JP2005290477A - Strain aging treatment method for high tensile steel plate and method for manufacturing high strength structural member - Google Patents

Strain aging treatment method for high tensile steel plate and method for manufacturing high strength structural member Download PDF

Info

Publication number
JP2005290477A
JP2005290477A JP2004107108A JP2004107108A JP2005290477A JP 2005290477 A JP2005290477 A JP 2005290477A JP 2004107108 A JP2004107108 A JP 2004107108A JP 2004107108 A JP2004107108 A JP 2004107108A JP 2005290477 A JP2005290477 A JP 2005290477A
Authority
JP
Japan
Prior art keywords
less
strain
steel plate
temperature
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004107108A
Other languages
Japanese (ja)
Other versions
JP4337604B2 (en
Inventor
Kazuhiro Hanazawa
和浩 花澤
Yuuki Taji
勇樹 田路
Shinjiro Kaneko
真次郎 金子
Toshiaki Urabe
俊明 占部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004107108A priority Critical patent/JP4337604B2/en
Publication of JP2005290477A publication Critical patent/JP2005290477A/en
Application granted granted Critical
Publication of JP4337604B2 publication Critical patent/JP4337604B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a strain aging treatment method for a high tensile steel plate by which high strain age hardening and high ductility after the strain age hardening treatment are obtained. <P>SOLUTION: The high tensile steel plate which has a composition containing C, Si, Mo, P, S, and Al each adjusted to an appropriate amount, containing 0.0050 to 0.0250% N, containing N and Al so as to satisfy ≥0.03 in N/Al, containing ≥0.003% N of a solid solution state or further containing one or two kinds of Cr and Mo in an amount of ≤2.0mass% in total, and which has structure in which a ferrite phase is contained as a main phase, and a martensite phase is regulated to ≤10% in area ratio to the entire part of the structure and has excellent strain age hardening characteristics is subjected, as the strain aging treatment, to a predeformation treatment of imparting a prestrain above the plastic strain ε% defined by ε=(the uniform elongation (%) of the base material steel plate)-5 (where ε:the plastic strain (%)) to the steel plate, and a heat treatment to hold the steel plate for 1 to 30 min at the temperature T°C satisfying 10Mn+500Mo+250Cr+170≤T≤10Mn+500Mo+250Cr+400 (where Mn, Mo, Cr: the contents (mass%) of the respective elements). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、建築部材、機械構造用部品、自動車の構造用部品など、構造部材として広範囲に適用可能な、歪時効硬化特性に優れる高張力鋼板に係り、とくに歪時効処理後の延性低下を防止できる歪時効処理方法に関する。ここでいう「高張力鋼板」は、引張強さ440MPa以上の鋼板をいうものとする。なお、ここでいう歪時効処理は、構造部材の製造に際し、プレスなどによる成形加工と、その後に強度上昇のために行なう熱処理とを組合わせた処理をも含むものとする。また、ここでいう鋼板には、鋼帯をも含むものとする。   The present invention relates to a high-tensile steel plate having excellent strain age hardening characteristics, which can be widely applied as a structural member such as a building member, a machine structural component, and an automotive structural component, and in particular, prevents deterioration in ductility after strain aging treatment. The present invention relates to a strain aging treatment method that can be used. The “high-strength steel plate” here refers to a steel plate having a tensile strength of 440 MPa or more. Note that the strain aging treatment here includes a combination of a forming process using a press or the like and a heat treatment performed for increasing the strength thereafter in manufacturing the structural member. Further, the steel sheet referred to here includes a steel strip.

近年、地球環境の保全という観点から、自動車の燃費改善が要求され、車体の軽量化が指向されている。また、同時に、車両衝突時に乗員を安全に保護するという観点から、自動車車体の安全性向上も要求され、車体の強化が求められている。
このため、自動車車体の軽量化と強化を同時に図るために種々の方策の検討が積極的に進められている。自動車車体の軽量化と強化とを同時に満足させるには、部品素材を高強度化することが効果的であると言われており、最近では高張力鋼板が自動車部品に積極的に使用されている。
In recent years, from the viewpoint of conservation of the global environment, improvement in fuel efficiency of automobiles has been demanded, and weight reduction of vehicle bodies has been directed. At the same time, from the viewpoint of safely protecting passengers in the event of a vehicle collision, it is required to improve the safety of the automobile body, and the reinforcement of the vehicle body is required.
For this reason, various measures are being actively studied in order to simultaneously reduce the weight and strengthen the automobile body. It is said that increasing the strength of component materials is an effective way to satisfy the weight reduction and strengthening of automobile bodies at the same time. Recently, high-tensile steel plates have been actively used for automobile parts. .

鋼板を素材とする自動車の車体部品の多くがプレス加工により成形されるため、使用される高張力鋼板には、優れたプレス成形性と、プレス成形後に硬化して部品強度を高めることができるように高い歪時効特性を有することが要求されている。   Since many automotive body parts made of steel plates are formed by press working, the high-strength steel plates used have excellent press formability and can be hardened after press forming to increase component strength. It is required to have high strain aging characteristics.

プレス成形性の良好な鋼板の代表例としては、軟質のフェライトと硬質のマルテンサイトが複合した組織を有する複合組織鋼板が挙げられる。特に、連続焼鈍後、ガスジェット冷却して製造される複合組織鋼板は、降伏応力が低く高延性と焼付け硬化性とを兼ね備えている。しかし、このような複合組織鋼板が有している焼付け硬化性は、最近の自動車部品に要求される強度を満足できるほど大きくないという欠点があった。   As a typical example of a steel plate having good press formability, a composite structure steel plate having a structure in which soft ferrite and hard martensite are combined can be given. In particular, a composite steel sheet produced by gas jet cooling after continuous annealing has low yield stress and high ductility and bake hardenability. However, the bake hardenability of such a composite structure steel sheet has a drawback that it is not large enough to satisfy the strength required for recent automobile parts.

プレス成形後に硬化させ部品強度を高める方法としては、200℃未満で塗装焼付する方法がある。この塗装焼付用の鋼板として塗装焼付硬化型鋼板(BH鋼板)が開発されている。   As a method of increasing the strength of the part by hardening after press molding, there is a method of baking the coating at less than 200 ° C. A paint bake hardened steel plate (BH steel plate) has been developed as a steel plate for this paint baking.

例えば、特許文献1には、C、N、Al含有量に応じてNbを、at%でNb/(固溶C+固溶N)が特定範囲内となるように添加した組成とし、さらに、焼鈍後の冷却速度を適正範囲に調整することにより、鋼板中の固溶C、固溶Nを調整したBH鋼板の製造方法が提案されている。また、特許文献2には、TiとNbの複合添加によって焼付硬化性を向上させた鋼板の製造方法が提案されている。   For example, Patent Document 1 discloses a composition in which Nb is added in accordance with the C, N, and Al contents so that Nb / (solid solution C + solid solution N) is within a specific range at at%, and annealing is further performed. A method for producing a BH steel sheet in which the solid solution C and the solid solution N in the steel sheet are adjusted by adjusting the subsequent cooling rate to an appropriate range has been proposed. Patent Document 2 proposes a method for manufacturing a steel sheet having improved bake hardenability by the combined addition of Ti and Nb.

しかし、特許文献1、特許文献2に記載された鋼板は、深絞り性に優れる材質とするため、鋼板強度が低く、構造用材料として必ずしも十分な特性を具備していないという問題がある。   However, since the steel sheets described in Patent Document 1 and Patent Document 2 are made of a material excellent in deep drawability, there is a problem that the steel sheet strength is low and the structural material does not necessarily have sufficient characteristics.

また、特許文献3には、W、Cr、Moの単独または複合添加によって焼付硬化性を向上した鋼板の製造方法が開示されている。   Patent Document 3 discloses a method for manufacturing a steel sheet having improved bake hardenability by adding W, Cr, or Mo alone or in combination.

また、特許文献1〜3に記載されたBH鋼板では、鋼板中の微量な固溶C、固溶Nを利用するため、塗装焼付け処理により材料の降伏強さは上昇するが、引張強さを上昇させるまでに至っていない。このため、BH鋼板を用いた部品では、部品の変形開始応力は高くなるが、部品の変形開始から変形終了までの変形全域にわたり変形に要する応力(成形後引張強さ)までが十分に高くならないという問題があった。   Moreover, in the BH steel sheet described in Patent Documents 1 to 3, since a small amount of solute C and solute N in the steel sheet are used, the yield strength of the material is increased by the coating baking process, but the tensile strength is increased. It has not yet been raised. For this reason, in a part using a BH steel plate, the deformation start stress of the part becomes high, but the stress required for deformation (tensile strength after forming) over the entire deformation region from the start of deformation of the part to the end of deformation is not sufficiently high. There was a problem.

また、特許文献4には、加工時には軟質で、加工後の焼付塗装処理により疲労特性の改善に有効な引張強さが大幅に上昇する熱延鋼板の製造方法が開示されている。特許文献4に記載された技術で製造された熱延鋼板では、C量を0.02〜0.13%とし、Nを0.0080〜0.0250%と多量に添加し、仕上圧延温度および巻取り温度を制御して多量の固溶N量を鋼中に残存させ、鋼板組織をフェライトとマルテンサイトを主体とする複合組織とすることで、成形加工後、170℃で熱処理することにより、100MPa以上の引張強さの増加が見込めるとしている。   Patent Document 4 discloses a method for producing a hot-rolled steel sheet that is soft at the time of processing and greatly increases the tensile strength effective for improving the fatigue characteristics by baking treatment after processing. In the hot-rolled steel sheet manufactured by the technique described in Patent Document 4, the amount of C is 0.02 to 0.13%, N is added in a large amount of 0.0080 to 0.0250%, and the finish rolling temperature and the winding temperature are controlled to produce a large amount. The amount of solute N remains in the steel, and the steel sheet structure is a composite structure mainly composed of ferrite and martensite. Can be expected.

また、特許文献5には、鋼成分のうち、特にCを0.01〜0.12wt%、Nを0.0001〜0.01wt%の範囲に制限するとともに、平均結晶粒径を8μm以下に制御することにより、80MPa以上の高BH量を確保するとともに、AI量を45MPa以下に制限することが可能な焼付硬化性および耐室温時効性に優れた熱延鋼板が開示されている。   Patent Document 5 discloses that, among steel components, in particular, C is limited to a range of 0.01 to 0.12 wt%, N is limited to a range of 0.0001 to 0.01 wt%, and the average crystal grain size is controlled to 8 μm or less, whereby 80 MPa A hot-rolled steel sheet excellent in bake hardenability and room temperature aging resistance capable of securing the above high BH content and limiting the AI content to 45 MPa or less is disclosed.

