JP2011174474A - Hydraulic apparatus - Google Patents

Hydraulic apparatus Download PDF

Info

Publication number
JP2011174474A
JP2011174474A JP2011133089A JP2011133089A JP2011174474A JP 2011174474 A JP2011174474 A JP 2011174474A JP 2011133089 A JP2011133089 A JP 2011133089A JP 2011133089 A JP2011133089 A JP 2011133089A JP 2011174474 A JP2011174474 A JP 2011174474A
Authority
JP
Japan
Prior art keywords
blade
runner
short
long
blades
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011133089A
Other languages
Japanese (ja)
Other versions
JP5197805B2 (en
Inventor
Takanori Nakamura
高紀 中村
Kotaro Tezuka
光太郎 手塚
Atsushi Murayama
淳 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2011133089A priority Critical patent/JP5197805B2/en
Publication of JP2011174474A publication Critical patent/JP2011174474A/en
Application granted granted Critical
Publication of JP5197805B2 publication Critical patent/JP5197805B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydraulic apparatus that suppresses cavitation generated in the operation of a runner, and also facilitates operations of manufacturing work and maintenance check for the apparatus. <P>SOLUTION: The apparatus includes a runner 14 with an intermediate vane, wherein a long vane 12 and a short vane 13 are disposed alternately along in a circumferential direction. A location where a vane thickness of the vane 13 is the largest, is configured to be located on an entrance side from the middle point in the vane length from the entrance to the exit of the vane 13. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ランナの周方向に配置する長翼の間に短翼を配置する水力機械に関する。   The present invention relates to a hydraulic machine in which short blades are arranged between long blades arranged in a circumferential direction of a runner.

従来、水力機械、例えばフランシス形ポンプ水車は、図12に示すように、ランナ1に、その周方向に向って等間隔にランナベーン2を配置している。   Conventionally, in a hydraulic machine, for example, a Francis type pump turbine, runner vanes 2 are arranged on the runner 1 at equal intervals in the circumferential direction as shown in FIG.

このようなランナベーン2の配置に対し、最近では、流れの整流効果による水車部分負荷特性の改善およびポンプ流れにおける滑りの減少に伴うポンプ特性の改善を目的として、例えば図13に示すように、長翼3と短翼4を周方向に交互に配置する、いわゆる中間翼付ランナ5が提案されている。   Recently, for the purpose of improving the turbine partial load characteristics due to the flow rectification effect and the improvement of the pump characteristics accompanying the reduction of the slippage in the pump flow, the arrangement of the runner vanes 2 is long as shown in FIG. A so-called runner 5 with intermediate blades in which the blades 3 and the short blades 4 are alternately arranged in the circumferential direction has been proposed.

また、この種のランナには、例えば特開昭60−50274号公報(特許文献1)が知られている。このランナは、等角度間隔の内周側ランナベーンの外周側に、内周側ランナベーンの整数倍となっている外周側ランナベーンを持つ構造になっている。   Further, for example, Japanese Patent Application Laid-Open No. 60-50274 (Patent Document 1) is known as this type of runner. This runner has a structure having an outer peripheral runner vane that is an integral multiple of the inner peripheral runner vane on the outer peripheral side of the inner peripheral runner vane at equal angular intervals.

また、この種と同じ別のランナには、例えば特開昭57−126566号公報(特許文献2)が知られている。このランナは、ランナクラウンとランナバンドとの間の入口側流路に複数枚のランナベーンを円周方向に予め定められたピッチで配置し、ランナベーンの翼長よりも短く、かつランナベーンとほぼ平行な1枚以上の中間ベーンを配置したものである。   Further, another runner of the same type is known, for example, in Japanese Patent Application Laid-Open No. 57-126666 (Patent Document 2). In this runner, a plurality of runner vanes are arranged at a predetermined pitch in the circumferential direction in the inlet-side flow path between the runner crown and the runner band, shorter than the runner vane blade length, and substantially parallel to the runner vanes. One or more intermediate vanes are arranged.

このようなランナでは、従来のベーン枚数の少ないランナにおける入口側の3次元的な水流の乱れを抑制することができ、また、ベーン1枚当たりの翼負荷を少なくさせるとともに、整流効果を向上させて翼負圧面の圧力低下を防ぎ、動力水から動力への変換効率およびキャビテーション性能向上を図ることができるようになっている。   In such a runner, it is possible to suppress the disturbance of the three-dimensional water flow on the inlet side in the conventional runner having a small number of vanes, and to reduce the blade load per vane and improve the rectification effect. Thus, the pressure reduction on the blade suction surface can be prevented, and the conversion efficiency from power water to power and the cavitation performance can be improved.

特開昭60−50274号公報Japanese Patent Laid-Open No. 60-50274 特開昭57−126566号公報JP-A-57-126666

ところで、図13に示した長翼3と短翼4を交互に配置する中間翼付ランナ5は、短翼4が長翼3に対して翼長が短いことを除けば長翼3とほぼ同じ形状であると考えられる。このため、図14に示すように、長翼3と短翼4では翼長が異なり、翼面まわりの循環の強さΓa,Γbも異なる。すなわち、長翼3と短翼4では、作用面の圧力と反作用面の圧力との差によって決定される翼負荷が異なるため、翼面周りに生じる渦度分布が異なる。したがって、ランナへ流入する水流Wの流れが同一であっても、翼近傍の局所的な水流W1,W2の翼への流入角度αa,αbは長翼3と短翼4によって当然異なる。特に、短翼では翼長が短いために作用面に十分な圧力が作用しないことが考えられ、これによって循環Γbが弱くなるために短翼4の入口近傍での局所的な水流W2の流入角度αbが長翼3の入口近傍での局所的な水流W1の流入角度αaよりも小さくなることが考えられる。そして翼への流入角度が小さい場合、作用面側の翼入口近傍でキャビテーションCAVが発生し易くなり、これが著しい場合、翼入口で大きな流れの剥離が生じ、性能低下の原因にもなりうる。   By the way, the runner 5 with intermediate wings in which the long wings 3 and the short wings 4 shown in FIG. 13 are arranged alternately is almost the same as the long wing 3 except that the short wings 4 are shorter than the long wings 3. It is considered to be a shape. For this reason, as shown in FIG. 14, the blade length is different between the long blade 3 and the short blade 4, and the circulation strengths Γa and Γb around the blade surface are also different. That is, since the blade load determined by the difference between the pressure on the working surface and the pressure on the reaction surface is different between the long blade 3 and the short blade 4, the distribution of vorticity generated around the blade surface is different. Therefore, even if the flow of the water flow W flowing into the runner is the same, the inflow angles αa and αb of the local water flows W1 and W2 near the blades to the blades are naturally different depending on the long blade 3 and the short blade 4. In particular, it is conceivable that the short blade has a short blade length, so that a sufficient pressure is not applied to the working surface. As a result, the circulation Γb is weakened, so that the local water flow W2 inflow angle near the inlet of the short blade 4 is obtained. It is conceivable that αb is smaller than the inflow angle αa of the local water flow W1 in the vicinity of the inlet of the long blade 3. When the inflow angle to the blade is small, cavitation CAV is likely to occur in the vicinity of the blade inlet on the working surface side, and when this is significant, large flow separation occurs at the blade inlet, which may cause performance degradation.

