JP2011174151A - Cold-rolled steel sheet for high-tension pipe excellent in surface quality and method for manufacturing the same - Google Patents

Cold-rolled steel sheet for high-tension pipe excellent in surface quality and method for manufacturing the same Download PDF

Info

Publication number
JP2011174151A
JP2011174151A JP2010040097A JP2010040097A JP2011174151A JP 2011174151 A JP2011174151 A JP 2011174151A JP 2010040097 A JP2010040097 A JP 2010040097A JP 2010040097 A JP2010040097 A JP 2010040097A JP 2011174151 A JP2011174151 A JP 2011174151A
Authority
JP
Japan
Prior art keywords
cold
steel sheet
less
rolling
rolled steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010040097A
Other languages
Japanese (ja)
Inventor
Kenichi Mitsuzuka
賢一 三塚
Nobuo Yamagami
伸夫 山上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010040097A priority Critical patent/JP2011174151A/en
Publication of JP2011174151A publication Critical patent/JP2011174151A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cold-rolled steel sheet for high-tension pipe excellent in surface quality, and a method for manufacturing the same. <P>SOLUTION: The cold-rolled steel sheet has a composition comprising, by mass, 0.050-0.070% C, 0.8-1.5% Si, 1.8-2.5% Mn, ≤0.020% P, ≤0.010% S, 0.010-0.100% Sol.Al, ≤0.005% N and the balance being Fe and unavoidable impurities. The structure thereof is a two-phase structure comprising a ferrite phase and a martensite phase. The cold-rolled steel sheet is obtained by: starting rapid cooling of a slab within 1 sec after hot-rolling so as to achieve a temperature drop of >100°C but <300°C at an average cooling rate of >10°C/s; winding the same at a winding temperature of 500-600°C; subjecting the same to cold-rolling; and continuously annealing the same in a furnace atmosphere with a hydrogen concentration of ≥3 vol.% and a dew point of ≤-30°C. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、主にパイプ用素材として好適な表面品質の優れた高張力パイプ用冷延鋼板およびその製造方法に関する。   The present invention relates to a cold-rolled steel sheet for high-strength pipes excellent in surface quality suitable mainly as a pipe material and a method for producing the same.

近年、地球温暖化防止の見地から、自動車の燃費向上が重要な課題となっている。これに伴い、車体材料の高強度化により薄肉化を図り、車体そのものを軽量化しようとする動きが活発となってきている。しかしながら、車体材料である鋼板の薄肉化・高強度化により、延性の低下を招く。このため、高強度と高延性を併せ持つ材料の開発が望まれているのが現状である。   In recent years, improving the fuel efficiency of automobiles has become an important issue from the viewpoint of preventing global warming. Along with this, there is an active movement to reduce the thickness of the vehicle body by increasing the strength of the vehicle body material and to reduce the weight of the vehicle body itself. However, the reduction in ductility is caused by the reduction in thickness and strength of the steel plate as the body material. For this reason, the present situation is that development of a material having both high strength and high ductility is desired.

このような要求に対して、これまでは、鋼成分のSiやMnなどを添加する高合金化への設計変更を行い、材料自体の材質特性を向上させることで延性低下を補ってきた。
しかしながら、このような設計変更後の鋼板を高張力パイプ用途素材として用いようとした場合、以下の問題がある。例えば、ヘッドレスト部品に鋼板を用いる場合、まず、鋼板をパイプに成型し、次いで、表面にクロムメッキなどの光沢美麗処理をする。しかし、上記SiやMnなどを添加した高合金化の鋼板の場合には、酸素との親和力が強いSi、Mnの酸化物により、メッキ後に光沢不良など、表面に不具合が発生するケースが見受けられるようになった。
高強度と高延性を併せ持つ鋼として、特許文献1〜3には、延性の良好な高強度熱延鋼板が開示されている。しかし、これらの特許文献のいずれも冷延鋼板(パイプ用冷延素材)について一切考慮されておらず、また、鋼板のC量が0.15質量%以上(または0.15質量%超)と高い成分設計であり、スポット溶接性、穴拡げ性の低下等実用性能が低いという問題がある。
In response to such demands, up to now, the design has been changed to high alloying by adding steel components such as Si and Mn, and the ductility reduction has been compensated by improving the material properties of the material itself.
However, when the steel plate after such a design change is used as a material for high-tensile pipe use, there are the following problems. For example, when a steel plate is used for the headrest component, the steel plate is first formed into a pipe, and then the surface is subjected to a glossy and beautiful treatment such as chrome plating. However, in the case of high-alloyed steel sheets with the addition of Si, Mn, etc., there are cases where defects such as poor gloss occur after plating due to the oxides of Si and Mn having a strong affinity for oxygen. It became so.
As steels having both high strength and high ductility, Patent Documents 1 to 3 disclose high-strength hot-rolled steel sheets having good ductility. However, none of these patent documents considers the cold-rolled steel sheet (cold-rolling material for pipes), and the C content of the steel sheet is 0.15 mass% or more (or more than 0.15 mass%). It has a high component design, and there is a problem that its practical performance is low, such as a decrease in spot weldability and hole expandability.

特公平6−41617号公報Japanese Patent Publication No. 6-41617 特公平5−65566号公報Japanese Patent Publication No. 5-65566 特公平5−67682号公報JP-B-5-67682

本発明は、かかる事情に鑑み、表面品質の優れた高張力パイプ用冷延鋼板およびその製造方法を提供することを目的とする。   In view of such circumstances, an object of the present invention is to provide a cold-rolled steel sheet for a high-tensile pipe having excellent surface quality and a method for producing the same.