また、特許文献6には、固溶Nを有効に活用した、引張強さが440MPa以上の高延性高強度冷延鋼板の製造方法が開示されている。特許文献6に記載された技術によれば、成形後に100〜300℃の範囲の温度で熱処理することにより、加工歪が5%の場合に、引張強さが40MPa以上増加するとしている。
特開昭55−141526号公報 特公昭61−45689号公報 特開平5−25549号公報 特公平8−23048号公報 特開平10−183301号公報 特開2001−335887号公報
Patent Document 6 discloses a method for producing a high-ductility, high-strength cold-rolled steel sheet having a tensile strength of 440 MPa or more that effectively uses solid solution N. According to the technique described in Patent Document 6, the tensile strength is increased by 40 MPa or more when the processing strain is 5% by heat treatment at a temperature in the range of 100 to 300 ° C. after molding.
Japanese Unexamined Patent Publication No. 55-141526 Japanese Examined Patent Publication No. 61-45689 JP-A-5-25549 Japanese Patent Publication No. 8-23048 JP-A-10-183301 JP 2001-335887

しかしながら、上記した従来技術に記載された技術で製造された高張力鋼板では、多量の塑性歪を導入した後に熱処理を施すこと(歪時効処理)により、歪時効硬化して強度はある程度確かに増加するが、延性が低下し、このため、これら高張力鋼板は、プレス成形、塗装焼付け後に高延性を要求される部材への適用が難しいという問題があった。このようなことから、高い歪時効硬化が得られ、しかも歪時効硬化後の延性の低下を抑制できる、高張力鋼板の歪時効処理方法、あるいは歪時効硬化特性に優れた高張力鋼板を用いて、延性に優れた高強度構造部材とすることができる、高強度構造部材の製造方法が要望されていた。   However, in high-tensile steel plates manufactured with the technology described in the above-mentioned prior art, the strength is surely increased to some extent by strain age hardening by applying a heat treatment after introducing a large amount of plastic strain (strain aging treatment). However, the ductility is lowered, and for this reason, there is a problem that these high-strength steel sheets are difficult to apply to members that require high ductility after press forming and paint baking. Because of this, high strain age hardening can be obtained, and the deterioration of ductility after strain age hardening can be suppressed, using a strain aging treatment method for high strength steel plates, or using high strength steel plates with excellent strain age hardening properties. There has been a demand for a method for producing a high-strength structural member that can be a high-strength structural member having excellent ductility.

本発明は、上記した要望に鑑みてなされたものであり、高い歪時効硬化と歪時効硬化後の高延性とがともに得られる、高張力鋼板の歪時効処理方法、および延性に優れた高強度構造部材の製造方法を提案することを目的とする。   The present invention has been made in view of the above-described demands, and can provide both high strain age hardening and high ductility after strain age hardening, a strain aging treatment method for high-tensile steel sheets, and high strength excellent in ductility. It aims at proposing the manufacturing method of a structural member.

本発明者らは、上記した課題を達成するため、歪時効硬化後の延性に及ぼす、各種要因について鋭意研究を重ねた。まず、本発明者らは、つぎの各点に着目して、検討した。
(イ)従来の固溶N、Cを活用した歪時効硬化の考え方に基づくと、多量の転位を導入、すなわち大きな塑性歪を加え、これらの転位に多量の固溶N、Cを固着、あるいは析出させれば高歪時効特性が得られる。しかし、この場合、大きな塑性歪を加えたため延性が必然的に低くなることに加え、転位が固溶N、C、あるいは転位上に析出した微細炭・窒化物により強固に固着されるため、再加工時の運動(リューダース帯の伝播)が妨げられ、延性がさらに低下する。したがって、この歪時効処理後の延性を向上させるには、予加工により導入された転位上のみでなく、他の母相領域にも微細炭・窒化物を析出させ再加工時の転位の運動を容易にすることが有効であると考えられる。
(ロ)予加工により導入された転位上のみでなく、他の母相領域にも微細炭・窒化物を析出させるには、析出の駆動力を大きくすることが有効と考えられる。この析出の駆動力増大法としては、歪時効処理時の熱処理温度の上昇が効果的と推定される。
(ハ)歪時効処理時の熱処理温度の上昇により析出の駆動力を増大させる場合、その駆動力は固溶CやNと相互作用にある置換型元素の種類や含有量により異なることが予想されるため、それらに応じて適正な温度範囲を設定する必要がある。
(ニ)鋼板のミクロ組織としてマルテンサイト相を多く含む場合、マルテンサイト相が熱処理温度の高温化に伴い軟質化するため、歪時効による強度上昇が見掛け上低くなる恐れがある。したがって、マルテンサイト分率についても適正化の必要がある。
In order to achieve the above-described problems, the present inventors have conducted intensive studies on various factors affecting the ductility after strain age hardening. First, the present inventors examined by paying attention to the following points.
(B) Based on the conventional concept of strain age hardening using solid solutions N and C, a large amount of dislocations are introduced, that is, a large plastic strain is applied, and a large amount of solid solutions N and C are fixed to these dislocations, or High strain aging characteristics can be obtained by precipitation. However, in this case, since a large plastic strain is applied, the ductility is inevitably lowered, and the dislocation is firmly fixed by solid solution N, C, or fine carbon / nitride precipitated on the dislocation. Movement during processing (propagation of Lueders band) is hindered and ductility is further reduced. Therefore, in order to improve the ductility after this strain aging treatment, not only on dislocations introduced by pre-processing, but also fine carbon / nitride precipitates in other matrix phases, and the movement of dislocations during reworking It is considered effective to make it easy.
(B) It is considered effective to increase the driving force for precipitation in order to precipitate fine carbon / nitride not only on dislocations introduced by pre-processing but also in other matrix phases. As a method for increasing the driving force for this precipitation, it is estimated that an increase in the heat treatment temperature during the strain aging treatment is effective.
(C) When the driving force for precipitation is increased by increasing the heat treatment temperature during strain aging treatment, the driving force is expected to vary depending on the type and content of substitutional elements that interact with solid solution C or N. Therefore, it is necessary to set an appropriate temperature range according to them.
(D) When the martensite phase is contained in a large amount as the microstructure of the steel sheet, the martensite phase becomes soft as the heat treatment temperature is increased, so that an increase in strength due to strain aging may be apparently reduced. Therefore, it is necessary to optimize the martensite fraction.

これらの項目について検討した結果、歪時効処理後の鋼板、あるいは成形加工後の構造部材に、高い歪時効硬化と歪時効硬化後の高延性を兼備させるためには、鋼板に十分な量の固溶Nを確保するとともに、鋼板に十分な量の塑性歪を付加したのち、鋼板組成に応じて適正な温度で熱処理を施すことが重要となることに思い至った。   As a result of studying these items, a sufficient amount of solidified steel must be added to a steel plate after strain aging treatment or a structural member after forming to have both high strain age hardening and high ductility after strain age hardening. It has been thought that it is important to heat-treat at an appropriate temperature in accordance with the steel sheet composition after securing a sufficient amount of molten N and adding a sufficient amount of plastic strain to the steel sheet.

本発明は、上記した考えに基づき、さらに検討を重ねて完成されたものである。すなわち、本発明の要旨はつぎの通りである。
(1)高張力鋼板に歪時効処理を施し歪時効硬化させるにあたり、前記高張力鋼板を、質量%で、C:0.01〜0.15%、Si:0.005〜1.5%、Mn:0.1〜2.5%、P:0.08%以下、S:0.005%以下、Al:0.02%以下、N:0.0050〜0.0250%を含み、かつN、AlをN/Alが0.3以上を満足するように含み、固溶状態のNを0.003%以上を含有し、あるいはさらに、CrおよびMoのうちの1種または2種を合計で2.0%以下含有する組成と、フェライト相を主相とし、マルテンサイト相を組織全体に対する面積率で10%以下に規制した組織とを有する高張力鋼板とし、前記歪時効処理が、次(1)式
ε(%)=(母材鋼板の均一伸び(%))−5 ………(1)
(ここで、ε:塑性歪(%))
で定義される塑性歪ε%以上の予歪を付与する加工処理を施したのち、次(2)式
10Mn+500Mo+250Cr+170≦T≦10Mn+500Mo+250Cr+400 ………(2)
(ここで、T:熱処理温度(℃)、Mn、Mo、Cr:各元素の含有量(質量%))
を満足する温度T℃で1〜30min間保持する熱処理を施す処理であることを特徴とする、高張力鋼板の歪時効処理方法。
(2)(1)において、前記高張力鋼板が、質量%で、C:0.01〜0.15%、Si:0.005〜1.5%、Mn:0.1〜2.5%、P:0.08%以下、S:0.005%以下、Al:0.02%以下、N:0.0050〜0.0250%を含み、かつN、AlをN/Alが0.3以上を満足するように含み、あるいはさらに、CrおよびMoのうちの1種または2種を合計で2.0%以下含有する組成の鋼スラブを、スラブ加熱温度:1000℃以上に加熱し、粗圧延してシートバーとし、そのシートバーに仕上圧延出側温度:800℃以上とする仕上圧延を施し、巻取り温度:750℃以下で巻き取り熱延板とする熱間圧延工程と、該熱延板に酸洗、および冷間圧延を行い冷延板とする冷延工程と、該冷延板に(Ac1変態点)〜(Ac3変態点+100℃)の温度範囲に加熱したのち、600℃までの平均冷却速度を5℃/s以上とする冷却速度で冷却する冷延板焼鈍工程と、を順次施して製造された鋼板であることを特徴とする歪時効処理方法。
(3)高張力鋼板を素材鋼板として、該素材鋼板に成形加工を施したのち、熱処理を施して高強度構造部材とするに当たり、前記高張力鋼板を、質量%で、C:0.01〜0.15%、Si:0.005〜1.5%、Mn:0.1〜2.5%、P:0.08%以下、S:0.005%以下、Al:0.02%以下、N:0.0050〜0.0250%を含み、かつN、AlをN/Alが0.3以上を満足するように含み、固溶状態のNを0.003%以上含有し、あるいはさらに、CrおよびMoのうちの1種または2種を合計で2.0%以下含有する組成と、フェライト相を主相とし、マルテンサイト相を組織全体に対する面積率で10%以下に規制した組織とを有する高張力鋼板とし、前記成形加工を、該成形加工の塑性歪が次(3)式
ε(%)=(素材鋼板の均一伸び(%))−5 ………(3)
(ここで、ε:塑性歪(%))
で定義される塑性歪ε%以上となる加工とし、該成形加工後に施す前記熱処理を、次(4)式
10Mn+500Mo+250Cr+170≦T≦10Mn+500Mo+250Cr+400 ………(4)
(ここで、T:熱処理温度(℃)、Mn、Mo、Cr:各元素の含有量(質量%))
を満足する温度T℃で1〜30min間保持する熱処理とすることを特徴とする、高強度構造部材の製造方法。
The present invention has been completed based on the above-described idea and further studies. That is, the gist of the present invention is as follows.
(1) When high-strength steel sheet is subjected to strain aging treatment and strain-age hardening, the high-strength steel sheet is mass%, C: 0.01 to 0.15%, Si: 0.005 to 1.5%, Mn: 0.1 to 2.5%, P : 0.08% or less, S: 0.005% or less, Al: 0.02% or less, N: 0.0050 to 0.0250% is included, N and Al are included so that N / Al satisfies 0.3 or more, and N in a solid solution state A composition containing 0.003% or more, or further containing a total of 2.0% or less of one or two of Cr and Mo, a ferrite phase as a main phase, and a martensite phase in an area ratio of 10 to the entire structure. %, And the strain aging treatment is performed by the following equation (1): ε (%) = (Uniform elongation (%) of base steel plate) −5 (5)
(Where ε: plastic strain (%))
After processing to give a pre-strain greater than the plastic strain ε% defined by
10Mn + 500Mo + 250Cr + 170 ≦ T ≦ 10Mn + 500Mo + 250Cr + 400 (2)
(Where T: heat treatment temperature (° C.), Mn, Mo, Cr: content of each element (mass%))
A strain aging treatment method for a high-strength steel sheet, characterized in that the heat treatment is performed for 1 to 30 minutes at a temperature T ° C. satisfying the above.
(2) In (1), the high-tensile steel plate is in mass%, C: 0.01 to 0.15%, Si: 0.005 to 1.5%, Mn: 0.1 to 2.5%, P: 0.08% or less, S: 0.005% or less. , Al: 0.02% or less, N: 0.0050 to 0.0250% is included, and N and Al are included so that N / Al satisfies 0.3 or more, or further, one or two of Cr and Mo are added. The steel slab with a composition containing 2.0% or less is heated to a slab heating temperature of 1000 ° C or higher, roughly rolled into a sheet bar, and the finish rolling is performed on the sheet bar to a finish rolling exit temperature of 800 ° C or higher. , Coiling temperature: hot rolling process to be wound hot rolled sheet at 750 ° C. or less, cold rolling process to pickle and cold roll the cold rolled sheet to form a cold rolled sheet, and the cold rolled sheet (Ac 1 transformation point) to (Ac 3 transformation point + 100 ° C), and then cooled at a cooling rate with an average cooling rate up to 600 ° C of 5 ° C / s or more. And a cold-rolled sheet annealing step, wherein the steel sheet is manufactured by sequentially performing a strain aging treatment method.
(3) A high-strength steel plate is used as a raw steel plate. After forming the raw steel plate and then heat-treating it into a high-strength structural member, the high-strength steel plate is mass%, C: 0.01 to 0.15% , Si: 0.005 to 1.5%, Mn: 0.1 to 2.5%, P: 0.08% or less, S: 0.005% or less, Al: 0.02% or less, N: 0.0050 to 0.0250%, and N and Al are N / Al Containing 0.33% or more of N in a solid solution state, or further containing a total of 2.0% or less of one or two of Cr and Mo, and a ferrite phase. The main phase is a high-tensile steel plate having a structure in which the martensite phase is regulated to 10% or less in terms of the area ratio with respect to the entire structure, and the plastic deformation of the forming process is expressed by the following equation (3) ε (%) = (Uniform elongation (%) of the steel plate) -5 (3)
(Where ε: plastic strain (%))
And the heat treatment applied after the forming process is the following equation (4):
10Mn + 500Mo + 250Cr + 170 ≦ T ≦ 10Mn + 500Mo + 250Cr + 400 (4)
(Where T: heat treatment temperature (° C.), Mn, Mo, Cr: content of each element (mass%))
A method for producing a high-strength structural member, characterized in that the heat treatment is performed for 1 to 30 minutes at a temperature T ° C. satisfying