図15は従来の中間翼付きランナ5をランナ出口下方側から鉛直上向きに見たものである。なお、以下で単に「ランナ入口」もしくは「ランナ出口」等と記すときは水車運転時の入口、出口をそれぞれ示すものとする。すなわち、「ランナ入口側」、「ランナ出口側」はポンプ運転時にはそれぞれ水流の出口側、入口側となる。中間翼付きランナ5の短翼4のクラウン6側とバンド7側を繋ぐ出口縁辺8aは、長翼3の出口縁辺8bと同様に、内周側から外周側に中間翼付きランナ5の回転中心となる回転軸9の中心Oから放射状に延びている。このため、短翼4の翼長は、クラウン6側からバンド7側にかけて長翼3に対して一律短くなっている。つまり、長翼3と短翼4のそれぞれの出口縁辺8a,8bの延長線は図15における中心Oで角度θをもって交わるように構成されており、換言すれば、中間翼付ランナ5の回転軸に垂直な投影面上では、中間翼付きランナ5の回転中心と長翼3、短翼4出口のクラウン6側端部とを結んだ直線上にそれぞれの翼の出口縁辺8a,8bが配置されている。この場合、長翼3の翼長に対する短翼4の翼長の比は、クラウン6側よりもバンド7側の方が小さくなる。短翼4の翼長は、相対的にクラウン6側よりもバンド7側で短くなり、このことによって水車運転時には、特にバンド7側では図14で示した短翼入口部でのキャビテーションCAVが発生しやすくなる。またポンプ運転時には、短翼4の翼長が相対的に短いために長翼3のバンド7側でかなりの負荷がかかる。   FIG. 15 shows a conventional runner 5 with an intermediate blade as viewed vertically upward from the runner outlet lower side. In the following, when simply referred to as “runner inlet” or “runner outlet”, it indicates an inlet and an outlet when a water turbine is operated. That is, “runner inlet side” and “runner outlet side” are the outlet side and the inlet side of the water flow, respectively, during pump operation. The exit edge 8a that connects the crown 6 side of the short blade 4 and the band 7 side of the runner 5 with intermediate blades is the center of rotation of the runner 5 with intermediate blade from the inner peripheral side to the outer peripheral side in the same manner as the outlet edge 8b of the long blade 3. It extends radially from the center O of the rotating shaft 9. For this reason, the blade length of the short blade 4 is uniformly shorter than the long blade 3 from the crown 6 side to the band 7 side. That is, the extended lines of the outlet edges 8a and 8b of the long blade 3 and the short blade 4 are configured to intersect at an angle θ at the center O in FIG. 15, in other words, the rotation axis of the runner 5 with intermediate blades. On the projection plane perpendicular to each other, the outlet edges 8a and 8b of the respective blades are arranged on a straight line connecting the rotation center of the runner 5 with the intermediate blade and the crown 6 side ends of the long blade 3 and the short blade 4 outlet. ing. In this case, the ratio of the blade length of the short blade 4 to the blade length of the long blade 3 is smaller on the band 7 side than on the crown 6 side. The blade length of the short blade 4 is relatively shorter on the band 7 side than on the crown 6 side, and this causes cavitation CAV at the short blade inlet portion shown in FIG. It becomes easy to do. Further, during the pump operation, the blade length of the short blade 4 is relatively short, so that a considerable load is applied on the band 7 side of the long blade 3.

また、従来、フランシス形ポンプ水車ランナは、強度面、製作面およびコストの観点から、その翼厚は入口側から出口側まで等肉厚になっている。これに合わせて中間翼付ランナ5の短翼4も長翼3と同じ等肉厚構造になっていることもある。通常のランナよりも翼の枚数が多くなる中間翼付ランナ5では、翼枚数の増加や等翼肉厚構造に伴って翼間流路が狭くなる。翼間流路が狭くなると、最高効率点よりも過負荷側で運転を行う際には水の流速が大きくなることによって摩擦増加等によって効率が低下する、いわゆる水車過負荷側特性の低下が起き、また流路の狭まりにより製作面・保守点検面で、その作業性に種々不都合・不具合を来している。   Conventionally, the Francis pump turbine runner has an equal thickness from the inlet side to the outlet side from the viewpoint of strength, manufacturing and cost. Accordingly, the short blade 4 of the runner 5 with intermediate blades may have the same thickness structure as the long blade 3. In the intermediate bladed runner 5 in which the number of blades is larger than that of a normal runner, the flow path between the blades becomes narrow as the number of blades increases and the blade thickness structure is equal. If the flow path between the blades becomes narrower, when operating on the overload side from the maximum efficiency point, the water flow rate increases and the efficiency decreases due to increased friction, etc. In addition, due to the narrowing of the flow path, there are various inconveniences and problems in workability in terms of production and maintenance.

本発明は、このような事情に基づいてなされたもので、ランナの運転中に発生するキャビテーションを抑制するとともに、製作面および保守点検面でもその作業の容易化を図る水力機械を提供することを目的とする。   The present invention has been made based on such circumstances, and provides a hydraulic machine that suppresses cavitation that occurs during operation of the runner and that facilitates the work in terms of production and maintenance. Objective.

本発明に係る水力機械は、上述の目的を達成するため、周方向に沿って長翼と短翼とを交互に配置する中間翼付ランナを備えた水力機械において、前記短翼の翼厚みが最大となる位置を、前記短翼の入口から出口のまでの翼長の半分よりも前記入口側に設定したものである。   In order to achieve the above-described object, the hydraulic machine according to the present invention is a hydraulic machine including a runner with intermediate blades in which long blades and short blades are alternately arranged along a circumferential direction. The maximum position is set on the inlet side rather than half of the blade length from the inlet to the outlet of the short blade.

また、本発明に係る水力機械は、上述の目的を達成するため、周方向に沿って長翼と短翼とを交互に配置する中間翼付ランナを備えた水力機械において、前記短翼の翼厚みを、前記短翼と該短翼の作用面側に隣り合う長翼との重なり間において、該長翼の翼厚みよりも小さく形成したものである。   Further, in order to achieve the above-mentioned object, the hydraulic machine according to the present invention is a hydraulic machine including a runner with intermediate blades in which long blades and short blades are alternately arranged along a circumferential direction. The thickness is formed to be smaller than the blade thickness of the long blade between the overlap between the short blade and the long blade adjacent to the working surface side of the short blade.

本発明に係る水力機械は、中間翼付ランナの長翼と短翼との翼幅を長くすることにより、長翼と短翼との翼負荷の差を少なくさせることができ、短翼の水車入口キャビテーションと流れの剥離を抑制する一方、長翼のポンプ高揚程運転時、逆流限界を小流量側に移行させて安定運転を維持することができる。   The hydraulic machine according to the present invention can reduce the difference in blade load between the long blades and the short blades by increasing the blade width between the long blades and the short blades of the runner with intermediate blades. While suppressing inlet cavitation and flow separation, it is possible to maintain a stable operation by shifting the backflow limit to the small flow rate side during the pump high head operation of the long blades.