本発明者らは、上記した課題を解決し、表面品質の優れた高張力パイプ用冷延鋼板を製造するため、鋼板の製造条件の観点から鋭意研究を重ねた。その結果、以下の知見を得た。
熱間圧延および連続焼鈍の製造条件が最終製品であるメッキ処理後の表面美麗さに大きな影響を及ぼしていることを突き止めた。
鋼の成分組成、熱間圧延および連続焼鈍の製造条件を規定することで、鋼板表面に存在する酸化物(Si酸化物等)の状態が変化し、酸化物の発生を抑えることが可能となる。その結果、最終製品の表面品質が改善されることがわかった。
具体的には、所定の成分組成に調整された鋼スラブに熱間圧延を行うに際し、仕上げ圧延後の冷却条件として熱間圧延後(仕上げ圧延後)1秒以内に冷却を開始し、10℃/s超の平均冷却速度で100℃超300℃未満の温度降下量にて急速冷却し、500〜600℃の巻取り温度で巻取ることで表面品質を損なうことなく、酸化物の発生を抑止した鋼板を得ることができる。
冷間圧延後の連続焼鈍において、焼鈍条件のうち、炉内の雰囲気を水素濃度3 vol%以上とし、露点を−30℃以下にすることで、表面酸化物の生成を抑止し、良好な最終製品の表面品質を得ることができる。
In order to solve the above-described problems and to produce a cold-rolled steel sheet for high-tensile pipes having excellent surface quality, the present inventors have conducted intensive research from the viewpoint of steel sheet production conditions. As a result, the following knowledge was obtained.
It has been found that the production conditions of hot rolling and continuous annealing have a great influence on the surface beauty after plating, which is the final product.
By defining the steel composition, hot rolling and continuous annealing production conditions, the state of oxides (Si oxides, etc.) present on the steel sheet surface changes and it is possible to suppress the generation of oxides. . As a result, it was found that the surface quality of the final product was improved.
Specifically, when hot rolling is performed on a steel slab adjusted to a predetermined composition, cooling is started within 1 second after hot rolling (after finish rolling) as a cooling condition after finish rolling, and 10 ° C Rapid cooling at an average cooling rate of more than 100 ° C and a temperature drop of more than 100 ° C and less than 300 ° C, and winding at a winding temperature of 500 to 600 ° C suppresses the generation of oxides without impairing surface quality. Steel plate can be obtained.
In continuous annealing after cold rolling, among the annealing conditions, the atmosphere in the furnace is set to a hydrogen concentration of 3 vol% or more, and the dew point is set to -30 ° C or less, thereby suppressing the formation of surface oxides and achieving a good final The surface quality of the product can be obtained.

本発明は、以上の知見に基づいてなされたものであり、その要旨は以下のとおりである。
[1]成分組成は、質量%で、C:0.050〜0.070%、Si:0.8〜1.5%、Mn:1.8〜2.5%、P:0.020%以下、S:0.010%以下、Sol.Al:0.010〜0.100%、N:0.005%以下を含有し、残部が鉄および不可避的不純物からなり、組織は、フェライト相とマルテンサイト相の二相組織を有することを特徴とする表面品質の優れた高張力パイプ用冷延鋼板。
[2]前記[1]に記載の成分組成を有するスラブを熱間圧延した後1秒以内に冷却を開始し、10℃/s超の平均冷却速度で100℃超300℃未満の温度降下量にて急速冷却し、500〜600℃の巻取り温度で巻取った後、冷間圧延し、次いで、水素濃度3vol%以上の炉内雰囲気で、−30℃以下の露点で連続焼鈍することを特徴とする表面品質の優れた高張力パイプ用冷延鋼板の製造方法。
This invention is made | formed based on the above knowledge, The summary is as follows.
[1] Component composition is mass%, C: 0.050-0.070%, Si: 0.8-1.5%, Mn: 1.8-2.5%, P: 0.020% or less, S: 0.010% or less, Sol.Al: 0.010- High-strength pipe with excellent surface quality characterized by containing 0.100%, N: 0.005% or less, the balance being iron and inevitable impurities, and having a two-phase structure of ferrite phase and martensite phase Cold rolled steel sheet.
[2] After the slab having the composition described in [1] above is hot-rolled, cooling is started within 1 second, and the temperature drop is more than 100 ° C and less than 300 ° C at an average cooling rate of more than 10 ° C / s. After cooling at a coiling temperature of 500 to 600 ° C., cold rolling, and then continuously annealing at a dew point of −30 ° C. or lower in a furnace atmosphere with a hydrogen concentration of 3 vol% or higher. A method for producing a cold-rolled steel sheet for high-tensile pipes with excellent surface quality.

なお、本明細書において、鋼の成分を示す%は、すべて質量%である。また、本発明において、「高張力パイプ用冷延鋼板」とは、引張強度TSが680MPa以上(好ましくは680〜850MPa)である冷延鋼板である。   In addition, in this specification,% which shows the component of steel is mass% altogether. In the present invention, the “cold-rolled steel sheet for high-strength pipe” is a cold-rolled steel sheet having a tensile strength TS of 680 MPa or more (preferably 680 to 850 MPa).

本発明によれば、表面品質の優れた高張力パイプ用冷延鋼板が得られる。本発明の高張力パイプ用冷延鋼板を例えば高張力パイプ用素材として用いることにより、優れた表面品質を有し、また高強度と高延性を併せ持つことが可能となり、高性能化に大きく寄与するという優れた効果を奏する。   ADVANTAGE OF THE INVENTION According to this invention, the cold-rolled steel plate for high tension pipes excellent in surface quality is obtained. By using the cold-rolled steel sheet for high-strength pipes of the present invention as a material for high-tensile pipes, for example, it has excellent surface quality, and can have both high strength and high ductility, greatly contributing to high performance. There is an excellent effect.

以下に、本発明の詳細を説明する。   Details of the present invention will be described below.