本発明によれば、高い歪時効硬化と歪時効硬化後の高延性とがともに得られ、構造部材としての強度と延性を確保でき、産業上格段の効果を奏する。また、本発明によれば、延性に優れた高強度構造部材を容易に製造でき、自動車車体の軽量化に大きく寄与できるという効果もある。   According to the present invention, both high strain age hardening and high ductility after strain age hardening can be obtained, the strength and ductility as a structural member can be ensured, and a remarkable industrial effect can be achieved. In addition, according to the present invention, a high-strength structural member excellent in ductility can be easily manufactured, and there is an effect that it can greatly contribute to weight reduction of an automobile body.

なお、本発明において、「高い歪時効硬化」および「歪時効硬化特性に優れた」とは、{(母材の均一伸びUEl(%))−5}%以上の予歪を付与する加工処理後、{10Mn+500Mo+250Cr+170}の温度から{10Mn+500Mo+250Cr+400}の温度の温度域に1〜30min保持する条件で熱処理したとき、この熱処理前後の変形応力増加量(BH量と記す:BH量=(熱処理後の降伏応力)−(熱処理前の予変形応力))が60MPa以上であり、かつ歪時効処理(前記加工処理+前記熱処理)前後の引張強さ増加量(ΔTSと記す:ΔTS=(熱処理後の引張強さ)−(加工処理前の引張強さ))が40MPa以上あることを意味する。   In the present invention, “high strain age hardening” and “excellent strain age hardening characteristics” mean that the pre-strain of {(uniform elongation of the base material UEl (%)) − 5}% or more is applied. Later, when heat treatment was carried out in the temperature range of {10Mn + 500Mo + 250Cr + 170} to the temperature range of {10Mn + 500Mo + 250Cr + 400} for 1 to 30 minutes, the amount of deformation stress increase before and after this heat treatment (denoted as BH amount: BH amount = (yield after heat treatment) (Stress)-(pre-deformation stress before heat treatment)) is 60 MPa or more, and the amount of increase in tensile strength before and after strain aging treatment (the processing treatment + the heat treatment) (denoted as ΔTS: ΔTS = (tensile strength after heat treatment) )-(Tensile strength before processing))) is 40 MPa or more.

また、「歪時効硬化後の高延性」および「歪時効処理後の延性に優れた」とは、JIS 5号引張試験片での歪時効処理後の延性として、[(歪時効処理後の全伸びElBH)/{(母材の全伸びEl)−(加工処理による塑性歪量ε)}]が0.50以上であることを意味する。 In addition, “high ductility after strain aging treatment” and “excellent ductility after strain aging treatment” mean that the ductility after strain aging treatment in JIS No. 5 tensile test piece is [ Elongation El BH ) / {(Total elongation El of base material) − (Plastic strain amount ε by processing)}] is 0.50 or more.

本発明で使用する高張力鋼板は、引張強さ(TS):440MPa以上を有し、歪時効硬化特性に優れた鋼板である。   The high-tensile steel plate used in the present invention is a steel plate having a tensile strength (TS): 440 MPa or more and excellent strain age hardening characteristics.

まず、本発明で使用する高張力鋼板の組成限定理由について説明する。なお、質量%は単に%と記す。   First, the reasons for limiting the composition of the high-tensile steel plate used in the present invention will be described. The mass% is simply written as%.

C:0.01〜0.15%
Cは、固溶して鋼板強度を増加させ、複合組織の形成を促進する元素であり、本発明では所望の引張強さを確保する観点からC含有量は0.01%以上に限定した。一方、0.15%を超える含有は、鋼中の炭化物の分率が増加することに起因して鋼板の延性、さらには成形性を顕著に低下させるとともに、スポット溶接性、アーク溶接性などを顕著に低下させる。このため、Cは0.01〜0.15%の範囲に限定した。なお、成形性、溶接性の観点から好ましくは、0.08%以下である。
C: 0.01-0.15%
C is an element that dissolves to increase the strength of the steel sheet and promotes the formation of a composite structure. In the present invention, the C content is limited to 0.01% or more from the viewpoint of securing a desired tensile strength. On the other hand, if the content exceeds 0.15%, the ductility and further formability of the steel sheet are remarkably lowered due to an increase in the fraction of carbides in the steel, and spot weldability, arc weldability, etc. are remarkably increased. Reduce. For this reason, C was limited to the range of 0.01 to 0.15%. In view of formability and weldability, it is preferably 0.08% or less.

Si:0.005〜1.5%
Siは、鋼の延性を顕著に低下させることなく、鋼板を高強度化させることができる有用な強化元素である。このような効果は0.005%以上の含有で発揮される。しかし、1.5%を超える含有は、表面性状、化成処理など表面の美麗性が劣化する。このため、Siは0.005〜1.5%の範囲に限定した。なお、好ましくは0.1%以上である。なお、引張強さが500MPaを超えるような高強度領域で高延性を確保するためには、Siを0.5%以上含有することが、強度と延性のバランスの観点からは望ましい。
Si: 0.005-1.5%
Si is a useful strengthening element that can increase the strength of a steel sheet without significantly reducing the ductility of the steel. Such an effect is exhibited when the content is 0.005% or more. However, if the content exceeds 1.5%, the surface beauty such as surface properties and chemical conversion treatment deteriorates. For this reason, Si was limited to the range of 0.005 to 1.5%. In addition, Preferably it is 0.1% or more. In order to secure high ductility in a high strength region where the tensile strength exceeds 500 MPa, it is desirable that Si is contained in an amount of 0.5% or more from the viewpoint of the balance between strength and ductility.

Mn:0.1〜2.5%
Mnは、鋼を強化する作用があり、さらにフェライトとマルテンサイトの複合組織が得られる臨界冷却速度を小さくして、フェライトとマルテンサイトの複合組織の形成を促進する作用を有しており、再結晶焼鈍後の冷却速度に応じて0.1%以上含有させるのが好ましい。また、MnはSによる熱間割れを防止する有効な元素であり、S量に応じて含有することが好ましい。また、Mnは結晶粒を微細化する効果がある。引張強さTS500MPa超級の高強度領域が要求される場合には、Mnは0.5%以上、さらに好ましくは1.0%以上含有することが望ましい。Mn含有量をこのレベルまで高めることで、熱延条件の変動に対する鋼板の機械的性質、とくに本発明が目的とする優れた歪時効硬化特性の敏感性が顕著に改善されるという大きな利点がある。一方、Mnを2.5%を超えて過剰に含有すると、詳細な機構は不明であるが鋼板の熱間変形抵抗を増加させる傾向があり、さらに溶接性、溶接部の成形性も劣化する傾向にあり、さらにはフェライトの生成が抑制され、延性が顕著に低下する。このようなことから、Mnは0.1〜2.5%の範囲に限定した。なお、より良好な耐食性と成形性が要求される用途では、Mnは2.0%以下とすることが望ましい。
Mn: 0.1-2.5%
Mn has the effect of strengthening steel, and further has the effect of reducing the critical cooling rate at which a composite structure of ferrite and martensite is obtained, and promoting the formation of a composite structure of ferrite and martensite. It is preferable to contain 0.1% or more according to the cooling rate after crystal annealing. Mn is an effective element for preventing hot cracking due to S, and is preferably contained according to the amount of S. Further, Mn has an effect of making crystal grains finer. When a high strength region with a tensile strength exceeding TS500 MPa is required, Mn is desirably contained in an amount of 0.5% or more, more preferably 1.0% or more. By increasing the Mn content to this level, there is a great advantage that the mechanical properties of the steel sheet with respect to fluctuations in hot rolling conditions, in particular, the sensitivity of the excellent strain age hardening characteristics aimed by the present invention is remarkably improved. . On the other hand, if Mn is contained excessively exceeding 2.5%, the detailed mechanism is unknown, but it tends to increase the hot deformation resistance of the steel sheet, and also tends to deteriorate the weldability and the formability of the weld. Furthermore, the formation of ferrite is suppressed, and the ductility is significantly reduced. For these reasons, Mn was limited to a range of 0.1 to 2.5%. In applications where better corrosion resistance and formability are required, Mn is desirably 2.0% or less.

P:0.08%以下
Pは、鋼を強化する作用があり、所望の強度に応じて必要量含有させることができるが、P含有量が0.08%を超えて含有すると、プレス成形性が劣化する。このため、Pは0.08%以下に限定した。なお、より優れたプレス成形性が要求される場合には、Pは0.05%以下とするのが好ましい。さらに、特にTS:590MPa以上の高強度が要求される用途で、C、Mn等を多量に含有する場合には、溶接性の観点から、Pは0.05%以下とするのが好ましい。
P: 0.08% or less P has an effect of strengthening steel and can be contained in a necessary amount according to a desired strength. However, if the P content exceeds 0.08%, press formability deteriorates. For this reason, P was limited to 0.08% or less. In addition, when more excellent press formability is required, P is preferably 0.05% or less. Furthermore, in particular, in applications where high strength of TS: 590 MPa or more is required and P and Mn are contained in a large amount, P is preferably 0.05% or less from the viewpoint of weldability.