また、本発明に係る水力機械は、中間翼付ランナの長翼と短翼との流路幅を拡げることにより、水力効率をより一層向上させることができ、さらに製作面・保守点検面でその作業性を容易にすることができる。   Further, the hydraulic machine according to the present invention can further improve the hydraulic efficiency by widening the flow path width between the long blade and the short blade of the runner with intermediate blades, and further improve the production and maintenance inspections. Workability can be facilitated.

本発明に係る水力機械における中間翼付ランナを示す概略半分子午断面部分図。FIG. 3 is a schematic half-molecular meridional cross-sectional view showing a runner with an intermediate blade in the hydraulic machine according to the present invention. 図1のA矢視方向から見た一部切欠部分図。FIG. 2 is a partially cutaway partial view seen from the direction of arrow A in FIG. 1. 従来の中間翼付ランナの長翼および短翼のそれぞれの作用面および反作用面に加わる圧力分布線図。The pressure distribution diagram added to each action surface and reaction surface of the long blade of a conventional runner with an intermediate blade, and a short blade. 本発明に係る水力機械における中間翼付ランナの長翼および短翼のそれぞれの作用面および反作用面に加わる圧力分布線図。The pressure distribution diagram added to each action surface and reaction surface of the long blade and short blade of the runner with an intermediate blade in the hydraulic machine which concerns on this invention. 従来の中間翼付ランナと本発明に係る中間翼付ランナとの各入口におけるキャビテーション特性を対比させた線図。The diagram which contrasted the cavitation characteristic in each inlet_port | entrance of the conventional runner with an intermediate blade and the runner with an intermediate blade which concerns on this invention. 本発明に係る水力機械の第2実施形態を示す概略図。Schematic which shows 2nd Embodiment of the hydraulic machine which concerns on this invention. 従来の中間翼付ランナの長翼の作用面および反作用面に加わる圧力分布と、本発明に係る中間翼付ランナの長翼の作用面および反作用面に加わる圧力分布とを対比させた線図。The diagram which contrasted the pressure distribution added to the action surface and reaction surface of the long blade of the conventional runner with an intermediate blade, and the pressure distribution applied to the action surface and reaction surface of the long blade of the runner with an intermediate blade according to the present invention. 本発明に係る水力機械の第3実施形態を示す一部切欠部分断面図。The partially cutaway partial cross-sectional view showing a third embodiment of the hydraulic machine according to the present invention. 本発明に係る水力機械の第4実施形態を示す一部切欠部分断面図。The partially cutaway partial sectional view showing a fourth embodiment of the hydraulic machine according to the present invention. 本発明に係る水力機械の第5実施形態において、中間翼付ランナの水車運転時、中央流線上の翼面圧力分布を示す線図。In 5th Embodiment of the hydraulic machine which concerns on this invention, the diagram which shows the blade surface pressure distribution on a central streamline at the time of the water turbine driving | running | working of the runner with an intermediate blade. 本発明に係る水力機械の第5実施形態において、中間翼付ランナの中央流線上の長翼と短翼の翼厚みを説明するために用いた一部切欠部分断面図。In 5th Embodiment of the hydraulic machine which concerns on this invention, the partial notch partial sectional drawing used in order to demonstrate the blade | wing thickness of the long blade and short blade on the central streamline of a runner with an intermediate blade. 従来の中間翼無しランナを示す概略図。Schematic which shows the conventional runner without an intermediate blade. 従来の中間翼付ランナを示す概略図。Schematic which shows the conventional runner with an intermediate blade. 従来の中間翼付ランナの入口付近における水流の流れを説明するために用いた図。The figure used in order to explain the flow of the water flow near the entrance of the conventional runner with an intermediate wing. 従来の中間翼付ランナをランナ出口下方側から鉛直上向きに見た図。The figure which looked at the conventional runner with an intermediate wing from the runner exit lower part perpendicularly upward.

以下、本発明に係る水力機械の実施形態を図面および図面に付した符号を引用して説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a hydraulic machine according to the present invention will be described with reference to the drawings and reference numerals attached to the drawings.

図1および図2は、フランシス形ポンプ水車を一例に採った本発明に係る水力機械の第1実施形態を示す概略図である。なお、図1は、本発明に係る水力機械における中間翼付ランナを示す概略半分子午断面部分図である。また、図2は、図1のA矢視方向から見た一部切欠部分図である。   1 and 2 are schematic views showing a first embodiment of a hydraulic machine according to the present invention, taking a Francis pump turbine as an example. FIG. 1 is a schematic half-molecular cross-sectional partial view showing a runner with an intermediate blade in a hydraulic machine according to the present invention. FIG. 2 is a partially cutaway partial view seen from the direction of arrow A in FIG.

本実施形態に係る水力機械、例えばフランシス形ポンプ水車は、両端をクラウン10とバンド11で支持させ、その周方向に向って長翼12と短翼13を交互に配置した中間翼付ランナ14になっている。   A hydraulic machine according to the present embodiment, for example, a Francis type pump turbine, is supported by a runner 14 with intermediate blades in which both ends are supported by a crown 10 and a band 11 and long blades 12 and short blades 13 are alternately arranged in the circumferential direction. It has become.

この中間翼付ランナ14は、短翼13における出口縁辺15のバンド11側およびクラウン10側のそれぞれの交点を16,17としたとき、バンド11側の交点16の位置が短翼13の出口側に移動されており、バンド11側の交点16と回転軸(主軸)18の中心Oとを結ぶ短翼低部側仮想線20がクラウン10側の交点17と回転軸18の中心Oとを結ぶ短翼頂部側仮想線19よりも、回転軸に垂直な投影面上で角度θaだけ短翼13の出口側になるように構成されている。   In the runner 14 with the intermediate blade, when the intersections of the outlet edge 15 of the short blade 13 on the band 11 side and the crown 10 side are 16 and 17, the position of the intersection 16 on the band 11 side is the outlet side of the short blade 13. The short blade lower-side imaginary line 20 connecting the intersection 16 on the band 11 side and the center O of the rotation axis (main axis) 18 connects the intersection 17 on the crown 10 side and the center O of the rotation axis 18. The short blade 13 is configured so as to be closer to the outlet side of the short blade 13 by an angle θa on the projection plane perpendicular to the rotation axis than the short blade top side virtual line 19.