1)成分組成
C:0.050〜0.070%
Cは焼き入れ組織のマルテンサイトを強化するために重要な元素である。C量が0.050%未満では強度上昇の効果が不十分となる。一方、C量が0.070%を超えるとスポット溶接における十字引張試験において溶接部が破断するため、接合強度が著しく低下する。以上より、C量は0.050%以上0.070%以下とする。
1) Component composition
C: 0.050 ~ 0.070%
C is an important element for strengthening the martensite of the quenched structure. If the C content is less than 0.050%, the effect of increasing the strength is insufficient. On the other hand, if the amount of C exceeds 0.070%, the welded portion is broken in the cross tension test in spot welding, so the joint strength is significantly reduced. For the above reasons, the C content is 0.050% or more and 0.070% or less.

Si:0.8〜1.5%
Siはフェライト、マルテンサイトの二相組織とする鋼の延性を高めるために有効である。Si量が0.8%未満ではその効果が十分でない。一方1.5%を超えると鋼板表面にSi酸化物が多量に形成し、最終用途でメッキ処理が施される場合、品質不良が発生する。以上より、Si量は0.8%以上1.5%以下とする。
Si: 0.8-1.5%
Si is effective for enhancing the ductility of steel having a two-phase structure of ferrite and martensite. If the Si content is less than 0.8%, the effect is not sufficient. On the other hand, if it exceeds 1.5%, a large amount of Si oxide is formed on the surface of the steel sheet, resulting in poor quality when plated for final use. From the above, the Si content is 0.8% to 1.5%.

Mn:1.8〜2.5%
Mnは連続焼鈍炉での徐冷帯でのフェライト生成を抑制するために重要な元素である。1.8%未満ではその効果が十分でない。一方、2.5%を超えると連続鋳造工程でスラブ割れが発生する。以上より、Mn量は1.8%以上2.5%以下とする。
Mn: 1.8-2.5%
Mn is an important element for suppressing the formation of ferrite in the annealing zone in a continuous annealing furnace. If it is less than 1.8%, the effect is not sufficient. On the other hand, if it exceeds 2.5%, slab cracking occurs in the continuous casting process. Based on the above, the Mn content is 1.8% to 2.5%.

P:0.020%以下
Pはスポット溶接性を劣化させるためにできるだけ製鋼工程で低減することが望ましい。0.020%を超えるとスポット溶接性の劣化が顕著となる為、P量は0.020%以下とする必要がある。
P: 0.020% or less
P is desirably reduced in the steelmaking process as much as possible in order to deteriorate spot weldability. If it exceeds 0.020%, the spot weldability deteriorates remarkably, so the P content needs to be 0.020% or less.

S:0.010%以下
Sはスポット溶接性および曲げ加工性を劣化させるためにできるだけ製鋼工程で低減することが望ましい。0.010%を超えるとスポット溶接性および曲げ加工性の劣化が顕著となるため、S量は0.010%以下とする必要がある。
S: 0.010% or less
It is desirable to reduce S in the steel making process as much as possible in order to deteriorate spot weldability and bending workability. If it exceeds 0.010%, the spot weldability and bending workability will deteriorate significantly, so the S content must be 0.010% or less.

Sol.Al:0.010〜0.100%
Alは脱酸およびNをAlNとして析出させるために添加される。Sol.Al が0.010%未満では脱酸・脱窒の効果が十分でない。一方、0.100%を超えるとAl添加の効果が飽和し不経済となる。以上より、Sol.Al量は、0.010%以上0.100%以下とする。
Sol.Al:0.010~0.100%
Al is added to deoxidize and precipitate N as AlN. If Sol.Al is less than 0.010%, the effect of deoxidation and denitrification is not sufficient. On the other hand, if it exceeds 0.100%, the effect of adding Al becomes saturated and uneconomical. Accordingly, the amount of Sol.Al is set to 0.010% or more and 0.100% or less.

N:0.005%以下
Nは素材鋼板の成形性を劣化させるので、可能な限り製鋼工程で除去、低減することが望ましい。しかしながら、Nを必要以上に低減すると精錬コストが上昇するので、実質的に無害となる0.005%以下とする。
N: 0.005% or less
Since N deteriorates the formability of the material steel plate, it is desirable to remove and reduce it as much as possible in the steelmaking process. However, if N is reduced more than necessary, the refining cost increases, so 0.005% or less is made virtually harmless.

残部はFeおよび不可避的不純物である。   The balance is Fe and inevitable impurities.

2)ミクロ組織
本発明の高張力パイプ用冷延鋼板では、フェライト相とマルテンサイト相の二相組織を有する。この時、フェライト相は体積率で60%〜65%、マルテンサイト相は体積率で35%〜40%であることが好ましい。このような組織とすることで延性と穴拡げ性のバランスに優れた特性を有することとなる。
フェライト相の体積率が60%以上65%以下(好適範囲)
フェライト相の体積率が60%未満だと延性が低下する場合があるため60%以上が好ましい。一方、フェライト相の体積率が65%を超えると引張強度の確保ができなくなる場合がある。よって、フェライト相の体積率は60%以上65%以下が好ましい。
マルテンサイト相の体積率が35%以上40%以下(好適範囲)
マルテンサイト相は鋼の高強度化に有効に働く。しかし、その体積率が40%を超えると延性が低下する場合がある。また、その体積率が35%未満では、強度および穴拡げ性が劣化する場合がある。従って、マルテンサイト相の体積率は35%以上40%以下が好ましい。
2) Microstructure The cold-rolled steel sheet for high-strength pipes of the present invention has a two-phase structure of a ferrite phase and a martensite phase. At this time, the ferrite phase is preferably 60% to 65% by volume, and the martensite phase is preferably 35% to 40% by volume. By setting it as such a structure | tissue, it has the characteristic excellent in the balance of ductility and hole expansibility.
Ferrite phase volume fraction of 60% to 65% (preferred range)
If the volume fraction of the ferrite phase is less than 60%, the ductility may decrease, so 60% or more is preferable. On the other hand, if the volume fraction of the ferrite phase exceeds 65%, the tensile strength may not be ensured. Therefore, the volume fraction of the ferrite phase is preferably 60% or more and 65% or less.
The volume ratio of martensite phase is 35% to 40% (preferable range)
The martensite phase works effectively to increase the strength of steel. However, if the volume ratio exceeds 40%, the ductility may decrease. Further, if the volume ratio is less than 35%, the strength and hole expansibility may be deteriorated. Therefore, the volume ratio of the martensite phase is preferably 35% or more and 40% or less.