S:0.005%以下
Sは、鋼板中では介在物として存在し、鋼板の延性、成形性、とくに伸びフランジ成形性の劣化をもたらす元素であるため、できるだけ低減するのが好ましい。0.005%以下に低減すると伸びフランジ成形性への悪影響が無視できることから、本発明ではSは0.005%以下に限定した。なお、より優れた伸びフランジ成形性、あるいはTS:590MPa以上を確保するためにC、Mn等を多量に含有し、優れた溶接性を要求される場合には、Sは0.003%以下とするのが好ましい。
S: 0.005% or less S is present as an inclusion in the steel sheet, and is an element that causes deterioration of the ductility and formability of the steel sheet, in particular, stretch flange formability. Therefore, S is preferably reduced as much as possible. If the content is reduced to 0.005% or less, the adverse effect on stretch flangeability can be ignored. Therefore, in the present invention, S is limited to 0.005% or less. In addition, in order to ensure better stretch flange formability or TS: 590 MPa or more, if a large amount of C, Mn, etc. is contained and excellent weldability is required, S should be 0.003% or less. Is preferred.

Al:0.02%以下
Alは、鋼の脱酸剤として添加され、鋼の清浄度を向上させるのに有用な元素であり、また鋼の組織微細化にも有効に作用する元素である。固溶状態のNを強化元素として利用する場合には、適正範囲のAlを含有したアルミキルド鋼のほうが、Alを含有しないリムド鋼に比して、機械的性質が優れている。なお、Al量が多くなると表面性状の悪化、固溶Nの顕著な低下につながり、極めて大きな時効硬化特性を確保することが困難となる。このようなことから、Alは0.02%以下に限定した。なお、材質の安定性という観点から、Alは0.001〜0.015%の範囲とすることが望ましい。
Al: 0.02% or less
Al is an element that is added as a deoxidizer for steel and is useful for improving the cleanliness of the steel, and is also an element that effectively acts to refine the structure of the steel. When using N in a solid solution state as a strengthening element, an aluminum killed steel containing Al in an appropriate range is superior in mechanical properties to a rimmed steel containing no Al. In addition, when the amount of Al increases, it leads to deterioration of surface properties and a remarkable decrease in solid solution N, and it becomes difficult to secure extremely large age hardening characteristics. For these reasons, Al is limited to 0.02% or less. From the viewpoint of the stability of the material, it is desirable that Al is in the range of 0.001 to 0.015%.

N:0.0050〜0.0250%、固溶状態のN:0.003%以上
Nは、鋼板強度の増加と、優れた歪時効硬化特性を発現させるうえで重要な元素である。また、Nは鋼の変態点を降下させる効果もあり、薄物で変態点を大きく割り込んだ圧延をしたくないという状況ではその含有は有効で、おおむね0.0050%以上の含有によってこのような効果が安定して得られる。一方、0.0250%を超える含有は、鋼板の内部欠陥の発生率が高くなるとともに、連続鋳造時のスラブ割れなどの発生も顕著となる。このため、Nは0.0050〜0.0250%の範囲に限定した。製造工程全体を考慮した材質の安定性・歩留まり向上という観点からは、0.0070〜0.0170%の範囲とすることがさらに好ましい。なお、Nが上記した範囲内であれば溶接性等にはまったく悪影響はない。
N: 0.0050 to 0.0250%, N in solid solution state: 0.003% or more N is an important element for increasing the steel sheet strength and exhibiting excellent strain age hardening characteristics. N also has the effect of lowering the transformation point of steel, and its inclusion is effective in situations where it is not desirable to roll with a thin material that greatly cuts the transformation point, and such an effect is generally stabilized by inclusion of 0.0050% or more. Is obtained. On the other hand, if the content exceeds 0.0250%, the rate of occurrence of internal defects in the steel sheet increases, and the occurrence of slab cracking during continuous casting becomes significant. For this reason, N was limited to the range of 0.0050 to 0.0250%. From the viewpoint of improving the stability and yield of the material in consideration of the entire manufacturing process, it is more preferable to set the content in the range of 0.0070 to 0.0170%. In addition, if N is in the above-described range, there is no adverse effect on weldability and the like.

また、鋼板強度が十分に確保され、さらにNによる歪時効硬化が有効に発揮されるには、固溶状態のNは概ね0.003%以上とする必要がある。なお、固溶Nの分析法は、鋼中の全N量から、析出N(電解抽出による溶解法でもとめる)を差し引いた値を固溶Nとする。これは、固溶Nの分析法について種々の方法を検討したが、本発明法で採用した電解抽出による溶解を適用して析出N量を求め、この析出N量を用いて固溶N量を求める方法が最も良く、材質の変化と対応したことに基づく。また、さらに大きな歪時効硬化による降伏応力の増加、および引張強さTSの増加が必要な場合は固溶Nを0.005%以上とすることが有効である。   Further, in order to sufficiently ensure the steel plate strength and effectively exhibit the strain age hardening by N, N in the solid solution state needs to be approximately 0.003% or more. In the solid solution N analysis method, the value obtained by subtracting the precipitation N (dissolved by electrolytic extraction) from the total N amount in the steel is defined as solid solution N. In this method, various methods were examined for the analysis method of solid solution N. The amount of precipitated N was obtained by applying dissolution by electrolytic extraction employed in the method of the present invention, and the amount of solid solution N was determined using this amount of precipitated N. The best way to find it is based on how it responds to changes in material. Further, when it is necessary to increase the yield stress due to larger strain age hardening and increase the tensile strength TS, it is effective to make the solid solution N 0.005% or more.

上記した適正範囲のNと、冷延製品の状態で必要かつ十分な固溶状態のNを確保することにより、目標とする440MPa以上の引張強さと歪時効処理後60MPa以上の変形応力の増加と、歪時効処理後40MPa以上の引張強さの増加が安定して得られる。   By ensuring N in the appropriate range described above and N in the state of cold-rolled products, which is necessary and sufficient for solid solution, the target tensile strength of 440 MPa or more and an increase in deformation stress of 60 MPa or more after strain aging treatment In addition, an increase in tensile strength of 40 MPa or more can be stably obtained after strain aging treatment.

N/Alの比:0.3以上
N、Alは、上記した範囲内で含有し、かつN含有量とAl含有量の比であるN/Alが0.3以上になるように調整する。N/Alが0.3未満では、固溶N量:0.003%以上を確保することができず、目標とする歪時効硬化特性を有する鋼板とすることができない。このため、N/Alを0.3以上に限定した。
N / Al ratio: 0.3 or more N and Al are contained within the above-described range, and N / Al, which is a ratio of N content to Al content, is adjusted to be 0.3 or more. If N / Al is less than 0.3, the amount of solute N: 0.003% or more cannot be secured, and a steel sheet having the targeted strain age hardening characteristics cannot be obtained. For this reason, N / Al was limited to 0.3 or more.

上記した組成が本発明で使用する高張力鋼板の基本組成であるが、該高張力鋼板には下記のようにCr、Moの1種または2種をさらに含有してもよい。   The above composition is the basic composition of the high-tensile steel plate used in the present invention, and the high-tensile steel plate may further contain one or two of Cr and Mo as described below.

Cr、Moのうちの1種または2種:合計で2.0%以下
Cr、Moは、フェライト相、マルテンサイト相を含む複合組織の形成、結晶粒径の均一かつ微細化に有効に作用する元素であり、選択して1種または2種を合計で0.01%以上含有することが好ましい。一方、合計で2.0%を超える過剰な含有は、Cr、Moが鋼板の強度を増加させるため、熱間変形抵抗の顕著な増加を招く。また、Cr、Moの過剰な含有は、化成処理性およびより広義の表面処理特性を顕著に悪化させ、さらには、溶接部の硬化に由来する溶接部成形性を顕著に低下させる。このようなことから、Cr、Moのうちの1種または2種を合計で2.0%以下に限定した。
One or two of Cr and Mo: 2.0% or less in total
Cr and Mo are elements that effectively act to form a composite structure including a ferrite phase and a martensite phase, and to make the crystal grain size uniform and refined. Select one or two types in total to contain 0.01% or more. It is preferable to do. On the other hand, if the total content exceeds 2.0%, Cr and Mo increase the strength of the steel sheet, resulting in a significant increase in hot deformation resistance. Further, the excessive content of Cr and Mo significantly deteriorates the chemical conversion property and the surface treatment characteristics in a broader sense, and further significantly reduces the weld formability resulting from the hardening of the weld. For this reason, one or two of Cr and Mo are limited to 2.0% or less in total.

本発明で使用する高張力鋼板では、上記した成分以外の成分については、特に限定しないが、B:0.005%以下、Nb:0.1%、Ti:0.1%以下、V:0.1%以下のうちから選ばれた1種または2種以上、および/または、Cu:1.0%以下、Ni:1.0%以下のうちから選ばれた1種または2種、および/または、Ca:0.1%以下、Zr:0.1%以下、REM:0.1%以下のうちから選ばれた1種または2種以上等を、必要に応じ含有させてもなんら問題はない。なお、B、Nb、Ti、Vについては、鋼を析出強化する作用があり所望の強度に応じて上記した範囲内で必要量選択して含有することができるが、これらの元素はNとの化合物を形成し易く、単独添加、または複合添加で、N/(Al+Nb+Ti+V+B)が0.3未満となると、歪時効硬化特性が劣化する傾向があるため、N/(Al+Nb+Ti+V+B)を0.3以上とすることが好ましい。   In the high-strength steel sheet used in the present invention, components other than the above-described components are not particularly limited, but are selected from B: 0.005% or less, Nb: 0.1%, Ti: 0.1% or less, and V: 0.1% or less. 1 or 2 or more selected from the group consisting of Cu: 1.0% or less, Ni: 1.0% or less, and / or Ca: 0.1% or less, Zr: 0.1% Hereinafter, there is no problem even if one or more kinds selected from REM: 0.1% or less are contained as required. In addition, about B, Nb, Ti, and V, there exists an effect | action which carries out precipitation strengthening of steel, and it can select and contain required amount within the above-mentioned range according to desired intensity | strength, but these elements are N and It is easy to form a compound, and when N / (Al + Nb + Ti + V + B) is less than 0.3 by single addition or composite addition, strain age hardening characteristics tend to deteriorate. Therefore, N / (Al + Nb + Ti + V + B) is preferably 0.3 or more. .

上記した成分以外の残部はFeおよび不可避的不純物である。不可避的不純物としては、例えばSb、Sn、Zn、Co等が挙げられ、許容範囲は、Sb:0.01%以下、Sn:0.1%以下、Zn:0.01%以下、Co:0.1%以下の範囲である。   The balance other than the above components is Fe and inevitable impurities. Inevitable impurities include, for example, Sb, Sn, Zn, Co, etc. The allowable ranges are Sb: 0.01% or less, Sn: 0.1% or less, Zn: 0.01% or less, Co: 0.1% or less. .

次に、本発明で使用する高張力鋼板のミクロ組織について説明する。   Next, the microstructure of the high-tensile steel plate used in the present invention will be described.

本発明で使用する高張力鋼板は、フェライト相を主相とし、マルテンサイト相を、組織全体に対する面積率で10%以下に規制した組織を有する。ここでいう主相とは、組織全体に対する面積率で50%以上を占める相をいうものとする。フェライト相を主相とすることにより、延性が向上する。   The high-tensile steel plate used in the present invention has a structure in which a ferrite phase is a main phase and a martensite phase is regulated to 10% or less in terms of the area ratio with respect to the entire structure. The main phase here refers to a phase that occupies 50% or more of the area ratio with respect to the entire structure. By using the ferrite phase as the main phase, ductility is improved.