すなわち、本実施形態では図2に示すように、この中間翼付ランナ14をランナ出口下方側から鉛直上向きに見た場合、短翼13の出口縁辺15は、ランナ14の中心から放射状に配置されておらず、出口縁辺15の延長線が回転軸18の中心Oを通らないようになっている。そして、この出口縁辺15はそのクラウン10側の端部となる交点17側よりも、バンド11側の端部となる交点16側が短翼13の出口側に張り出した形状となっており、図15に示した従来の中間翼付ランナ5と比較して、短翼13のバンド11側が長くなっている。   That is, in this embodiment, as shown in FIG. 2, when the runner 14 with the intermediate blade is viewed vertically upward from the lower side of the runner outlet, the outlet edge 15 of the short blade 13 is arranged radially from the center of the runner 14. In other words, the extension line of the outlet edge 15 does not pass through the center O of the rotating shaft 18. The exit edge 15 has a shape in which the intersection 16 side serving as the end portion on the band 11 side protrudes from the exit side of the short blade 13 rather than the intersection 17 side serving as the end portion on the crown 10 side. The band 11 side of the short blade 13 is longer than the conventional runner 5 with intermediate blade shown in FIG.

図3は、図15に示す従来の中間翼付ランナ5の短翼4と長翼3について、その水車運転時のバンド7側での翼回りの圧力分布を示すグラフである。なお、図中、破線は短翼4の圧力分布を、また、実線は長翼3の圧力分布を、それぞれ示している。ここで、短翼4、長翼3に対して、上側にある線がそれぞれ作用面(すなわち、正圧面)の圧力分布を示しており、下側の線が反作用面(負圧面)の圧力分布を示している。そして、この作用面と反作用面の圧力差を各翼の入口側から出口側にかけて積分したものがこの位置(バンド7側)における短翼、長翼それぞれの翼負荷を示していることになる。   FIG. 3 is a graph showing the pressure distribution around the blades on the band 7 side during the water turbine operation of the short blades 4 and the long blades 3 of the conventional runner 5 with intermediate blades shown in FIG. In the figure, the broken line indicates the pressure distribution of the short blade 4, and the solid line indicates the pressure distribution of the long blade 3. Here, with respect to the short blade 4 and the long blade 3, the upper lines indicate the pressure distribution on the working surface (ie, the pressure surface), and the lower line indicates the pressure distribution on the reaction surface (the negative pressure surface). Is shown. The result of integrating the pressure difference between the working surface and the reaction surface from the inlet side to the outlet side of each blade indicates the blade loads of the short blade and the long blade at this position (band 7 side).

図3によれば、図15に示す従来の中間翼付ランナ5を水車運転した場合、バンド7側では、その入口側で長翼3と短翼4の圧力差が著しく異なる。また、短翼4の入口部では、作用面の圧力が反作用面の圧力を下回っており、有効な負荷を受けていないことがわかる。特に、入口部の作用面側に低圧部が存在するため、水車の運転状態の変動によって短翼4の作用面の入口部にキャビテーションが発生することも考えられ、短翼4のキャビテーション性能が低下していることがわかる。   According to FIG. 3, when the conventional runner 5 with intermediate blades shown in FIG. 15 is operated in a water turbine, the pressure difference between the long blades 3 and the short blades 4 is significantly different on the inlet side on the band 7 side. In addition, at the inlet portion of the short blade 4, the pressure on the working surface is lower than the pressure on the reaction surface, and it can be seen that no effective load is received. In particular, since there is a low pressure portion on the working surface side of the inlet portion, cavitation may occur at the inlet portion of the working surface of the short blade 4 due to fluctuations in the operation state of the water turbine, and the cavitation performance of the short blade 4 is reduced. You can see that

一方、図4は図1および図2に示した本実施形態の中間翼付ランナ14について、図3と同様にその長翼12と短翼13の水車運転時のバンド11側での翼回りの圧力分布を示すグラフである。ここで、図4においても、図3と同様に、実線が長翼12の圧力分布を示し、破線が短翼13の圧力分布を示している。   On the other hand, FIG. 4 shows the runner 14 with the intermediate blade of the present embodiment shown in FIGS. 1 and 2, as in FIG. It is a graph which shows pressure distribution. Here, also in FIG. 4, as in FIG. 3, the solid line indicates the pressure distribution of the long blade 12, and the broken line indicates the pressure distribution of the short blade 13.

図4と図3とを比較すると、図4では、短翼13の入口側で作用面と反作用面の圧力差が大きくなり、長翼12のそれとほぼ同様になっていることがわかる。また、バンド11側で短翼13の長さが延びたことによって翼負荷が増し、逆に長翼12の翼負荷は低減されており、長翼12、短翼13ともほぼ等しい翼負荷で有効に仕事をしていることがわかる。さらに、長翼12の翼負荷が低減されていることから、高揚程側(小流量)でのポンプ運転時に長翼12の出口側(つまり、ポンプ運転時の水流の入口側)でのキャビテーション性能を改善することもできる。   Comparing FIG. 4 with FIG. 3, it can be seen that in FIG. 4, the pressure difference between the working surface and the reaction surface increases on the inlet side of the short blade 13 and is almost the same as that of the long blade 12. In addition, the blade load is increased by extending the length of the short blade 13 on the band 11 side. Conversely, the blade load of the long blade 12 is reduced, and both the long blade 12 and the short blade 13 are effective with substantially equal blade loads. You can see that you are working. Further, since the blade load of the long blade 12 is reduced, the cavitation performance on the outlet side of the long blade 12 (that is, the inlet side of the water flow during the pump operation) during pump operation on the high head side (small flow rate). Can also be improved.

また、短翼13が出口側に延長されて、短翼13の負荷が増したことで、短翼13の入口側で作用面の圧力が反作用面の圧力を下回るような現象は起こらなくなっている。これは、短翼13の負荷が増したことで短翼13周りの循環が強くなり入口側で水が十分な角度で流入するようになっているためと考えられ、これによって短翼13のキャビテーション特性が良好になっている。   Further, since the short blade 13 is extended to the outlet side and the load on the short blade 13 is increased, the phenomenon that the pressure on the working surface falls below the pressure on the reaction surface on the inlet side of the short blade 13 does not occur. . This is considered to be because the circulation around the short blade 13 is strengthened by increasing the load of the short blade 13 and water flows in at a sufficient angle on the inlet side. The characteristics are good.

