en) * 2007-09-12 2009-04-02 Kuraray Co Ltd Transparent conductive film and its manufacturing method
WO2009107758A1 (en) * 2008-02-29 2009-09-03 東レ株式会社 Substrate with a transparent conductive film, method of manufacturing the same, and touch panel using the same
JP2009231029A (en) * 2008-03-22 2009-10-08 Konica Minolta Holdings Inc Method of manufacturing transparent conductive film, and transparent conductive film
JP2009277466A (en) * 2008-05-14 2009-11-26 Konica Minolta Holdings Inc Transparent conductive film and its manufacturing method
JP2009302035A (en) * 2008-05-16 2009-12-24 Fujifilm Corp Conductive film, and transparent heating element
JP2010003667A (en) * 2008-05-19 2010-01-07 Fujifilm Corp Conductive film and transparent heating element
JP2010033775A (en) * 2008-07-25 2010-02-12 Touch Panel Kenkyusho:Kk Transparent conductive composite film and sheet

Similar Documents

Publication Publication Date Title
Hecht et al. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures
CN101779187B (en) Touchscreen using both carbon nanoparticles and metal nanoparticles
Celle et al. Highly flexible transparent film heaters based on random networks of silver nanowires
Azuma et al. Facile fabrication of transparent and conductive nanowire networks by wet chemical etching with an electrospun nanofiber mask template
JP6265968B2 (en) Conductive substrate using conductive nanowire network and manufacturing method thereof
JP2010537275A (en) Touch screen using oriented micro linear conductive elements
JP2009146898A (en) Electron element
US20100045610A1 (en) Transparent conductive films
KR101693774B1 (en) Preparation method for carbon nanotube transparent composite electrode
JP2009129882A (en) Transparent conductive coat, transparent conductive film, and flexible transparent plane electrode
TWI550463B (en) Conductive film and method for manufacturing the same
JP5569607B2 (en) Transparent conductive film, transparent conductive film, and flexible transparent electrode
KR20140064069A (en) Transparent electrode comprising elecrode line of high-vicosity conductive nano ink composition and touch sensor, transparent heater and electromagnetic wave shielding material using the transparent electrode
KR20130004842A (en) Capacitive touch panel improving visibility
Korzeniewska et al. Analysis of resistance to bending of metal electroconductive layers deposited on textile composite substrates in PVD process
Hassan et al. Ink-jet printed transparent and flexible electrodes based on silver nanoparticles
Liu et al. Nanowelding and patterning of silver nanowires via mask-free atmospheric cold plasma-jet scanning
JP5928029B2 (en) Method for manufacturing conductive film and laminate
JP5941977B2 (en) Transparent conductive film composite and transparent conductive film
Wroblewski et al. Graphene platelets as morphology tailoring additive in carbon nanotube transparent and flexible electrodes for heating applications
JP2011175890A (en) Conductive film
KR101272713B1 (en) Manufacturing method of 2 Layer Hybrid transparent electrode
Li et al. Facile fabrication of large-scale silver nanowire transparent conductive films by screen printing
Hu et al. Solution electrowriting of highly stable TiN nanofiber pattern for transparent electrode under extreme environment
JP2012156031A (en) Conductive film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140318

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140422