なお、本発明で使用する高張力鋼板では、マルテンサイト相を面積率で10%以下に規制する。マルテンサイト相が10%を超えると、高温の歪時効処理時にマルテンサイト相が軟質化して歪時効硬化量が低下する。このため、マルテンサイト相は面積率で10%以下に限定した。なお、歪時効硬化特性の観点からは5%以下とすることが好ましい。なお、低降伏比等の複合組織の利点を利用する観点からは面積率で2%以上10%以下の範囲でマルテンサイト相を有することが好ましい。   In the high-tensile steel plate used in the present invention, the martensite phase is restricted to 10% or less in terms of area ratio. If the martensite phase exceeds 10%, the martensite phase softens during high-temperature strain aging treatment and the strain age hardening amount decreases. For this reason, the martensite phase was limited to 10% or less in terms of area ratio. From the viewpoint of strain age hardening characteristics, it is preferably 5% or less. From the viewpoint of utilizing the advantages of the composite structure such as a low yield ratio, it is preferable to have a martensite phase in the area ratio of 2% or more and 10% or less.

また、主相であるフェライト相および上記したマルテンサイト相以外の副相として、パーライト相、ベイナイト相、残留オーステナイト相およびこれらの相を混合して含んでもよい。なお、パーライト相、ベイナイト相、残留オーステナイト相は、優れた延性や歪時効硬化特性を確保する観点から、合計で組織全体に対して面積率で40%以下とすることが好ましい。   Moreover, a pearlite phase, a bainite phase, a residual austenite phase, and these phases may be mixed and contained as subphases other than the ferrite phase which is the main phase and the above-described martensite phase. The pearlite phase, bainite phase, and retained austenite phase are preferably 40% or less in total area ratio with respect to the entire structure from the viewpoint of securing excellent ductility and strain age hardening characteristics.

つぎに、上記した組織を有する高張力鋼板の好ましい製造方法について説明する。   Below, the preferable manufacturing method of the high strength steel plate which has the above-mentioned structure is explained.

固溶N量以外の、上記した組成の溶鋼を、転炉、電気炉等の通常の溶製方法で溶製し、好ましくは偏析を防止すべく連続鋳造法で鋼スラブとする。なお、連続鋳造法以外に、造塊法、薄スラブ鋳造法をもちいても何ら問題はない。   The molten steel having the above composition other than the solid solution N amount is melted by a normal melting method such as a converter or an electric furnace, and preferably a steel slab is formed by a continuous casting method to prevent segregation. In addition to the continuous casting method, there is no problem even if an ingot casting method or a thin slab casting method is used.

ついで、鋼スラブに、粗圧延しシートバーとしたのち仕上圧延して熱延板とする熱間圧延工程と、該熱延板に酸洗、および冷間圧延を行い冷延板とする冷延工程と、該冷延板に焼鈍処理を施す冷延板焼鈍工程と、を順次施して鋼板とされる。   Next, the steel slab is roughly rolled into a sheet bar and then hot rolled into a hot rolled sheet, and then cold rolled into a hot rolled sheet by pickling and cold rolling the sheet. A process and a cold-rolled sheet annealing process for annealing the cold-rolled sheet are sequentially performed to obtain a steel sheet.

まず、熱間圧延工程について、説明する。   First, the hot rolling process will be described.

鋳造された鋼スラブを、いったん室温まで冷却し、その後再加熱したのち熱間圧延を施し熱延板とする。なお、室温まで冷却しないで、温片のままで加熱炉に装入したのち圧延する、あるいはわずかの保熱をおこなった後に直ちに圧延する、直送圧延・直接圧延などの省エネルギープロセスも問題なく適用できる。特に固溶状態のNを有効に確保するには直送圧延は有用な技術の一つである。   The cast steel slab is once cooled to room temperature and then reheated, and then hot rolled to form a hot rolled sheet. In addition, energy-saving processes such as direct feed rolling and direct rolling can be applied without any problem without rolling to room temperature, rolling after heating in a heating furnace in the form of a hot piece, or rolling immediately after performing slight heat retention. . In particular, direct rolling is one of the useful techniques for effectively securing N in a solid solution state.

熱間圧延工程は、つぎのような条件で行なうことが好ましい。   The hot rolling process is preferably performed under the following conditions.

スラブ加熱温度:1000℃以上
スラブ加熱温度は初期状態として固溶状態のNを確保するという観点から1000℃以上とすることが好ましい。加熱温度の上限は特に限定されないが、酸化重量の増加にともなうロスの増大などから1280℃以下とすることが望ましい。
Slab heating temperature: 1000 ° C. or more The slab heating temperature is preferably 1000 ° C. or more from the viewpoint of securing N in a solid solution state as an initial state. The upper limit of the heating temperature is not particularly limited, but is desirably 1280 ° C. or less because of an increase in loss accompanying an increase in oxidized weight.

粗圧延は、所定の形状寸法のシートバーとすることができればよく、とくに限定する必要はない。ついで、シートバーは仕上圧延出側温度を800℃以上とする仕上圧延を施され、巻取り温度:750℃以下で巻き取り、熱延板とされる。   The rough rolling is not particularly limited as long as it can be a sheet bar having a predetermined shape and dimension. Next, the sheet bar is subjected to finish rolling at a finish rolling exit temperature of 800 ° C. or higher, and wound at a winding temperature of 750 ° C. or lower to form a hot rolled sheet.

仕上圧延出側温度:800℃以上
仕上圧延出側温度を800℃以上とすることで、均一微細な熱延母板組織を得ることができる。仕上圧延出側温度が800℃未満では、鋼板の組織が不均一になり、冷延、焼鈍後にも組織の不均一性が消えずに残留し、プレス成形時に種々の不具合を発生する危険性が増大する。なお、800℃未満の低い圧延温度の場合に加工組織の残留を回避すべく、高い巻取り温度を採用しても、粗大粒の発生にともなう不具合が生じ、また固溶Nの顕著な低下も生じて、目標とする引張強さ:440MPa以上の高強度を得ることが困難となる。このため、仕上圧延出側温度を800℃以上に限定した。なお、好ましくは更なる機械的性質向上の観点から820℃以上である。仕上圧延出側温度の上限はとくに限定されないが、過度に高い温度で圧延した場合にはスケール疵などが多発するため、おおむね1000℃までが適用可能である。
Finishing rolling exit temperature: 800 ° C. or more By setting the finishing rolling exit temperature to 800 ° C. or more, a uniform and fine hot-rolled base metal structure can be obtained. If the finish rolling exit temperature is less than 800 ° C, the structure of the steel sheet becomes non-uniform, and the non-uniformity of the structure remains even after cold rolling and annealing, and there is a risk of various problems occurring during press forming. Increase. In addition, in order to avoid the remaining of the processed structure in the case of a low rolling temperature of less than 800 ° C., even if a high coiling temperature is adopted, a problem occurs due to the generation of coarse grains, and the solid solution N significantly decreases. As a result, it becomes difficult to obtain a target tensile strength of 440 MPa or higher. For this reason, the finish rolling exit temperature was limited to 800 ° C. or higher. The temperature is preferably 820 ° C. or higher from the viewpoint of further improving mechanical properties. The upper limit of the finish rolling outlet temperature is not particularly limited, but when rolling at an excessively high temperature, scale wrinkles and the like frequently occur, and therefore up to about 1000 ° C. is applicable.

巻取り温度:750℃以下
熱間圧延における巻取り温度を低下させることにより、熱延板の強度は増加する傾向にある。750℃以下の巻取り温度とすることにより、440MPa以上の引張強さを得ることが可能となるため、巻取り温度は750℃以下とすることが好ましい。なお、巻取り温度の下限は、材質上からは厳しく限定はされないが、200℃未満では、鋼板の形状が顕著に乱れだし、実際の使用にあたり不具合を生ずる危険性が増大する。また、材質の均一性も低下する傾向にあり、望ましくない。このため、巻取り温度は200℃以上とすることがより好ましい。高い材質均一性が要求される場合は300℃以上とすることが望ましい。
Winding temperature: 750 ° C. or less By reducing the winding temperature in hot rolling, the strength of the hot rolled sheet tends to increase. By setting the coiling temperature to 750 ° C. or lower, it becomes possible to obtain a tensile strength of 440 MPa or higher. Therefore, the coiling temperature is preferably 750 ° C. or lower. The lower limit of the coiling temperature is not strictly limited in terms of the material, but if it is less than 200 ° C., the shape of the steel sheet is significantly disturbed, and the risk of causing problems in actual use increases. In addition, the uniformity of the material tends to decrease, which is not desirable. Therefore, the winding temperature is more preferably 200 ° C. or higher. When high material uniformity is required, the temperature is preferably 300 ° C or higher.

つぎに、熱延板は,冷延工程を施される。   Next, the hot rolled sheet is subjected to a cold rolling process.

熱延板は、酸洗を施され、ついで冷間圧延されて冷延板とされる。酸洗は通常法に準じて行うが、極めて薄いスケールの状態であれば直接冷間圧延することも可能である。冷間圧延は、所定の寸法形状の冷延板とすることができればその条件はとくに限定されない。   The hot-rolled sheet is pickled and then cold-rolled into a cold-rolled sheet. Although pickling is performed according to a normal method, cold rolling can also be performed directly in an extremely thin scale state. The condition for cold rolling is not particularly limited as long as it can be a cold-rolled sheet having a predetermined size and shape.

ついで、冷延板は、冷延焼鈍工程を施される。   Next, the cold rolled sheet is subjected to a cold rolled annealing process.

冷延板の焼鈍は、(Ac1変態点)〜(Ac変態点+100℃)の温度範囲で行う。 The cold rolled sheet is annealed in a temperature range of (Ac 1 transformation point) to (Ac 3 transformation point + 100 ° C.).

焼鈍温度が、Ac1変態点未満では鉄と窒素などとの化合物が溶解しないため、所望の固溶N量を確保しにくく、高い歪時効硬化量を確保することが期待できなくなる。さらに、未再結晶粒が多くなり、延性等の機械的性質が低下する。一方、(Ac3変態点+100℃)を超えて高くなると、結晶粒が粗大化し、機械的性質、歪時効特性、室温での耐時効性が劣化する。なお、上記した焼鈍温度での均熱時間は、操業安定性の観点からおおむね10s以上とすることが好ましい。一方、均熱時間は、組織の均一性、かつ微細化の観点から、おおむね120s以下とすることが好ましい。 If the annealing temperature is less than the Ac 1 transformation point, a compound such as iron and nitrogen does not dissolve, so that it is difficult to secure a desired amount of solid solution N, and a high strain age hardening amount cannot be expected. Furthermore, unrecrystallized grains increase, and mechanical properties such as ductility are reduced. On the other hand, when the temperature exceeds (Ac 3 transformation point + 100 ° C.), the crystal grains become coarse, and mechanical properties, strain aging characteristics, and aging resistance at room temperature deteriorate. In addition, it is preferable that the soaking time at the above-described annealing temperature is approximately 10 s or more from the viewpoint of operation stability. On the other hand, the soaking time is preferably about 120 s or less from the viewpoint of the uniformity of the structure and the miniaturization.

