JP2011175280A - Optical system and imaging device using same - Google Patents

Optical system and imaging device using same Download PDF

Info

Publication number
JP2011175280A
JP2011175280A JP2011090147A JP2011090147A JP2011175280A JP 2011175280 A JP2011175280 A JP 2011175280A JP 2011090147 A JP2011090147 A JP 2011090147A JP 2011090147 A JP2011090147 A JP 2011090147A JP 2011175280 A JP2011175280 A JP 2011175280A
Authority
JP
Japan
Prior art keywords
lens
optical system
cemented
cemented lens
object side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011090147A
Other languages
Japanese (ja)
Other versions
JP5242728B2 (en
Inventor
Tetsuya Yanai
哲也 矢内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Imaging Corp
Original Assignee
Olympus Imaging Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Imaging Corp filed Critical Olympus Imaging Corp
Priority to JP2011090147A priority Critical patent/JP5242728B2/en
Publication of JP2011175280A publication Critical patent/JP2011175280A/en
Application granted granted Critical
Publication of JP5242728B2 publication Critical patent/JP5242728B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical system, which can reduce its thickness while having a high variable power ratio and reduces influence of eccentricity to prevent deterioration in performance, and to provide an imaging device using the optical system. <P>SOLUTION: The optical system includes: a first lens group G1 having negative refractive power; a second lens group G2 having positive refractive power; and a cemented lens having positive refractive power as a whole and having cemented surfaces on the optical axis. Lenses constituting the cemented lens satisfy an expression (5): 40<νmax-νmin<80 and an expression (6): 23.7>νmin. In the expressions (5) and (6), νmax is a maximum Abbe number in the cemented lens, and νmin is a minimum Abbe number in the cemented lens. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、光学系及びそれを用いた撮像装置に関し、特に、光学系部分の工夫により、高変倍比であっても薄型化が可能で、偏心の影響を小さく抑えて性能劣化を防止したデジタルカメラやビデオカメラに適した構成のズームレンズとそれを用いた撮像装置に関するものである。   The present invention relates to an optical system and an image pickup apparatus using the optical system, and in particular, by devising the optical system part, it is possible to reduce the thickness even at a high zoom ratio, and suppress the influence of eccentricity to prevent performance deterioration. The present invention relates to a zoom lens having a configuration suitable for a digital camera and a video camera, and an imaging apparatus using the zoom lens.

近年、ズームレンズ、特にデジタルカメラのズームレンズは、薄型化の要求がますます強まっている。銀塩カメラに比べて、一般に撮像素子の小さいデジタルカメラはレンズを小さく設計することが可能であるが、レンズ部品の製造誤差や鏡筒への組み付け誤差が相対的に大きくなり、偏心によって性能が劣化するため、歩留まりの低下を招きやすい。また、カメラ薄型化のために、ズームレンズを構成するレンズの枚数を減らす必要があり、少ないレンズ枚数で非球面を多用して収差を補正することが多い。   In recent years, zoom lenses, particularly digital camera zoom lenses, are increasingly required to be thin. Compared to a silver salt camera, a digital camera with a small imaging device can generally be designed with a small lens, but the manufacturing error of lens parts and the mounting error of the lens barrel become relatively large, and the performance is reduced by eccentricity. Since it deteriorates, it tends to reduce the yield. In addition, in order to reduce the camera thickness, it is necessary to reduce the number of lenses constituting the zoom lens. In many cases, aberration is corrected by using aspheric surfaces with a small number of lenses.

しかしながら、そのような光学系は、製造誤差による非球面レンズ間の相対偏心によって結像性能が低下しやすいため、歩留まりの良い量産と薄型化の両立は困難である。   However, in such an optical system, the imaging performance is likely to deteriorate due to the relative decentration between the aspheric lenses due to manufacturing errors, and it is difficult to achieve both mass production with good yield and thinning.

従来例として、特許文献1、特許文献2、特許文献3等のものが上げられるが、特許文献1のものでは、レンズ単体の製造誤差によって起こる偏心により性能劣化(特に軸外収差)が大きかったり、接合レンズを構成するレンズのアッベ数差が小さく色収差の補正が不十分であり、また、特許文献2、特許文献3のものは、非球面を用いていないため薄型化が不十分である。   Conventional examples include Patent Document 1, Patent Document 2, Patent Document 3, and the like. However, in Patent Document 1, performance deterioration (particularly off-axis aberration) may be large due to eccentricity caused by a manufacturing error of a single lens. Further, the Abbe number difference between the lenses constituting the cemented lens is small and correction of chromatic aberration is insufficient, and those of Patent Documents 2 and 3 are not sufficiently thinned because they do not use an aspherical surface.

特開2004−102211号公報JP 2004-102111 A 特開2002−350726号公報JP 2002-350726 A 特開2004−198855号公報JP 2004-198855 A

本発明は従来技術のこのような問題に鑑みてなされたものであり、その目的は、高変倍比であっても薄型化が可能で、偏心の影響を小さく抑えて性能劣化を防止した光学系とそれを用いた撮像装置を提供することである。   The present invention has been made in view of such a problem of the prior art, and the object thereof is an optical which can be reduced in thickness even at a high zoom ratio, and the performance of deterioration is prevented by minimizing the influence of eccentricity. A system and an imaging apparatus using the system are provided.

上記目的を達成するために、本発明の第1の光学系は、物体側より順に、負の屈折力の第1レンズ群、正の屈折力の第2レンズ群を有し、全体として正の屈折力を持ち、少なくとも1枚の負レンズを含む3枚以上のレンズを接合させた接合レンズを備えた光学系であって、
変倍比が2倍以上で、以下の条件式を満足するように構成されていることを特徴とするものである。
In order to achieve the above object, the first optical system of the present invention includes, in order from the object side, a first lens group having a negative refractive power and a second lens group having a positive refractive power, and is positive as a whole. An optical system including a cemented lens having a refractive power and cementing three or more lenses including at least one negative lens,
The zoom ratio is 2 times or more, and is configured to satisfy the following conditional expression.

|Fco/Fci|<0.95 ・・・(1)
0.05<Dco/Dci<20 ・・・(2)
ただし、Fco:前記接合レンズの最も物体側のレンズの焦点距離、
ci:前記接合レンズの最も像面側のレンズの焦点距離、
co:前記接合レンズの最も物体側のレンズの光軸上の厚さ、
ci:前記接合レンズの最も像面側のレンズの光軸上の厚さ、
である。
| F co / F ci | <0.95 (1)
0.05 <D co / D ci <20 (2)
Where F co : focal length of the lens closest to the object side of the cemented lens,
F ci : the focal length of the lens closest to the image plane of the cemented lens,
D co : the thickness on the optical axis of the lens closest to the object side of the cemented lens,
D ci : the thickness on the optical axis of the lens closest to the image plane of the cemented lens,
It is.

以下に、本発明の第1の光学系において上記構成をとる理由と作用を説明する。   The reason and action of the above configuration in the first optical system of the present invention will be described below.

負、正の2群を有する構成でかつ正の屈折力を持つ3枚以上のレンズを接合したものを用いた薄型ズームレンズは従来から提案されているが、何れの場合においても、接合面前後の面の相対偏心は性能に大きく影響する。製造誤差による性能劣化を接合面の1つを使って心調整を行う方法もあるが、劣化した画面中心と画面周辺の双方の性能の何れかしか大きく向上させることができなかった。   A thin zoom lens using two or more negative and positive lens groups and having three or more lenses having a positive refractive power cemented has been proposed in the past. The relative eccentricity of the surface greatly affects performance. Although there is a method of performing the center adjustment of the performance deterioration due to the manufacturing error by using one of the joint surfaces, only one of the performances of the deteriorated screen center and the screen periphery can be greatly improved.

本発明では、接合レンズを構成する入射側及び射出側のレンズのパワーバランスを適切に配置することで、上記接合の中心、周辺双方の性能劣化をレンズ相対心を調整することにより軽減することが容易となる。   In the present invention, by appropriately arranging the power balance of the entrance-side and exit-side lenses constituting the cemented lens, it is possible to reduce performance deterioration at both the center and the periphery of the junction by adjusting the lens relative center. It becomes easy.

条件式(1)は、接合レンズを構成する入射側と射出側のレンズパワーのバランスを規定している。上限の0.95を越えると、中心性能と周辺性能の両方を改善させる心調整を行うのが困難になる。   Conditional expression (1) defines the balance of the lens power on the incident side and the exit side that constitute the cemented lens. When the upper limit of 0.95 is exceeded, it becomes difficult to perform center adjustment that improves both the central performance and the peripheral performance.

また、製造上接合レンズを構成する最も物体側のレンズと像面側のレンズの光軸上の厚さの割合が条件式(2)の範囲外、すなわち、上限の20、下限の0.05を越える場合、接合レンズ自体の厚さが大きくなり、小型化の妨げとなる。又は、色収差補正が困難となる。又は、3枚以上の接合レンズとしての効果が小さくなってしまう。   In addition, the ratio of the thickness on the optical axis of the most object-side lens and the image-side lens constituting the cemented lens in manufacturing is out of the range of the conditional expression (2), that is, the upper limit is 20, and the lower limit is 0.05. In the case of exceeding the thickness, the thickness of the cemented lens itself increases, which hinders downsizing. Or chromatic aberration correction becomes difficult. Or the effect as a junction lens of three or more sheets will become small.

本発明の第2の光学系は、物体側より順に、負の屈折力の第1レンズ群、正の屈折力の第2レンズ群を有し、全体として正の屈折力を持ち、少なくとも1枚の負レンズを含む3枚以上のレンズを接合させた接合レンズを備えた光学系であって、
変倍比が2倍以上で、以下の条件式を満足するように構成されていることを特徴とするものである。
The second optical system of the present invention includes, in order from the object side, a first lens group having a negative refractive power and a second lens group having a positive refractive power, and has a positive refractive power as a whole. An optical system including a cemented lens in which three or more lenses including the negative lens are cemented,
The zoom ratio is 2 times or more, and is configured to satisfy the following conditional expression.

10<|R1 /r1 | ・・・(3)
ただし、r1 : 前記接合レンズの最も物体側の面の曲率半径、
1 : 前記接合レンズの最も物体側の接合面の曲率半径、
である。
10 <| R 1 / r 1 | (3)
Where r 1 : radius of curvature of the most object side surface of the cemented lens,
R 1 : radius of curvature of the cemented surface closest to the object side of the cemented lens,
It is.

以下に、本発明の第2の光学系において上記構成をとる理由と作用を説明する。   The reason and action of the above configuration in the second optical system of the present invention will be described below.

負、正の2群を有する構成でかつ正の屈折力を持つ3枚以上のレンズを接合したものを用いた薄型ズームレンズは従来から提案されているが、何れの場合においても、接合面前後の面の相対偏心は性能に大きく影響する。製造誤差による性能劣化を接合面の1つを使って心調整を行う方法もあるが、劣化した画面中心と画面周辺の双方の性能の何れかしか大きく向上させることができなかった。   A thin zoom lens using two or more negative and positive lens groups and having three or more lenses having a positive refractive power cemented has been proposed in the past. The relative eccentricity of the surface greatly affects performance. Although there is a method of performing the center adjustment of the performance deterioration due to the manufacturing error by using one of the joint surfaces, only one of the performances of the deteriorated screen center and the screen periphery can be greatly improved.

本発明では、接合レンズを構成する最も入射側のレンズの接合面の曲率半径R1 を十分大きくすることにより、レンズ相対心を調整する際にレンズ面の傾き(チルト)の変化を小さくして、レンズ面のシフトにより相対心を補正することで、設計値からの中心、軸外の性能劣化を同時に小さくすることが可能となる。 In the present invention, by making the radius of curvature R 1 of the cemented surface of the most incident side lens constituting the cemented lens sufficiently large, the change in the tilt (tilt) of the lens surface is reduced when adjusting the lens relative center. By correcting the relative center by shifting the lens surface, it becomes possible to simultaneously reduce the center and off-axis performance deterioration from the design value.

条件式(3)は、接合レンズを構成する最も物体側のレンズの形を規定する式であり、
接合面R1 の曲率半径を大きくすることで、レンズの相対心を調整する際に発生する面の傾きが少なくなるため、性能劣化を防ぐことができる。
Conditional expression (3) is an expression that defines the shape of the lens on the most object side constituting the cemented lens,
By increasing the curvature radius of the contact surface R 1, since the tilt of the surface that occurs when adjusting the relative heart lenses is reduced, it is possible to prevent performance degradation.

本発明の第3の光学系は、物体側より順に、負の屈折力の第1レンズ群、正の屈折力の第2レンズ群を有し、全体として正の屈折力を持ち、少なくとも1枚の負レンズを含む3枚以上のレンズを接合させた接合レンズを備えた光学系であって、
前記接合レンズが物体側に凸の形状であり、変倍比が2倍以上で、以下の条件式を満足するように構成されていることを特徴とするものである。
The third optical system of the present invention includes, in order from the object side, a first lens group having a negative refractive power and a second lens group having a positive refractive power, and has a positive refractive power as a whole, and at least one piece. An optical system including a cemented lens in which three or more lenses including the negative lens are cemented,
The cemented lens has a convex shape on the object side, a zoom ratio of 2 or more, and is configured to satisfy the following conditional expression.

0.7<|R2 /r2 | ・・・(4)
ただし、r2 : 前記接合レンズの最も像面側の面の曲率半径、
2 : 前記接合レンズの最も像面側の接合面の曲率半径、
である。
0.7 <| R 2 / r 2 | (4)
Where r 2 : radius of curvature of the surface closest to the image plane of the cemented lens,
R 2 : radius of curvature of the cemented surface closest to the image plane of the cemented lens,
It is.

以下に、本発明の第3の光学系において上記構成をとる理由と作用を説明する。   Hereinafter, the reason and action of the above configuration in the third optical system of the present invention will be described.

負、正の2群を有する構成でかつ正の屈折力を持つ3枚以上のレンズを接合したものを用いた薄型ズームレンズは従来から提案されているが、何れの場合においても、接合面前後の面の相対偏心は性能に大きく影響する。製造誤差による性能劣化を接合面の1つを使って心調整を行う方法もあるが、劣化した画面中心と画面周辺の双方の性能の何れかしか大きく向上させることができなかった。   A thin zoom lens using two or more negative and positive lens groups and having three or more lenses having a positive refractive power cemented has been proposed in the past. The relative eccentricity of the surface greatly affects performance. Although there is a method of performing the center adjustment of the performance deterioration due to the manufacturing error by using one of the joint surfaces, only one of the performances of the deteriorated screen center and the screen periphery can be greatly improved.

本発明では、接合レンズを構成する最も射出側のレンズの接合面R2 を十分大きくすることにより、レンズ相対心を調整する際にレンズ面の傾き(チルト)の変化を小さくして、レンズ面のシフトにより相対心を補正することで、設計値からの中心、軸外の性能劣化を同時に小さくすることが可能となる。 In the present invention, by sufficiently increasing the bonding surface R 2 most of the exit-side lens of the cemented lens, to reduce the change in the tilt (tilt) of the lens surface when adjusting the lens relative heart, the lens surface By correcting the relative center by shifting, it is possible to simultaneously reduce the center and off-axis performance deterioration from the design value.

条件式(4)は、接合レンズを構成する最も像面側のレンズの形を規定する式であり、接合面R2 の曲率半径を大きくすることで、レンズの相対心を調整する際に発生する面の傾きが少なくなるため、性能劣化を防ぐことができる。 Condition (4) is an expression for defining the shape of the most image plane side lens of the cemented lens, by increasing the radius of curvature of the cemented surface R 2, occurs when adjusting the relative heart lenses Since the inclination of the surface to be reduced is reduced, performance deterioration can be prevented.

本発明の第4の光学系は、光軸上に接合面を持つ接合レンズを備えた光学系であって、前記接合レンズを構成するレンズが以下の条件を満足することを特徴とするものである。   A fourth optical system of the present invention is an optical system including a cemented lens having a cemented surface on the optical axis, and the lens constituting the cemented lens satisfies the following conditions. is there.

40<νmax −νmin <80 ・・・(5)
23.7>νmin ・・・(6)
ただし、νmax :前記接合レンズ中で最大のアッベ数、
νmin :前記接合レンズ中で最小のアッベ数、
である。
40 <ν max −ν min <80 (5)
23.7> ν min (6)
Where ν max is the maximum Abbe number in the cemented lens,
ν min : the smallest Abbe number in the cemented lens,
It is.

以下に、本発明の第4の光学系において上記構成をとる理由と作用を説明する。   Hereinafter, the reason and action of the fourth optical system according to the present invention will be described.

接合レンズを備えた光学系であって、構成するレンズの硝材の種類によって色収差を補正している光学系が従来から提案されているが、何れの場合においても、接合レンズを構成するレンズのアッベ数が条件式(6)に示した値よりも大きく、また、条件式(5)の範囲外の硝材を用いているため、全変倍範囲にわたり高い光学性能を得るのが難しくなってくる。   An optical system provided with a cemented lens, in which chromatic aberration is corrected according to the type of glass material of the constituting lens, has been proposed in the past. In any case, the Abbe of the lens constituting the cemented lens is proposed. Since the number is larger than the value shown in the conditional expression (6) and the glass material outside the range of the conditional expression (5) is used, it becomes difficult to obtain high optical performance over the entire zooming range.

本発明では、接合レンズを構成する各レンズの材質等を適切に設定することにより、全変倍範囲にわたり特に色収差を良好に補正する能力を持つ光学系を提供する。   The present invention provides an optical system having an ability to particularly favorably correct chromatic aberration over the entire zoom range by appropriately setting the material of each lens constituting the cemented lens.

条件式(5)の範囲以下、すなわち、40以下のとき、色収差の補正が不十分であり、条件式(5)の範囲以上、すなわち、80以上のとき、補正過剰となる。   Below the range of conditional expression (5), that is, 40 or less, correction of chromatic aberration is insufficient, and when above the range of conditional expression (5), that is, 80 or more, correction is excessive.

本発明の第5の光学系は、光軸上に接合面を持つ接合レンズを備えた光学系であって、前記接合レンズを構成するレンズが以下の条件を満足することを特徴とするものである。   The fifth optical system of the present invention is an optical system including a cemented lens having a cemented surface on the optical axis, and the lens constituting the cemented lens satisfies the following conditions. is there.

40<νmax −νmin <80 ・・・(5)
23.7>νmin ・・・(6)
60<νmax ・・・(7)
1.8<ndmax ・・・(8)
1.55>ndmin ・・・(9)
ただし、νmax :前記接合レンズ中で最大のアッベ数、
νmin :前記接合レンズ中で最小のアッベ数、
dmax:前記接合レンズ中で最大の屈折率、
dmin:前記接合レンズ中で最小の屈折率、
である。
40 <ν max −ν min <80 (5)
23.7> ν min (6)
60 <ν max (7)
1.8 <n dmax (8)
1.55> n dmin (9)
Where ν max is the maximum Abbe number in the cemented lens,
ν min : the smallest Abbe number in the cemented lens,
n dmax : maximum refractive index in the cemented lens,
n dmin : minimum refractive index in the cemented lens,
It is.

以下に、本発明の第5の光学系において上記構成をとる理由と作用を説明する。   Hereinafter, the reason and action of the fifth optical system of the present invention having the above configuration will be described.

接合レンズを備えた光学系であって、構成するレンズの硝材の種類によって色収差を補正している光学系が従来から提案されているが、何れの場合においても、接合レンズを構成するレンズの屈折率、アッベ数が条件式(5)〜(9)の範囲外の硝材を用いているため、主に色収差の補正が困難となり、全変倍範囲にわたり高い光学性能を得るのが難しくなってくる。   An optical system provided with a cemented lens, in which an optical system that corrects chromatic aberration according to the type of glass material of the lens that has been proposed has been proposed, but in any case, the refraction of the lens that constitutes the cemented lens Since a glass material whose rate and Abbe number are outside the range of the conditional expressions (5) to (9) is used, it is mainly difficult to correct chromatic aberration, and it becomes difficult to obtain high optical performance over the entire zoom range. .

本発明では、接合レンズを構成する各レンズの材質等を適切に設定することにより、全変倍範囲にわたり特に色収差を良好に補正する能力を持つ光学系を提供する。   The present invention provides an optical system having an ability to particularly favorably correct chromatic aberration over the entire zoom range by appropriately setting the material of each lens constituting the cemented lens.

条件式(5)の範囲以下、すなわち、40以下のとき、色収差の補正が不十分であり、条件式(5)の範囲以上、すなわち、80以上のとき、補正過剰となる。   Below the range of conditional expression (5), that is, 40 or less, correction of chromatic aberration is insufficient, and when above the range of conditional expression (5), that is, 80 or more, correction is excessive.

また、条件式(8)の範囲外、すなわち、接合レンズ中で最大の屈折率が1.8以下のとき、像面湾曲、球面収差が発生してしまう。   Further, when the condition is outside the range of the conditional expression (8), that is, when the maximum refractive index in the cemented lens is 1.8 or less, field curvature and spherical aberration occur.

本発明の第6の光学系は、第4、第5の光学系において、前記光学系は負の屈折力のレンズ群と正の屈折力のレンズ群の2群を有することを特徴とするものである。   According to a sixth optical system of the present invention, in the fourth and fifth optical systems, the optical system has two groups of a negative refractive power lens group and a positive refractive power lens group. It is.

以下に、本発明の第6の光学系において上記構成をとる理由と作用を説明する。   The reason and action of the above configuration in the sixth optical system of the present invention will be described below.

このように、負の屈折力のレンズ群と正の屈折力のレンズ群の2群を有する構成は、良好に収差を補正しつつ2倍以上の高い変倍比を得るための最小の構成である。また、第3の光学系の条件に当てはまる接合レンズと組み合わせることによって、他のレンズのパワーを強くできるため、さらなるコンパクト化が可能になる。   As described above, the configuration having the two groups of the negative refractive power lens group and the positive refractive power lens group is the minimum configuration for obtaining a high zoom ratio of 2 times or more while satisfactorily correcting the aberration. is there. In addition, when combined with a cemented lens that satisfies the conditions of the third optical system, the power of other lenses can be increased, so that further downsizing can be achieved.

本発明の第7の光学系は、第1〜第6の光学系において、前記接合レンズにおける光線の入射側及び射出側である空気接触面の少なくとも1面が非球面であることを特徴とするものである。   According to a seventh optical system of the present invention, in the first to sixth optical systems, at least one of the air contact surfaces on the light incident side and the light exit side of the cemented lens is an aspherical surface. Is.

以下に、本発明の第7の光学系において上記構成をとる理由と作用を説明する。   Hereinafter, the reason and operation of the seventh optical system of the present invention having the above configuration will be described.

少なくとも1枚の負レンズを含む3枚以上のレンズを接合することによってレンズエレメントが減った分、低下した収差補正能力を接合レンズの空気接触面を非球面にすることでカバーすることができ、その結果、さらなる光学系全体の薄型化が可能になる。特に、条件式(1)又は(3)と組み合わせることにより、非球面の配置により製作許容誤差が厳しくなることを、心調整の効果を高めることで製造の容易性を確保することができる。   Since the lens element is reduced by cementing three or more lenses including at least one negative lens, the reduced aberration correction capability can be covered by making the air contact surface of the cemented lens aspherical, As a result, the entire optical system can be further reduced in thickness. In particular, by combining with conditional expression (1) or (3), it is possible to ensure that manufacturing tolerances become severe due to the arrangement of the aspheric surfaces, and that the ease of manufacturing can be ensured by enhancing the effect of center adjustment.

本発明の第8の光学系は、第1〜第7の光学系において、前記接合レンズは3枚のレンズにて構成されていることを特徴とするものである。   The eighth optical system of the present invention is characterized in that, in the first to seventh optical systems, the cemented lens is composed of three lenses.

以下に、本発明の第8の光学系において上記構成をとる理由と作用を説明する。   The reason and action of the above configuration in the eighth optical system of the present invention will be described below.

3枚のレンズを接合したレンズを用いることで、十分に色収差を補正することが可能となり、かつ、3枚のレンズを接合させることによってレンズエレメント同士の偏心量を小さくしやすいため、偏心による性能の劣化を低減することができる。   By using a lens in which three lenses are cemented, it is possible to sufficiently correct chromatic aberration, and it is easy to reduce the amount of decentering between lens elements by cementing three lenses. Can be reduced.

本発明の第9の光学系は、第1〜第8の光学系において、前記第2レンズ群は、物体側から、正の第1レンズ、負の第2レンズ、正の第3レンズを配列してなる3枚接合レンズを含むことを特徴とするものである。   According to a ninth optical system of the present invention, in the first to eighth optical systems, the second lens group includes a positive first lens, a negative second lens, and a positive third lens arranged from the object side. And a three-piece cemented lens.

以下に、本発明の第9の光学系において上記構成をとる理由と作用を説明する。   The reason and action of the ninth optical system according to the present invention will be described below.

第2レンズ群に、物体側から順に正の第1レンズ、負の第2レンズ、正の第3レンズの配列の光学系を用いることで、主に軸上収差や像面湾曲や色収差を良好に補正することができる。   By using an optical system of an array of a positive first lens, a negative second lens, and a positive third lens in order from the object side in the second lens group, mainly axial aberration, field curvature, and chromatic aberration are excellent. Can be corrected.

本発明の第10の光学系は、第1〜第9の光学系において、前記第2レンズ群は、3枚接合レンズのみで構成されていることを特徴とするものである。   According to a tenth optical system of the present invention, in the first to ninth optical systems, the second lens group is composed of only a three-piece cemented lens.

以下に、本発明の第10の光学系において上記構成をとる理由と作用を説明する。   The reason and action of the above configuration in the tenth optical system of the present invention will be described below.

第2レンズ群を3枚接合レンズのみで構成することで、色収差を中心とした収差のバランスを良好にとりつつ、かつ、コンパクト化が可能になる。   By configuring the second lens group with only three cemented lenses, it becomes possible to make the lens compact while maintaining a good balance of aberrations centered on chromatic aberration.

本発明の第11の光学系は、第1〜第10の光学系において、前記光学系において1群のレンズを移動させることでフォーカスを行うことを特徴とするものである。   The eleventh optical system of the present invention is characterized in that in the first to tenth optical systems, focusing is performed by moving a group of lenses in the optical system.

以下に、本発明の第11の光学系において上記構成をとる理由と作用を説明する。   Hereinafter, the reason and action of the above-described configuration in the eleventh optical system of the present invention will be described.

このように構成すると、機構上単純であり、かつ、広角端から望遠端での収差の変動を小さくできる。   With this configuration, the mechanism is simple and the variation in aberration from the wide-angle end to the telephoto end can be reduced.

本発明の第12の光学系は、第1〜第11の光学系において、広角端から望遠端への変倍時に、前記第2レンズ群は、像面側から物体側へと単調に移動し、前記第1レンズ群は、像面側に凸形状の軌跡で移動することを特徴とするものである。   In a twelfth optical system according to the present invention, in the first to eleventh optical systems, the second lens unit moves monotonically from the image plane side to the object side at the time of zooming from the wide angle end to the telephoto end. The first lens group moves along a locus that is convex toward the image plane side.

以下に、本発明の第10の光学系において上記構成をとる理由と作用を説明する。   The reason and action of the above configuration in the tenth optical system of the present invention will be described below.

このように構成すると、機構上単純であり、撮影時のレンズ全長が短くでき、また、開口絞りを第2レンズ群と一体として配置した場合、広角時の入射瞳位置が浅くなるため、
第1レンズ群の径を小さくすることができる。
If configured in this way, the mechanism is simple, the overall lens length at the time of photographing can be shortened, and when the aperture stop is arranged integrally with the second lens group, the entrance pupil position at the wide angle becomes shallow,
The diameter of the first lens group can be reduced.

本発明の第13の光学系は、第1〜第3の光学系において、以下の条件式を満足するように構成されていることを特徴とするものである。   A thirteenth optical system of the present invention is characterized in that the first to third optical systems are configured to satisfy the following conditional expression.

40<νmax −νmin <80 ・・・(5)
ただし、νmax :前記接合レンズ中で最大のアッベ数、
νmin :前記接合レンズ中で最小のアッベ数、
である。
40 <ν max −ν min <80 (5)
Where ν max is the maximum Abbe number in the cemented lens,
ν min : the smallest Abbe number in the cemented lens,
It is.

以下に、本発明の第13の光学系において上記構成をとる理由と作用を説明する。   The reason and action of the above configuration in the thirteenth optical system of the present invention will be described below.

接合レンズを構成する各レンズのアッベ数の差が条件式(4)を満たすとき、光学系の主に色収差が良好に補正され、コンパクトで、かつ、全変倍範囲にわたり高い光学性能を得ることが可能となる。特に、接合レンズと他のレンズで構成されるレンズ系の場合、接合レンズでの色収差補正能力を高くできることで、他のレンズのパワーを少ない構成で強くできるで、小型化や変倍レンズであれば高変倍化が容易になる。   When the difference between the Abbe numbers of the lenses constituting the cemented lens satisfies the conditional expression (4), the chromatic aberration is mainly corrected well in the optical system, and the optical system is compact and has high optical performance over the entire zoom range. Is possible. In particular, in the case of a lens system composed of a cemented lens and another lens, the ability to correct chromatic aberration in the cemented lens can be increased, so that the power of other lenses can be increased with a small configuration, so that it can be a compact or variable magnification lens. If this is the case, high zooming becomes easy.

本発明の第14の光学系は、第1〜第12の光学系において、3枚接合を構成する最も物体側のレンズと最も像面側のレンズは同一の硝材からなることを特徴とするものである。   The fourteenth optical system of the present invention is characterized in that, in the first to twelfth optical systems, the most object side lens and the most image side lens constituting the three-piece joint are made of the same glass material. It is.

以下に、本発明の第14の光学系において上記構成をとる理由と作用を説明する。   The reason and action of the above configuration in the fourteenth optical system of the present invention will be described below.

このように同一の硝材を使用することで、使用する硝材の種類を減らすことができるため、生産管理がしやすく、また、低コスト化が可能になる。   By using the same glass material in this way, the types of glass materials to be used can be reduced. Therefore, production management is easy and cost reduction is possible.

本発明の第15の光学系は、第1〜第3、第6〜第14の光学系において、前記接合レンズが物体側に凸形状であり、以下の条件式をさらに満足することを特徴とするものである。   According to a fifteenth optical system of the present invention, in the first to third and sixth to fourteenth optical systems, the cemented lens has a convex shape on the object side, and further satisfies the following conditional expression: To do.

0.50<Dn1/Σd<0.95 ・・・(10)
ただし、Dn1:前記接合レンズ中の最も物体側の面から最も大きい負の屈折力を有する面までの距離、
Σd:前記接合レンズの総肉厚、
である。
0.50 <D n1 /Σd<0.95 (10)
Where D n1 is the distance from the most object side surface in the cemented lens to the surface having the greatest negative refractive power,
Σd: total thickness of the cemented lens,
It is.

以下に、本発明の第15の光学系において上記構成をとる理由と作用を説明する。   The reason and action of the above configuration in the fifteenth optical system of the present invention will be described below.

条件式(10)を満足させて接合レンズ中の負パワーを正パワーを有する最物体側面から適度に離すことにより、色収差を補正しつつ、特に望遠端における第2レンズ群の主点位置を第1レンズ群に近づけることができ、高変倍比化に有利である。   By satisfying the conditional expression (10) and appropriately separating the negative power in the cemented lens from the most object side surface having the positive power, the principal point position of the second lens unit at the telephoto end is corrected while the chromatic aberration is corrected. It can be close to one lens group, which is advantageous for high zoom ratio.

条件式(10)の上限値の0.95を越えると、後続(接合レンズにおける負パワー面よりも像面側)のレンズの肉厚が薄くなりすぎて製造が困難となる。下限値の0.50を越えると、負パワーが入射面(最物体側面)に近づきすぎて主点位置調整が困難になり、高変倍比化が達成し難い。   If the upper limit of 0.95 in conditional expression (10) is exceeded, the thickness of the subsequent lens (on the image plane side with respect to the negative power surface in the cemented lens) becomes too thin, making it difficult to manufacture. If the lower limit of 0.50 is exceeded, the negative power will be too close to the incident surface (side surface of the most object), making it difficult to adjust the principal point position, making it difficult to achieve a high zoom ratio.

本発明の第16の光学系は、第15の光学系において、以下の条件式をさらに満足することを特徴とするものである。   The sixteenth optical system of the present invention is characterized in that, in the fifteenth optical system, the following conditional expression is further satisfied.

0.05<Dn2/Σd<0.35 ・・・(11)
ただし、Dn2:前記接合レンズ中の最も大きい負の屈折力を有する面から最も像面側の面までの距離、
である。
0.05 <D n2 /Σd<0.35 (11)
Where D n2 is the distance from the surface having the largest negative refractive power in the cemented lens to the surface closest to the image plane,
It is.

以下に、本発明の第16の光学系において上記構成をとる理由と作用を説明する。   The reason and action of the above configuration in the sixteenth optical system of the present invention will be described below.

条件式(11)を満足させて接合レンズにおける負パワーを有する面から射出面(最像面側面)までの距離を適度に小さく抑えることにより、第2レンズ群の主点位置を適度に調整して高変倍比化と共に、沈胴時の小型化が図れる。   The principal point position of the second lens group is appropriately adjusted by satisfying the conditional expression (11) and suppressing the distance from the surface having negative power in the cemented lens to the exit surface (side surface of the most image surface). In addition to a high zoom ratio, the size can be reduced when retracted.

条件式(11)の上限値の0.35を越えると、接合レンズが厚くなりすぎて沈胴時における小型化に不利となる。又は、特に望遠端における主点位置を第1レンズ群に近付け難くなり、高変倍比化に不利となる。下限値の0.05を越えると、負パワー面から射出面までのレンズの肉厚が薄くなりすぎて製造が困難となる。   If the upper limit of 0.35 in conditional expression (11) is exceeded, the cemented lens becomes too thick, which is disadvantageous for downsizing when retracted. Or, it becomes difficult to bring the principal point position at the telephoto end close to the first lens group, which is disadvantageous for high zoom ratio. When the lower limit of 0.05 is exceeded, the thickness of the lens from the negative power surface to the exit surface becomes too thin, making manufacturing difficult.

本発明の第17の光学系は、第1〜第3、第6〜第16の光学系において、前記接合レンズは物体側に凸形状であり、以下の条件式をさらに満足することを特徴とするものである。   According to a seventeenth optical system of the present invention, in the first to third and sixth to sixteenth optical systems, the cemented lens has a convex shape on the object side, and further satisfies the following conditional expression: To do.

−1.5<(r1 +r2 )/(r1 −r2 )<−0.5 ・・・(12)
ただし、r1 : 前記接合レンズの最も物体側の面の曲率半径、
2 : 前記接合レンズの最も像面側の面の曲率半径、
である。
−1.5 <(r 1 + r 2 ) / (r 1 −r 2 ) <− 0.5 (12)
Where r 1 : radius of curvature of the most object side surface of the cemented lens,
r 2 : radius of curvature of the surface closest to the image plane of the cemented lens,
It is.

以下に、本発明の第17の光学系において上記構成をとる理由と作用を説明する。   The reason and action of the above configuration in the seventeenth optical system of the present invention will be described below.

条件式(12)は接合レンズの形状を規定するものである。すなわち、接合レンズにおける主たる正パワーを入射面(最物体側面)に負担させている形状とし、諸収差補正のバランスを保ちながらも、小型化、高変倍比化に有利な構成としている。   Conditional expression (12) defines the shape of the cemented lens. In other words, the main positive power in the cemented lens is formed on the entrance surface (the most object side surface), and the configuration is advantageous for downsizing and high zoom ratio while maintaining the balance of various aberration corrections.

条件式(12)の上限値の−0.5を越えると、入射面のパワーが弱くなり(射出面のパワーが強くなり)、特に望遠端における主点位置調整が困難となる。又は、接合レンズにおける像面寄りに配置されているレンズを薄くし難くなり、小型化が困難となる。下限値の−1.5を越えると、入射面のパワーが強くなりすぎ(又は、射出面のパワーが負になりやすく)、相対的な収差補正が困難となる。   If the upper limit of −0.5 of conditional expression (12) is exceeded, the power on the entrance surface will be weak (the power on the exit surface will be strong), and it will be difficult to adjust the principal point position, especially at the telephoto end. Alternatively, it is difficult to make the lens disposed near the image plane in the cemented lens thin, and it is difficult to reduce the size. When the lower limit of −1.5 is exceeded, the power of the entrance surface becomes too strong (or the power of the exit surface tends to be negative), and relative aberration correction becomes difficult.

本発明の第18の光学系は、第1〜第3、第6〜第17の光学系において、前記接合レンズが物体側に凸形状であり、前記負レンズは最物体側のレンズの像面側に接合され、以下の条件式をさらに満足することを特徴とするものである。   According to an eighteenth optical system of the present invention, in the first to third and sixth to seventeenth optical systems, the cemented lens has a convex shape on the object side, and the negative lens is the image surface of the lens on the most object side. And the following conditional expression is further satisfied.

−1.0<R1 /F2 <−0.05 ・・・(13)
0.50<D1 /Σd<0.95 ・・・(14)
ただし、R1 : 前記接合レンズの最も物体側の接合面の曲率半径、
2 : 前記第2レンズ群の焦点距離、
1 :前記接合レンズの最も物体側のレンズの光軸上の厚さ、
Σd:前記接合レンズの総肉厚、
である。
−1.0 <R 1 / F 2 <−0.05 (13)
0.50 <D 1 /Σd<0.95 (14)
Where R 1 is the radius of curvature of the cemented surface closest to the object side of the cemented lens,
F 2 : focal length of the second lens group,
D 1 : thickness on the optical axis of the lens closest to the object side of the cemented lens,
Σd: total thickness of the cemented lens,
It is.

以下に、本発明の第18の光学系において上記構成をとる理由と作用を説明する。   The reason and action of the above configuration in the 18th optical system of the present invention will be described below.

負レンズを接合レンズの最物体側に配置されているレンズに接合させ、かつ、接合レンズにおける最物体側の接合面に条件式(13)を満足させる程度の負のパワーを持たせ、小型化を達成しつつ色収差(特に軸上色収差)も良好に補正している。さらに、この負のパワーを有する面を条件式(14)を満足させる程度に入射面から離すことにより、特に望遠端における第2レンズ群の主点位置を第1レンズ群に近付けられるため、諸収差補正のバランスを保ちつつ、高変倍比化が達成できる。   The negative lens is cemented to the lens arranged on the most object side of the cemented lens, and the cemented lens on the most object side of the cemented lens has a negative power that satisfies the conditional expression (13), thereby reducing the size. The chromatic aberration (especially the longitudinal chromatic aberration) is also corrected well. Further, by separating the surface having negative power from the incident surface to the extent that the conditional expression (14) is satisfied, the principal point position of the second lens group at the telephoto end can be brought close to the first lens group. A high zoom ratio can be achieved while maintaining the balance of aberration correction.

条件式(13)の上限値の−0.05を越えると、最物体側の接合面の曲率(パワー)が強くなりすぎるため、レンズ相対心を調整する際に、レンズ面の傾き(チルト)の変化が大きくなり、レンズ面のシフトにより相対心を補正しても、設計値からの中心又は軸外の性能劣化が起きてしまう。下限値の−1.0を越えると、最物体側の接合面の曲率(パワー)が弱くなりすぎて色収差補正が行い難い。   If the upper limit of −0.05 of the conditional expression (13) is exceeded, the curvature (power) of the joint surface on the most object side becomes too strong, and therefore the tilt (tilt) of the lens surface when adjusting the lens relative center. Even if the relative center is corrected by shifting the lens surface, the center or off-axis performance deterioration from the design value occurs. If the lower limit of −1.0 is exceeded, the curvature (power) of the joint surface on the most object side becomes too weak and it is difficult to correct chromatic aberration.

条件式(14)の上限値の0.95を越えると、後続(接合レンズにおける最物体側レンズよりも像面側)のレンズの肉厚が薄くなりすぎて製造が困難となるか、若しくは、接合レンズが厚くなり小型化が困難となる。下限値の0.50を越えると、負パワーが入射面(最物体側面)に近づきすぎて主点位置調整が困難になり、高変倍比化が達成し難い。   If the upper limit of 0.95 in conditional expression (14) is exceeded, the thickness of the subsequent lens (image surface side relative to the most object side lens in the cemented lens) becomes too thin, making it difficult to manufacture, or It becomes difficult to reduce the size of the cemented lens. If the lower limit of 0.50 is exceeded, the negative power will be too close to the incident surface (side surface of the most object), making it difficult to adjust the principal point position, making it difficult to achieve a high zoom ratio.

本発明の第19の光学系は、第1〜第3、第6〜第17の光学系において、前記接合レンズが物体側に凸形状であり、前記負レンズは接合レンズの最も像面側に配置されているレンズに接合され、以下の条件式をさらに満足することを特徴とするものである。   According to a nineteenth optical system of the present invention, in the first to third and sixth to seventeenth optical systems, the cemented lens has a convex shape on the object side, and the negative lens is closest to the image plane side of the cemented lens. The lens is cemented to the arranged lens and further satisfies the following conditional expression.

2.5<|R1 /F2 | ・・・(15)
0.45<R2 /F2 <2.3 ・・・(16)
ただし、R1 : 前記接合レンズの最も物体側の接合面の曲率半径、
2 : 前記第2レンズ群の焦点距離、
2 : 前記接合レンズの最も像面側の接合面の曲率半径、
である。
2.5 <| R 1 / F 2 | (15)
0.45 <R 2 / F 2 <2.3 (16)
Where R 1 is the radius of curvature of the cemented surface closest to the object side of the cemented lens,
F 2 : focal length of the second lens group,
R 2 : radius of curvature of the cemented surface closest to the image plane of the cemented lens,
It is.

以下に、本発明の第19の光学系において上記構成をとる理由と作用を説明する。   The reason and action of the above configuration in the nineteenth optical system of the present invention will be described below.

条件式(15)を満足させて接合レンズにおける最物体側の接合面を弱い正又は負パワーとすることにより、偏心の影響を小さくすることができる。また、接合レンズのパワーを維持しつつ最物体側の接合面を平面に近付けることができるため、最物体側のレンズより像面側に配置されるレンズの各曲率半径を大きくする(平面に近付ける)ことができる。これにより後続(最物体側の接合面より像面側)のレンズを薄くすることができ、小型化・薄型化と共に接合レンズの製造が容易となる。また、接合レンズにおける最像面側の接合面に条件式(16)を満足させて負のパワーを持たせることにより、色収差を補正するとと共に、入射面(最物体側面)から離れた接合面で特に望遠端における第2レンズ群の主点位置を第1レンズ群に近付けて高変倍比化に有利な構成としている。   By satisfying conditional expression (15) and setting the cemented surface on the most object side in the cemented lens to have a weak positive or negative power, the influence of decentering can be reduced. Further, since the cemented surface on the most object side can be brought closer to the plane while maintaining the power of the cemented lens, each radius of curvature of the lens arranged on the image plane side is made larger than the lens on the most object side (closer to the plane). )be able to. As a result, the subsequent lens (image surface side relative to the cemented surface on the most object side) can be made thinner, and the manufacture of the cemented lens is facilitated along with the reduction in size and thickness. Further, the chromatic aberration is corrected by satisfying the conditional expression (16) on the cemented lens on the most image surface side of the cemented lens so as to have a negative power, and at the cemented surface away from the incident surface (most object side surface). In particular, the principal point position of the second lens group at the telephoto end is brought close to the first lens group, which is advantageous for increasing the zoom ratio.

条件式(15)の下限値の2.5を越えると、最物体側の接合面の曲率が強くなりすぎるため、レンズ相対心を調整する際に、レンズ面の傾き(チルト)の変化が大きくなり、レンズ面のシフトにより相対心を補正しても、設計値からの中心または軸外の性能劣化が起きてしまう。   If the lower limit value of 2.5 in the conditional expression (15) is exceeded, the curvature of the cemented surface on the most object side becomes too strong. Therefore, when adjusting the lens relative center, the change in tilt (tilt) of the lens surface is large. Thus, even if the relative center is corrected by the shift of the lens surface, the performance deterioration of the center or off-axis from the design value occurs.

条件式(16)の上限値の2.3を越えると、最像面側の接合面の曲率が弱くなり、色収差が補正し難い。又は、他のレンズ面(例えば最物体側接合面)の負パワーを強くして
色収差補正を行う必要が生じ、この場合、望遠端における第2レンズ群の主点位置を第1レンズ群に近づけて高変倍比化を図るためには、入射面からその負パワーを有するレンズ面までの距離を適度に離すためにレンズを厚くする必要があり、小型化し難い。下限値の0.45を越えると、最像面側の接合面の曲率が強くなりすぎ、諸収差補正のバランスを保つには最像面側の面の曲率を強くしなければならず、この結果、最像面側のレンズが厚くなりやすい。又は、最像面側の面が負のパワーになりやすくなり、接合レンズのパワーを維持するためには最物体側面の曲率を強くする必要が生じ、この結果、相対的な諸収差補正が難しくなる。
If the upper limit of 2.3 in conditional expression (16) is exceeded, the curvature of the cemented surface on the most image side becomes weak, and chromatic aberration is difficult to correct. Alternatively, it is necessary to correct chromatic aberration by increasing the negative power of another lens surface (for example, the most object side cemented surface). In this case, the principal point position of the second lens group at the telephoto end is brought closer to the first lens group. In order to achieve a high zoom ratio, it is necessary to increase the lens thickness in order to keep the distance from the incident surface to the lens surface having the negative power appropriately, and it is difficult to reduce the size. If the lower limit of 0.45 is exceeded, the curvature of the joint surface on the most image surface side becomes too strong, and the curvature of the surface on the most image surface side must be strengthened to maintain the balance of various aberration corrections. As a result, the lens on the most image surface side tends to be thick. Alternatively, the surface on the most image surface side tends to have negative power, and it is necessary to increase the curvature of the most object side surface in order to maintain the power of the cemented lens. As a result, it is difficult to correct relative aberrations. Become.

本発明の第20の光学系は、第19の光学系において、以下の条件式を満足することを特徴とするものである。   The twentieth optical system of the present invention is characterized in that the following conditional expression is satisfied in the nineteenth optical system.

−1.5<(r1 +r2 )/(r1 −r2 )<−0.5 ・・・(12)
0.05<D3 /Σd<0.30 ・・・(17)
ただし、r1 : 前記接合レンズの最も物体側の面の曲率半径、
2 : 前記接合レンズの最も像面側の面の曲率半径、
3 :前記接合レンズの最も像面側のレンズの光軸上の厚さ、
Σd:前記接合レンズの総肉厚、
である。
−1.5 <(r 1 + r 2 ) / (r 1 −r 2 ) <− 0.5 (12)
0.05 <D 3 /Σd<0.30 (17)
Where r 1 : radius of curvature of the most object side surface of the cemented lens,
r 2 : radius of curvature of the surface closest to the image plane of the cemented lens,
D 3 : thickness on the optical axis of the lens closest to the image plane of the cemented lens,
Σd: total thickness of the cemented lens,
It is.

以下に、本発明の第20の光学系において上記構成をとる理由と作用を説明する。   The reason and action of the above configuration in the twentieth optical system of the present invention will be described below.

条件式(12)を満足させて接合レンズにおける主たる正パワーを入射面(最物体側面)に負担させ、諸収差補正のバランスを保ちながらも小型化、高変倍比化に有利な構成としている。また、条件式(12)、(16)を満足させることにより、条件式(17)を満足させる程度に接合レンズの最像側のレンズを薄くすることができる。これにより、負パワーを有する最像面側の接合面に続く面をその最像面側の接合面に近付けることができるため、特に望遠端における第2レンズ群の主点位置を第1レンズ群に近付けて高変倍比化が図れる。   By satisfying conditional expression (12), the main positive power in the cemented lens is borne on the incident surface (the most object side surface), and it is advantageous for downsizing and high zoom ratio while maintaining the balance of various aberration corrections. . Further, by satisfying conditional expressions (12) and (16), the lens on the most image side of the cemented lens can be made thin enough to satisfy conditional expression (17). Accordingly, since the surface following the cemented surface on the most image surface side having negative power can be brought close to the cemented surface on the most image surface side, the principal point position of the second lens group particularly at the telephoto end is set to the first lens group. A high zoom ratio can be achieved.

条件式(12)の上限値の−0.5を越えると、入射面のパワーが弱くなり(射出面のパワーが強くなり)、特に望遠端における主点位置調整が困難となる。又は、接合レンズにおける像面寄りに配置されているレンズを薄くし難くなり、小型化が困難となる。下限値の−1.5を越えると、入射面のパワーが強くなりすぎ(又は射出面のパワーが負になりやすく)、相対的な収差補正が困難となる。   If the upper limit of −0.5 of conditional expression (12) is exceeded, the power on the entrance surface will be weak (the power on the exit surface will be strong), and it will be difficult to adjust the principal point position, especially at the telephoto end. Alternatively, it is difficult to make the lens disposed near the image plane in the cemented lens thin, and it is difficult to reduce the size. When the lower limit of −1.5 is exceeded, the power on the entrance surface becomes too strong (or the power on the exit surface tends to be negative), and relative aberration correction becomes difficult.

条件式(17)の上限値の0.30を越えると、接合レンズが厚くなりやすく、小型化し難い。又は、最像面側の面の曲率が強くなってしまい、主点位置調整が困難になる。下限値の0.05を越えると、最像面側の面が最像面側の接合面に近づきすぎて、最像面側レンズが薄くなりすぎるため製造が困難となる。   If the upper limit of 0.30 in conditional expression (17) is exceeded, the cemented lens tends to be thick and difficult to downsize. Alternatively, the curvature of the surface closest to the image plane becomes strong, and the principal point position adjustment becomes difficult. If the lower limit of 0.05 is exceeded, the surface on the most image side becomes too close to the cemented surface on the most image surface side, and the lens on the most image surface side becomes too thin, making manufacturing difficult.

本発明の第21の光学系は、第1〜第3、第6〜第20の光学系において、以下の条件式をさらに満足することを特徴とするものである。   The twenty-first optical system of the present invention is characterized in that, in the first to third and sixth to twentieth optical systems, the following conditional expressions are further satisfied.

40<νmax −νmin <80 ・・・(5)
23.7>νmin ・・・(6)
ただし、νmax :前記接合レンズ中で最大のアッベ数、
νmin :前記接合レンズ中で最小のアッベ数、
である。
40 <ν max −ν min <80 (5)
23.7> ν min (6)
Where ν max is the maximum Abbe number in the cemented lens,
ν min : the smallest Abbe number in the cemented lens,
It is.

以下に、本発明の第21の光学系において上記構成をとる理由と作用を説明する。   The reason and action of the above configuration in the twenty-first optical system of the present invention will be described below.

接合レンズを備えた光学系であって、構成するレンズの硝材の種類によって色収差を補正している光学系が従来から提案されているが、何れの場合においても、接合レンズを構成するレンズのアッベ数が条件式(6)に示した値よりも大きく、また、条件式(5)の範囲外の硝材を用いているため、全変倍範囲にわたり高い光学性能を得るのが難しくなってくる。   An optical system provided with a cemented lens, in which chromatic aberration is corrected according to the type of glass material of the constituting lens, has been proposed in the past. In any case, the Abbe of the lens constituting the cemented lens is proposed. Since the number is larger than the value shown in the conditional expression (6) and the glass material outside the range of the conditional expression (5) is used, it becomes difficult to obtain high optical performance over the entire zooming range.

本発明では、接合レンズを構成する各レンズの材質等を適切に設定することにより、全変倍範囲にわたり特に色収差を良好に補正する能力を持つ光学系を提供する。   The present invention provides an optical system having an ability to particularly favorably correct chromatic aberration over the entire zoom range by appropriately setting the material of each lens constituting the cemented lens.

条件式(5)の範囲以下、すなわち、40以下のとき、色収差の補正が不十分であり、条件式(5)の範囲以上、すなわち、80以上のとき、補正過剰となる。   Below the range of conditional expression (5), that is, 40 or less, correction of chromatic aberration is insufficient, and when above the range of conditional expression (5), that is, 80 or more, correction is excessive.

本発明の第22の光学系は、第21の光学系において、以下の条件式をさらに満足することを特徴とするものである。   The twenty-second optical system of the present invention is characterized in that, in the twenty-first optical system, the following conditional expression is further satisfied.

60<νmax ・・・(7)
1.8<ndmax ・・・(8)
1.55>ndmin ・・・(9)
ただし、νmax :前記接合レンズ中で最大のアッベ数、
dmax:前記接合レンズ中で最大の屈折率、
dmin:前記接合レンズ中で最小の屈折率、
である。
60 <ν max (7)
1.8 <n dmax (8)
1.55> n dmin (9)
Where ν max is the maximum Abbe number in the cemented lens,
n dmax : maximum refractive index in the cemented lens,
n dmin : minimum refractive index in the cemented lens,
It is.

以下に、本発明の第22の光学系において上記構成をとる理由と作用を説明する。   The reason and action of the above configuration in the twenty-second optical system of the present invention will be described below.

接合レンズを備えた光学系であって、構成するレンズの硝材の種類によって色収差を補正している光学系が従来から提案されているが、何れの場合においても、接合レンズを構成するレンズの屈折率、アッベ数が条件式(5)〜(9)の範囲外の硝材を用いているため、主に色収差の補正が困難となり、全変倍範囲にわたり高い光学性能を得るのが難しくなってくる。   An optical system provided with a cemented lens, in which an optical system that corrects chromatic aberration according to the type of glass material of the lens that has been proposed has been proposed, but in any case, the refraction of the lens that constitutes the cemented lens Since a glass material whose rate and Abbe number are outside the range of the conditional expressions (5) to (9) is used, it is mainly difficult to correct chromatic aberration, and it becomes difficult to obtain high optical performance over the entire zoom range. .

本発明では、接合レンズを構成する各レンズの材質等を適切に設定することにより、全変倍範囲にわたり特に色収差を良好に補正する能力を持つ光学系を提供する。   The present invention provides an optical system having an ability to particularly favorably correct chromatic aberration over the entire zoom range by appropriately setting the material of each lens constituting the cemented lens.

条件式(8)の範囲外、すなわち、接合レンズ中で最大の屈折率が1.8以下のとき、像面湾曲、球面収差が発生してしまう。   Outside the range of conditional expression (8), that is, when the maximum refractive index in the cemented lens is 1.8 or less, field curvature and spherical aberration occur.

本発明の第23の光学系は、第4、第5の光学系において、前記接合レンズが正レンズ及び負レンズを少なくとも1枚ずつ有することを特徴とするものである。   According to a twenty-third optical system of the present invention, in the fourth and fifth optical systems, the cemented lens has at least one positive lens and one negative lens.

以下に、本発明の第23の光学系において上記構成をとる理由と作用を説明する。   The reason and action of the above-described configuration in the twenty-third optical system of the present invention will be described below.

接合レンズに正レンズと負レンズを少なくとも1枚ずつ含めることにより、色収差を良好に補正できる。この場合、正レンズのアッベ数よりも負レンズのアッベ数の方が小さくするとよい。   Chromatic aberration can be favorably corrected by including at least one positive lens and one negative lens in the cemented lens. In this case, the Abbe number of the negative lens is preferably smaller than the Abbe number of the positive lens.

本発明の第24の光学系は、第1〜第23の光学系において、前記接合レンズが光軸近傍において両凸形状を有することを特徴とするものである。   According to a twenty-fourth optical system of the present invention, in the first to twenty-third optical systems, the cemented lens has a biconvex shape in the vicinity of the optical axis.

以下に、本発明の第24の光学系において上記構成をとる理由と作用を説明する。   The reason and action of the above configuration in the twenty-fourth optical system of the present invention will be described below.

接合レンズを両凸形状にすることにより、接合レンズの入射面と射出面を対称系に近づけることができ、諸収差補正のバランスがとりやすくなる。   By making the cemented lens biconvex, the entrance surface and exit surface of the cemented lens can be brought close to a symmetric system, and various aberration corrections can be easily balanced.

本発明の第25の光学系は、第7〜第24の光学系において、前記射出側の非球面は、レンズ周辺部で発散作用が強くなるように設けられていることを特徴とするものである。   A twenty-fifth optical system according to the present invention is characterized in that, in the seventh to twenty-fourth optical systems, the aspheric surface on the exit side is provided so that the diverging action is strong at the lens peripheral portion. is there.

以下に、本発明の第25の光学系において上記構成をとる理由と作用を説明する。   The reason and action of the above configuration in the twenty-fifth optical system of the present invention will be described below.

このように非球面を設けることにより、最像面側の面で軸上、軸外収差をバランス良く補正することができる。   By providing an aspherical surface in this manner, the on-axis and off-axis aberrations can be corrected in a balanced manner on the surface closest to the image plane.

本発明は、第1〜第25の光学系を備え、さらに、前記光学系による光学像を電気信号に変換するための電子撮像素子を備えていることを特徴とする撮像装置を含むものである。   The present invention includes an image pickup apparatus that includes first to twenty-fifth optical systems, and further includes an electronic image pickup element for converting an optical image obtained by the optical system into an electric signal.

この撮像装置は以上の光学系と同様の作用効果が得られる。   This imaging apparatus can obtain the same effects as the above optical system.

以上の、条件式(1)〜(17)各々のさらに好ましい範囲を以下に示す。複数の数値が示されている場合は、右の数値程より好ましい限界値である。   The more preferable ranges of the above conditional expressions (1) to (17) are shown below. When a plurality of numerical values are shown, the limit value is more preferable as the right numerical value.

条件式 下限値 上限値
(1) − 0.93/0.85/0.80
(2) 1.0 /2.0 /2.5 15/10/7.5 /5.5
(3) 12/14.5/20 −
(4) 0.75/0.80 −
(5) − 70/60/55
(6) − 23.0/22.5
(7) 63.5/64.0 −
(8) − −
(9) − −
(10) 0.60/0.68 0.90/0.85
(11) 0.08/0.10/0.12 0.32/0.30/0.25
(12) -1.3/-1.0 -0.65 /-0.70 /-0.80 /-0.85
(13) -0.90 -0.25 /-0.35 /-0.50
(14) 0.55/0.60 0.85/0.80/0.75
(15) 3.0 /4.5 /5.0 −
/5.5 /6.5 /9.0
(16) 0.5 /0.6 /0.7 2.0 /1.5
(17) 0.08/0.11 0.25/0.22
Conditional expression Lower limit Upper limit (1)-0.93 / 0.85 / 0.80
(2) 1.0 / 2.0 / 2.5 15/10 / 7.5 / 5.5
(3) 12 / 14.5 / 20 −
(4) 0.75 / 0.80 −
(5)-70/60/55
(6)-23.0 / 22.5
(7) 63.5 / 64.0 −
(8)--
(9)--
(10) 0.60 / 0.68 0.90 / 0.85
(11) 0.08 / 0.10 / 0.12 0.32 / 0.30 / 0.25
(12) -1.3 / -1.0 -0.65 / -0.70 / -0.80 / -0.85
(13) -0.90 -0.25 / -0.35 / -0.50
(14) 0.55 / 0.60 0.85 / 0.80 / 0.75
(15) 3.0 / 4.5 / 5.0 −
/5.5 /6.5 /9.0
(16) 0.5 / 0.6 / 0.7 2.0 / 1.5
(17) 0.08 / 0.11 0.25 / 0.22
.

本発明により、高変倍比であっても薄型化が可能で、偏心の影響を小さく抑えて性能劣化を防止した光学系得ることができ、高変倍比であり、薄型の高性能のデジタルカメラやビデオカメラを得ることが可能となる。   According to the present invention, it is possible to reduce the thickness even at a high zoom ratio, and to obtain an optical system that suppresses the influence of eccentricity and prevents performance deterioration. Cameras and video cameras can be obtained.

本発明のズーム光学系の実施例1の無限遠物点合焦時の広角端(a)、中間状態(b)、望遠端(c)でのレンズ断面図である。FIG. 2 is a lens cross-sectional view at a wide-angle end (a), an intermediate state (b), and a telephoto end (c) when focusing on an object point at infinity according to Example 1 of the zoom optical system of the present invention. 本発明のズーム光学系の実施例2の図1と同様の図である。FIG. 6 is a view similar to FIG. 1 of Embodiment 2 of the zoom optical system of the present invention. 本発明のズーム光学系の実施例3の図1と同様の図である。It is the same figure as FIG. 1 of Example 3 of the zoom optical system of this invention. 本発明のズーム光学系の実施例4の図1と同様の図である。It is the same figure as FIG. 1 of Example 4 of the zoom optical system of this invention. 本発明のズーム光学系の実施例5の図1と同様の図である。It is the same figure as FIG. 1 of Example 5 of the zoom optical system of this invention. 本発明のズーム光学系の実施例6の図1と同様の図である。It is the same figure as FIG. 1 of Example 6 of the zoom optical system of this invention. 本発明のズーム光学系の実施例7の図1と同様の図である。It is the same figure as FIG. 1 of Example 7 of the zoom optical system of this invention. 本発明のズーム光学系の実施例8の図1と同様の図である。It is a figure similar to FIG. 1 of Example 8 of the zoom optical system of this invention. 本発明のズーム光学系の実施例9の図1と同様の図である。It is the same figure as FIG. 1 of Example 9 of the zoom optical system of this invention. 本発明のズーム光学系の実施例10の図1と同様の図である。It is a figure similar to FIG. 1 of Example 10 of the zoom optical system of this invention. 実施例1の無限遠物点合焦時の収差図である。FIG. 6 is an aberration diagram for Example 1 upon focusing on an object point at infinity. 実施例2の無限遠物点合焦時の収差図である。FIG. 6 is an aberration diagram for Example 2 upon focusing on an object point at infinity. 実施例3の無限遠物点合焦時の収差図である。FIG. 10 is an aberration diagram for Example 3 upon focusing on an object point at infinity. 実施例4の無限遠物点合焦時の収差図である。FIG. 10 is an aberration diagram for Example 4 upon focusing on an object point at infinity. 実施例5の無限遠物点合焦時の収差図である。FIG. 10 is an aberration diagram for Example 5 upon focusing on an object point at infinity. 実施例6の無限遠物点合焦時の収差図である。FIG. 10 is an aberration diagram for Example 6 upon focusing on an object point at infinity. 実施例7の無限遠物点合焦時の収差図である。FIG. 10 is an aberration diagram for Example 7 upon focusing on an object point at infinity. 実施例8の無限遠物点合焦時の収差図である。FIG. 10 is an aberration diagram for Example 8 upon focusing on an object point at infinity. 実施例9の無限遠物点合焦時の収差図である。FIG. 10 is an aberration diagram for Example 9 upon focusing on an object point at infinity. 実施例10の無限遠物点合焦時の収差図である。FIG. 10 is an aberration diagram for Example 10 upon focusing on an object point at infinity. 本発明によるデジタルカメラの外観を示す前方斜視図である。It is a front perspective view which shows the external appearance of the digital camera by this invention. 図21のデジタルカメラの後方斜視図である。It is a back perspective view of the digital camera of FIG. 図21のデジタルカメラの断面図である。It is sectional drawing of the digital camera of FIG.

以下、本発明のズーム光学系の実施例1〜10について説明する。実施例1〜10の無限遠物点合焦時の広角端(a)、中間状態(b)、望遠端(c)のレンズ断面図をそれぞれ図1〜図10に示す。図中、第1レンズ群はG1、開口絞りはS、第2レンズ群はG2、第3レンズ群はG3、赤外光を制限する波長域制限コートを施したローパスフィルタ等を構成する平行平板はF、像面はIで示してある。   Examples 1 to 10 of the zoom optical system according to the present invention will be described below. FIGS. 1 to 10 show lens cross-sectional views of the wide-angle end (a), the intermediate state (b), and the telephoto end (c) when focusing on an object point at infinity in Examples 1 to 10, respectively. In the figure, the first lens group is G1, the aperture stop is S, the second lens group is G2, the third lens group is G3, and a parallel plate constituting a low-pass filter or the like with a wavelength band limiting coat that limits infrared light. Is denoted by F and the image plane is denoted by I.

実施例1のズーム光学系は、図1に示すように、物体側から順に、負の屈折力を有する第1レンズ群G1、開口絞りS、正の屈折力を有する第2レンズ群G2から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は像面側に凸形状の軌跡を描いて移動し、望遠端では広角端より像面側に位置し、開口絞りSと第2レンズ群G2は一体に物体側に単調に移動する。   As shown in FIG. 1, the zoom optical system according to the first exemplary embodiment includes, in order from the object side, a first lens group G1 having a negative refractive power, an aperture stop S, and a second lens group G2 having a positive refractive power. When zooming from the wide-angle end to the telephoto end, the first lens group G1 moves along a locus that is convex on the image plane side, and at the telephoto end is located closer to the image plane side than the wide-angle end. The aperture stop S and the second lens group G2 are moved monotonously to the object side.

物体側から順に、第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズと、物体側に凸面を向けた正メニスカスレンズからなり、第2レンズ群G2は、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズと両凸正レンズとの3枚接合レンズからなり、非球面は、第1レンズ群G1の負メニスカスレンズの像面側の面と、第2レンズ群G2の3枚接合レンズの最も物体側の面と最も像面側の面との3面に用いている。   In order from the object side, the first lens group G1 includes a negative meniscus lens having a convex surface facing the object side and a positive meniscus lens having a convex surface facing the object side. The second lens group G2 has a convex surface facing the object side. A positive meniscus lens, a negative meniscus lens having a convex surface facing the object side, and a biconvex positive lens. The aspherical surface is a surface on the image surface side of the negative meniscus lens in the first lens group G1, and The three lens cemented lenses of the second lens group G2 are used for the three surfaces of the most object side surface and the most image side surface.

実施例2のズーム光学系は、図2に示すように、物体側から順に、負の屈折力を有する第1レンズ群G1、開口絞りS、正の屈折力を有する第2レンズ群G2から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は像面側に凸形状の軌跡を描いて移動し、望遠端では広角端より像面側に位置し、開口絞りSと第2レンズ群G2は一体に物体側に単調に移動する。   As shown in FIG. 2, the zoom optical system according to the second exemplary embodiment includes, in order from the object side, a first lens group G1 having a negative refractive power, an aperture stop S, and a second lens group G2 having a positive refractive power. When zooming from the wide-angle end to the telephoto end, the first lens group G1 moves along a locus that is convex on the image plane side, and at the telephoto end is located closer to the image plane side than the wide-angle end. The aperture stop S and the second lens group G2 are moved monotonously to the object side.

物体側から順に、第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズと、物体側に凸面を向けた正メニスカスレンズからなり、第2レンズ群G2は、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズと両凸正レンズとの3枚接合レンズからなり、非球面は、第1レンズ群G1の負メニスカスレンズの像面側の面と、第2レンズ群G2の3枚接合レンズの最も物体側の面と最も像面側の面との3面に用いている。   In order from the object side, the first lens group G1 includes a negative meniscus lens having a convex surface facing the object side and a positive meniscus lens having a convex surface facing the object side. The second lens group G2 has a convex surface facing the object side. A positive meniscus lens, a negative meniscus lens having a convex surface facing the object side, and a biconvex positive lens. The aspherical surface is a surface on the image surface side of the negative meniscus lens in the first lens group G1, and The three lens cemented lenses of the second lens group G2 are used for the three surfaces of the most object side surface and the most image side surface.

実施例3のズーム光学系は、図3に示すように、物体側から順に、負の屈折力を有する第1レンズ群G1、開口絞りS、正の屈折力を有する第2レンズ群G2から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は像面側に凸形状の軌跡を描いて移動し、望遠端では広角端より像面側に位置し、開口絞りSと第2レンズ群G2は一体に物体側に単調に移動する。   As shown in FIG. 3, the zoom optical system of Embodiment 3 includes, in order from the object side, a first lens group G1 having a negative refractive power, an aperture stop S, and a second lens group G2 having a positive refractive power. When zooming from the wide-angle end to the telephoto end, the first lens group G1 moves along a locus that is convex on the image plane side, and at the telephoto end is located closer to the image plane side than the wide-angle end. The aperture stop S and the second lens group G2 are moved monotonously to the object side.

物体側から順に、第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズと、物体側に凸面を向けた正メニスカスレンズからなり、第2レンズ群G2は、物体側に凸面を向けた凸平正レンズと平凹負レンズと両凸正レンズとの3枚接合レンズからなり、非球面は、第1レンズ群G1の負メニスカスレンズの像面側の面と、第2レンズ群G2の3枚接合レンズの最も物体側の面と最も像面側の面との3面に用いている。   In order from the object side, the first lens group G1 includes a negative meniscus lens having a convex surface facing the object side and a positive meniscus lens having a convex surface facing the object side. The second lens group G2 has a convex surface facing the object side. The aspherical surface is composed of a negative meniscus lens surface of the first lens group G1, and a second lens group G2 of a cemented convex positive lens, a plano-concave negative lens, and a biconvex positive lens. The three-piece cemented lens is used on three surfaces, the most object side surface and the most image side surface.

実施例4のズーム光学系は、図4に示すように、物体側から順に、負の屈折力を有する第1レンズ群G1、開口絞りS、正の屈折力を有する第2レンズ群G2から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は像面側に凸形状の軌跡を描いて移動し、望遠端では広角端より像面側に位置し、開口絞りSと第2レンズ群G2は一体に物体側に単調に移動する。   As shown in FIG. 4, the zoom optical system according to the fourth exemplary embodiment includes, in order from the object side, a first lens group G1 having a negative refractive power, an aperture stop S, and a second lens group G2 having a positive refractive power. When zooming from the wide-angle end to the telephoto end, the first lens group G1 moves along a locus that is convex on the image plane side, and at the telephoto end is located closer to the image plane side than the wide-angle end. The aperture stop S and the second lens group G2 are moved monotonously to the object side.

物体側から順に、第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズと、物体側に凸面を向けた正メニスカスレンズからなり、第2レンズ群G2は、両凸正レンズと両凹負レンズと両凸正レンズとの3枚接合レンズからなり、非球面は、第1レンズ群G1の負メニスカスレンズの像面側の面と、第2レンズ群G2の3枚接合レンズの最も物体側の面と最も像面側の面との3面に用いている。   In order from the object side, the first lens group G1 includes a negative meniscus lens having a convex surface facing the object side, and a positive meniscus lens having a convex surface facing the object side. The second lens group G2 includes a biconvex positive lens and both lenses. The aspherical surface is composed of a cemented lens composed of a concave negative lens and a biconvex positive lens. The aspherical surface is the surface of the negative meniscus lens of the first lens group G1 and the most cemented lens of the second lens group G2. It is used for the three surfaces of the object side surface and the most image surface side surface.

実施例5のズーム光学系は、図5に示すように、物体側から順に、負の屈折力を有する第1レンズ群G1、開口絞りS、正の屈折力を有する第2レンズ群G2から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は像面側に凸形状の軌跡を描いて移動し、望遠端では広角端より像面側に位置し、開口絞りSと第2レンズ群G2は一体に物体側に単調に移動する。   As shown in FIG. 5, the zoom optical system according to the fifth exemplary embodiment includes, in order from the object side, a first lens group G1 having a negative refractive power, an aperture stop S, and a second lens group G2 having a positive refractive power. When zooming from the wide-angle end to the telephoto end, the first lens group G1 moves along a locus that is convex on the image plane side, and at the telephoto end is located closer to the image plane side than the wide-angle end. The aperture stop S and the second lens group G2 are moved monotonously to the object side.

物体側から順に、第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズと、物体側に凸面を向けた正メニスカスレンズからなり、第2レンズ群G2は、両凸正レンズと像面側に凸面を向けた負メニスカスレンズと像面側に凸面を向けた負メニスカスレンズとの3枚接合レンズからなり、非球面は、第1レンズ群G1の負メニスカスレンズの像面側の面と、第2レンズ群G2の3枚接合レンズの最も物体側の面と最も像面側の面との3面に用いている。   In order from the object side, the first lens group G1 includes a negative meniscus lens having a convex surface directed toward the object side and a positive meniscus lens having a convex surface directed toward the object side. The second lens group G2 includes a biconvex positive lens and an image. The aspherical surface is a surface on the image plane side of the negative meniscus lens of the first lens group G1. And the three surfaces of the three-piece cemented lens of the second lens group G2, the most object side surface and the most image side surface.

実施例6のズーム光学系は、図6に示すように、物体側から順に、負の屈折力を有する第1レンズ群G1、開口絞りS、正の屈折力を有する第2レンズ群G2から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は像面側に凸形状の軌跡を描いて移動し、望遠端では広角端より物体側に位置し、開口絞りSと第2レンズ群G2は一体に物体側に単調に移動する。   As shown in FIG. 6, the zoom optical system according to the sixth exemplary embodiment includes, in order from the object side, a first lens group G1 having a negative refractive power, an aperture stop S, and a second lens group G2 having a positive refractive power. When zooming from the wide-angle end to the telephoto end, the first lens group G1 moves in a convex locus on the image plane side, and is located closer to the object side than the wide-angle end at the telephoto end. The aperture stop S and the second lens group G2 move monotonously as a unit to the object side.

物体側から順に、第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズと、物体側に凸面を向けた正メニスカスレンズからなり、第2レンズ群G2は、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズと両凸正レンズとの3枚接合レンズからなり、非球面は、第1レンズ群G1の負メニスカスレンズの像面側の面と、第2レンズ群G2の3枚接合レンズの最も物体側の面と最も像面側の面との3面に用いている。   In order from the object side, the first lens group G1 includes a negative meniscus lens having a convex surface facing the object side and a positive meniscus lens having a convex surface facing the object side. The second lens group G2 has a convex surface facing the object side. A positive meniscus lens, a negative meniscus lens having a convex surface facing the object side, and a biconvex positive lens. The aspherical surface is a surface on the image surface side of the negative meniscus lens in the first lens group G1, and The three lens cemented lenses of the second lens group G2 are used for the three surfaces of the most object side surface and the most image side surface.

実施例7のズーム光学系は、図7に示すように、物体側から順に、負の屈折力を有する第1レンズ群G1、開口絞りS、正の屈折力を有する第2レンズ群G2から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は像面側に凸形状の軌跡を描いて移動し、望遠端では広角端より像面側に位置し、開口絞りSと第2レンズ群G2は一体に物体側に単調に移動する。   As shown in FIG. 7, the zoom optical system according to the seventh embodiment includes, in order from the object side, a first lens group G1 having a negative refractive power, an aperture stop S, and a second lens group G2 having a positive refractive power. When zooming from the wide-angle end to the telephoto end, the first lens group G1 moves along a locus that is convex on the image plane side, and at the telephoto end is located closer to the image plane side than the wide-angle end. The aperture stop S and the second lens group G2 are moved monotonously to the object side.

物体側から順に、第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズと、物体側に凸面を向けた正メニスカスレンズからなり、第2レンズ群G2は、両凸正レンズと像面側に凸面を向けた負メニスカスレンズと像面側に凸面を向けた正メニスカスレンズとの3枚接合レンズからなり、非球面は、第1レンズ群G1の負メニスカスレンズの像面側の面と、第2レンズ群G2の3枚接合レンズの最も像面側の面との2面に用いている。   In order from the object side, the first lens group G1 includes a negative meniscus lens having a convex surface directed toward the object side and a positive meniscus lens having a convex surface directed toward the object side. The second lens group G2 includes a biconvex positive lens and an image. The aspherical surface is a surface on the image surface side of the negative meniscus lens of the first lens group G1. And two surfaces of the three-lens cemented lens of the second lens group G2 and the most image side surface.

実施例8のズーム光学系は、図8に示すように、物体側から順に、負の屈折力を有する第1レンズ群G1、開口絞りS、正の屈折力を有する第2レンズ群G2から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は像面側に凸形状の軌跡を描いて移動し、望遠端では広角端より像面側に位置し、開口絞りSと第2レンズ群G2は一体に物体側に単調に移動する。   As shown in FIG. 8, the zoom optical system according to the eighth embodiment includes, in order from the object side, a first lens group G1 having a negative refractive power, an aperture stop S, and a second lens group G2 having a positive refractive power. When zooming from the wide-angle end to the telephoto end, the first lens group G1 moves along a locus that is convex on the image plane side, and at the telephoto end is located closer to the image plane side than the wide-angle end. The aperture stop S and the second lens group G2 are moved monotonously to the object side.

物体側から順に、第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズと、物体側に凸面を向けた正メニスカスレンズからなり、第2レンズ群G2は、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズと両凸正レンズとの3枚接合レンズからなり、非球面は、第1レンズ群G1の負メニスカスレンズの像面側の面と、第2レンズ群G2の3枚接合レンズの最も物体側の面と最も像面側の面との3面に用いている。   In order from the object side, the first lens group G1 includes a negative meniscus lens having a convex surface facing the object side and a positive meniscus lens having a convex surface facing the object side. The second lens group G2 has a convex surface facing the object side. A positive meniscus lens, a negative meniscus lens having a convex surface facing the object side, and a biconvex positive lens. The aspherical surface is a surface on the image surface side of the negative meniscus lens in the first lens group G1, and The three lens cemented lenses of the second lens group G2 are used for the three surfaces of the most object side surface and the most image side surface.

実施例9のズーム光学系は、図9に示すように、物体側から順に、負の屈折力を有する第1レンズ群G1、開口絞りS、正の屈折力を有する第2レンズ群G2、弱い負の屈折力を有する第3レンズ群G3から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は像面側に凸形状の軌跡を描いて移動し、望遠端では広角端より像面側に位置し、開口絞りSと第2レンズ群G2は一体に物体側に単調に移動し、第3レンズ群G3は像面補償のために像面側へ移動する。   As shown in FIG. 9, the zoom optical system according to the ninth embodiment includes, in order from the object side, a first lens group G1 having a negative refractive power, an aperture stop S, a second lens group G2 having a positive refractive power, and a weak lens. The third lens group G3 has a negative refractive power. When zooming from the wide-angle end to the telephoto end, the first lens group G1 moves in a convex locus on the image plane side. The telephoto end is located closer to the image plane than the wide-angle end, the aperture stop S and the second lens group G2 move monotonously to the object side, and the third lens group G3 moves to the image plane side for image plane compensation. Moving.

物体側から順に、第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズと、物体側に凸面を向けた正メニスカスレンズからなり、第2レンズ群G2は、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズと両凸正レンズとの3枚接合レンズからなり、第3レンズ群G2は、物体側に凸面を向けた負メニスカスレンズ1枚からなり、非球面は、第1レンズ群G1の負メニスカスレンズの像面側の面と、第2レンズ群G2の3枚接合レンズの最も物体側の面と最も像面側の面との3面に用いている。   In order from the object side, the first lens group G1 includes a negative meniscus lens having a convex surface facing the object side and a positive meniscus lens having a convex surface facing the object side. The second lens group G2 has a convex surface facing the object side. A positive meniscus lens, a negative cemented lens with a convex surface facing the object side, and a biconvex positive lens. The third lens group G2 is composed of a single negative meniscus lens with a convex surface facing the object side. The aspherical surface has three surfaces, that is, the image surface side surface of the negative meniscus lens of the first lens group G1, and the most object side surface and the most image surface side surface of the three-junction lens of the second lens group G2. Used.

実施例10のズーム光学系は、図10に示すように、物体側から順に、負の屈折力を有する第1レンズ群G1、開口絞りS、正の屈折力を有する第2レンズ群G2、弱い正の屈
折力を有する第3レンズ群G3から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は像面側に凸形状の軌跡を描いて移動し、望遠端では広角端より像面側に位置し、開口絞りSと第2レンズ群G2は一体に物体側に単調に移動し、第3レンズ群G3は固定である。
As shown in FIG. 10, the zoom optical system according to the tenth embodiment includes, in order from the object side, a first lens group G1 having a negative refractive power, an aperture stop S, a second lens group G2 having a positive refractive power, and a weak lens. The first lens unit G1 is composed of a third lens unit G3 having a positive refractive power. When zooming from the wide-angle end to the telephoto end, the first lens unit G1 moves in a convex locus on the image plane side. The telephoto end is located closer to the image plane side than the wide-angle end, the aperture stop S and the second lens group G2 are monotonously moved integrally to the object side, and the third lens group G3 is fixed.

物体側から順に、第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズと、物体側に凸面を向けた正メニスカスレンズからなり、第2レンズ群G2は、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズと両凸正レンズとの3枚接合レンズからなり、第3レンズ群G2は、物体側に凸面を向けた正メニスカスレンズ1枚からなり、非球面は、第1レンズ群G1の負メニスカスレンズの像面側の面と、第2レンズ群G2の3枚接合レンズの最も物体側の面と最も像面側の面との3面に用いている。   In order from the object side, the first lens group G1 includes a negative meniscus lens having a convex surface facing the object side and a positive meniscus lens having a convex surface facing the object side. The second lens group G2 has a convex surface facing the object side. A positive meniscus lens, a negative meniscus lens having a convex surface facing the object side, and a biconvex positive lens. The third lens group G2 is composed of a single positive meniscus lens having a convex surface facing the object side. The aspherical surface has three surfaces, that is, the image surface side surface of the negative meniscus lens of the first lens group G1, and the most object side surface and the most image surface side surface of the three-junction lens of the second lens group G2. Used.

以下に、上記各実施例の数値データを示すが、記号は上記の外、fは全系焦点距離、FNOはFナンバー、2ωは画角、WEは広角端、STは中間状態、TEは望遠端、r1 、r2 …は各レンズ面の曲率半径、d1 、d2 …は各レンズ面間の間隔、nd1、nd2…は各レンズのd線の屈折率、νd1、νd2…は各レンズのアッベ数である。なお、非球面形状は、xを光の進行方向を正とした光軸とし、yを光軸と直交する方向にとると、下記の式にて表される。 Hereinafter, numerical data of each embodiment described above, but the symbols are outside the above, f is the focal length, F NO is the F-number, 2 [omega is field angle, WE denotes a wide angle end, ST intermediate state, TE is The telephoto end, r 1 , r 2 ... Is the radius of curvature of each lens surface, d 1 , d 2 ... Are the distances between the lens surfaces, n d1 , n d2 are the refractive index of the d-line of each lens, ν d1 , ν d2 ... is the Abbe number of each lens. The aspherical shape is represented by the following formula, where x is an optical axis with the light traveling direction being positive, and y is a direction orthogonal to the optical axis.

x=(y2 /r)/[1+{1−(K+1)(y/r)2 1/2
+A2 2 +A44 +A66 +A88 +A1010
ただし、rは近軸曲率半径、Kは円錐係数、A2 、A4 、A6 、A8 、A10はそれぞれ2次、4次、6次、8次、10次の非球面係数である。
x = (y 2 / r) / [1+ {1- (K + 1) (y / r) 2 } 1/2 ]
+ A 2 y 2 + A 4 y 4 + A 6 y 6 + A 8 y 8 + A 10 y 10
Where r is a paraxial radius of curvature, K is a conic coefficient, and A 2 , A 4 , A 6 , A 8 , and A 10 are secondary, fourth, sixth, eighth, and tenth aspherical coefficients, respectively. .

なお、以下の実施例の数値データ中、長さを示す値はmm単位の長さである。   In the numerical data of the following examples, the value indicating the length is the length in mm.


実施例1
1 = 37.691 d1 = 1.20 nd1 =1.80495 νd1 =40.93
2 = 4.362 (非球面) d2 = 2.33
3 = 8.294 d3 = 1.62 nd2 =1.84666 νd2 =23.78
4 = 16.326 d4 = (可変)
5 = ∞(絞り) d5 = -0.26
6 = 4.636 (非球面) d6 = 4.02 nd3 =1.51635 νd3 =64.02
7 = 30.000 d7 = 1.14 nd4 =1.80810 νd4 =22.76
8 = 7.183 d8 = 1.29 nd5 =1.51635 νd5 =64.02
9 = -25.382 (非球面) d9 = (可変)
10= ∞ d10= 0.76 nd6 =1.54771 νd6 =62.84
11= ∞ d11= 0.50
12= ∞ d12= 0.50 nd7 =1.51633 νd7 =64.14
13= ∞ d13= 0.37
14= ∞(像面)
非球面係数
第2面
K = -0.704
4 = 2.01910×10-4
6 = -1.91890×10-7
8 = 1.20310×10-8
10= -7.41780×10-10
第6面
K = -1.860
4 = 1.68779×10-3
6 = 5.98250×10-5
8 = -9.36385×10-6
10= 6.02976×10-7
第9面
K =-10.683
4 = 1.92469×10-3
6 = 3.36702×10-4
8 = -5.00279×10-5
10= 5.80240×10-6
ズームデータ(∞)
WE ST TE
f (mm) 5.95 10.08 17.05
NO 3.15 3.98 5.39
2ω (°) 64.41 39.67 23.88
4 12.66 5.55 1.37
9 8.97 12.68 18.93 。

Example 1
r 1 = 37.691 d 1 = 1.20 n d1 = 1.80495 ν d1 = 40.93
r 2 = 4.362 (aspherical surface) d 2 = 2.33
r 3 = 8.294 d 3 = 1.62 n d2 = 1.84666 ν d2 = 23.78
r 4 = 16.326 d 4 = (variable)
r 5 = ∞ (aperture) d 5 = -0.26
r 6 = 4.636 (aspherical surface) d 6 = 4.02 n d3 = 1.51635 ν d3 = 64.02
r 7 = 30.000 d 7 = 1.14 n d4 = 1.80810 ν d4 = 22.76
r 8 = 7.183 d 8 = 1.29 n d5 = 1.51635 ν d5 = 64.02
r 9 = -25.382 (aspherical surface) d 9 = (variable)
r 10 = ∞ d 10 = 0.76 n d6 = 1.54771 ν d6 = 62.84
r 11 = ∞ d 11 = 0.50
r 12 = ∞ d 12 = 0.50 n d7 = 1.51633 ν d7 = 64.14
r 13 = ∞ d 13 = 0.37
r 14 = ∞ (image plane)
Aspheric coefficient 2nd surface K = -0.704
A 4 = 2.01910 × 10 -4
A 6 = -1.91890 × 10 -7
A 8 = 1.20310 × 10 -8
A 10 = -7.41780 × 10 -10
6th surface K = -1.860
A 4 = 1.68779 × 10 -3
A 6 = 5.98250 × 10 -5
A 8 = -9.36385 × 10 -6
A 10 = 6.02976 × 10 -7
Surface 9 K = -10.683
A 4 = 1.92469 × 10 -3
A 6 = 3.36702 × 10 -4
A 8 = -5.00279 × 10 -5
A 10 = 5.80240 × 10 -6
Zoom data (∞)
WE ST TE
f (mm) 5.95 10.08 17.05
F NO 3.15 3.98 5.39
2ω (°) 64.41 39.67 23.88
d 4 12.66 5.55 1.37
d 9 8.97 12.68 18.93.


実施例2
1 = 37.691 d1 = 1.20 nd1 =1.80495 νd1 =40.93
2 = 4.362 (非球面) d2 = 2.33
3 = 8.294 d3 = 1.62 nd2 =1.84666 νd2 =23.78
4 = 16.326 d4 = (可変)
5 = ∞(絞り) d5 = -0.26
6 = 4.623 (非球面) d6 = 4.23 nd3 =1.51603 νd3 =64.02
7 = 100.000 d7 = 1.09 nd4 =1.80810 νd4 =22.76
8 = 8.719 d8 = 1.13 nd5 =1.51603 νd5 =64.02
9 = -25.844 (非球面) d9 = (可変)
10= ∞ d10= 0.76 nd6 =1.54771 νd6 =62.84
11= ∞ d11= 0.50
12= ∞ d12= 0.50 nd7 =1.51633 νd7 =64.14
13= ∞ d13= 0.37
14= ∞(像面)
非球面係数
第2面
K = -0.704
4 = 2.01910×10-4
6 = -1.91890×10-7
8 = 1.20310×10-8
10= -7.41780×10-10
第6面
K = -3.132
4 = 3.33055×10-3
6 = -4.83274×10-5
8 = -3.28992×10-6
10= 4.12519×10-7
第9面
K =-10.671
4 = 2.03797×10-3
6 = 3.37686×10-4
8 = -4.96072×10-5
10= 5.80349×10-6
ズームデータ(∞)
WE ST TE
f (mm) 5.95 10.08 17.05
NO 3.15 3.98 5.39
2ω (°) 64.40 39.67 23.88
4 12.66 5.55 1.37
9 8.95 12.66 18.92 。

Example 2
r 1 = 37.691 d 1 = 1.20 n d1 = 1.80495 ν d1 = 40.93
r 2 = 4.362 (aspherical surface) d 2 = 2.33
r 3 = 8.294 d 3 = 1.62 n d2 = 1.84666 ν d2 = 23.78
r 4 = 16.326 d 4 = (variable)
r 5 = ∞ (aperture) d 5 = -0.26
r 6 = 4.623 (aspherical surface) d 6 = 4.23 n d3 = 1.51603 ν d3 = 64.02
r 7 = 100.000 d 7 = 1.09 n d4 = 1.80810 ν d4 = 22.76
r 8 = 8.719 d 8 = 1.13 n d5 = 1.51603 ν d5 = 64.02
r 9 = -25.844 (aspherical surface) d 9 = (variable)
r 10 = ∞ d 10 = 0.76 n d6 = 1.54771 ν d6 = 62.84
r 11 = ∞ d 11 = 0.50
r 12 = ∞ d 12 = 0.50 n d7 = 1.51633 ν d7 = 64.14
r 13 = ∞ d 13 = 0.37
r 14 = ∞ (image plane)
Aspheric coefficient 2nd surface K = -0.704
A 4 = 2.01910 × 10 -4
A 6 = -1.91890 × 10 -7
A 8 = 1.20310 × 10 -8
A 10 = -7.41780 × 10 -10
6th surface K = -3.132
A 4 = 3.33055 × 10 -3
A 6 = -4.83274 × 10 -5
A 8 = -3.28992 × 10 -6
A 10 = 4.12519 × 10 -7
The ninth side K = -10.671
A 4 = 2.03797 × 10 -3
A 6 = 3.37686 × 10 -4
A 8 = -4.96072 × 10 -5
A 10 = 5.80349 × 10 -6
Zoom data (∞)
WE ST TE
f (mm) 5.95 10.08 17.05
F NO 3.15 3.98 5.39
2ω (°) 64.40 39.67 23.88
d 4 12.66 5.55 1.37
d 9 8.95 12.66 18.92.


実施例3
1 = 37.691 d1 = 1.20 nd1 =1.80495 νd1 =40.93
2 = 4.362 (非球面) d2 = 2.33
3 = 8.294 d3 = 1.62 nd2 =1.84666 νd2 =23.78
4 = 16.326 d4 = (可変)
5 = ∞(絞り) d5 = -0.26
6 = 4.607 (非球面) d6 = 4.24 nd3 =1.51603 νd3 =64.02
7 = ∞ d7 = 1.10 nd4 =1.80810 νd4 =22.76
8 = 9.612 d8 = 1.13 nd5 =1.51603 νd5 =64.02
9 = -26.572 (非球面) d9 = (可変)
10= ∞ d10= 0.76 nd6 =1.54771 νd6 =62.84
11= ∞ d11= 0.50
12= ∞ d12= 0.50 nd7 =1.51633 νd7 =64.14
13= ∞ d13= 0.37
14= ∞(像面)
非球面係数
第2面
K = -0.704
4 = 2.01910×10-4
6 = -1.91890×10-7
8 = 1.20310×10-8
10= -7.41780×10-10
第6面
K = -3.131
4 = 3.37249×10-3
6 = -4.66743×10-5
8 = -3.92163×10-6
10= 4.65697×10-7
第9面
K =-10.671
4 = 2.08460×10-3
6 = 3.53565×10-4
8 = -5.49632×10-5
10= 6.38510×10-6
ズームデータ(∞)
WE ST TE
f (mm) 5.95 10.08 17.05
NO 3.15 3.98 5.39
2ω (°) 64.40 39.67 23.88
4 12.66 5.55 1.37
9 8.94 12.65 18.91 。

Example 3
r 1 = 37.691 d 1 = 1.20 n d1 = 1.80495 ν d1 = 40.93
r 2 = 4.362 (aspherical surface) d 2 = 2.33
r 3 = 8.294 d 3 = 1.62 n d2 = 1.84666 ν d2 = 23.78
r 4 = 16.326 d 4 = (variable)
r 5 = ∞ (aperture) d 5 = -0.26
r 6 = 4.607 (aspherical surface) d 6 = 4.24 n d3 = 1.51603 ν d3 = 64.02
r 7 = ∞ d 7 = 1.10 n d4 = 1.80810 ν d4 = 22.76
r 8 = 9.612 d 8 = 1.13 n d5 = 1.51603 ν d5 = 64.02
r 9 = -26.572 (aspherical surface) d 9 = (variable)
r 10 = ∞ d 10 = 0.76 n d6 = 1.54771 ν d6 = 62.84
r 11 = ∞ d 11 = 0.50
r 12 = ∞ d 12 = 0.50 n d7 = 1.51633 ν d7 = 64.14
r 13 = ∞ d 13 = 0.37
r 14 = ∞ (image plane)
Aspheric coefficient 2nd surface K = -0.704
A 4 = 2.01910 × 10 -4
A 6 = -1.91890 × 10 -7
A 8 = 1.20310 × 10 -8
A 10 = -7.41780 × 10 -10
6th surface K = -3.131
A 4 = 3.37249 × 10 -3
A 6 = -4.66743 × 10 -5
A 8 = -3.92163 × 10 -6
A 10 = 4.65697 × 10 -7
The ninth side K = -10.671
A 4 = 2.08460 × 10 -3
A 6 = 3.53565 × 10 -4
A 8 = -5.49632 × 10 -5
A 10 = 6.38510 × 10 -6
Zoom data (∞)
WE ST TE
f (mm) 5.95 10.08 17.05
F NO 3.15 3.98 5.39
2ω (°) 64.40 39.67 23.88
d 4 12.66 5.55 1.37
d 9 8.94 12.65 18.91.


実施例4
1 = 37.691 d1 = 1.20 nd1 =1.80495 νd1 =40.93
2 = 4.362 (非球面) d2 = 2.33
3 = 8.294 d3 = 1.62 nd2 =1.84666 νd2 =23.78
4 = 16.326 d4 = (可変)
5 = ∞(絞り) d5 = -0.26
6 = 4.603 (非球面) d6 = 4.24 nd3 =1.51603 νd3 =64.02
7 = -300.000 d7 = 1.10 nd4 =1.80810 νd4 =22.76
8 = 9.954 d8 = 1.13 nd5 =1.51603 νd5 =64.02
9 = -26.804 (非球面) d9 = (可変)
10= ∞ d10= 0.76 nd6 =1.54771 νd6 =62.84
11= ∞ d11= 0.50
12= ∞ d12= 0.50 nd7 =1.51633 νd7 =64.14
13= ∞ d13= 0.38
14= ∞(像面)
非球面係数
第2面
K = -0.704
4 = 2.01910×10-4
6 = -1.91890×10-7
8 = 1.20310×10-8
10= -7.41780×10-10
第6面
K = -3.131
4 = 3.38882×10-3
6 = -4.78149×10-5
8 = -3.72655×10-6
10= 4.44776×10-7
第9面
K =-10.671
4 = 2.10306×10-3
6 = 3.52644×10-4
8 = -5.41202×10-5
10= 6.22955×10-6
ズームデータ(∞)
WE ST TE
f (mm) 5.95 10.08 17.05
NO 3.15 3.98 5.39
2ω (°) 64.40 39.67 23.88
4 12.66 5.55 1.37
9 8.93 12.64 18.90 。

Example 4
r 1 = 37.691 d 1 = 1.20 n d1 = 1.80495 ν d1 = 40.93
r 2 = 4.362 (aspherical surface) d 2 = 2.33
r 3 = 8.294 d 3 = 1.62 n d2 = 1.84666 ν d2 = 23.78
r 4 = 16.326 d 4 = (variable)
r 5 = ∞ (aperture) d 5 = -0.26
r 6 = 4.603 (aspherical surface) d 6 = 4.24 n d3 = 1.51603 ν d3 = 64.02
r 7 = -300.000 d 7 = 1.10 n d4 = 1.80810 ν d4 = 22.76
r 8 = 9.954 d 8 = 1.13 n d5 = 1.51603 ν d5 = 64.02
r 9 = -26.804 (aspherical surface) d 9 = (variable)
r 10 = ∞ d 10 = 0.76 n d6 = 1.54771 ν d6 = 62.84
r 11 = ∞ d 11 = 0.50
r 12 = ∞ d 12 = 0.50 n d7 = 1.51633 ν d7 = 64.14
r 13 = ∞ d 13 = 0.38
r 14 = ∞ (image plane)
Aspheric coefficient 2nd surface K = -0.704
A 4 = 2.01910 × 10 -4
A 6 = -1.91890 × 10 -7
A 8 = 1.20310 × 10 -8
A 10 = -7.41780 × 10 -10
6th surface K = -3.131
A 4 = 3.38882 × 10 -3
A 6 = -4.78149 × 10 -5
A 8 = -3.72655 × 10 -6
A 10 = 4.44776 × 10 -7
The ninth side K = -10.671
A 4 = 2.10306 × 10 -3
A 6 = 3.52644 × 10 -4
A 8 = -5.41202 × 10 -5
A 10 = 6.22955 × 10 -6
Zoom data (∞)
WE ST TE
f (mm) 5.95 10.08 17.05
F NO 3.15 3.98 5.39
2ω (°) 64.40 39.67 23.88
d 4 12.66 5.55 1.37
d 9 8.93 12.64 18.90.


実施例5
1 = 37.691 d1 = 1.20 nd1 =1.80495 νd1 =40.93
2 = 4.362 (非球面) d2 = 2.33
3 = 8.294 d3 = 1.62 nd2 =1.84666 νd2 =23.78
4 = 16.326 d4 = (可変)
5 = ∞(絞り) d5 = -0.26
6 = 4.300 (非球面) d6 = 4.31 nd3 =1.51742 νd3 =52.43
7 = -5.152 d7 = 1.20 nd4 =1.80810 νd4 =22.76
8 = -20.000 d8 = 0.95 nd5 =1.51603 νd5 =64.02
9 = -24.338 (非球面) d9 = (可変)
10= ∞ d10= 0.76 nd6 =1.54771 νd6 =62.84
11= ∞ d11= 0.50
12= ∞ d12= 0.50 nd7 =1.51633 νd7 =64.14
13= ∞ d13= 0.37
14= ∞(像面)
非球面係数
第2面
K = -0.704
4 = 2.01910×10-4
6 = -1.91890×10-7
8 = 1.20310×10-8
10= -7.41780×10-10
第6面
K = -3.112
4 = 4.54021×10-3
6 = -8.58413×10-5
8 = 2.62817×10-6
10= 2.91567×10-7
第9面
K =-10.670
4 = 2.43162×10-3
6 = 3.02302×10-4
8 = -2.43703×10-5
10= 3.51356×10-6
ズームデータ(∞)
WE ST TE
f (mm) 5.96 10.09 17.05
NO 3.16 3.98 5.39
2ω (°) 64.32 39.64 23.89
4 12.66 5.55 1.37
9 8.94 12.66 18.93 。

Example 5
r 1 = 37.691 d 1 = 1.20 n d1 = 1.80495 ν d1 = 40.93
r 2 = 4.362 (aspherical surface) d 2 = 2.33
r 3 = 8.294 d 3 = 1.62 n d2 = 1.84666 ν d2 = 23.78
r 4 = 16.326 d 4 = (variable)
r 5 = ∞ (aperture) d 5 = -0.26
r 6 = 4.300 (aspherical surface) d 6 = 4.31 n d3 = 1.51742 ν d3 = 52.43
r 7 = -5.152 d 7 = 1.20 n d4 = 1.80810 ν d4 = 22.76
r 8 = -20.000 d 8 = 0.95 n d5 = 1.51603 ν d5 = 64.02
r 9 = -24.338 (aspherical surface) d 9 = (variable)
r 10 = ∞ d 10 = 0.76 n d6 = 1.54771 ν d6 = 62.84
r 11 = ∞ d 11 = 0.50
r 12 = ∞ d 12 = 0.50 n d7 = 1.51633 ν d7 = 64.14
r 13 = ∞ d 13 = 0.37
r 14 = ∞ (image plane)
Aspheric coefficient 2nd surface K = -0.704
A 4 = 2.01910 × 10 -4
A 6 = -1.91890 × 10 -7
A 8 = 1.20310 × 10 -8
A 10 = -7.41780 × 10 -10
6th surface K = -3.112
A 4 = 4.54021 × 10 -3
A 6 = -8.58413 × 10 -5
A 8 = 2.62817 × 10 -6
A 10 = 2.91567 × 10 -7
9th surface K = -10.670
A 4 = 2.43162 × 10 -3
A 6 = 3.02302 × 10 -4
A 8 = -2.43703 × 10 -5
A 10 = 3.51356 × 10 -6
Zoom data (∞)
WE ST TE
f (mm) 5.96 10.09 17.05
F NO 3.16 3.98 5.39
2ω (°) 64.32 39.64 23.89
d 4 12.66 5.55 1.37
d 9 8.94 12.66 18.93.


実施例6
1 = 51.401 d1 = 1.20 nd1 =1.80495 νd1 =40.93
2 = 4.250 (非球面) d2 = 2.33
3 = 8.280 d3 = 1.62 nd2 =1.84666 νd2 =23.78
4 = 16.031 d4 = (可変)
5 = ∞(絞り) d5 = -0.26
6 = 4.690 (非球面) d6 = 4.00 nd3 =1.51603 νd3 =64.02
7 = 48.276 d7 = 1.09 nd4 =1.80810 νd4 =22.76
8 = 8.996 d8 = 1.13 nd5 =1.51603 νd5 =64.02
9 = -32.723 (非球面) d9 = (可変)
10= ∞ d10= 0.76 nd6 =1.54771 νd6 =62.84
11= ∞ d11= 0.50
12= ∞ d12= 0.50 nd7 =1.51633 νd7 =64.14
13= ∞ d13= 0.37
14= ∞(像面)
非球面係数
第2面
K = -0.704
4 = 2.01910×10-4
6 = -1.91890×10-7
8 = 1.20310×10-8
10= -7.41780×10-10
第6面
K = -3.132
4 = 3.33772×10-3
6 = -4.81743×10-5
8 = -4.35927×10-6
10= 5.17931×10-7
第9面
K =-10.671
4 = 2.15229×10-3
6 = 3.18975×10-4
8 = -5.59975×10-5
10= 6.63410×10-6
ズームデータ(∞)
WE ST TE
f (mm) 5.85 10.56 20.05
NO 3.32 4.39 6.58
2ω (°) 66.60 38.16 20.40
4 12.66 5.55 1.37
9 9.84 14.64 24.30 。

Example 6
r 1 = 51.401 d 1 = 1.20 n d1 = 1.80495 ν d1 = 40.93
r 2 = 4.250 (aspherical surface) d 2 = 2.33
r 3 = 8.280 d 3 = 1.62 n d2 = 1.84666 ν d2 = 23.78
r 4 = 16.031 d 4 = (variable)
r 5 = ∞ (aperture) d 5 = -0.26
r 6 = 4.690 (aspherical surface) d 6 = 4.00 n d3 = 1.51603 ν d3 = 64.02
r 7 = 48.276 d 7 = 1.09 n d4 = 1.80810 ν d4 = 22.76
r 8 = 8.996 d 8 = 1.13 n d5 = 1.51603 ν d5 = 64.02
r 9 = -32.723 (aspherical surface) d 9 = (variable)
r 10 = ∞ d 10 = 0.76 n d6 = 1.54771 ν d6 = 62.84
r 11 = ∞ d 11 = 0.50
r 12 = ∞ d 12 = 0.50 n d7 = 1.51633 ν d7 = 64.14
r 13 = ∞ d 13 = 0.37
r 14 = ∞ (image plane)
Aspheric coefficient 2nd surface K = -0.704
A 4 = 2.01910 × 10 -4
A 6 = -1.91890 × 10 -7
A 8 = 1.20310 × 10 -8
A 10 = -7.41780 × 10 -10
6th surface K = -3.132
A 4 = 3.33772 × 10 -3
A 6 = -4.81743 × 10 -5
A 8 = -4.35927 × 10 -6
A 10 = 5.17931 × 10 -7
The ninth side K = -10.671
A 4 = 2.15229 × 10 -3
A 6 = 3.18975 × 10 -4
A 8 = -5.59975 × 10 -5
A 10 = 6.63410 × 10 -6
Zoom data (∞)
WE ST TE
f (mm) 5.85 10.56 20.05
F NO 3.32 4.39 6.58
2ω (°) 66.60 38.16 20.40
d 4 12.66 5.55 1.37
d 9 9.84 14.64 24.30.


実施例7
1 = 37.691 d1 = 1.20 nd1 =1.80495 νd1 =40.93
2 = 4.450 (非球面) d2 = 2.33
3 = 8.294 d3 = 1.62 nd2 =1.84666 νd2 =23.78
4 = 16.326 d4 = (可変)
5 = ∞(絞り) d5 = -0.26
6 = 4.441 d6 = 3.89 nd3 =1.51603 νd3 =64.02
7 = -9.298 d7 = 0.98 nd4 =1.80810 νd4 =22.76
8 = -279.238 d8 = 0.74 nd5 =1.51603 νd5 =64.02
9 = -60.000 (非球面) d9 = (可変)
10= ∞ d10= 0.76 nd6 =1.54771 νd6 =62.84
11= ∞ d11= 0.50
12= ∞ d12= 0.50 nd7 =1.51633 νd7 =64.14
13= ∞ d13= 0.37
14= ∞(像面)
非球面係数
第2面
K = -0.705
2 = -5.57868×10-3
4 = 3.37216×10-5
6 = 4.60028×10-5
8 = -4.71414×10-6
10= 1.61550×10-7
第9面
K =-10.651
4 = 3.53185×10-3
6 = 1.08265×10-4
8 = 2.25584×10-5
10= -2.80053×10-8
ズームデータ(∞)
WE ST TE
f (mm) 6.66 10.88 17.35
NO 3.27 4.06 5.28
2ω (°) 58.61 36.89 23.47
4 12.66 5.55 1.37
9 9.80 13.25 18.54 。

Example 7
r 1 = 37.691 d 1 = 1.20 n d1 = 1.80495 ν d1 = 40.93
r 2 = 4.450 (aspherical surface) d 2 = 2.33
r 3 = 8.294 d 3 = 1.62 n d2 = 1.84666 ν d2 = 23.78
r 4 = 16.326 d 4 = (variable)
r 5 = ∞ (aperture) d 5 = -0.26
r 6 = 4.441 d 6 = 3.89 n d3 = 1.51603 ν d3 = 64.02
r 7 = -9.298 d 7 = 0.98 n d4 = 1.80810 ν d4 = 22.76
r 8 = -279.238 d 8 = 0.74 n d5 = 1.51603 ν d5 = 64.02
r 9 = -60.000 (aspherical surface) d 9 = (variable)
r 10 = ∞ d 10 = 0.76 n d6 = 1.54771 ν d6 = 62.84
r 11 = ∞ d 11 = 0.50
r 12 = ∞ d 12 = 0.50 n d7 = 1.51633 ν d7 = 64.14
r 13 = ∞ d 13 = 0.37
r 14 = ∞ (image plane)
Aspheric coefficient 2nd surface K = -0.705
A 2 = -5.57868 × 10 -3
A 4 = 3.37216 × 10 -5
A 6 = 4.60028 × 10 -5
A 8 = -4.71414 × 10 -6
A 10 = 1.61550 × 10 -7
Surface 9 K = -10.651
A 4 = 3.53185 × 10 -3
A 6 = 1.08265 × 10 -4
A 8 = 2.25584 × 10 -5
A 10 = -2.80053 × 10 -8
Zoom data (∞)
WE ST TE
f (mm) 6.66 10.88 17.35
F NO 3.27 4.06 5.28
2ω (°) 58.61 36.89 23.47
d 4 12.66 5.55 1.37
d 9 9.80 13.25 18.54.


実施例8
1 = 37.691 d1 = 1.20 nd1 =1.80400 νd1 =46.57
2 = 4.393 (非球面) d2 = 2.33
3 = 8.294 d3 = 1.62 nd2 =1.84666 νd2 =23.78
4 = 16.326 d4 = (可変)
5 = ∞(絞り) d5 = -0.26
6 = 4.567 (非球面) d6 = 3.01 nd3 =1.49700 νd3 =81.54
7 = 66.799 d7 = 1.67 nd4 =1.92286 νd4 =18.90
8 = 13.949 d8 = 1.11 nd5 =1.51603 νd5 =64.02
9 = -32.135 (非球面) d9 = (可変)
10= ∞ d10= 0.76 nd6 =1.54771 νd6 =62.84
11= ∞ d11= 0.50
12= ∞ d12= 0.50 nd7 =1.51633 νd7 =64.14
13= ∞ d13= 0.37
14= ∞(像面)
非球面係数
第2面
K = -0.704
4 = 2.10637×10-4
6 = 1.07255×10-6
8 = -3.71750×10-8
10= 5.72629×10-9
第6面
K = -3.130
4 = 4.08852×10-3
6 = -1.44925×10-4
8 = 1.73649×10-6
10= 7.90457×10-7
第9面
K =-10.672
4 = 3.03679×10-3
6 = 1.53844×10-4
8 = -7.79567×10-5
10= 1.49615×10-5
ズームデータ(∞)
WE ST TE
f (mm) 5.96 10.00 16.64
NO 3.13 3.92 5.24
2ω (°) 64.81 40.07 24.48
4 12.66 5.55 1.37
9 9.50 13.08 18.96 。

Example 8
r 1 = 37.691 d 1 = 1.20 n d1 = 1.80400 ν d1 = 46.57
r 2 = 4.393 (aspherical surface) d 2 = 2.33
r 3 = 8.294 d 3 = 1.62 n d2 = 1.84666 ν d2 = 23.78
r 4 = 16.326 d 4 = (variable)
r 5 = ∞ (aperture) d 5 = -0.26
r 6 = 4.567 (aspherical surface) d 6 = 3.01 n d3 = 1.49700 ν d3 = 81.54
r 7 = 66.799 d 7 = 1.67 n d4 = 1.92286 ν d4 = 18.90
r 8 = 13.949 d 8 = 1.11 n d5 = 1.51603 ν d5 = 64.02
r 9 = -32.135 (aspherical surface) d 9 = (variable)
r 10 = ∞ d 10 = 0.76 n d6 = 1.54771 ν d6 = 62.84
r 11 = ∞ d 11 = 0.50
r 12 = ∞ d 12 = 0.50 n d7 = 1.51633 ν d7 = 64.14
r 13 = ∞ d 13 = 0.37
r 14 = ∞ (image plane)
Aspheric coefficient 2nd surface K = -0.704
A 4 = 2.10637 × 10 -4
A 6 = 1.07255 × 10 -6
A 8 = -3.71750 × 10 -8
A 10 = 5.72629 × 10 -9
6th surface K = -3.130
A 4 = 4.08852 × 10 -3
A 6 = -1.44925 × 10 -4
A 8 = 1.73649 × 10 -6
A 10 = 7.90457 × 10 -7
Surface 9 K = -10.672
A 4 = 3.03679 × 10 -3
A 6 = 1.53844 × 10 -4
A 8 = -7.79567 × 10 -5
A 10 = 1.49615 × 10 -5
Zoom data (∞)
WE ST TE
f (mm) 5.96 10.00 16.64
F NO 3.13 3.92 5.24
2ω (°) 64.81 40.07 24.48
d 4 12.66 5.55 1.37
d 9 9.50 13.08 18.96.


実施例9
1 = 37.691 d1 = 1.20 nd1 =1.80495 νd1 =40.93
2 = 4.362 (非球面) d2 = 2.33
3 = 8.294 d3 = 1.62 nd2 =1.84666 νd2 =23.78
4 = 16.326 d4 = (可変)
5 = ∞(絞り) d5 = -0.26
6 = 4.538 (非球面) d6 = 4.20 nd3 =1.51603 νd3 =64.02
7 = 96.074 d7 = 1.05 nd4 =1.80810 νd4 =22.76
8 = 8.579 d8 = 1.08 nd5 =1.51603 νd5 =64.02
9 = -28.441 (非球面) d9 = (可変)
10= 211.718 d10= 0.71 nd6 =1.49700 νd6 =81.54
11= 102.523 d11= (可変)
12= ∞ d12= 0.76 nd7 =1.54771 νd7 =62.84
13= ∞ d13= 0.50
14= ∞ d14= 0.50 nd8 =1.51633 νd8 =64.14
15= ∞ d15= 0.37
16= ∞(像面)
非球面係数
第2面
K = -0.704
4 = 2.01910×10-4
6 = -1.91890×10-7
8 = 1.20310×10-8
10= -7.41780×10-10
第6面
K = -3.131
4 = 3.53969×10-3
6 = -5.76418×10-5
8 = -2.28407×10-6
10= 3.73706×10-7
第9面
K =-10.671
4 = 2.22302×10-3
6 = 3.59589×10-4
8 = -4.93117×10-5
10= 6.01662×10-6
ズームデータ(∞)
WE ST TE
f (mm) 5.95 10.09 17.06
NO 3.16 3.98 5.40
2ω (°) 64.35 39.64 23.87
4 12.66 5.55 1.37
9 6.05 9.77 16.11
11 2.32 2.25 0.37 。

Example 9
r 1 = 37.691 d 1 = 1.20 n d1 = 1.80495 ν d1 = 40.93
r 2 = 4.362 (aspherical surface) d 2 = 2.33
r 3 = 8.294 d 3 = 1.62 n d2 = 1.84666 ν d2 = 23.78
r 4 = 16.326 d 4 = (variable)
r 5 = ∞ (aperture) d 5 = -0.26
r 6 = 4.538 (aspherical surface) d 6 = 4.20 n d3 = 1.51603 ν d3 = 64.02
r 7 = 96.074 d 7 = 1.05 n d4 = 1.80810 ν d4 = 22.76
r 8 = 8.579 d 8 = 1.08 n d5 = 1.51603 ν d5 = 64.02
r 9 = -28.441 (aspherical surface) d 9 = (variable)
r 10 = 211.718 d 10 = 0.71 n d6 = 1.49700 ν d6 = 81.54
r 11 = 102.523 d 11 = (variable)
r 12 = ∞ d 12 = 0.76 n d7 = 1.54771 ν d7 = 62.84
r 13 = ∞ d 13 = 0.50
r 14 = ∞ d 14 = 0.50 n d8 = 1.51633 ν d8 = 64.14
r 15 = ∞ d 15 = 0.37
r 16 = ∞ (image plane)
Aspheric coefficient 2nd surface K = -0.704
A 4 = 2.01910 × 10 -4
A 6 = -1.91890 × 10 -7
A 8 = 1.20310 × 10 -8
A 10 = -7.41780 × 10 -10
6th surface K = -3.131
A 4 = 3.53969 × 10 -3
A 6 = -5.76418 × 10 -5
A 8 = -2.28407 × 10 -6
A 10 = 3.73706 × 10 -7
The ninth side K = -10.671
A 4 = 2.22302 × 10 -3
A 6 = 3.59589 × 10 -4
A 8 = -4.93117 × 10 -5
A 10 = 6.01662 × 10 -6
Zoom data (∞)
WE ST TE
f (mm) 5.95 10.09 17.06
F NO 3.16 3.98 5.40
2ω (°) 64.35 39.64 23.87
d 4 12.66 5.55 1.37
d 9 6.05 9.77 16.11
d 11 2.32 2.25 0.37.


実施例10
1 = 37.691 d1 = 1.20 nd1 =1.80495 νd1 =40.93
2 = 4.362 (非球面) d2 = 2.33
3 = 8.294 d3 = 1.62 nd2 =1.84666 νd2 =23.78
4 = 16.326 d4 = (可変)
5 = ∞(絞り) d5 = -0.26
6 = 4.526 (非球面) d6 = 4.20 nd3 =1.51603 νd3 =64.02
7 = 92.786 d7 = 1.05 nd4 =1.80810 νd4 =22.76
8 = 8.550 d8 = 1.08 nd5 =1.51603 νd5 =64.02
9 = -30.010 (非球面) d9 = (可変)
10= 110.638 d10= 0.76 nd6 =1.49700 νd6 =81.54
11= 123.617 d11= 2.26
12= ∞ d12= 0.76 nd7 =1.54771 νd7 =62.84
13= ∞ d13= 0.50
14= ∞ d14= 0.50 nd8 =1.51633 νd8 =64.14
15= ∞ d15= 0.37
16= ∞(像面)
非球面係数
第2面
K = -0.704
4 = 2.01910×10-4
6 = -1.91890×10-7
8 = 1.20310×10-8
10= -7.41780×10-10
第6面
K = -3.131
4 = 3.54289×10-3
6 = -4.52245×10-5
8 = -4.77798×10-6
10= 5.17175×10-7
第9面
K =-10.671
4 = 2.18272×10-3
6 = 4.27937×10-4
8 = -6.90882×10-5
10= 7.84657×10-6
ズームデータ(∞)
WE ST TE
f (mm) 5.91 10.03 17.04
NO 3.13 3.96 5.39
2ω (°) 64.80 39.84 23.89
4 12.66 5.55 1.37
9 6.05 9.75 16.03 。

Example 10
r 1 = 37.691 d 1 = 1.20 n d1 = 1.80495 ν d1 = 40.93
r 2 = 4.362 (aspherical surface) d 2 = 2.33
r 3 = 8.294 d 3 = 1.62 n d2 = 1.84666 ν d2 = 23.78
r 4 = 16.326 d 4 = (variable)
r 5 = ∞ (aperture) d 5 = -0.26
r 6 = 4.526 (aspherical surface) d 6 = 4.20 n d3 = 1.51603 ν d3 = 64.02
r 7 = 92.786 d 7 = 1.05 n d4 = 1.80810 ν d4 = 22.76
r 8 = 8.550 d 8 = 1.08 n d5 = 1.51603 ν d5 = 64.02
r 9 = -30.010 (aspherical surface) d 9 = (variable)
r 10 = 110.638 d 10 = 0.76 n d6 = 1.49700 ν d6 = 81.54
r 11 = 123.617 d 11 = 2.26
r 12 = ∞ d 12 = 0.76 n d7 = 1.54771 ν d7 = 62.84
r 13 = ∞ d 13 = 0.50
r 14 = ∞ d 14 = 0.50 n d8 = 1.51633 ν d8 = 64.14
r 15 = ∞ d 15 = 0.37
r 16 = ∞ (image plane)
Aspheric coefficient 2nd surface K = -0.704
A 4 = 2.01910 × 10 -4
A 6 = -1.91890 × 10 -7
A 8 = 1.20310 × 10 -8
A 10 = -7.41780 × 10 -10
6th surface K = -3.131
A 4 = 3.54289 × 10 -3
A 6 = -4.52245 × 10 -5
A 8 = -4.77798 × 10 -6
A 10 = 5.17175 × 10 -7
The ninth side K = -10.671
A 4 = 2.18272 × 10 -3
A 6 = 4.27937 × 10 -4
A 8 = -6.90882 × 10 -5
A 10 = 7.84657 × 10 -6
Zoom data (∞)
WE ST TE
f (mm) 5.91 10.03 17.04
F NO 3.13 3.96 5.39
2ω (°) 64.80 39.84 23.89
d 4 12.66 5.55 1.37
d 9 6.05 9.75 16.03.

以上の実施例1〜10の無限遠物点合焦時の収差図をそれぞれ図11〜図20に示す。これらの収差図において、(a)は広角端、(b)は中間状態、(c)は望遠端におけるの球面収差、非点収差、歪曲収差、倍率色収差を示す。なお、各収差図中、“FIY”は像高を表す。   Aberration diagrams at the time of focusing on an object point at infinity in Examples 1 to 10 are shown in FIGS. In these aberration diagrams, (a) shows the spherical aberration, astigmatism, distortion and lateral chromatic aberration at the wide-angle end, (b) the intermediate state, and (c) the telephoto end. In each aberration diagram, “FIY” represents the image height.

上記実施例1〜10の条件式(1)〜(17)の値は次の通りである。
The values of conditional expressions (1) to (17) in Examples 1 to 10 are as follows.

条件式 実施例1 実施例2 実施例3 実施例4 実施例5
(1) 0.92 0.72 0.65 0.62 -0.02
(2) 3.12 3.74 3.75 3.75 4.55
(3) 6.47 21.63 INF 65.18 1.20
(4) 0.283 0.337 0.362 0.371 0.822
(5) 41.26 41.26 41.26 41.26 41.26
(6) 22.76 22.76 22.76 22.76 22.76
(7) 64.02 64.02 64.02 64.02 64.02
(8) 1.80810 1.80810 1.80810 1.80810 1.80810
(9) 1.51635 1.51603 1.51603 1.51603 1.51603
(10) 0.80 0.82 0.83 0.83 0.67
(11) 1.29 1.13 1.13 1.13 0.33
(12) -0.69 -0.70 -0.70 -0.71 -0.70
(13) 3.12 10.39 INF -31.16 -0.54
(14) 0.62 0.66 0.66 0.66 0.67
(15) 3.12 10.39 INF 31.16 0.54
(16) 0.75 0.91 1.00 1.03 2.08
(17) 0.20 0.18 0.17 0.17 0.15

条件式 実施例6 実施例7 実施例8 実施例9 実施例10
(1) 0.71 0.04 0.51 0.70 0.70
(2) 3.54 5.27 2.72 3.91 3.91
(3) 10.29 2.09 14.63 21.17 20.45
(4) 0.275 4.654 0.434 0.084 0.069
(5) 41.26 41.26 45.12 41.26 41.26
(6) 22.76 22.76 18.90 22.76 22.76
(7) 64.02 64.02 64.02 64.02 64.02
(8) 1.80810 1.80810 1.92286 1.80810 1.80810
(9) 1.51603 1.51603 1.51603 1.51603 1.51603
(10) 0.82 0.69 0.81 0.83 0.83
(11) 1.13 0.31 1.11 1.08 1.08
(12) -0.75 -0.86 -0.75 -1.09 -1.08
(13) 5.01 -0.97 6.94 9.98 9.64
(14) 0.64 0.69 0.52 0.66 0.66
(15) 5.01 -0.97 6.94 9.98 9.64
(16) 0.93 29.00 1.45 0.89 0.89
(17) 0.18 0.13 0.19 0.17 0.17
Conditional Example Example 1 Example 2 Example 3 Example 4 Example 5
(1) 0.92 0.72 0.65 0.62 -0.02
(2) 3.12 3.74 3.75 3.75 4.55
(3) 6.47 21.63 INF 65.18 1.20
(4) 0.283 0.337 0.362 0.371 0.822
(5) 41.26 41.26 41.26 41.26 41.26
(6) 22.76 22.76 22.76 22.76 22.76
(7) 64.02 64.02 64.02 64.02 64.02
(8) 1.80810 1.80810 1.80810 1.80810 1.80810
(9) 1.51635 1.51603 1.51603 1.51603 1.51603
(10) 0.80 0.82 0.83 0.83 0.67
(11) 1.29 1.13 1.13 1.13 0.33
(12) -0.69 -0.70 -0.70 -0.71 -0.70
(13) 3.12 10.39 INF -31.16 -0.54
(14) 0.62 0.66 0.66 0.66 0.67
(15) 3.12 10.39 INF 31.16 0.54
(16) 0.75 0.91 1.00 1.03 2.08
(17) 0.20 0.18 0.17 0.17 0.15

Conditional Example Example 6 Example 7 Example 8 Example 9 Example 10
(1) 0.71 0.04 0.51 0.70 0.70
(2) 3.54 5.27 2.72 3.91 3.91
(3) 10.29 2.09 14.63 21.17 20.45
(4) 0.275 4.654 0.434 0.084 0.069
(5) 41.26 41.26 45.12 41.26 41.26
(6) 22.76 22.76 18.90 22.76 22.76
(7) 64.02 64.02 64.02 64.02 64.02
(8) 1.80810 1.80810 1.92286 1.80810 1.80810
(9) 1.51603 1.51603 1.51603 1.51603 1.51603
(10) 0.82 0.69 0.81 0.83 0.83
(11) 1.13 0.31 1.11 1.08 1.08
(12) -0.75 -0.86 -0.75 -1.09 -1.08
(13) 5.01 -0.97 6.94 9.98 9.64
(14) 0.64 0.69 0.52 0.66 0.66
(15) 5.01 -0.97 6.94 9.98 9.64
(16) 0.93 29.00 1.45 0.89 0.89
(17) 0.18 0.13 0.19 0.17 0.17
.

図21〜図23は、本発明によるズーム光学系をデジタルカメラの撮影光学系41に組み込んだ構成の概念図を示す。図21はデジタルカメラ40の外観を示す前方斜視図、図22は同後方正面図、図23はデジタルカメラ40の構成を示す模式的な透視平面図である。ただし、図21と図23においては、撮影光学系41の非沈胴時を示している。デジタルカメラ40は、この例の場合、撮影用光路42を有する撮影光学系41、ファインダー用光路44を有するファインダー光学系43、シャッター45、フラッシュ46、液晶表示モニター47、焦点距離変更ボタン61、設定変更スイッチ62等を含み、撮影光学系41の沈胴時には、カバー60をスライドすることにより、撮影光学系41とファインダー光学系43とフラッシュ46はそのカバー60で覆われる。そして、カバー60を開いてカメラ40を撮影状態に設定すると、撮影光学系41は図23の非沈胴状態になり、カメラ40の上部に配置されたシャッター45を押圧すると、それに連動して撮影光学系41、例えば実施例1のズーム光学系を通して撮影が行われる。撮影光学系41によって形成された物体像が、IRカットコートを施したローパスフィルタFとカバーガラスCを介してCCD49の撮像面上に形成される。このCCD49で受光された物体像は、処理手段51を介し、電子画像としてカメラ背面に設けられた液晶表示モニター47に表示される。また、この処理手段51には記録手段52が接続され、撮影された電子画像を記録することもできる。なお、この記録手段52は処理手段51と別体に設けてもよいし、フロッピーディスクやメモリーカード、MO等により電子的に記録書込を行うように構成してもよい。また、CCD49に代わって銀塩フィルムを配置した銀塩カメラとして構成してもよい。   FIGS. 21 to 23 are conceptual diagrams of a configuration in which the zoom optical system according to the present invention is incorporated in a photographing optical system 41 of a digital camera. FIG. 21 is a front perspective view showing the external appearance of the digital camera 40, FIG. 22 is a rear front view thereof, and FIG. 23 is a schematic perspective plan view showing the configuration of the digital camera 40. However, in FIGS. 21 and 23, the photographing optical system 41 is not retracted. In this example, the digital camera 40 includes a photographing optical system 41 having a photographing optical path 42, a finder optical system 43 having a finder optical path 44, a shutter 45, a flash 46, a liquid crystal display monitor 47, a focal length change button 61, a setting. When the photographing optical system 41 is retracted, including the change switch 62, the photographing optical system 41, the finder optical system 43, and the flash 46 are covered with the cover 60 by sliding the cover 60. When the cover 60 is opened and the camera 40 is set to the photographing state, the photographing optical system 41 enters the non-collapsed state shown in FIG. 23. When the shutter 45 disposed on the upper portion of the camera 40 is pressed, the photographing optical system is linked. Photographing is performed through the system 41, for example, the zoom optical system of the first embodiment. An object image formed by the photographic optical system 41 is formed on the imaging surface of the CCD 49 via the low-pass filter F and the cover glass C subjected to IR cut coating. The object image received by the CCD 49 is displayed as an electronic image on the liquid crystal display monitor 47 provided on the back of the camera via the processing means 51. Further, the processing means 51 is connected to a recording means 52 so that a photographed electronic image can be recorded. The recording means 52 may be provided separately from the processing means 51, or may be configured to perform recording / writing electronically using a floppy disk, memory card, MO, or the like. Further, it may be configured as a silver salt camera in which a silver salt film is arranged in place of the CCD 49.

さらに、ファインダー用光路44上にはファインダー用対物光学系53が配置してある。ファインダー用対物光学系53は、複数のレンズ群(図の場合は4群)と2つのプリズムからなり、撮影光学系41のズームレンズに連動して焦点距離が変化するズーム光学系からなり、このファインダー用対物光学系53によって形成された物体像は、像正立部材である正立プリズム55の視野枠57上に形成される。この正立プリズム55の後方には、正立正像にされた像を観察者眼球Eに導く接眼光学系59が配置されている。なお、接眼光学系59の射出側にカバー部材50が配置されている。   Further, a finder objective optical system 53 is disposed on the finder optical path 44. The finder objective optical system 53 includes a plurality of lens groups (four groups in the figure) and two prisms, and includes a zoom optical system whose focal length changes in conjunction with the zoom lens of the photographing optical system 41. The object image formed by the finder objective optical system 53 is formed on the field frame 57 of the erecting prism 55 that is an image erecting member. Behind the erecting prism 55, an eyepiece optical system 59 for guiding the erect image to the observer eyeball E is disposed. A cover member 50 is disposed on the exit side of the eyepiece optical system 59.

このように構成されたデジタルカメラ40は、撮影光学系41が高性能で小型で沈胴収納が可能であるあるので、高性能・小型化が実現できる。   In the digital camera 40 configured in this manner, the photographing optical system 41 has a high performance and a small size and can be retracted, so that a high performance and a small size can be realized.

本発明は、以上のような一般的な被写体を撮影する所謂コンパクトデジタルカメラだけでなく、広い画角が必要な監視カメラや、レンズ交換式のカメラに適用してもよい。   The present invention may be applied not only to a so-called compact digital camera that captures a general subject as described above, but also to a surveillance camera that requires a wide angle of view and an interchangeable lens camera.

なお、本発明の光学系は、特許請求の範囲の構成の他に、以下のような構成としてもよい。   The optical system of the present invention may have the following configuration in addition to the configuration of the claims.

〔1〕 前記光学系は、全体で2つのレンズ群からなることを特徴とする請求項1から25の何れか1項に記載の光学系。     [1] The optical system according to any one of [1] to [25], wherein the optical system includes two lens groups as a whole.

〔2〕 前記光学系は、全体で3つのレンズ群からなることを特徴とする請求項1から25の何れか1項に記載の光学系。     [2] The optical system according to any one of [1] to [25], wherein the optical system includes a total of three lens groups.

〔3〕 前記3つのレンズ群の中、最も像側に配置されているレンズ群は、負の屈折力を有することを特徴とする上記〔2〕記載の光学系。     [3] The optical system according to [2], wherein the lens group disposed closest to the image side among the three lens groups has a negative refractive power.

〔4〕 前記3つのレンズ群の中、最も像側に配置されているレンズ群は、正の屈折力を有することを特徴とする上記〔3〕記載の光学系。     [4] The optical system as set forth in [3], wherein among the three lens groups, the lens group arranged closest to the image side has a positive refractive power.

〔5〕 前記3つのレンズ群の中、最も像側に配置されているレンズ群は、変倍時に固定であることを特徴とする上記〔2〕から〔4〕の何れか1項記載の光学系。     [5] The optical system according to any one of [2] to [4], wherein the lens group disposed closest to the image side among the three lens groups is fixed at the time of zooming. system.

〔6〕 前記3つのレンズ群の中、最も像側に配置されているレンズ群は、変倍時に移動することを特徴とする上記〔2〕から〔4〕の何れか1項記載の光学系。     [6] The optical system according to any one of [2] to [4], wherein among the three lens groups, the lens group disposed closest to the image side moves during zooming. .

〔7〕 前記最も像側に配置されているレンズ群は、広角端よりも望遠端において像側に位置するように移動することを特徴とする上記〔6〕記載の光学系。     [7] The optical system according to [6], wherein the lens group disposed closest to the image side moves so as to be positioned closer to the image side at the telephoto end than at the wide angle end.

〔8〕 前記接合レンズは、前記第2レンズ群に含まれることを特徴とする請求項1から3、6から26、上記〔1〕から〔7〕の何れか1項記載の光学系。     [8] The optical system according to any one of [1] to [3], [6] to [26], and [1] to [7], wherein the cemented lens is included in the second lens group.

本発明により、高変倍比であっても薄型化が可能で、偏心の影響を小さく抑えて性能劣化を防止した光学系得ることができ、高変倍比であり、薄型の高性能のデジタルカメラやビデオカメラを得ることが可能となる。   According to the present invention, it is possible to reduce the thickness even at a high zoom ratio, and to obtain an optical system that suppresses the influence of eccentricity and prevents performance deterioration. Cameras and video cameras can be obtained.

G1…第1レンズ群
G2…第2レンズ群
G3…第3レンズ群
S…開口絞り
F…平行平板(ローパスフィルタ)
C…カバーガラス
I…像面
E…観察者眼球
40…デジタルカメラ
41…撮影光学系
42…撮影用光路
43…ファインダー光学系
44…ファインダー用光路
45…シャッターボタン
46…フラッシュ
47…液晶表示モニター
49…CCD
50…カバー部材
51…処理手段
52…記録手段
53…ファインダー用対物光学系
55…正立プリズム
57…視野枠
59…接眼光学系
60…カバー
61…焦点距離変更ボタン
62…設定変更スイッチ
G1 ... 1st lens group G2 ... 2nd lens group G3 ... 3rd lens group S ... Aperture stop F ... Parallel plate (low-pass filter)
C ... Cover glass I ... Image plane E ... Observer eyeball 40 ... Digital camera 41 ... Shooting optical system 42 ... Shooting optical path 43 ... Viewfinder optical system 44 ... Viewfinder optical path 45 ... Shutter button 46 ... Flash 47 ... Liquid crystal display monitor 49 ... CCD
DESCRIPTION OF SYMBOLS 50 ... Cover member 51 ... Processing means 52 ... Recording means 53 ... Viewfinder objective optical system 55 ... Erect prism 57 ... Field frame 59 ... Eyepiece optical system 60 ... Cover 61 ... Focal length change button 62 ... Setting change switch

Claims (29)

光軸上に接合面を持つ接合レンズを備えた光学系であって、前記接合レンズを構成するレンズが以下の条件を満足することを特徴とする光学系。
40<νmax −νmin <80 ・・・(5)
23.7>νmin ・・・(6)
ただし、νmax :前記接合レンズ中で最大のアッベ数、
νmin :前記接合レンズ中で最小のアッベ数、
である。
An optical system comprising a cemented lens having a cemented surface on the optical axis, wherein the lens constituting the cemented lens satisfies the following conditions.
40 <ν max −ν min <80 (5)
23.7> ν min (6)
Where ν max is the maximum Abbe number in the cemented lens,
ν min : the smallest Abbe number in the cemented lens,
It is.
前記接合レンズを構成するレンズが以下の条件を満足することを特徴とする請求項1記載の光学系。
60<νmax ・・・(7)
1.8<ndmax ・・・(8)
1.55>ndmin ・・・(9)
ただし、ndmax:前記接合レンズ中で最大の屈折率、
dmin:前記接合レンズ中で最小の屈折率、
である。
The optical system according to claim 1, wherein the lens constituting the cemented lens satisfies the following condition.
60 <ν max (7)
1.8 <n dmax (8)
1.55> n dmin (9)
Where n dmax is the maximum refractive index in the cemented lens,
n dmin : minimum refractive index in the cemented lens,
It is.
前記光学系は負の屈折力の第1レンズ群と正の屈折力の第2レンズ群の2群からなる、もしくは、物体側より順に、負の屈折力の第1レンズ群、正の屈折力の第2レンズ群、弱い負又は弱い正の屈折力の第3レンズ群からなり、前記第2レンズ群が、前記接合レンズを備えたことを特徴とする請求項1又は2記載の光学系。 The optical system includes two groups, a first lens group having a negative refractive power and a second lens group having a positive refractive power, or a first lens group having a negative refractive power and a positive refractive power in order from the object side. The optical system according to claim 1, wherein the second lens group includes a third lens group having a weak negative or weak positive refractive power, and the second lens group includes the cemented lens. 前記接合レンズにおける光線の入射側及び射出側である空気接触面の少なくとも1面が非球面であることを特徴とする請求項1から3の何れか1項記載の光学系。 4. The optical system according to claim 1, wherein at least one of the air contact surfaces on the light incident side and the light exit side of the cemented lens is an aspherical surface. 5. 前記接合レンズは3枚のレンズにて構成された3枚接合レンズであることを特徴とする請求項1から4の何れか1項記載の光学系。 The optical system according to any one of claims 1 to 4, wherein the cemented lens is a three-lens cemented lens including three lenses. 前記第2レンズ群中の前記接合レンズは、物体側から、正の第1レンズ、負の第2レンズ、正の第3レンズを配列してなる前記3枚接合レンズであることを特徴とする請求項3記載の光学系。 The cemented lens in the second lens group is the three-lens cemented lens in which a positive first lens, a negative second lens, and a positive third lens are arranged from the object side. The optical system according to claim 3. 前記第2レンズ群は、3枚接合レンズのみで構成されていることを特徴とする請求項3又は6記載の光学系。 7. The optical system according to claim 3, wherein the second lens group includes only a three-piece cemented lens. 前記光学系において前記第1レンズ群のレンズを移動させることでフォーカスを行うことを特徴とする請求項3、6、7の何れか1項記載の光学系。 8. The optical system according to claim 3, wherein focusing is performed by moving a lens of the first lens group in the optical system. 9. 広角端から望遠端への変倍時に、前記第2レンズ群は、像面側から物体側へと単調に移動し、前記第1レンズ群は、像面側に凸形状の軌跡で移動することを特徴とする請求項3、6、7、8の何れか1項記載の光学系。 At the time of zooming from the wide-angle end to the telephoto end, the second lens group moves monotonically from the image side to the object side, and the first lens group moves along a convex locus on the image side. The optical system according to any one of claims 3, 6, 7, and 8. 前記接合レンズは3枚接合レンズで構成し、その中で最も物体側のレンズと最も像面側のレンズは同一の硝材からなることを特徴とする請求項1から9の何れか1項記載の光学系。 10. The cemented lens according to claim 1, wherein the cemented lens is composed of three cemented lenses, wherein the lens closest to the object side and the lens closest to the image plane are made of the same glass material. Optical system. 前記接合レンズが物体側に凸形状であり、以下の条件式をさらに満足することを特徴とする請求項1から10の何れか1項に記載の光学系。
0.50<Dn1/Σd<0.95 ・・・(10)
ただし、Dn1:前記接合レンズ中の最も物体側の面から最も大きい負の屈折力を有する面までの距離、
Σd:前記接合レンズの総肉厚、
である。
The optical system according to claim 1, wherein the cemented lens has a convex shape on the object side and further satisfies the following conditional expression.
0.50 <D n1 /Σd<0.95 (10)
Where D n1 is the distance from the most object side surface in the cemented lens to the surface having the greatest negative refractive power,
Σd: total thickness of the cemented lens,
It is.
以下の条件式をさらに満足することを特徴とする請求項11記載の光学系。
0.05<Dn2/Σd<0.35 ・・・(11)
ただし、Dn2:前記接合レンズ中の最も大きい負の屈折力を有する面から最も像面側の面までの距離、
である。
The optical system according to claim 11, further satisfying the following conditional expression:
0.05 <D n2 /Σd<0.35 (11)
Where D n2 is the distance from the surface having the largest negative refractive power in the cemented lens to the surface closest to the image plane,
It is.
前記接合レンズは物体側に凸形状であり、以下の条件式をさらに満足することを特徴とする請求項1から12の何れか1項に記載の光学系。
−1.5<(r1 +r2 )/(r1 −r2 )<−0.5 ・・・(12)
ただし、r1 : 前記接合レンズの最も物体側の面の曲率半径、
2 : 前記接合レンズの最も像面側の面の曲率半径、
である。
The optical system according to claim 1, wherein the cemented lens has a convex shape on the object side and further satisfies the following conditional expression.
−1.5 <(r 1 + r 2 ) / (r 1 −r 2 ) <− 0.5 (12)
Where r 1 : radius of curvature of the most object side surface of the cemented lens,
r 2 : radius of curvature of the surface closest to the image plane of the cemented lens,
It is.
前記接合レンズが物体側に凸形状であり、前記負レンズは最物体側のレンズの像面側に接合され、以下の条件式をさらに満足することを特徴とする請求項1から13の何れか1項に記載の光学系。
−1.0<R1 /F2 <−0.05 ・・・(13)
0.50<D1 /Σd<0.95 ・・・(14)
ただし、R1 : 前記接合レンズの最も物体側の接合面の曲率半径、
2 : 前記第2レンズ群の焦点距離、
1 :前記接合レンズの最も物体側のレンズの光軸上の厚さ、
Σd:前記接合レンズの総肉厚、
である。
The cemented lens has a convex shape on the object side, and the negative lens is cemented on the image plane side of the lens on the most object side, further satisfying the following conditional expression: 2. The optical system according to item 1.
−1.0 <R 1 / F 2 <−0.05 (13)
0.50 <D 1 /Σd<0.95 (14)
Where R 1 is the radius of curvature of the cemented surface closest to the object side of the cemented lens,
F 2 : focal length of the second lens group,
D 1 : thickness on the optical axis of the lens closest to the object side of the cemented lens,
Σd: total thickness of the cemented lens,
It is.
前記接合レンズが物体側に凸形状であり、前記負レンズは接合レンズの最も像面側に配置されているレンズに接合され、以下の条件式をさらに満足することを特徴とする請求項1から14の何れか1項に記載の光学系。
2.5<|R1 /F2 | ・・・(15)
0.45<R2 /F2 <2.3 ・・・(16)
ただし、R1 : 前記接合レンズの最も物体側の接合面の曲率半径、
2 : 前記第2レンズ群の焦点距離、
2 : 前記接合レンズの最も像面側の接合面の曲率半径、
である。
The cemented lens has a convex shape on the object side, and the negative lens is cemented to a lens disposed closest to the image plane of the cemented lens, further satisfying the following conditional expression: 14. The optical system according to any one of 14.
2.5 <| R 1 / F 2 | (15)
0.45 <R 2 / F 2 <2.3 (16)
Where R 1 is the radius of curvature of the cemented surface closest to the object side of the cemented lens,
F 2 : focal length of the second lens group,
R 2 : radius of curvature of the cemented surface closest to the image plane of the cemented lens,
It is.
以下の条件式を満足することを特徴とする請求項15記載の光学系。
−1.5<(r1 +r2 )/(r1 −r2 )<−0.5 ・・・(12)
0.05<D3 /Σd<0.30 ・・・(17)
ただし、r1 : 前記接合レンズの最も物体側の面の曲率半径、
2 : 前記接合レンズの最も像面側の面の曲率半径、
3 :前記接合レンズの最も像面側のレンズの光軸上の厚さ、
Σd:前記接合レンズの総肉厚、
である。
The optical system according to claim 15, wherein the following conditional expression is satisfied:
−1.5 <(r 1 + r 2 ) / (r 1 −r 2 ) <− 0.5 (12)
0.05 <D 3 /Σd<0.30 (17)
Where r 1 : radius of curvature of the most object side surface of the cemented lens,
r 2 : radius of curvature of the surface closest to the image plane of the cemented lens,
D 3 : thickness on the optical axis of the lens closest to the image plane of the cemented lens,
Σd: total thickness of the cemented lens,
It is.
前記接合レンズが正レンズ及び負レンズを少なくとも1枚ずつ有することを特徴とする請
求項1又2記載の光学系。
3. The optical system according to claim 1, wherein the cemented lens has at least one positive lens and one negative lens.
前記接合レンズが光軸近傍において両凸形状を有することを特徴とする請求項1から17の何れか1項に記載の光学系。 The optical system according to claim 1, wherein the cemented lens has a biconvex shape in the vicinity of the optical axis. 前記射出側の非球面は、レンズ周辺部で発散作用が強くなるように設けられていることを特徴とする請求項4から18の何れか1項に記載の光学系。 The optical system according to any one of claims 4 to 18, wherein the aspherical surface on the exit side is provided so that a diverging action is strong at a lens peripheral portion. 前記光学系は、全体で2つのレンズ群からなることを特徴とする請求項3、6、7、8、9の何れか1項に記載の光学系。 The optical system according to any one of claims 3, 6, 7, 8, and 9, wherein the optical system includes two lens groups as a whole. 前記光学系は、全体で3つのレンズ群からなることを特徴とする請求項3、6、7、8、9の何れか1項に記載の光学系。 The optical system according to any one of claims 3, 6, 7, 8, and 9, wherein the optical system includes a total of three lens groups. 前記3つのレンズ群の中、最も像側に配置されているレンズ群は、負の屈折力を有することを特徴とする請求項21記載の光学系。 The optical system according to claim 21, wherein the lens group disposed closest to the image side among the three lens groups has a negative refractive power. 前記3つのレンズ群の中、最も像側に配置されているレンズ群は、正の屈折力を有することを特徴とする請求項21記載の光学系。 The optical system according to claim 21, wherein the lens group disposed closest to the image side among the three lens groups has a positive refractive power. 前記3つのレンズ群の中、最も像側に配置されているレンズ群は、変倍時に固定であることを特徴とする請求項21又は23記載の光学系。 24. The optical system according to claim 21, wherein the lens group disposed closest to the image side among the three lens groups is fixed at the time of zooming. 前記3つのレンズ群の中、最も像側に配置されているレンズ群は、変倍時に像面補償のために移動することを特徴とする請求項21又は22記載の光学系。 23. The optical system according to claim 21, wherein the lens group disposed closest to the image side among the three lens groups moves for image plane compensation at the time of zooming. 前記最も像側に配置されているレンズ群は、広角端よりも望遠端において像側に位置するように移動することを特徴とする請求項25記載の光学系。 26. The optical system according to claim 25, wherein the lens group arranged closest to the image side moves so as to be positioned closer to the image side at the telephoto end than at the wide-angle end. 請求項1から26の何れか1項記載の光学系を備え、さらに、前記光学系による光学像を電気信号に変換するための電子撮像素子を備えていることを特徴とする撮像装置。 27. An imaging apparatus comprising: the optical system according to claim 1; and an electronic imaging element for converting an optical image obtained by the optical system into an electrical signal. 以下の条件式を満足するように構成されていることを特徴とする請求項3、6、7、8、9、20から26の何れか1項記載の光学系。
10<|R1 /r1 | ・・・(3)
ただし、r1 : 前記接合レンズの最も物体側の面の曲率半径、
1 : 前記接合レンズの最も物体側の接合面の曲率半径、
である。
27. The optical system according to any one of claims 3, 6, 7, 8, 9, and 20 to 26, wherein the optical system is configured to satisfy the following conditional expression.
10 <| R 1 / r 1 | (3)
Where r 1 : radius of curvature of the most object side surface of the cemented lens,
R 1 : radius of curvature of the cemented surface closest to the object side of the cemented lens,
It is.
前記接合レンズが物体側に凸の形状であり、以下の条件式を満足するように構成されていることを特徴とする請求項3、6、7、8、9、20から26、28の何れか1項記載の光学系。
0.7<|R2 /r2 | ・・・(4)
ただし、r2 : 前記接合レンズの最も像面側の面の曲率半径、
2 : 前記接合レンズの最も像面側の接合面の曲率半径、
である。
29. Any one of claims 3, 6, 7, 8, 9, 20 to 26, 28, wherein the cemented lens has a convex shape on the object side and satisfies the following conditional expression: The optical system according to claim 1.
0.7 <| R 2 / r 2 | (4)
Where r 2 : radius of curvature of the surface closest to the image plane of the cemented lens,
R 2 : radius of curvature of the cemented surface closest to the image plane of the cemented lens,
It is.
JP2011090147A 2011-04-14 2011-04-14 Optical system and imaging apparatus using the same Active JP5242728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011090147A JP5242728B2 (en) 2011-04-14 2011-04-14 Optical system and imaging apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011090147A JP5242728B2 (en) 2011-04-14 2011-04-14 Optical system and imaging apparatus using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005147615A Division JP4790309B2 (en) 2004-08-26 2005-05-20 Optical system and imaging apparatus using the same

Publications (2)

Publication Number Publication Date
JP2011175280A true JP2011175280A (en) 2011-09-08
JP5242728B2 JP5242728B2 (en) 2013-07-24

Family

ID=44688103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011090147A Active JP5242728B2 (en) 2011-04-14 2011-04-14 Optical system and imaging apparatus using the same

Country Status (1)

Country Link
JP (1) JP5242728B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002014285A (en) * 2000-06-29 2002-01-18 Asahi Optical Co Ltd Endoscopic objective variable power optical system
JP2004240398A (en) * 2003-01-17 2004-08-26 Sony Corp Zoom lens and imaging apparatus
JP2006323233A (en) * 2005-05-20 2006-11-30 Olympus Corp Optical system and imaging apparatus using same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002014285A (en) * 2000-06-29 2002-01-18 Asahi Optical Co Ltd Endoscopic objective variable power optical system
JP2004240398A (en) * 2003-01-17 2004-08-26 Sony Corp Zoom lens and imaging apparatus
JP2006323233A (en) * 2005-05-20 2006-11-30 Olympus Corp Optical system and imaging apparatus using same

Also Published As

Publication number Publication date
JP5242728B2 (en) 2013-07-24

Similar Documents

Publication Publication Date Title
US8446512B2 (en) Image forming optical system and electronic image pickup apparatus equipped with same
JP4859186B2 (en) Zoom lens and image pickup apparatus including the same
JP4900924B2 (en) Zoom lens and electronic imaging apparatus using the same
JP2009098200A (en) Three-unit zoom lens and imaging device with the same
JP2012208378A (en) Zoom lens and imaging apparatus using the same
JP2007171743A (en) Zoom lens and imaging apparatus having same
JP2009139701A (en) Zoom lens and imaging device using the same
JP2009036961A (en) Two-group zoom lens and imaging device using the same
JP4931136B2 (en) Zoom lens
JP4766929B2 (en) Image pickup apparatus having an optical path folding zoom lens
JP2007003598A (en) Optical path bending type zoom lens and imaging apparatus with same
JP2008052110A (en) Zoom lens and electronic imaging apparatus using the same
JP2009092836A (en) Two-group zoom lens, and imaging device equipped therewith
JP2006301154A (en) Zoom lens and electronic imaging apparatus using the same
JP2011252962A (en) Imaging optical system and imaging apparatus having the same
JP2010224263A (en) Zoom optical system and image pickup device provided with the same
JP4690052B2 (en) Zoom lens and imaging apparatus using the same
JP4911679B2 (en) Zoom lens and image pickup apparatus including the same
JP2006220715A (en) Zoom lens and imaging apparatus using the same
JP2010250233A (en) Two-unit zoom lens for photographing and imaging apparatus having the same
JP2008052116A (en) Zoom lens and electronic imaging apparatus using the same
JP5009051B2 (en) Three-group zoom lens and image pickup apparatus including the same
JP2006308649A (en) Imaging apparatus
JP4915992B2 (en) Zoom lens
JP4947992B2 (en) Zoom lens and imaging apparatus using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130403

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5242728

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350