なお、上記ミクロ組織の構成が満足されれば本発明の目的を達成できるため、フェライト、マルテンサイト以外の相として、ベイナイト相およびオーステナイト相はそれぞれ各2%未満(体積率)であり、あるいはさらに、不可避的なセメンタイト相、AlN、MnSを含むことができ、これらの組織は本発明の冷延鋼板における特性(表面品質等)に無害である。   In addition, since the objective of this invention can be achieved if the structure of the said microstructure is satisfied, as phases other than a ferrite and a martensite, a bainite phase and an austenite phase are each less than 2% (volume ratio), respectively, or further Inevitable cementite phase, AlN and MnS can be included, and these structures are harmless to the properties (surface quality and the like) in the cold-rolled steel sheet of the present invention.

なお、本発明の冷延鋼板におけるフェライト相、マルテンサイト相、ベイナイト相およびオーステナイト相の体積率とは、観察面積に占める各相の面積の割合(面積率)を意味しており、各相の面積率は、例えば、鋼板の圧延方向に平行な板厚断面を研磨後、3%ナイタールで腐食し、SEM(走査電子顕微鏡)を用いて2000倍の倍率で10視野観察し、市販の画像処理ソフトを用いて求めることができる。   The volume ratio of the ferrite phase, martensite phase, bainite phase, and austenite phase in the cold-rolled steel sheet of the present invention means the ratio of the area of each phase (area ratio) to the observed area. For example, after polishing the plate thickness cross section parallel to the rolling direction of the steel sheet, the area ratio is corroded with 3% nital, observed with 10 fields of view at a magnification of 2000 using a SEM (scanning electron microscope), and commercially available image processing It can be obtained using software.

3)製造条件
本発明の高張力パイプ用冷延鋼板は、上記の成分組成を有するスラブを熱間圧延した後1秒以内に冷却を開始し、10℃/s超の平均冷却速度で100℃超300℃未満の温度降下量にて急速冷却し、500〜600℃の巻取り温度で巻取った後、冷間圧延し、次いで、水素濃度3vol%以上の炉内の雰囲気で、−30℃以下の露点で連続焼鈍する。
以下、詳細に説明する。
3) Manufacturing conditions The cold-rolled steel sheet for high-strength pipes of the present invention starts cooling within 1 second after hot-rolling a slab having the above-mentioned composition, and is 100 ° C. at an average cooling rate exceeding 10 ° C./s. Rapid cooling at a temperature drop of less than 300 ° C, winding at a coiling temperature of 500 to 600 ° C, cold rolling, and then -30 ° C in an atmosphere in a furnace with a hydrogen concentration of 3 vol% or more Continuous annealing at the following dew points.
Details will be described below.

上記の成分組成に調整した鋼を転炉などで溶製し、連続鋳造法等でスラブとし、熱間圧延を行う。
使用する鋼スラブは、成分のマクロ偏析を防止するために連続鋳造法で製造するのが好ましいが、造塊法、薄スラブ鋳造法で製造してもよい。また、鋼スラブを製造したのち、いったん室温まで冷却し、その後再度加熱する従来法に加え、室温まで冷却しないで、温片のままで加熱炉に挿入する、あるいはわずかの保熱をおこなった後に直ちに圧延する直送圧延・直接圧延などの省エネルギープロセスも問題なく適用できる。
Steel adjusted to the above component composition is melted in a converter or the like, and is slabed by a continuous casting method or the like, and is hot-rolled.
The steel slab to be used is preferably produced by a continuous casting method in order to prevent macro segregation of components, but may be produced by an ingot casting method or a thin slab casting method. After manufacturing the steel slab, in addition to the conventional method of cooling to room temperature and then heating again, without cooling to room temperature, insert it into a heating furnace as it is, or carry out slight heat retention Energy saving processes such as direct feed rolling and direct rolling, which are rolled immediately, can be applied without any problem.

スラブ加熱温度:1100℃以上(好適条件)
スラブ加熱温度は、低温加熱がエネルギー的には好ましいが、加熱温度が1100℃未満では、炭化物が十分に固溶できなかったり、圧延荷重の増大による熱間圧延時のトラブル発生の危険が増大するなどの問題が生じる。そのため、スラブ加熱温度は1100℃以上が好ましい。なお、酸化の増加にともなうスケールロスの増大などから、スラブ加熱温度は1300℃以下とすることが好ましい。
なお、スラブ加熱温度を低くしても熱間圧延時のトラブルを防止するといった観点から、シートバーを加熱する、いわゆるシートバーヒーターを活用してもよい。
Slab heating temperature: 1100 ℃ or higher (preferred conditions)
As for the slab heating temperature, low-temperature heating is preferable in terms of energy, but if the heating temperature is less than 1100 ° C, the carbide cannot be sufficiently dissolved, or the risk of trouble occurring during hot rolling due to an increase in rolling load increases. Problems arise. Therefore, the slab heating temperature is preferably 1100 ° C. or higher. The slab heating temperature is preferably set to 1300 ° C. or lower because of an increase in scale loss accompanying an increase in oxidation.
From the viewpoint of preventing troubles during hot rolling even if the slab heating temperature is lowered, a so-called sheet bar heater that heats the sheet bar may be used.

仕上圧延終了温度:A3点以上(好適条件)
仕上圧延終了温度がA3点未満では、圧延中にα(フェライト)とγ(オーステナイト)が生成して、鋼板にバンド状組織が生成し易くなり、材料特性に異方性を生じさせたり、加工性を低下させる原因となる場合がある。このため、仕上げ圧延終了温度はA3変態点以上とすることが好ましい。
Finishing rolling finish temperature: A 3 points or more (preferred conditions)
If it is less than finish rolling temperature A 3 points, during rolling alpha (ferrite) and gamma (austenite) are generated, the band-like structure is liable to generate in the steel plate, or causing anisotropy in material properties, It may cause a decrease in workability. Therefore, the finish rolling end temperature is preferably set to A 3 transformation point or more.

次いで、熱間圧延した後1秒以内に冷却を開始し、10℃/s超の平均冷却速度で100℃超300℃未満の温度降下量にて急速冷却し、500〜600℃の巻取り温度で巻取る。
熱間圧延後1秒以内に冷却を開始し、平均冷却速度10℃/s超で100℃超300℃未満の温度
降下量にて急速冷却
平均冷却速度が10℃/s以下では、鋼板表面の酸化層の増加を招き、表面性状が劣化する。従って、平均冷却速度は10℃/s超とする。一方、平均冷却速度が100℃/sを超えると材質の硬質化を招くことがあるため、100℃/s以下が好ましい。以上より、平均冷却速度は10℃/s超とし、好ましくは10℃/s超100℃/s以下とする。
また、熱間圧延後1秒を超えて冷却を開始した場合には、鋼板表面の酸化層の増加を招き、表面性状が劣化する。
さらに、上記10℃/s超の平均冷却速度の冷却温度幅(温度降下量)が300℃以上では急冷により材質が硬質化する。また、この冷却温度幅(温度降下量)が100℃以下では鋼板表面の酸化層の増加を招き、表面性状が劣化する。
Next, it starts cooling within 1 second after hot rolling, rapidly cools at an average cooling rate of more than 10 ° C / s with a temperature drop of more than 100 ° C and less than 300 ° C, and a coiling temperature of 500 to 600 ° C. Take up with.
Cooling starts within 1 second after hot rolling, and when the average cooling rate exceeds 10 ° C / s and the rapid cooling average cooling rate is 10 ° C / s or less with a temperature drop of more than 100 ° C and less than 300 ° C, The surface quality deteriorates due to an increase in the oxide layer. Therefore, the average cooling rate is over 10 ° C / s. On the other hand, when the average cooling rate exceeds 100 ° C./s, the material may be hardened. From the above, the average cooling rate is more than 10 ° C./s, preferably more than 10 ° C./s and not more than 100 ° C./s.
In addition, when cooling is started for more than 1 second after hot rolling, an oxide layer on the surface of the steel sheet is increased, and the surface properties are deteriorated.
Further, when the cooling temperature width (temperature drop amount) of the average cooling rate exceeding 10 ° C./s is 300 ° C. or more, the material becomes hard due to rapid cooling. In addition, when the cooling temperature width (temperature drop amount) is 100 ° C. or less, an oxide layer on the surface of the steel sheet is increased and the surface properties are deteriorated.

巻取り温度:500〜600℃
巻取り温度が500℃未満では鋼板の硬質化を招き、冷間圧延が困難となる。一方、巻取り温度が600℃を超えると鋼板表面の酸化層の増加を招き、表面性状が劣化する。
熱間圧延後、以上のような条件で冷却、巻取りを行うことで、冷間圧延・焼鈍後に材質を損なうことなく、鋼板表面に酸化物の発生を抑止した鋼板を得ることができる。
Winding temperature: 500-600 ° C
If the coiling temperature is less than 500 ° C., the steel sheet becomes hard and cold rolling becomes difficult. On the other hand, when the coiling temperature exceeds 600 ° C., an oxide layer on the surface of the steel sheet is increased and the surface properties are deteriorated.
By performing cooling and winding under the above conditions after hot rolling, it is possible to obtain a steel sheet in which the generation of oxide is suppressed on the steel sheet surface without damaging the material after cold rolling and annealing.

次いで、得られた熱延鋼板を必要に応じて酸洗したのち、冷間圧延を行う。
酸洗は、塩酸にて鋼板表面のスケールを除去するのが好ましい。冷間圧延は特に限定せず、通常行われる方法にて行うことができる。ただし、組織の微細化による延性と穴拡げ性の向上の観点から、冷間圧延の圧下率は50〜85%が好ましい。
Next, the obtained hot-rolled steel sheet is pickled as necessary, and then cold-rolled.
In pickling, it is preferable to remove the scale on the surface of the steel sheet with hydrochloric acid. Cold rolling is not particularly limited, and can be performed by a commonly performed method. However, from the viewpoint of improving ductility and hole expandability due to refinement of the structure, the rolling reduction of cold rolling is preferably 50 to 85%.

次いで、水素濃度3vol%以上の炉内雰囲気で、−30℃以下の露点で連続焼鈍する。
水素濃度3vol%未満の炉内の雰囲気で連続焼鈍を行うと還元能力が劣り、鋼板表面の酸化層の生成を十分に抑制することができない。また、−30℃超えの露点で連続焼鈍を行うと鋼板表面の酸化が促進され、鋼板の表面性状が劣化する。また、上記のミクロ組織を得るため、焼鈍の加熱、冷却条件は、750〜850℃に加熱し、10sec以上保持した後、550〜650℃まで徐冷したのち、10℃/sを超える平均冷却速度で50℃以下まで急冷し、さらに150〜300℃で焼き戻し処理を施すことが好ましい。このような範囲に焼鈍条件を制御することにより、上記のミクロ組織を安定して得ることができる。
Next, continuous annealing is performed at a dew point of −30 ° C. or lower in a furnace atmosphere having a hydrogen concentration of 3 vol% or higher.
When continuous annealing is performed in an atmosphere in a furnace with a hydrogen concentration of less than 3 vol%, the reducing ability is inferior, and the formation of an oxide layer on the steel sheet surface cannot be sufficiently suppressed. Moreover, when continuous annealing is performed at a dew point exceeding −30 ° C., oxidation of the steel sheet surface is promoted, and the surface properties of the steel sheet deteriorate. In order to obtain the above microstructure, the annealing and cooling conditions are 750 to 850 ° C, hold for 10 seconds or more, and then gradually cool to 550 to 650 ° C, then average cooling exceeding 10 ° C / s It is preferable to rapidly cool to 50 ° C. or less at a speed and further to perform tempering at 150 to 300 ° C. By controlling the annealing conditions in such a range, the above microstructure can be obtained stably.

上記条件で連続焼鈍を行うことで、鋼板の表面性状を阻害する酸化物の生成を抑止することができ、良好な最終製品の表面品質を得ることができる。
以上により、本発明の表面品質の良好な高張力パイプ用冷延鋼板が製造される。
なお、上記冷延鋼板には、形状矯正、表面粗度等の調整のため調質圧延を加えてもよい。また、亜鉛めっきなどの各種めっき処理および樹脂あるいは油脂コーティング、各種塗装等の処理を施しても何ら不都合はない。
By performing continuous annealing under the above conditions, it is possible to suppress the formation of oxides that hinder the surface properties of the steel sheet, and to obtain a good surface quality of the final product.
As described above, the cold-rolled steel sheet for high-tensile pipes with good surface quality according to the present invention is manufactured.
The cold-rolled steel sheet may be subjected to temper rolling for adjustment of shape correction, surface roughness, and the like. Moreover, there is no inconvenience even if various plating treatments such as galvanization and treatments such as resin or oil coating and various coatings are performed.

(実施例1)
表1に示す成分組成を有し、残部がFeおよび不可避的不純物よりなる鋼を転炉にて溶製し、鋳造してスラブを製造した。スラブを加熱温度1250℃で加熱した後、板厚3.2mmまで熱間圧延を行った。仕上圧延温度は870℃とした。引き続き、1秒以内に冷却を開始し、100℃/sの平均冷却速度で200℃の温度降下量にて急速冷却し、560℃の巻取温度で巻取りを行った。次いで、酸洗、冷間圧延を行い、板厚1.5mmとし、さらに連続焼鈍を実施した。連続焼鈍は830℃まで加熱し、次いで、約10℃/sの平均冷却速度で600℃まで冷却し、水温20℃の噴流水中で水温まで急冷した。さらに、200℃の温度で焼き戻し処理を行い室温まで冷却後、0.3%(伸長率)の調質圧延を行った。
(Example 1)
Steel having the composition shown in Table 1 and the balance being Fe and inevitable impurities was melted in a converter and cast to produce a slab. The slab was heated at a heating temperature of 1250 ° C. and then hot-rolled to a thickness of 3.2 mm. The finishing rolling temperature was 870 ° C. Subsequently, cooling was started within 1 second, rapid cooling was performed at an average cooling rate of 100 ° C./s with a temperature drop of 200 ° C., and winding was performed at a winding temperature of 560 ° C. Next, pickling and cold rolling were performed to obtain a plate thickness of 1.5 mm, and further continuous annealing was performed. The continuous annealing was heated to 830 ° C., then cooled to 600 ° C. at an average cooling rate of about 10 ° C./s, and rapidly cooled to water temperature in jet water having a water temperature of 20 ° C. Further, after tempering at a temperature of 200 ° C. and cooling to room temperature, 0.3% (elongation rate) temper rolling was performed.

Figure 2011174151
Figure 2011174151

以上により得られた冷延鋼板について、断面ミクロ組織、引張特性、穴拡げ性および表面品質を調査した。得られた結果を表2に示す。
なお、鋼板の断面ミクロ組織は3%ナイタール溶液(3%硝酸+エタノール)で組織を現出し、走査型電子顕微鏡で倍率2000倍で深さ方向板厚1/4位置を10視野観察して、撮影した組織写真を用いて、画像解析処理を行ない、フェライト相の分率を定量化した(なお、画像解析処理は市販の画像処理ソフトを用いることができる)。
マルテンサイト相の面積率は、組織の細かさに応じて1000〜3000倍の適切な倍率でSEM写真を撮影し、画像処理ソフトで定量化した。このようにして求めたフェライト相、マルテンサイト相の面積率を各相の体積率として評価した。
機械特性は、引張方向が鋼板の圧延方向と直角方向となるようにサンプル採取したJIS5号試験片を用いて、JISZ2241に準拠した引張試験を行ない、YP(降伏点)、TS(引張強さ)、EL(伸び)を測定した。TSは680MPa以上、ELは15%以上が良好な特性である。
さらに、λ(穴拡げ率)は日本鉄鋼連盟規格JFST1001に準じた穴拡げ試験を行い、測定した。λは60%超が良好な特性である。
表面品質は、短冊板を曲げ試験後、Niメッキ処理(付着量10〜15μm)を施し目視により光沢不良がない場合を良好(○)、光沢不良がある場合を不良(×)を判定した。
The cold-rolled steel sheet obtained as described above was examined for cross-sectional microstructure, tensile properties, hole expansibility, and surface quality. The results obtained are shown in Table 2.
In addition, the cross-sectional microstructure of the steel sheet is revealed with a 3% nital solution (3% nitric acid + ethanol), and the depth direction plate thickness 1/4 position is observed 10 times with a scanning electron microscope at a magnification of 2000 times, Image analysis processing was performed using the photographed tissue photograph, and the fraction of the ferrite phase was quantified (in addition, commercially available image processing software can be used for the image analysis processing).
The area ratio of the martensite phase was quantified with image processing software by taking SEM photographs at an appropriate magnification of 1000 to 3000 times depending on the fineness of the structure. The area ratios of the ferrite phase and martensite phase thus obtained were evaluated as the volume ratio of each phase.
For mechanical properties, a tensile test based on JISZ2241 was conducted using a JIS5 test piece sampled so that the tensile direction was perpendicular to the rolling direction of the steel sheet. YP (yield point), TS (tensile strength) EL (elongation) was measured. TS is 680MPa or more, and EL is 15% or more.
Further, λ (hole expansion rate) was measured by performing a hole expansion test according to JFST1001. λ is better than 60%.
As for the surface quality, after the strip plate was subjected to a bending test, Ni plating treatment (adhesion amount of 10 to 15 μm) was applied, and the case where there was no gloss failure visually was judged as good (◯), and the case where there was a gloss failure was judged as poor (×).

Figure 2011174151
Figure 2011174151

表2より、本発明例では、機械的特性、穴拡げ性および表面品質の全てに優れていた。
一方、鋼番号2の比較例では、機械的特性は良いが表面品質が劣っていた。鋼番号3の比較例では、Mn量が低いため、引張強度、穴拡げ性が劣っていた。鋼番号4の比較例では、C量が高いため、伸び、穴拡げ性が劣っていた。鋼番号5の比較例では、Mn量が高いため、伸び、穴拡げ性、表面品質が劣っていた。鋼番号6の比較例では、Siが低いため、穴拡げ性が劣っていた。
From Table 2, the inventive examples were excellent in all of mechanical properties, hole expansibility and surface quality.
On the other hand, in the comparative example of steel number 2, the mechanical properties were good, but the surface quality was inferior. In the comparative example of steel number 3, the tensile strength and hole expansibility were inferior because of the low Mn content. In the comparative example of Steel No. 4, since the C amount was high, the elongation and hole expansibility were inferior. In the comparative example of Steel No. 5, since the amount of Mn was high, elongation, hole expansibility, and surface quality were inferior. In the comparative example of steel number 6, since Si was low, the hole expandability was inferior.

(実施例2)
実施例1で用いた表1における鋼番号1、2を用いて表3に示す熱間圧延、連続焼鈍条件により冷延鋼板を製造した。スラブ加熱温度は1250℃、熱間圧延の仕上板厚は3.2mmとし、冷延圧延後の板厚は1.5mm、調質圧延の伸長率を0.3%とした。得られた冷延鋼板に対して、断面ミクロ組織、引張特性、穴拡げ性および表面品質を調査した。なお、断面ミクロ組織、引張特性、穴拡げ性および表面品質の調査は実施例1と同様である。得られた結果を製造条件と併せて表3に示す。
(Example 2)
Cold rolled steel sheets were produced using the steel numbers 1 and 2 in Table 1 used in Example 1 under the hot rolling and continuous annealing conditions shown in Table 3. The slab heating temperature was 1250 ° C., the finished thickness of hot rolling was 3.2 mm, the thickness after cold rolling was 1.5 mm, and the temper rolling elongation was 0.3%. The resulting cold-rolled steel sheet was examined for cross-sectional microstructure, tensile properties, hole expansibility and surface quality. The investigation of the cross-sectional microstructure, tensile properties, hole expansibility and surface quality is the same as in Example 1. The results obtained are shown in Table 3 together with the production conditions.

Figure 2011174151
Figure 2011174151

表3より、本発明例である符号Fは、引張特性、穴拡げ性、表面品質が良好な結果を得た。
一方、ほかの比較例はいずれも表面品質が劣る結果となった。符号A、Bの比較例では、熱間圧延後の冷却能が低いため、鋼板表面の酸化が促進され、表面品質が劣っていた。符号Cの比較例では、熱間圧延後の冷却能が高いため、材質が硬化し冷間圧延が困難となった。符号Dの比較例は、熱間圧延後の巻取温度が高いため鋼板表面の酸化が促進され、表面品質が劣っていた。符号Eの比較例では、熱間圧延後の巻取温度が低いため、材質が硬化し冷間圧延が困難となった。符号Gの比較例では、連続焼鈍時の炉内露点が高いため、鋼板表面の還元が劣り表面品質が劣っていた。符号Hの比較例では、連続焼鈍時の炉内雰囲気中の水素濃度が低いため、鋼板表面の還元が劣り表面品質が劣っていた。符号Iは、Si量が高いため、鋼板の表面品質が劣化していた。
From Table 3, the code F, which is an example of the present invention, obtained good results in tensile properties, hole expansibility, and surface quality.
On the other hand, all other comparative examples resulted in poor surface quality. In the comparative examples of reference signs A and B, the cooling ability after hot rolling was low, so the oxidation of the steel sheet surface was promoted and the surface quality was inferior. In the comparative example of C, since the cooling ability after hot rolling was high, the material was hardened and it was difficult to perform cold rolling. In the comparative example of reference D, the coiling temperature after hot rolling was high, so that the oxidation of the steel sheet surface was promoted and the surface quality was inferior. In the comparative example of E, since the coiling temperature after hot rolling was low, the material was cured and cold rolling became difficult. In the comparative example indicated by G, since the dew point in the furnace during continuous annealing was high, the reduction of the steel sheet surface was inferior and the surface quality was inferior. In the comparative example of the code | symbol H, since the hydrogen concentration in the furnace atmosphere at the time of continuous annealing was low, the reduction | restoration of the steel plate surface was inferior and surface quality was inferior. Since the amount of Si was high, the surface quality of the steel sheet was deteriorated.

Claims (2)

成分組成は、質量%で、C:0.050〜0.070%、Si:0.8〜1.5%、Mn:1.8〜2.5%、P:0.020%以下、S:0.010%以下、Sol.Al:0.010〜0.100%、N:0.005%以下を含有し、残部が鉄および不可避的不純物からなり、組織は、フェライト相とマルテンサイト相の二相組織を有することを特徴とする表面品質の優れた高張力パイプ用冷延鋼板。   Component composition is mass%, C: 0.050-0.070%, Si: 0.8-1.5%, Mn: 1.8-2.5%, P: 0.020% or less, S: 0.010% or less, Sol.Al: 0.010-0.100%, N: 0.005% or less, the balance is made of iron and inevitable impurities, and the structure has a two-phase structure of a ferrite phase and a martensite phase. steel sheet. 請求項1に記載の成分組成を有するスラブを熱間圧延した後1秒以内に冷却を開始し、10℃/s超の平均冷却速度で100℃超300℃未満の温度降下量にて急速冷却し、500〜600℃の巻取り温度で巻取った後、冷間圧延し、次いで、水素濃度3vol%以上の炉内雰囲気で、−30℃以下の露点で連続焼鈍することを特徴とする表面品質の優れた高張力パイプ用冷延鋼板の製造方法。   Cooling is started within 1 second after hot rolling the slab having the component composition according to claim 1 and rapidly cooled at an average cooling rate of more than 10 ° C / s with a temperature drop of more than 100 ° C and less than 300 ° C. Then, after rolling at a coiling temperature of 500 to 600 ° C., cold rolling, and then continuously annealing at a dew point of −30 ° C. or less in an atmosphere in a furnace having a hydrogen concentration of 3 vol% or more A method of manufacturing cold-rolled steel sheets for high-strength pipes with excellent quality.
JP2010040097A 2010-02-25 2010-02-25 Cold-rolled steel sheet for high-tension pipe excellent in surface quality and method for manufacturing the same Withdrawn JP2011174151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010040097A JP2011174151A (en) 2010-02-25 2010-02-25 Cold-rolled steel sheet for high-tension pipe excellent in surface quality and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010040097A JP2011174151A (en) 2010-02-25 2010-02-25 Cold-rolled steel sheet for high-tension pipe excellent in surface quality and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2011174151A true JP2011174151A (en) 2011-09-08

Family

ID=44687262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010040097A Withdrawn JP2011174151A (en) 2010-02-25 2010-02-25 Cold-rolled steel sheet for high-tension pipe excellent in surface quality and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2011174151A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111635985A (en) * 2020-06-30 2020-09-08 武汉钢铁有限公司 Production method of cold-rolled continuous annealing wide-width plate for improving short-line-shaped scratch defects

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111635985A (en) * 2020-06-30 2020-09-08 武汉钢铁有限公司 Production method of cold-rolled continuous annealing wide-width plate for improving short-line-shaped scratch defects
CN111635985B (en) * 2020-06-30 2022-03-29 武汉钢铁有限公司 Production method of cold-rolled continuous annealing wide-width plate for improving short-line-shaped scratch defects

Similar Documents

Publication Publication Date Title
JP6179461B2 (en) Manufacturing method of high-strength steel sheet
JP5463685B2 (en) High-strength cold-rolled steel sheet excellent in workability and impact resistance and method for producing the same
JP4445365B2 (en) Manufacturing method of high-strength thin steel sheet with excellent elongation and hole expandability
JP5003785B2 (en) High tensile steel plate with excellent ductility and method for producing the same
JP5821260B2 (en) High-strength hot-dip galvanized steel sheet excellent in formability and shape freezing property, and method for producing the same
JP5924332B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
US10294542B2 (en) Method for producing high-strength galvanized steel sheet and high-strength galvannealed steel sheet
JP4559969B2 (en) Hot-rolled steel sheet for processing and manufacturing method thereof
JP2010275627A (en) High-strength steel sheet and high-strength hot-dip galvanized steel sheet having excellent workability, and method for producing them
WO2014020640A1 (en) High-strength hot-dip galvanized steel sheet having excellent moldability and shape fixability, and method for manufacturing same
WO2012020511A1 (en) High-strength cold-rolled steel sheet having excellent workability and impact resistance, and method for manufacturing same
WO2012002566A1 (en) High-strength steel sheet with excellent processability and process for producing same
WO2012002565A1 (en) High-strength hot-dip galvanized steel sheet with excellent processability and process for producing same
JPWO2014171057A1 (en) High strength hot rolled steel sheet and method for producing the same
JP5958669B1 (en) High strength steel plate and manufacturing method thereof
JP5958668B1 (en) High strength steel plate and manufacturing method thereof
JP2010013700A (en) High strength hot dip galvanized steel sheet having excellent workability, and method for producing the same
JP2013241636A (en) Low yield ratio type high strength hot dip galvanized steel sheet, low yield ratio type high strength alloying hot dip galvannealed steel sheet, method for manufacturing low yield ratio type high strength hot dip galvanized steel sheet, and method for manufacturing low yield ratio type high strength alloying hot dip galvannealed steel sheet
JP5338257B2 (en) High yield ratio ultra high strength steel sheet with excellent ductility and method for producing the same
JP2004250749A (en) High strength thin steel sheet having burring property, and production method therefor
JP5364993B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
JP2007231352A (en) Precipitation hardening high strength steel sheet and its production method
JP2005290477A (en) Strain aging treatment method for high tensile steel plate and method for manufacturing high strength structural member
JP4010131B2 (en) Composite structure type high-tensile cold-rolled steel sheet excellent in deep drawability and manufacturing method thereof
JP2009144251A (en) High-tensile strength cold-rolled steel sheet

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130507