上記した焼鈍温度に加熱均熱したのち、該焼鈍温度から600℃までの平均冷却速度を5℃/s以上とする冷却速度で冷却する。該冷却速度が、5℃/s未満では、固溶Nが析出物として析出し、所望の固溶N量を確保することができなくなる。また、フェライト相に比べ硬質であるため、加工処理により変形が生じにくく、歪時効硬化特性への寄与が少ないと考えられるマルテンサイト中への過度の固溶CやNの濃化を抑制するため、少なくとも600℃までは5℃/s以上で冷却する必要がある。なお、該冷却(加速冷却)はより優れた歪時効硬化特性を得るためには、450℃以下まで行うことが好ましい。   After heating and soaking to the above annealing temperature, cooling is performed at a cooling rate at which the average cooling rate from the annealing temperature to 600 ° C. is 5 ° C./s or more. When the cooling rate is less than 5 ° C./s, solid solution N is precipitated as a precipitate, and a desired amount of solid solution N cannot be ensured. In addition, since it is harder than the ferrite phase, it is hard to be deformed by processing, and to suppress the concentration of excessive solid solution C or N in martensite, which is considered to have little contribution to strain age hardening properties. It is necessary to cool at least 5 ° C./s up to 600 ° C. The cooling (accelerated cooling) is preferably performed up to 450 ° C. or less in order to obtain more excellent strain age hardening characteristics.

さらに冷却停止後300〜450℃の範囲で10s〜300s程度確保することが好ましい。   Furthermore, it is preferable to secure about 10 s to 300 s in the range of 300 to 450 ° C. after the cooling is stopped.

ここでの鋼板組織の調整は(1)焼鈍温度、(2)冷却速度、(3)Mn、Mo、Cr、Cu、Ni、Si等の含有量により行うことができ、いずれの方法でマルテンサイト相を10%以下としてもよい。また、冷却停止温度の調整によりさらに精度よくマルテンサイト相分率の調整をおこなうことができる。   The steel sheet structure here can be adjusted by (1) annealing temperature, (2) cooling rate, (3) content of Mn, Mo, Cr, Cu, Ni, Si, etc. The phase may be 10% or less. Further, the martensite phase fraction can be adjusted more accurately by adjusting the cooling stop temperature.

また、冷延焼鈍工程に続いて、形状矯正、表面粗度等の調整のために、伸び率10%以下の調質圧延工程を加えてもよい。   Further, following the cold rolling annealing step, a temper rolling step with an elongation of 10% or less may be added for adjustment of shape correction, surface roughness and the like.

なお、本発明で使用する高張力鋼板は、上記した各工程を順次施された冷延焼鈍板とすることが好ましいが、さらに溶融亜鉛めっき等のめっき処理を施すことはなんら問題ない。また、めっき処理後、化成処理性、溶接性、プレス成形性および耐食性等の改善のために特殊な表面処理を施してもよい。   The high-strength steel plate used in the present invention is preferably a cold-rolled annealed plate that has been subjected to the above-described steps in sequence, but there is no problem with performing a plating treatment such as hot dip galvanizing. Further, after the plating treatment, a special surface treatment may be applied for improving chemical conversion treatment properties, weldability, press formability, corrosion resistance, and the like.

本発明では、好ましくは上記した製造方法で製造され、上記した組成と組織を有する歪時効硬化特性に優れた高張力鋼板に、次(1)式
ε(%)=(母材鋼板の均一伸び(%))−5 ………(1)
(ここで、ε:塑性歪(%))
で定義される塑性歪ε%以上の予歪を付与する加工処理を施したのち、次(2)式
10Mn+500Mo+250Cr+170≦T≦10Mn+500Mo+250Cr+400 ………(2)
(ここで、T:熱処理温度(℃)、Mn、Mo、Cr:各元素の含有量(質量%))
を満足する温度T℃で1〜30min間保持する熱処理を施す歪時効処理を施す。これにより、高い歪時効硬化と、歪時効硬化後の高い延性が確保できる。
In the present invention, preferably, the following formula (1) ε (%) = (uniform elongation of the base steel plate) is applied to the high strength steel plate having the above composition and structure and having excellent strain age hardening characteristics. (%))-5 ......... (1)
(Where ε: plastic strain (%))
After processing to give a pre-strain greater than the plastic strain ε% defined by
10Mn + 500Mo + 250Cr + 170 ≦ T ≦ 10Mn + 500Mo + 250Cr + 400 (2)
(Where T: heat treatment temperature (° C.), Mn, Mo, Cr: content of each element (mass%))
Is subjected to a strain aging treatment in which a heat treatment is performed at a temperature T ° C. for 1 to 30 minutes. Thereby, high strain age hardening and high ductility after strain age hardening can be secured.

加工処理では、予歪として付与する塑性歪がε%未満では、導入される転位密度が低く、そのため歪時効硬化量が低くなり、所望の歪時効硬化特性が確保できなくなる。付与する塑性歪の上限は、歪付加方法により異なるため、とくに限定しないが、局部変形が開始するまでの塑性歪とすることが好ましい。なお、ここでいう「塑性歪」は、一軸以外の、等二軸あるいは曲げ等の加工処理による塑性歪でもよい。一軸以外の場合には、塑性歪は、一軸相当塑性歪を用いるものとする。なお、一軸相当塑性歪は下記のような方法で求める。   In the processing, when the plastic strain applied as pre-strain is less than ε%, the dislocation density to be introduced is low, so the amount of strain age hardening becomes low, and desired strain age hardening characteristics cannot be secured. The upper limit of the plastic strain to be applied differs depending on the strain applying method, and is not particularly limited, but is preferably a plastic strain until the local deformation starts. Here, the “plastic strain” may be a plastic strain other than uniaxial, such as equibiaxial or bending. In cases other than uniaxial, uniaxial equivalent plastic strain is used as the plastic strain. The uniaxial equivalent plastic strain is obtained by the following method.

まず、加工処理後の試験片の引張試験を行い、該引張試験における塑性変形開始時の真応力を求める。次に、加工処理前の原板から採取した試験片の引張試験により求めた真応力−真歪曲線から、上記のようにして求めた塑性変形開始時の真応力と原板の真応力が一致する際の原板の歪量(塑性歪量)を求め、その値を一軸相当塑性歪と定義する。このようにして、その加工処理による一軸相当塑性歪を求め、所望の加工において、塑性歪をε%以上の予歪を付与するように調整すればよい。   First, a tensile test is performed on the test piece after processing, and the true stress at the start of plastic deformation in the tensile test is obtained. Next, when the true stress at the start of plastic deformation obtained as described above matches the true stress of the original plate from the true stress-true strain curve obtained by the tensile test of the specimen taken from the original plate before processing. The strain amount (plastic strain amount) of the original plate is obtained, and the value is defined as uniaxial equivalent plastic strain. In this way, the uniaxial equivalent plastic strain by the processing may be obtained, and the plastic strain may be adjusted to give a pre-strain of ε% or more in the desired processing.

加工処理後の熱処理は、(2)式を満足するT℃とする。熱処理温度が{10Mn+500Mo+250Cr+170}未満の温度では、転位への固溶Nや固溶Cの固着が主体となり、再加工時の転位の運動が妨げられると推定され、延性の向上が得られない。一方、熱処理温度が{10Mn+500Mo+250Cr+400}を超える温度では、炭・窒化物の粗大化や、マルテンサイト相の過度の軟化が生じると考えられ、歪時効硬化特性が顕著に劣化する。このため、加工処理後の熱処理温度は、{10Mn+500Mo+250Cr+170}〜{10Mn+500Mo+250Cr+400}の範囲内の温度に限定した。なお、Mn、Mo、Crは、いずれもCやNの拡散速度を低下させるという作用があり、転位以外の母相領域に炭・窒化物を微細分散させるためには、これらの元素の含有量の増加に伴い(2)式に従い熱処理温度を高温化する必要があると考えられる。   The heat treatment after the processing is performed at T ° C. that satisfies the expression (2). When the heat treatment temperature is lower than {10Mn + 500Mo + 250Cr + 170}, it is presumed that solid solution N or solid solution C is mainly fixed to the dislocation, and it is estimated that the movement of the dislocation at the time of reworking is hindered, and the ductility cannot be improved. On the other hand, when the heat treatment temperature exceeds {10Mn + 500Mo + 250Cr + 400}, it is considered that the coarsening of the carbon / nitride and excessive softening of the martensite phase occur, and the strain age hardening characteristics are remarkably deteriorated. For this reason, the heat treatment temperature after the processing is limited to a temperature within the range of {10Mn + 500Mo + 250Cr + 170} to {10Mn + 500Mo + 250Cr + 400}. Mn, Mo, and Cr all have the effect of reducing the diffusion rate of C and N. In order to finely disperse carbon / nitride in the matrix region other than dislocation, the content of these elements It is thought that it is necessary to increase the heat treatment temperature in accordance with the equation (2) along with the increase in.

また、上記した熱処理温度での時間は、1min未満では工業的に時間のコントロールが難しく安定した歪時効硬化特性の確保が難しく、一方、30min超では、生産性が低下し、経済的に不利となる。このため、熱処理時間は1〜30minの範囲に限定した。   In addition, when the time at the above heat treatment temperature is less than 1 min, it is difficult to control the time industrially, and it is difficult to ensure stable strain age hardening characteristics. On the other hand, when it exceeds 30 min, productivity is lowered and economically disadvantageous. Become. For this reason, the heat treatment time was limited to the range of 1 to 30 min.

このような歪時効処理により、高い歪時効硬化が得られるとともに、歪時効処理後に優れた延性を確保できる。   By such strain aging treatment, high strain age hardening can be obtained, and excellent ductility can be secured after strain aging treatment.

なお、歪時効硬化特性に優れた高張力鋼板を素材鋼板として、プレス等による成形加工と、その後に強度上昇のために行なう熱処理とを組合わせて、高強度構造部材を製造する際に、上記した歪時効処理と同様に、成形加工を(3)式で定義されるε%以上の塑性歪を付与する加工とし、その後の強度上昇のための熱処理を(4)式を満足する温度T℃で好ましくは1〜30min間保持する熱処理とすることにより、高い強度と高い延性を兼備した高強度構造部材とすることができる。   When producing a high-strength structural member by combining a high-tensile steel plate with excellent strain age hardening characteristics as a raw steel plate, a forming process using a press or the like, and then a heat treatment to increase the strength, As in the case of the strain aging treatment, the forming process is a process that gives a plastic strain of ε% or more defined by the equation (3), and the subsequent heat treatment for increasing the strength is a temperature T ° C. that satisfies the equation (4). Preferably, by performing the heat treatment for 1 to 30 minutes, a high-strength structural member having both high strength and high ductility can be obtained.