図5は、図15に示した従来の中間翼付ランナ5と図2に示した本実施形態に係る中間翼付ランナ14とについて、水車運転時の落差と水車出力による運転範囲を対比して示した図である。ここで、これらの水車においては、落差HtminからHtmaxの間で、その際の最高出力がPtmax以下となるように運転されるものであり、実線および破線で示された曲線は、本実施形態の中間翼付ランナ14を用いた水車と、図15として示した従来の中間翼付ランナ5を用いた水車のキャビテーション発生限界をそれぞれ表しており、これらの線で囲まれた範囲で水車の運転ができることを表している。つまり、図5より明らかなように、本実施形態の中間翼付ランナ14を用いた水車では、運転可能な全ての落差に対してキャビテーション発生限界がより低出力側となっており、運転範囲がより広まっていることが判る。すなわち上述したように、本実施形態を用いると低出力の運転であっても十分な翼負荷を中間翼付ランナ14の短翼13に与えるため、十分な強さの翼回りの循環を得ることができ、翼入口での短翼13への水の局所的な流入角度を大きく取ることができるので、キャビテーションを発生させずに短翼13に有効な仕事をさせることができる。   FIG. 5 shows a comparison between a head during turbine operation and an operation range based on turbine output for the conventional runner with intermediate blade 5 shown in FIG. 15 and the runner 14 with intermediate blade according to the present embodiment shown in FIG. FIG. Here, these turbines are operated so that the maximum output at that time falls below Ptmax between the heads Htmin and Htmax, and the curves shown by the solid line and the broken line are those of this embodiment. The cavitation generation limit of the water turbine using the runner 14 with the intermediate wing and the turbine using the conventional runner 5 with the intermediate wing shown in FIG. 15 are shown, and the operation of the water turbine is performed within the range surrounded by these lines. It represents what you can do. That is, as is clear from FIG. 5, in the water turbine using the intermediate bladed runner 14 of the present embodiment, the cavitation generation limit is on the lower output side with respect to all operable heads, and the operation range is You can see that it is more widespread. That is, as described above, when this embodiment is used, a sufficient blade load is applied to the short blade 13 of the runner 14 with intermediate blades even in a low output operation, so that sufficient circulation around the blade is obtained. Since the local inflow angle of water to the short blade 13 at the blade inlet can be increased, effective work can be performed on the short blade 13 without generating cavitation.

さらに、中間翼付ランナ14全体として、従来の中間翼付ランナとその翼負荷を同一にするならば、翼負荷のバランスを考えると短翼12のクラウン10側を従来の中間翼付ランナよりも短くすることもでき、製作面・保守点検面での作業性を向上させることができる。   Further, if the blade load is the same as that of the conventional runner 14 with the intermediate blade as the entire runner 14 with the intermediate blade, considering the balance of the blade load, the crown 10 side of the short blade 12 is more than the conventional runner with the intermediate blade. It can be shortened, and workability in terms of production and maintenance can be improved.

なお、図2に示した本実施形態に係る中間翼付ランナ14では、短翼13の出口縁辺15をバンド11側からクラウン10側に亘って直線にしているが、滑らかな曲線にしてもよい。短翼13の出口縁辺15を滑らかな曲線にし、さらにθaの角度を調整すると、短翼13の翼負荷を微調整ができ、キャビテーション性能などを最適に設定することができる。また、このようにすると、長翼12と短翼13とで形成される流路幅がバンド11側からクラウン10側に亘って微調整できるので、水車運転時の中間翼付ランナ14の出口流れを均一化できる利点がある。   In the runner 14 with intermediate blades according to the present embodiment shown in FIG. 2, the outlet edge 15 of the short blade 13 is linear from the band 11 side to the crown 10 side, but may be a smooth curve. . By making the outlet edge 15 of the short blade 13 a smooth curve and adjusting the angle θa, the blade load of the short blade 13 can be finely adjusted, and the cavitation performance and the like can be set optimally. In this way, the flow path width formed by the long blades 12 and the short blades 13 can be finely adjusted from the band 11 side to the crown 10 side, so that the outlet flow of the intermediate bladed runner 14 during water turbine operation There is an advantage that can be made uniform.

このように、本実施形態は、短翼13の出口縁辺15のクラウン10側の交点17と回転軸18の中心Oを結ぶ短翼頂部側仮想線19に対して、短翼13の出口縁辺15のバンド11側の交点16と回転軸18の中心Oを結ぶ短翼低部側仮想線20が、ランナの回転軸に垂直な投影面上で角度θaだけ短翼13の出口側に張り出すように短翼13の出口縁辺15を設けているので、キャビテーション性能を向上させ、長翼12と短翼13の負荷の均一化を図ることができる。また、このような構成とすることで、長翼12と短翼13の間の流路幅を微調整できるので、保守点検等の作業を容易にすることも可能となる。   As described above, in the present embodiment, the exit edge 15 of the short blade 13 with respect to the short blade top-side imaginary line 19 that connects the intersection 17 on the crown 10 side of the exit edge 15 of the short blade 13 and the center O of the rotating shaft 18. The short blade imaginary line 20 connecting the intersection 16 on the band 11 side and the center O of the rotating shaft 18 protrudes to the exit side of the short blade 13 by an angle θa on the projection plane perpendicular to the rotating shaft of the runner. Since the exit edge 15 of the short blade 13 is provided in the cavitation performance, the cavitation performance can be improved and the load on the long blade 12 and the short blade 13 can be made uniform. Further, with such a configuration, the flow path width between the long blades 12 and the short blades 13 can be finely adjusted, so that work such as maintenance and inspection can be facilitated.

図6は、フランシス形ポンプ水車を一例に採った本発明に係る水力機械の第2実施形態を示す概略図である。なお、第1実施形態の構成部品と同一部分には同一符号を付す。   FIG. 6 is a schematic view showing a second embodiment of the hydraulic machine according to the present invention, taking a Francis pump turbine as an example. In addition, the same code | symbol is attached | subjected to the same part as the component of 1st Embodiment.

本実施形態に係る水力機械、例えばフランシス形ポンプ水車の中間翼付ランナ14は、長翼12における出口縁辺21のバンド11側およびクラウン10側のそれぞれの交点22,23としたとき、バンド11側の交点23の位置が長翼12の出口側に移動されており、バンド11側の交点22と回転軸(主軸)18の中心Oとを結ぶ長翼低部側仮想線24が、クラウン10側の交点23と回転軸18の中心Oとを結ぶ長翼頂部側仮想線25よりも、回転軸に垂直な投影面上で角度θbだけ長翼12の出口側になるように構成されている。   A hydraulic machine according to the present embodiment, for example, a runner 14 with an intermediate blade of a Francis-type pump turbine, when the crossing points 22 and 23 of the outlet edge 21 of the long blade 12 are on the band 11 side and the crown 10 side, respectively. The position of the crossing point 23 is moved to the outlet side of the long blade 12, and the long blade low-side imaginary line 24 connecting the crossing point 22 on the band 11 side and the center O of the rotation axis (main shaft) 18 is on the crown 10 side. The long blade top side imaginary line 25 connecting the intersection 23 of the rotation axis 18 and the center O of the rotating shaft 18 is configured to be on the exit side of the long blade 12 by an angle θb on the projection plane perpendicular to the rotating shaft.

すなわち、本実施形態では図6に示すように、この中間翼付ランナ14をランナ出口下方がわから鉛直上向きに見た場合、長翼12の出口縁辺21は、ランナ14の中心から放射状には配置されておらず、出口縁辺21の延長線が回転軸18の中心Oを通らないようになっている。そして、この出口縁辺21はそのクラウン10側の端部となる交点23側よりも、バンド11側の端部となる交点22側が長翼12の出口側に張り出した形状となっており、図15に示した従来の中間翼付ランナ5と比較して、長翼12のバンド11側が長くなっている。   That is, in this embodiment, as shown in FIG. 6, when the runner 14 with intermediate blades is viewed vertically upward from the bottom of the runner outlet, the outlet edge 21 of the long blade 12 is arranged radially from the center of the runner 14. The extension line of the outlet edge 21 does not pass through the center O of the rotating shaft 18. The exit edge 21 has a shape in which the intersection 22 side serving as the end portion on the band 11 side protrudes from the exit side of the long blade 12 rather than the intersection 23 side serving as the end portion on the crown 10 side. The band 11 side of the long blade 12 is longer than the conventional runner 5 with an intermediate blade shown in FIG.

図7は、図15に示す従来の中間翼付ランナ5の長翼3と本実施形態の中間翼付ランナ14の長翼12と短翼13について、ポンプ運転時のバンド7側での翼回りの圧力分布を示すグラフである。なお、図中、実線は本実施形態を適用した長翼12の圧力分布を、破線は短翼13の圧力分布を示し、一点鎖線は図15に示す従来の中間翼付ランナ5の長翼3の圧力分布を示している。ここで、本図においても図3および図4と同様に、各翼の圧力分布に対して、上側にある線が作用面(正圧面)の圧力分布を示し、下側にある線が反作用面(負圧面)の圧力分布を示しており、作用面と反作用面の圧力差を入口側から出口側まで積分したものがこの位置(バンド11側)における翼負荷を示していることになる。   FIG. 7 shows the blade circumference on the band 7 side during pump operation for the long blade 3 of the conventional runner 5 with intermediate blade shown in FIG. 15 and the long blade 12 and short blade 13 of the runner 14 with intermediate blade of the present embodiment. It is a graph which shows pressure distribution of. In the figure, the solid line indicates the pressure distribution of the long blade 12 to which the present embodiment is applied, the broken line indicates the pressure distribution of the short blade 13, and the alternate long and short dash line indicates the long blade 3 of the conventional runner 5 with intermediate blade shown in FIG. The pressure distribution is shown. 3 and 4, the upper line indicates the pressure distribution on the working surface (positive pressure surface) and the lower line indicates the reaction surface, as in FIGS. 3 and 4. The pressure distribution of the (negative pressure surface) is shown, and the result of integrating the pressure difference between the working surface and the reaction surface from the inlet side to the outlet side indicates the blade load at this position (band 11 side).

図7に示したように、本実施形態の長翼12では、従来の長翼よりもバンド11側の翼長が出口側(ポンプ運転時の水流の入口側)に延長されているために、出口部(ポンプ運転時の水流の入口部)での翼負荷を従来の長翼よりも低減できることがわかる。そしてこのことによって、高揚程でのポンプ運転特性を向上させることができ、ポンプ運転時の逆流限界を小流量側に移行させて運転の安定化を図ることができる。   As shown in FIG. 7, in the long blade 12 of the present embodiment, the blade length on the band 11 side is extended to the outlet side (the inlet side of the water flow during pump operation) than the conventional long blade, It can be seen that the blade load at the outlet (water flow inlet during pump operation) can be reduced as compared to the conventional long blade. As a result, the pump operation characteristics at a high head can be improved, and the backflow limit at the time of pump operation can be shifted to the small flow rate side to stabilize the operation.

図8は、フランシス形ポンプ水車を例に採った本発明に係る水力機械の第3の実施形態を示す一部切欠部分断面図である。   FIG. 8 is a partially cutaway partial cross-sectional view showing a third embodiment of the hydraulic machine according to the present invention, taking a Francis pump turbine as an example.

本実施形態に係る中間翼付ランナ14は、短翼13の翼厚みTbが最大翼厚Tbmaxとなる位置を短翼13の入口INから出口EXまでの翼長Lの半分L/2よりも入口IN側に設定したものである。そして、短翼13は最大翼厚Tbmaxの位置から入口IN側、出口EX側に滑らかにその翼厚みTbが減少するように構成されている。ここで、最大翼厚Tbmaxの位置から入口IN側にかけては、翼厚みTbを最大翼厚Tbmaxのままとすることもできる。   In the runner 14 with intermediate blade according to the present embodiment, the position where the blade thickness Tb of the short blade 13 becomes the maximum blade thickness Tbmax is more than the half L / 2 of the blade length L from the inlet IN to the outlet EX of the short blade 13. It is set on the IN side. The short blade 13 is configured such that the blade thickness Tb smoothly decreases from the position of the maximum blade thickness Tbmax to the inlet IN side and the outlet EX side. Here, the blade thickness Tb can be kept at the maximum blade thickness Tbmax from the position of the maximum blade thickness Tbmax to the inlet IN side.

長翼12、および短翼13の厚みは、それぞれ作用面と反作用面の圧力差で決まる翼負荷によって受ける力に耐えられるように決定されるが、短翼13に作用する翼負荷は長翼12のそれよりも小さくなるため、短翼13の翼厚みTbを長翼12の翼厚みと同一にしなくてもよい場合が多い。そして、このとき、本実施形態のような構成とすることで、短翼13の出口EX側において、長翼12と短翼13とで形成される翼間流路26の幅を広く取ることができる。   The thicknesses of the long blade 12 and the short blade 13 are determined so as to be able to withstand the force received by the blade load determined by the pressure difference between the working surface and the reaction surface, but the blade load acting on the short blade 13 is long blade 12. In many cases, the blade thickness Tb of the short blade 13 does not need to be the same as the blade thickness of the long blade 12. At this time, by adopting the configuration of this embodiment, the width of the inter-blade channel 26 formed by the long blades 12 and the short blades 13 can be widened on the outlet EX side of the short blades 13. it can.

一般に、流路による摩擦損失はその流路を流れる水の流速の2乗に比例することが知られており、本実施形態によって翼間流路26の幅を広く取ると翼間流路26での水の流速が小さくなり、翼間流路26での摩擦損失を低減することができるので、効率を向上させることができる。   In general, it is known that the friction loss due to the flow path is proportional to the square of the flow velocity of water flowing through the flow path. If the width of the inter-blade flow path 26 is widened according to this embodiment, the inter-blade flow path 26 Since the flow rate of water becomes small and the friction loss in the inter-blade channel 26 can be reduced, the efficiency can be improved.

このように、本実施形態は、中間翼付ランナ14の短翼13の翼厚Tbが最大翼厚Tbmaxとなる位置を、短翼13の入口INから出口EXまでの翼長Lの半分L/2よりも入口IN側に設定するので、長翼12と短翼13とで形成される翼間流路26の幅を広くすることができ、翼間流路26での摩擦損失を低減させることができる。   Thus, in the present embodiment, the position where the blade thickness Tb of the short blade 13 of the runner 14 with the intermediate blade is the maximum blade thickness Tbmax is set to a half L / L of the blade length L from the inlet IN to the outlet EX of the short blade 13. Since it is set on the inlet IN side of 2, the width of the inter-blade channel 26 formed by the long blades 12 and the short blades 13 can be widened, and the friction loss in the inter-blade channel 26 can be reduced. Can do.

図9は、フランシス形ポンプ水車を一例に採った本発明に係る水力機械の第4の実施形態を示す一部切欠部分断面図である。   FIG. 9 is a partially cutaway partial cross-sectional view showing a fourth embodiment of the hydraulic machine according to the present invention, taking a Francis pump turbine as an example.

本実施形態に係る中間翼付ランナ14は、短翼13と短翼13の作用面側(正圧面側)に隣り合う長翼12とが翼長方向に重なり合うAからBまでの重なり間A−Bにおいて、短翼13の翼厚みTbを長翼12の翼厚みTaよりも小さくなるようにしたものである。この場合、さらに短翼13の出口EX側に向かってはその翼厚Tbを漸次小さくするとよい。   In the runner 14 with intermediate blade according to the present embodiment, the short blade 13 and the long blade 12 adjacent to the working surface side (pressure surface side) of the short blade 13 overlap in the blade length direction from A to B. In B, the blade thickness Tb of the short blade 13 is made smaller than the blade thickness Ta of the long blade 12. In this case, the blade thickness Tb may be gradually decreased toward the exit EX side of the short blade 13.

このように、本実施形態は、長翼12と短翼13との翼長方向の重なり間A−Bで短翼13の翼厚みTbを長翼12の厚みTaよりも小さくして翼間流路26の幅を広げるので、翼間流路26での摩擦損失を低減させることができる。さらに翼間流路26の拡大により中間翼付ランナ14の製作時や保守点検時の作業性も向上する。   As described above, in the present embodiment, the blade thickness Tb of the short blade 13 is made smaller than the thickness Ta of the long blade 12 in the overlap direction AB between the long blade 12 and the short blade 13 in the blade length direction. Since the width of the path 26 is increased, the friction loss in the inter-blade channel 26 can be reduced. Furthermore, the workability at the time of manufacture and maintenance inspection of the runner 14 with intermediate blades is improved by expanding the inter-blade channel 26.

第3の実施形態および第4の実施形態では、短翼13の翼厚みTbが最大翼厚Tbmaxとなる位置から短翼13の出口EXにかけて漸次小さくなるように構成しているが、短翼13の翼厚みTbの大きさは次のようするとよい。   In the third embodiment and the fourth embodiment, the blade thickness Tb of the short blade 13 is configured to gradually decrease from the position where the blade thickness Tbmax reaches the maximum blade thickness Tbmax to the outlet EX of the short blade 13. The blade thickness Tb is preferably as follows.

図10は本発明に係る水力機械の第3の実施形態もしくは第4の実施形態における中間翼付ランナ14の水車運転時の中央流線上での翼面圧力分布を示す線図である。また、図11はこの中間翼付ランナ14の中央流線上の長翼12と短翼13の翼厚みを説明するために用いた一部切欠部分断面図である。   FIG. 10 is a diagram showing the blade surface pressure distribution on the central streamline during the water turbine operation of the runner 14 with intermediate blades in the third or fourth embodiment of the hydraulic machine according to the present invention. FIG. 11 is a partially cutaway partial sectional view used for explaining the blade thicknesses of the long blade 12 and the short blade 13 on the central stream line of the runner 14 with intermediate blades.

図10および図11に示したように、長翼12の入口IN側から距離Lだけ離れた位置における作用面(正圧面)と反作用面(負圧面)との圧力差ΔPaと、短翼13の入口IN側から同様に距離Lだけ離れた位置における同様な圧力差ΔPbとを比較すると、どの位置においても短翼13の圧力差ΔPbが長翼12の圧力差ΔPaよりも小さいことがわかる。すなわち、各位置において短翼13に作用する力は同じ位置で長翼12に作用する力より小さくなるため、この圧力差ΔPa,ΔPbと長翼12の翼厚みTaに基づいて短翼13の翼厚みTbとの間にはある関係が存在する。すなわち、この場合、短翼13の翼厚みTbが例えば次式を満たすとよい。   As shown in FIGS. 10 and 11, the pressure difference ΔPa between the action surface (positive pressure surface) and the reaction surface (negative pressure surface) at a position away from the inlet IN side of the long blade 12 by the distance L, Similarly, when comparing the same pressure difference ΔPb at a position away from the inlet IN by the distance L, it can be seen that the pressure difference ΔPb of the short blade 13 is smaller than the pressure difference ΔPa of the long blade 12 at any position. That is, since the force acting on the short blade 13 at each position is smaller than the force acting on the long blade 12 at the same position, the blade of the short blade 13 is based on the pressure difference ΔPa, ΔPb and the blade thickness Ta of the long blade 12. There is a relationship with the thickness Tb. That is, in this case, the blade thickness Tb of the short blade 13 may satisfy the following formula, for example.

[数1]
Tb≧α×(ΔPb/ΔPa)×Ta …(1)
ここで、αは落差や応力等の強度面から決定される係数である。
[Equation 1]
Tb ≧ α × (ΔPb / ΔPa) × Ta (1)
Here, α is a coefficient determined from a strength surface such as a drop or stress.

このようにすると、短翼13の翼厚みTbが、その翼負荷ΔPbに基づいて最大翼厚Tbmaxとなる位置から短翼13の出口EXにかけて漸次小さくなるような形状となる。   In this way, the blade thickness Tb of the short blade 13 becomes a shape that gradually decreases from the position where the maximum blade thickness Tbmax is reached to the outlet EX of the short blade 13 based on the blade load ΔPb.

ここで、(1)式を用いて積極的に翼厚みTbを決定するのであれば、圧力差ΔPa,ΔPbについては、ある形状の長翼12、短翼13についての値を用い、このときの短翼13の形状から(1)式を用いて翼厚みTbを修正するなどとすれば、よりよい短翼13の形状を得ることが可能になる。このようにして翼厚みTbを積極的に決定しようとする場合、翼厚みTbを修正することによって圧力差ΔPb,ΔPaも多少変化するが、電子計算機を用いた数値シミュレーションによって圧力差ΔPa,ΔPbを求め、これから得られた翼厚みTbを用いて再度圧力差ΔPa,ΔPbを算出するなどして反復計算を行い、翼厚みTbを決定すれば最適な翼形状を得ることも可能となる。   Here, if the blade thickness Tb is positively determined using the equation (1), the values for the long blade 12 and the short blade 13 having a certain shape are used for the pressure differences ΔPa and ΔPb. If the blade thickness Tb is corrected from the shape of the short blade 13 using equation (1), a better shape of the short blade 13 can be obtained. When the blade thickness Tb is to be positively determined in this way, the pressure differences ΔPb and ΔPa change somewhat by correcting the blade thickness Tb, but the pressure differences ΔPa and ΔPb are obtained by numerical simulation using an electronic computer. The optimum blade shape can be obtained by determining the blade thickness Tb by repeatedly calculating the pressure difference ΔPa, ΔPb by using the blade thickness Tb obtained from this and calculating the pressure difference ΔPa, ΔPb again.

以上の説明のとおり、本発明に係る水力機械は、中間翼付ランナの長翼と短翼との翼幅を長くすることにより、長翼と短翼との翼負荷の差を少なくさせることができ、短翼の水車入口キャビテーションと流れの剥離を抑制する一方、長翼のポンプ高揚程運転時、逆流限界を小流量側に移行させて安定運転を維持することができる。   As described above, the hydraulic machine according to the present invention can reduce the difference in blade load between the long blade and the short blade by increasing the blade width between the long blade and the short blade of the runner with intermediate blade. It is possible to suppress turbulence at the turbine inlet of the short blade and flow separation, while maintaining the stable operation by shifting the back flow limit to the small flow rate side during the pump high head operation of the long blade.

また、本発明に係る水力機械は、中間翼付ランナの長翼と短翼との流路幅を拡げることにより、水力効率をより一層向上させることができ、さらに製作面・保守点検面でその作業性を容易にすることができる。   Further, the hydraulic machine according to the present invention can further improve the hydraulic efficiency by widening the flow path width between the long blade and the short blade of the runner with intermediate blades, and further improve the production and maintenance inspections. Workability can be facilitated.

1 ランナ
2 ランナベーン
3 長翼
4 短翼
5 中間翼付ランナ
6 クラウン
7 バンド
8a,8b 出口縁辺
9 回転軸
10 クラウン
11 バンド
12 長翼
13 短翼
14 中間翼付ランナ
15 出口縁辺
16,17 交点
18 回転軸
19 短翼低部側仮想線
20 長翼低部側仮想線
21 出口縁辺
22,23 交点
24 長翼頂部側仮想線
25 短翼頂部側仮想線
26 流路
27,27a,27b 作用面
28,28a,28b 反作用面
29 入口
DESCRIPTION OF SYMBOLS 1 Runner 2 Runner vane 3 Long blade 4 Short blade 5 Runner with intermediate blade 6 Crown 7 Band 8a, 8b Outlet edge 9 Rotating shaft 10 Crown 11 Band 12 Long blade 13 Short blade 14 Runner with intermediate blade 15 Outlet edge 16, 17 Intersection 18 Rotating shaft 19 Short blade low-side imaginary line 20 Long blade low-side imaginary line 21 Exit edge 22, 23 Intersection 24 Long blade top-side virtual line 25 Short blade top-side virtual line 26 Channels 27, 27a, 27b Working surface 28 , 28a, 28b Reaction surface 29 Entrance

Claims (2)

周方向に沿って長翼と短翼とを交互に配置する中間翼付ランナを備えた水力機械において、前記短翼の翼厚みが最大となる位置を、前記短翼の入口から出口のまでの翼長の半分よりも前記入口側に設定したことを特徴とする水力機械。 In a hydraulic machine including a runner with intermediate blades in which long blades and short blades are alternately arranged along the circumferential direction, the position where the blade thickness of the short blade is maximum is determined from the inlet to the outlet of the short blade. A hydraulic machine, characterized in that it is set on the inlet side with respect to half of the blade length. 周方向に沿って長翼と短翼とを交互に配置する中間翼付ランナを備えた水力機械において、前記短翼の翼厚みを、前記短翼と該短翼の作用面側に隣り合う長翼との重なり間において、該長翼の翼厚みよりも小さく形成したことを特徴とする水力機械。 In a hydraulic machine including a runner with intermediate wings in which long wings and short wings are alternately arranged along a circumferential direction, the blade thickness of the short wings is set to a length adjacent to the working surface side of the short wings and the short wings. A hydraulic machine characterized in that it is formed smaller than the blade thickness of the long blade between the blades.
JP2011133089A 2011-06-15 2011-06-15 Hydraulic machine Expired - Lifetime JP5197805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011133089A JP5197805B2 (en) 2011-06-15 2011-06-15 Hydraulic machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011133089A JP5197805B2 (en) 2011-06-15 2011-06-15 Hydraulic machine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001251983A Division JP4846139B2 (en) 2001-08-22 2001-08-22 Hydraulic machine

Publications (2)

Publication Number Publication Date
JP2011174474A true JP2011174474A (en) 2011-09-08
JP5197805B2 JP5197805B2 (en) 2013-05-15

Family

ID=44687528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011133089A Expired - Lifetime JP5197805B2 (en) 2011-06-15 2011-06-15 Hydraulic machine

Country Status (1)

Country Link
JP (1) JP5197805B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107882771A (en) * 2017-10-18 2018-04-06 江苏大学 A kind of Optimization Design of jet type self-suction centrifugal pump

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57126566A (en) * 1981-01-29 1982-08-06 Toshiba Corp Francis type runner
JPS61184876U (en) * 1985-05-10 1986-11-18
JP2000154796A (en) * 1998-11-19 2000-06-06 Mitsubishi Heavy Ind Ltd Impeller
JP2000205101A (en) * 1999-01-13 2000-07-25 Hitachi Ltd Reversible pump-turbine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57126566A (en) * 1981-01-29 1982-08-06 Toshiba Corp Francis type runner
JPS61184876U (en) * 1985-05-10 1986-11-18
JP2000154796A (en) * 1998-11-19 2000-06-06 Mitsubishi Heavy Ind Ltd Impeller
JP2000205101A (en) * 1999-01-13 2000-07-25 Hitachi Ltd Reversible pump-turbine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107882771A (en) * 2017-10-18 2018-04-06 江苏大学 A kind of Optimization Design of jet type self-suction centrifugal pump

Also Published As

Publication number Publication date
JP5197805B2 (en) 2013-05-15

Similar Documents

Publication Publication Date Title
JP5946707B2 (en) Axial turbine blade
JP3174736U (en) Steam turbine guide blade
JP5495700B2 (en) Centrifugal compressor impeller
US20150176594A1 (en) Radial impeller for a drum fan and fan unit having a radial impeller of this type
JP2009531593A5 (en)
JP5117349B2 (en) Hydraulic machine
AU2013333059B2 (en) Hydraulic machine
JP2009007981A (en) Intermediate fixing and supporting structure for steam-turbine long moving blade train, and steam turbine
JP2013217346A (en) Pump suction pipe
EP3172431B1 (en) Francis turbine with short blade and short band
JP4693687B2 (en) Axial water turbine runner
JP4846139B2 (en) Hydraulic machine
JP4776333B2 (en) Hydraulic machine guide vane and hydraulic machine equipped with the guide vane
JP5197805B2 (en) Hydraulic machine
JP2007064018A (en) Francis type runner and hydraulic machine
JP4751165B2 (en) Francis pump turbine
JP4696774B2 (en) Double suction centrifugal pump
JP2005140078A (en) Hydraulic machine
JP2008175169A (en) Francis turbine
JP2007107428A (en) Runner for hydraulic machine and hydraulic machine using the same
JP5843445B2 (en) Diffuser structure for fluid machinery
JP2004156587A (en) Hydraulic turbine
JP2006022694A (en) Runner for hydraulic machine and hydraulic machine with the runner
JP2010112336A (en) Francis hydraulic machine, and runner for the same
JP4565008B2 (en) Hydraulic machine suction pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110615

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20111223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5197805

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

EXPY Cancellation because of completion of term