(実施例1)
表1に示す組成の溶綱を転炉で溶製し、連続鋳造法で鋼スラブとした。ついで、これら鋼スラブに、表2に示す条件の熱間圧延工程を施し、板厚4.0mmの熱延鋼帯(熱延板)とした。ついで、これら熱延鋼帯(熱延板)に酸洗、および圧下率:70%で冷間圧延を施す冷延工程を施し、板厚1.2mmの冷延鋼帯(冷延板)とした。ついで、これら冷延鋼帯(冷延板)に、連続焼鈍ラインにて平均加熱速度5℃/sで表2に示す焼鈍温度に昇温し、表2に示す条件の冷延焼鈍工程を施した。ここで、焼鈍後の冷却時に表2中に示す冷却停止温度にて60s保持した。ついで、得られた鋼帯(冷延焼鈍板)に、さらに伸び率:1.0%の調質圧延を施した。なお、固溶N量は、化学分析により得られた鋼中の全N量から、電解抽出による溶解法で求めた析出N量を差し引いた値とした。なお、Ac変態点、Ac変態点は熱膨張の測定により求めた。
(Example 1)
The molten steel having the composition shown in Table 1 was melted in a converter and a steel slab was formed by a continuous casting method. Subsequently, these steel slabs were subjected to a hot rolling process under the conditions shown in Table 2 to obtain hot rolled steel strips (hot rolled sheets) having a thickness of 4.0 mm. Next, these hot-rolled steel strips (hot-rolled sheets) were pickled and subjected to a cold-rolling process in which cold rolling was performed at a reduction ratio of 70% to obtain cold-rolled steel strips (cold-rolled sheets) having a thickness of 1.2 mm. . Next, these cold-rolled steel strips (cold-rolled sheets) are heated to an annealing temperature shown in Table 2 at an average heating rate of 5 ° C./s in a continuous annealing line and subjected to a cold-rolling annealing process under the conditions shown in Table 2. did. Here, 60 s was hold | maintained at the cooling stop temperature shown in Table 2 at the time of cooling after annealing. Subsequently, the obtained steel strip (cold-rolled annealed sheet) was further subjected to temper rolling with an elongation of 1.0%. The solid solution N amount was a value obtained by subtracting the precipitated N amount obtained by the dissolution method by electrolytic extraction from the total N amount in steel obtained by chemical analysis. The Ac 1 transformation point and Ac 3 transformation point were determined by measurement of thermal expansion.

得られた鋼板について、組織、引張特性を調査した。試験方法はつぎの通りとした。
(1)組織調査
得られた鋼板から、試験片を採取し、圧延方向に直交する断面(C断面)について、光学顕微鏡あるいは走査型電子顕微鏡を用いて微視組織を撮像し、画像解析装置を用いて主相であるフェライトの組織分率および第二相の種類と組織分率を求めた。
(2)引張特性
得られた鋼板から、圧延方向に垂直な方向を長手方向とするJIS 5号引張試験片を採取し、JIS Z 2241の規定に準拠して引張試験を行い、降伏応力(YS)、引張強さ(TS)、伸び(El)、降伏比(YR)を求めた。
The obtained steel sheet was examined for structure and tensile properties. The test method was as follows.
(1) Microstructure investigation A test piece is collected from the obtained steel sheet, and a microscopic structure is imaged using an optical microscope or a scanning electron microscope with respect to a cross section (C cross section) orthogonal to the rolling direction. The structure fraction of ferrite as the main phase and the type and structure fraction of the second phase were determined.
(2) Tensile properties JIS No. 5 tensile test specimens with the direction perpendicular to the rolling direction as the longitudinal direction were taken from the obtained steel sheet and subjected to a tensile test in accordance with the provisions of JIS Z 2241 to obtain the yield stress (YS ), Tensile strength (TS), elongation (El), and yield ratio (YR).

得られた結果を、表3に示す。   The results obtained are shown in Table 3.

得られた鋼板について、表2に示す条件の加工処理と熱処理とを施し、歪時効硬化特性を調査した。歪時効硬化特性は、各鋼板から圧延方向に垂直な方向を長手方向にする引張試験片(JIS 5号試験片)を採取し、表2に示す条件の加工処理と熱処理とを施したのち、引張試験を行い、歪時効処理後の強度、全伸び(ElBH)を調査した。次式
BH量=(熱処理後の降伏応力)−(熱処理前の予変形応力)
ΔTS=(熱処理後の引張強さ)−(加工処理前の引張強さ)
により、BH量、ΔTSを算出し、歪時効硬化特性を評価した。また、[(歪時効処理後の全伸びElBH)/{(母材の全伸びEL)−(加工処理による塑性歪量ε)}]により歪時効処理後の延性を評価した。この値が0.50以上の場合を「歪時効処理後の延性に優れる」として○とし、それ以外を×とした。
The obtained steel sheet was processed and heat-treated under the conditions shown in Table 2, and the strain age hardening characteristics were investigated. Strain age hardening characteristics are obtained by taking a tensile test piece (JIS No. 5 test piece) whose longitudinal direction is perpendicular to the rolling direction from each steel plate, performing the processing and heat treatment under the conditions shown in Table 2, A tensile test was conducted to investigate the strength and total elongation (El BH ) after strain aging treatment. BH amount = (yield stress after heat treatment) − (pre-deformation stress before heat treatment)
ΔTS = (Tensile strength after heat treatment) − (Tensile strength before processing)
Thus, the BH amount and ΔTS were calculated, and the strain age hardening characteristics were evaluated. Further, ductility after strain aging treatment was evaluated by [(total elongation El BH after strain aging treatment) / {(total elongation EL of base metal) − (plastic strain amount ε by processing)]]. A case where this value was 0.50 or more was rated as “Excellent ductility after strain aging treatment”, and the others were marked as “X”.

得られた結果を表3に示す。   The obtained results are shown in Table 3.

Figure 2005290477
Figure 2005290477

Figure 2005290477
Figure 2005290477

Figure 2005290477
Figure 2005290477

本発明例は、いずれも60MPa以上のBH量と、40MPa以上のΔTSを有し、歪時効特性に優れるうえ、ElBH/{El−ε}が0.50以上と、歪時効処理後の延性に優れている。これに対し、本発明の範囲を外れる比較例では、歪時効特性、あるいは歪時効処理後の延性のいずれかが低い値となっている。
(実施例2)
実施例1で示した鋼板No.3(均一伸びUEl:13%)に、成形加工を施し、高強度構造部材でよく用いられる形状であるハット形状部材を作製した。成形加工は、塑性歪13%(ハット形状部材の縦壁部の歪)となる加工とした。
Each of the examples of the present invention has a BH amount of 60 MPa or more and a ΔTS of 40 MPa or more, and is excellent in strain aging characteristics, and El BH / {El-ε} is 0.50 or more, and is excellent in ductility after strain aging treatment. ing. On the other hand, in the comparative example outside the scope of the present invention, either the strain aging characteristic or the ductility after the strain aging treatment has a low value.
(Example 2)
The steel plate No. 3 (uniform elongation UEl: 13%) shown in Example 1 was subjected to forming to produce a hat-shaped member that is a shape often used in high-strength structural members. The forming process was a process that resulted in a plastic strain of 13% (strain of the vertical wall portion of the hat-shaped member).

ついで、得られたハット形状部材に(イ)200℃で10min、(ロ)170℃で10minの熱処理をそれぞれ施した。熱処理後該部材を圧潰試験に供した。その結果、(ロ)の熱処理を施した部材では部材中に亀裂が生じたが、(イ)の熱処理を施した部材では亀裂を生じることはなかった。なお、(イ)の熱処理を施された部材は、(3)式で定義される塑性歪をε%以上の加工と、(4)式を満足する温度T℃で熱処理された本発明例であり、(ロ)の熱処理を施された部材は、本発明の範囲を外れる比較例である。   Next, the obtained hat-shaped member was subjected to heat treatment (a) at 200 ° C. for 10 minutes and (b) 170 ° C. for 10 minutes. After the heat treatment, the member was subjected to a crush test. As a result, in the member subjected to the heat treatment (b), cracks occurred in the member, but in the member subjected to the heat treatment (b), cracks did not occur. The member subjected to the heat treatment of (A) is an example of the present invention which is heat-treated at a temperature T ° C. satisfying the equation (4) and a plastic strain defined by the equation (3) of ε% or more. The member subjected to the heat treatment (b) is a comparative example that is out of the scope of the present invention.

本発明例ではElBHが10%と高いのに対し、本発明の範囲を外れる比較例では、ElBHが6%と延性が低く、衝撃吸収エネルギーが低下する場合があることがわかる。 In the example of the present invention, El BH is as high as 10%, whereas in the comparative example outside the scope of the present invention, El BH is as low as 6% and the ductility is low, and the impact absorption energy may be lowered.

Claims (3)

高張力鋼板に歪時効処理を施し歪時効硬化させるにあたり、前記高張力鋼板を、
質量%で、
C:0.01〜0.15%、 Si:0.005〜1.5%、
Mn:0.1〜2.5%、 P:0.08%以下、
S:0.005%以下、 Al:0.02%以下、
N:0.0050〜0.0250%
を含み、かつN、AlをN/Alが0.3以上を満足するように含み、固溶状態のNを0.003%以上含有し、あるいはさらに、CrおよびMoのうちの1種または2種を合計で2.0%以下含有する組成と、フェライト相を主相とし、マルテンサイト相を組織全体に対する面積率で10%以下に規制した組織とを有する高張力鋼板とし、前記歪時効処理が、下記(1)式で定義される塑性歪ε%以上の予歪を付与する加工処理を施したのち、下記(2)式を満足する温度T℃で1〜30min間保持する熱処理を施す処理であることを特徴とする、高張力鋼板の歪時効処理方法。

ε(%)=(母材鋼板の均一伸び(%))−5 ………(1)
10Mn+500Mo+250Cr+170≦T≦10Mn+500Mo+250Cr+400 ………(2)
ここで、ε:塑性歪(%)
T:熱処理温度(℃)
Mn、Mo、Cr:各元素の含有量(質量%)
When strain aging treatment is performed on a high-tensile steel plate and strain age hardening is performed, the high-tensile steel plate is
% By mass
C: 0.01 to 0.15%, Si: 0.005 to 1.5%,
Mn: 0.1 to 2.5%, P: 0.08% or less,
S: 0.005% or less, Al: 0.02% or less,
N: 0.0050-0.0250%
N and Al are contained so that N / Al satisfies 0.3 or more, and N in a solid solution state is contained by 0.003% or more. Further, one or two of Cr and Mo are added in total. A high-tensile steel sheet having a composition containing 2.0% or less and a structure in which the ferrite phase is a main phase and the martensite phase is regulated to 10% or less in terms of the area ratio with respect to the entire structure, and the strain aging treatment is as follows (1) It is a process of performing a heat treatment for 1 to 30 minutes at a temperature T ° C satisfying the following equation (2) after applying a pre-strain of plastic strain ε% or more defined by the equation A strain aging treatment method for high-tensile steel sheets.
Ε (%) = (Uniform elongation (%) of base steel sheet) −5 (1)
10Mn + 500Mo + 250Cr + 170 ≦ T ≦ 10Mn + 500Mo + 250Cr + 400 (2)
Where ε: plastic strain (%)
T: Heat treatment temperature (° C)
Mn, Mo, Cr: Content of each element (% by mass)
前記高張力鋼板が、質量%で、
C:0.01〜0.15%、 Si:0.005〜1.5%、
Mn:0.1〜2.5%、 P:0.08%以下、
S:0.005%以下、 Al:0.02%以下、
N:0.0050〜0.0250%
を含み、かつN、AlをN/Alが0.3以上を満足するように含み、あるいはさらに、CrおよびMoのうちの1種または2種を合計で2.0%以下含有する組成の鋼スラブを、スラブ加熱温度:1000℃以上に加熱し、粗圧延してシートバーとし、そのシートバーに仕上圧延出側温度:800℃以上とする仕上圧延を施し、巻取り温度:750℃以下で巻き取り熱延板とする熱間圧延工程と、該熱延板に酸洗、および冷間圧延を行い冷延板とする冷延工程と、該冷延板に(Ac変態点)〜(Ac変態点+100℃)の温度範囲に加熱したのち、600℃までの平均冷却速度を5℃/s以上とする冷却速度で冷却する冷延板焼鈍工程と、を順次施して製造された鋼板であることを特徴とする請求項1に記載された歪時効処理方法。
The high-tensile steel plate is mass%,
C: 0.01 to 0.15%, Si: 0.005 to 1.5%,
Mn: 0.1 to 2.5%, P: 0.08% or less,
S: 0.005% or less, Al: 0.02% or less,
N: 0.0050-0.0250%
And a steel slab having a composition containing N or Al so that N / Al satisfies 0.3 or more, or further containing one or two of Cr and Mo in total of 2.0% or less. Heating temperature: Heated to 1000 ° C or higher, roughly rolled into a sheet bar, and finished rolling with a finish rolling temperature of 800 ° C or higher on the sheet bar. Rolling hot roll at 750 ° C or lower A hot rolling step for forming a plate, a cold rolling step for pickling and cold rolling the hot rolled plate to form a cold rolled plate, and (Ac 1 transformation point) to (Ac 3 transformation point) for the cold rolled plate And a cold-rolled sheet annealing process in which an average cooling rate up to 600 ° C. is cooled at a cooling rate of 5 ° C./s or more after being heated to a temperature range of + 100 ° C.) The strain aging treatment method according to claim 1, wherein
高張力鋼板を素材鋼板として、該素材鋼板に成形加工を施したのち、熱処理を施して高強度構造部材とするに当たり、前記高張力鋼板を、質量%で、
C:0.01〜0.15%、 Si:0.005〜1.5%、
Mn:0.1〜2.5%、 P:0.08%以下、
S:0.005%以下、 Al:0.02%以下、
N:0.0050〜0.0250%
を含み、かつN、AlをN/Alが0.3以上を満足するように含み、固溶状態のNを0.003%以上を含有し、あるいはさらに、CrおよびMoのうちの1種または2種を合計で2.0%以下含有する組成と、フェライト相を主相とし、マルテンサイト相を組織全体に対する面積率で10%以下に規制した組織とを有する高張力鋼板とし、前記成形加工を、該成形加工の塑性歪が下記(3)式で定義される塑性歪ε%以上となる加工とし、該成形加工後に施す前記熱処理を下記(4)式を満足する温度T℃で1〜30min間保持する熱処理とすることを特徴とする、高強度構造部材の製造方法。

ε(%)=(素材鋼板の均一伸び(%))−5 ………(3)
10Mn+500Mo+250Cr+170≦T≦10Mn+500Mo+250Cr+400 ………(4)
ここで、ε:塑性歪(%)
T:熱処理温度(℃)
Mn、Mo、Cr:各元素の含有量(質量%)
A high-strength steel plate is used as a raw steel plate, and after forming the raw steel plate, heat treatment is performed to obtain a high-strength structural member.
C: 0.01 to 0.15%, Si: 0.005 to 1.5%,
Mn: 0.1 to 2.5%, P: 0.08% or less,
S: 0.005% or less, Al: 0.02% or less,
N: 0.0050-0.0250%
N and Al are included so that N / Al satisfies 0.3 or more, N in a solid solution state is contained by 0.003% or more, or one or two of Cr and Mo are added in total. In a high-tensile steel sheet having a composition containing 2.0% or less and a structure in which the ferrite phase is the main phase and the martensite phase is regulated to 10% or less in terms of the area ratio with respect to the entire structure. A heat treatment in which the plastic strain is equal to or greater than the plastic strain ε% defined by the following equation (3), and the heat treatment applied after the forming is maintained at a temperature T ° C. satisfying the following equation (4) for 1 to 30 minutes: A method for producing a high strength structural member.
Ε (%) = (Uniform elongation (%) of the steel plate) −5 (3)
10Mn + 500Mo + 250Cr + 170 ≦ T ≦ 10Mn + 500Mo + 250Cr + 400 (4)
Where ε: plastic strain (%)
T: Heat treatment temperature (° C)
Mn, Mo, Cr: Content of each element (% by mass)
JP2004107108A 2004-03-31 2004-03-31 Strain aging treatment method for high-tensile steel sheet and method for producing high-strength structural member Expired - Fee Related JP4337604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004107108A JP4337604B2 (en) 2004-03-31 2004-03-31 Strain aging treatment method for high-tensile steel sheet and method for producing high-strength structural member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004107108A JP4337604B2 (en) 2004-03-31 2004-03-31 Strain aging treatment method for high-tensile steel sheet and method for producing high-strength structural member

Publications (2)

Publication Number Publication Date
JP2005290477A true JP2005290477A (en) 2005-10-20
JP4337604B2 JP4337604B2 (en) 2009-09-30

Family

ID=35323744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004107108A Expired - Fee Related JP4337604B2 (en) 2004-03-31 2004-03-31 Strain aging treatment method for high-tensile steel sheet and method for producing high-strength structural member

Country Status (1)

Country Link
JP (1) JP4337604B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007241119A (en) * 2006-03-10 2007-09-20 Fuji Xerox Co Ltd Fixing roller, fixing device, and manufacturing method for fixing roller
JP2007277717A (en) * 2006-03-17 2007-10-25 Kobe Steel Ltd Steel sheet for brazing bonding to aluminum based material, bonding material using the steel sheet, and bonding joint
JP2008202115A (en) * 2007-02-21 2008-09-04 Nippon Steel Corp High-strength steel sheet having excellent ductility, and method for producing the same
JP2009132981A (en) * 2007-11-30 2009-06-18 Jfe Steel Corp High-strength cold-rolled steel sheet having small in-plane anisotropy of elongation, and manufacturing method therefor
JP2011509341A (en) * 2007-12-20 2011-03-24 ポスコ High-strength cold-rolled steel sheet excellent in workability, galvanized steel sheet, and manufacturing method thereof
US8221564B2 (en) * 2005-12-26 2012-07-17 Posco Method for manufacturing high strength steel strips with superior formability and excellent coatability
WO2013189474A1 (en) * 2012-06-22 2013-12-27 Salzgitter Flachstahl Gmbh High-strength multiphase steel and method for producing a strip made from this steel with a minimum tensile strength of 580 mpa
EP2949774A4 (en) * 2013-01-22 2016-10-26 Baoshan Iron & Steel 780 mpa class cold rolled dual-phase strip steel and manufacturing method thereof
CN114585758A (en) * 2019-10-11 2022-06-03 杰富意钢铁株式会社 High-strength steel sheet, impact absorbing member, and method for producing high-strength steel sheet
CN114585759A (en) * 2019-10-11 2022-06-03 杰富意钢铁株式会社 High-strength steel sheet, impact absorbing member, and method for producing high-strength steel sheet

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8221564B2 (en) * 2005-12-26 2012-07-17 Posco Method for manufacturing high strength steel strips with superior formability and excellent coatability
JP2007241119A (en) * 2006-03-10 2007-09-20 Fuji Xerox Co Ltd Fixing roller, fixing device, and manufacturing method for fixing roller
JP2007277717A (en) * 2006-03-17 2007-10-25 Kobe Steel Ltd Steel sheet for brazing bonding to aluminum based material, bonding material using the steel sheet, and bonding joint
JP2008202115A (en) * 2007-02-21 2008-09-04 Nippon Steel Corp High-strength steel sheet having excellent ductility, and method for producing the same
JP2009132981A (en) * 2007-11-30 2009-06-18 Jfe Steel Corp High-strength cold-rolled steel sheet having small in-plane anisotropy of elongation, and manufacturing method therefor
JP2011509341A (en) * 2007-12-20 2011-03-24 ポスコ High-strength cold-rolled steel sheet excellent in workability, galvanized steel sheet, and manufacturing method thereof
WO2013189474A1 (en) * 2012-06-22 2013-12-27 Salzgitter Flachstahl Gmbh High-strength multiphase steel and method for producing a strip made from this steel with a minimum tensile strength of 580 mpa
EP2949774A4 (en) * 2013-01-22 2016-10-26 Baoshan Iron & Steel 780 mpa class cold rolled dual-phase strip steel and manufacturing method thereof
US11377711B2 (en) 2013-01-22 2022-07-05 Baoshan Iron & Steel Co., Ltd. 780MPa cold-rolled duel-phase strip steel and method for manufacturing the same
CN114585758A (en) * 2019-10-11 2022-06-03 杰富意钢铁株式会社 High-strength steel sheet, impact absorbing member, and method for producing high-strength steel sheet
CN114585759A (en) * 2019-10-11 2022-06-03 杰富意钢铁株式会社 High-strength steel sheet, impact absorbing member, and method for producing high-strength steel sheet
CN114585758B (en) * 2019-10-11 2023-03-24 杰富意钢铁株式会社 High-strength steel sheet, impact absorbing member, and method for producing high-strength steel sheet
CN114585759B (en) * 2019-10-11 2023-04-07 杰富意钢铁株式会社 High-strength steel sheet, impact absorbing member, and method for producing high-strength steel sheet

Also Published As

Publication number Publication date
JP4337604B2 (en) 2009-09-30

Similar Documents

Publication Publication Date Title
JP4445365B2 (en) Manufacturing method of high-strength thin steel sheet with excellent elongation and hole expandability
JP5463685B2 (en) High-strength cold-rolled steel sheet excellent in workability and impact resistance and method for producing the same
CA2762935C (en) High-strength galvannealed steel sheet having excellent formability and fatigue resistance and method for manufacturing the same
US6364968B1 (en) High-strength hot-rolled steel sheet having excellent stretch flangeability, and method of producing the same
WO2012020511A1 (en) High-strength cold-rolled steel sheet having excellent workability and impact resistance, and method for manufacturing same
JP4265545B2 (en) High tensile cold-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same
KR20180025930A (en) Ultra high strength multiphase steel and method for manufacturing cold rolled steel strip therefrom
WO2012033210A1 (en) High-strength cold-rolled steel sheet having excellent stretch flange properties, and process for production thereof
JPWO2019151017A1 (en) High-strength cold-rolled steel sheet, high-strength plated steel sheet, and methods for producing them
JP5456026B2 (en) High-strength steel sheet, hot-dip galvanized steel sheet with excellent ductility and no cracks at the edge, and manufacturing method thereof
WO2020158063A1 (en) High-strength hot-dip galvanized steel sheet and manufacturing method therefor
JP4337604B2 (en) Strain aging treatment method for high-tensile steel sheet and method for producing high-strength structural member
WO2017164139A1 (en) High-strength hot-dip galvanized steel sheet and method for manufacturing same
JP2010100896A (en) High strength cold rolled steel sheet having excellent stability in mechanical property and method of producing the same
JP3870868B2 (en) Composite structure type high-tensile cold-rolled steel sheet excellent in stretch flangeability, strength-ductility balance and strain age hardening characteristics, and method for producing the same
JP5035268B2 (en) High tensile cold-rolled steel sheet
JP2004197119A (en) Hot-rolled steel sheet superior in uniformity of material quality, hot-dipped steel sheet, and manufacturing method therefor
JP4802682B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP2005256141A (en) Method for manufacturing high-strength steel sheet superior in hole expandability
JP4367205B2 (en) Strain aging treatment method for steel sheet and method for producing high-strength structural member
JP4292986B2 (en) High tensile cold-rolled steel sheet and method for producing the same
JP5034296B2 (en) Hot-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same
JP4432725B2 (en) Cr-containing high-strength cold-rolled steel sheet excellent in stretch flangeability and manufacturing method thereof
WO2013084477A1 (en) High-strength cold-rolled steel sheet having excellent aging resistance and bake hardenability
JP4172268B2 (en) Manufacturing method of high-strength hot-dip galvanized steel sheet with excellent stretch flangeability, strength-ductility balance, and strain age hardening characteristics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090622

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees