JP2011173204A - Method for manufacturing optical lens - Google Patents

Method for manufacturing optical lens Download PDF

Info

Publication number
JP2011173204A
JP2011173204A JP2010038549A JP2010038549A JP2011173204A JP 2011173204 A JP2011173204 A JP 2011173204A JP 2010038549 A JP2010038549 A JP 2010038549A JP 2010038549 A JP2010038549 A JP 2010038549A JP 2011173204 A JP2011173204 A JP 2011173204A
Authority
JP
Japan
Prior art keywords
polishing
polished
concave surface
lens
reference axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010038549A
Other languages
Japanese (ja)
Other versions
JP5466968B2 (en
Inventor
Toru Ebihara
徹 海老原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2010038549A priority Critical patent/JP5466968B2/en
Publication of JP2011173204A publication Critical patent/JP2011173204A/en
Application granted granted Critical
Publication of JP5466968B2 publication Critical patent/JP5466968B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a means for obtaining an optical lens having a desired optical surface by polishing a surface to be polished of a variety of surface shapes without large variation in a polishing amount within the surface. <P>SOLUTION: The method for manufacturing an optical lens includes relatively moving a polishing tool having a projection formed of an elastic material and a molding formed into a lens shape having a concave surface while supplying polishing agent to a gap between the projection of the polishing tool and the concave surface of the molding and thereby polishing the concave surface. As the polishing tool, a polishing tool satisfying (1) and (2) below is to be selectively used. (1) The polishing tool has such a shape that, when the projection of the polishing tool is fitted with the concave surface of the molding of a polishing object, the both contact with each other in the center part, however they separate from each other in the peripheral part. (2) When the projection of the polishing tool is fitted with the concave surface of the molding of the polishing object in a state a reference axis on the concave surface and a reference axis on the projection oppose with each other, the separation distance in the peripheral part is a predetermined allowable separation distance or less. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、光学レンズの製造方法に関するものであり、詳しくは、凹面を研磨することにより光学面を創成することを含む、光学レンズの製造方法に関するものである。   The present invention relates to a method for manufacturing an optical lens, and more particularly to a method for manufacturing an optical lens, including creating an optical surface by polishing a concave surface.

眼鏡レンズ等の光学レンズの製造工程では、仕上がり寸法よりも肉厚のレンズ(セミフィニッシュ品)を量産保管しておき、受注を受けた後にユーザーのニーズに応じて所望の光学特性を有する製品レンズ(フィニッシュ品)に仕上げることが広く行われている。通常、このセミフィニッシュ品は、物体側表面は注型重合中にモールド表面が転写されることにより光学面に仕上げられる。他方、眼球側表面(凹面)は機械加工(研削ないしは切削)によりレンズ処方に応じた所望の面形状に加工される。ただし、そのままの状態では凹面上に機械加工痕が残存しているため光学レンズとして使用することはできない。そこで通常、上記機械加工後には、研磨加工が行われる。この研磨加工を経て、両面が所望の光学面に仕上げられた製品レンズを得ることができる。   In the manufacturing process of optical lenses such as eyeglass lenses, lenses that are thicker than the finished dimensions (semi-finished products) are mass-produced and stored, and after receiving orders, product lenses that have the desired optical characteristics according to user needs Finishing (finished product) is widely performed. Usually, in this semi-finished product, the object side surface is finished to an optical surface by transferring the mold surface during cast polymerization. On the other hand, the eyeball side surface (concave surface) is processed into a desired surface shape according to the lens prescription by machining (grinding or cutting). However, in the state as it is, since machining traces remain on the concave surface, it cannot be used as an optical lens. Therefore, usually, after the machining, polishing is performed. Through this polishing process, a product lens whose both surfaces are finished to a desired optical surface can be obtained.

従来、上記研磨加工では、被研磨面(凹面)と一致する凸面を有する金属製の研磨皿を用いた摺り合わせ研磨が行われていた。金属製の研磨皿による摺り合わせ研磨は、形状精度がよいため切削加工で形成した面形状を損なうことなく光学面を容易に得ることができるという利点はあるものの、レンズ処方毎にレンズ処方に対応した面形状の研磨皿を用意する必要があり、また、被研磨面が乱視成分や累進要素を含む複雑な面形状を有する場合には、これに対応可能な研磨皿を金属材料から加工することが困難であるといった課題があった。   Conventionally, in the above polishing process, the sliding polishing using a metal polishing dish having a convex surface that coincides with the surface to be polished (concave surface) has been performed. Rubbing and polishing with a metal polishing dish has the advantage of easily obtaining an optical surface without damaging the surface shape formed by cutting due to good shape accuracy, but it can handle lens prescription for each lens prescription If the surface to be polished has a complex surface shape including astigmatism components and progressive elements, a polishing plate that can handle this is processed from a metal material. There was a problem that it was difficult.

これに対し近年、金属製の研磨皿に代えて、凸状の研磨部を有する弾性研磨体を被研磨面に押し付けた状態で、研磨体と被研磨面との間に研磨剤を介在させ摺動させることにより被研磨面を研磨することが、広く行われている(例えば特許文献1および2参照)。   In contrast, in recent years, instead of a metal polishing dish, an elastic abrasive body having a convex polishing portion is pressed against a surface to be polished, and an abrasive is interposed between the polishing body and the surface to be polished. Polishing the surface to be polished by moving is widely performed (for example, see Patent Documents 1 and 2).

特開2004−261954号公報Japanese Patent Application Laid-Open No. 2004-261554 特開2008−183714号公報JP 2008-183714 A

上記方法は、被研磨面に押し付ける際に弾性研磨体が若干変形するため研磨治具の凸形状が被研磨面の凹面形状に完全に対応していない場合であっても研磨を行うことができる。したがって、1つの研磨体により対応可能なアイテム数が増えるため金属製の研磨皿を用いる方法と比べて用意すべき研磨治具の数を大きく減らすことができる。
しかし本願発明者の検討により、上記の弾性研磨体を用いる方法では、面内で研磨量にばらつきがあることが明らかとなった。特に、乱視レンズの乱視軸上で、周縁部の磨き残しが多く研磨量に大きなばらつきがあることが判明した。
The above method can polish even when the convex shape of the polishing jig does not completely correspond to the concave shape of the surface to be polished because the elastic polishing body is slightly deformed when pressed against the surface to be polished. . Therefore, since the number of items that can be handled by one polishing body increases, the number of polishing jigs to be prepared can be greatly reduced as compared with a method using a metal polishing dish.
However, as a result of the study by the inventors of the present application, it has been clarified that the amount of polishing varies in the plane in the method using the elastic polishing body. In particular, it has been found that on the astigmatic axis of the astigmatic lens, there is a large amount of unpolished peripheral portion and there is a large variation in the polishing amount.

上記の通り、従来の研磨方法では面内に研磨量のばらつきが見られるが、機械加工により所望の面形状に形成された面においては、研磨量のばらつきが大きいほど最終的に得られる光学面の設計値からのずれが大きくなるため、研磨量の面内での均一性は高めることが望ましい。
そこで本発明の目的は、各種面形状の被研磨面を面内での研磨量の大きなばらつきなく研磨することにより、所望の光学面を有する光学レンズを得るための手段を提供することにある。
As described above, in the conventional polishing method, variation in the polishing amount is observed in the surface, but in the surface formed into a desired surface shape by machining, the optical surface that is finally obtained as the variation in the polishing amount is larger Therefore, it is desirable to increase the uniformity of the polishing amount in the plane.
SUMMARY OF THE INVENTION An object of the present invention is to provide means for obtaining an optical lens having a desired optical surface by polishing a surface to be polished having various surface shapes without large variations in the amount of polishing in the surface.

本願発明者は、上記目的を達成するために被研磨面における研磨量の分布について検討したところ、通常の研磨工程においては中心部での研磨量が大きく、周縁部での研磨量が小さいという傾向が見られた。これは凸状の研磨部を有する弾性研磨体は被研磨面に対して押し付けた状態で摺動させると圧力が中心部に集中する傾向にあるからである。
そこでこの対策として、研磨面の曲率を被研磨面に対して大きくすることにより研磨面の周縁部を中心部に優先して被研磨面に接触させる(以下、この状態を「外あたり」という)ことが考えられる。この状態の概略図が、図1(a)である。この外あたりの状態であれば、中心部の研磨量の低減および周縁部の研磨量の増加により、結果的に被研磨面の面内の研磨量のばらつきが低減されると予想される。しかし本願発明者の検討によれば、予想に反し面内の研磨量のばらつきを低減することはできなかった。
以上の知見に基づき本願発明者は更なる検討を重ねた結果、以下の新たな知見を得るに至った。
(1)弾性研磨体として、研磨面の曲率が被研磨面に対して小さく被研磨面と嵌合させると中心部で接触し周縁部が離間する状態(以下、この状態を「中あたり」という)となる研磨体を使用することにより被研磨面の面内各部での研磨量のばらつきを低減することができる。この中あたりの状態の概略図が、図1(b)である。このように中あたりとすることにより研磨量の均一化が達成される理由は、ある程度隙間を存在させ研磨剤の移動しやすさを確保することが、研磨治具と被研磨面との間に介在する研磨剤による研磨効率を高めることに寄与しているからと推察される。従来、研磨治具の表面は、弾性研磨体を使用する場合でも被研磨面の曲率と略一致させていたところ、敢えて周縁部に隙間を形成することにより研磨量のばらつき低減が可能となることは、本願発明者により見出された新たな事実である。
(2)ただし周縁部における離間量が研磨可能な許容量を超えるほど大きくなると、そもそも被研磨面の周縁部を研磨することが困難となるため周縁部における離間量は所定範囲内とする必要がある。ここで許容される離間量は、被研磨面と研磨治具表面との組み合わせにより定まるものである。
本発明は、以上の知見に基づき完成された。
The inventor of the present application examined the distribution of the polishing amount on the surface to be polished in order to achieve the above object, and in a normal polishing process, the polishing amount at the central portion is large and the polishing amount at the peripheral portion is small. It was observed. This is because an elastic polishing body having a convex polishing portion tends to concentrate pressure on the central portion when it is slid while pressed against the surface to be polished.
Therefore, as a countermeasure, the curvature of the polished surface is increased with respect to the surface to be polished so that the peripheral portion of the polished surface is brought into contact with the surface to be polished with priority over the center (hereinafter, this state is referred to as “outer contact”). It is possible. A schematic diagram of this state is shown in FIG. In this outer periphery state, it is expected that the variation in the polishing amount within the surface to be polished will be reduced as a result of the reduction in the polishing amount in the central portion and the increase in the polishing amount in the peripheral portion. However, according to the study by the present inventor, contrary to expectation, the in-plane polishing amount variation could not be reduced.
Based on the above findings, the inventor of the present application has made further studies, and as a result, has obtained the following new findings.
(1) As an elastic polishing body, when the curvature of the polishing surface is small with respect to the surface to be polished, it is brought into contact with the surface to be polished and the peripheral portion is separated (hereinafter this state is referred to as “medium”) ), It is possible to reduce the variation in the amount of polishing in each part of the surface to be polished. FIG. 1B is a schematic diagram of the middle state. The reason why the polishing amount is made uniform by setting the center in this way is that there is a gap to some extent and the ease of movement of the abrasive is ensured between the polishing jig and the surface to be polished. It is presumed that it contributes to increase the polishing efficiency by the intervening abrasive. Conventionally, the surface of the polishing jig has been made to substantially match the curvature of the surface to be polished even when an elastic polishing body is used, so it is possible to reduce the variation in polishing amount by forming a gap at the periphery. Is a new fact found by the present inventors.
(2) However, if the amount of separation at the peripheral portion exceeds the allowable amount that can be polished, it becomes difficult to polish the peripheral portion of the surface to be polished. Therefore, the amount of separation at the peripheral portion needs to be within a predetermined range. is there. The amount of separation allowed here is determined by the combination of the surface to be polished and the surface of the polishing jig.
The present invention has been completed based on the above findings.

即ち、上記目的は、下記手段により達成された。
[1]弾性材料からなる凸部を有する研磨治具と凹面を有するレンズ形状に成形された成形体とを、研磨治具の凸部と成形体の凹面との間に研磨剤を供給しながら相対的に移動させることにより、上記凹面を研磨することを含む光学レンズの製造方法であって、
前記研磨治具として、下記(1)および(2)を満たす研磨治具を選択して使用することを特徴とする、光学レンズの製造方法。
(1)研磨治具凸部を研磨対象である成形体の凹面と嵌合させると、中心部で接触するが周縁部で離間する形状を有する。
(2)研磨治具凸部を研磨対象である成形体の凹面と、凹面上の基準軸と凸部上の基準軸とが対向する状態で嵌合させると、周縁部における離間距離は予め設定した許容離間距離以下である。
[2]前記凹面上の基準軸を、該凹面上で平均曲率が最小となる軸方向に設定する、[1]に記載の光学レンズの製造方法。
[3]前記研磨治具の凸部上の基準軸を、該凸部表面において平均曲率が最小となる軸方向に設定する、[1]または[2]に記載の光学レンズの製造方法。
[4]前記相対的な移動を、凹面上の基準軸と凸部上の基準軸とが略平行にある状態で行う、[1]〜[3]のいずれかに記載の光学レンズの製造方法。
[5]前記凹面上の基準軸は、乱視レンズの乱視軸である、[1]〜[4]のいずれかに記載の光学レンズの製造方法。
[6]前記許容離間距離を、1〜8mmの範囲に設定する、[1]〜[5]のいずれかに記載の光学レンズの製造方法。
That is, the above object was achieved by the following means.
[1] While supplying a polishing agent between a convex portion of a polishing jig and a concave surface of a molded body, a polishing jig having a convex portion made of an elastic material and a molded body molded into a lens shape having a concave surface. A method of manufacturing an optical lens comprising polishing the concave surface by relatively moving,
A method for producing an optical lens, wherein a polishing jig satisfying the following (1) and (2) is selected and used as the polishing jig.
(1) When the convex part of the polishing jig is fitted to the concave surface of the molded object to be polished, it has a shape that comes into contact with the central part but separates at the peripheral part.
(2) When the polishing jig convex part is fitted in a state in which the concave surface of the molded object to be polished is opposed to the reference axis on the concave surface and the reference axis on the convex part, the separation distance at the peripheral part is set in advance. Or less than the allowable separation distance.
[2] The method for manufacturing an optical lens according to [1], wherein the reference axis on the concave surface is set in an axial direction that minimizes the average curvature on the concave surface.
[3] The method for manufacturing an optical lens according to [1] or [2], wherein a reference axis on the convex portion of the polishing jig is set in an axial direction that minimizes an average curvature on the convex surface.
[4] The method for manufacturing an optical lens according to any one of [1] to [3], wherein the relative movement is performed in a state where a reference axis on the concave surface and a reference axis on the convex portion are substantially parallel. .
[5] The optical lens manufacturing method according to any one of [1] to [4], wherein the reference axis on the concave surface is an astigmatic axis of the astigmatic lens.
[6] The method for manufacturing an optical lens according to any one of [1] to [5], wherein the allowable separation distance is set in a range of 1 to 8 mm.

本発明によれば、各種面形状の被研磨面において、面内における研磨量のばらつきを低減することができる。これにより機械加工により形成した面形状を維持した状態で光学面を形成することができる。また、研磨における形状維持精度が高いことにより、研磨による光学性能への影響を低減することもできる。これにより度数不良の発生を抑制することが可能となる。
また、面内で研磨量のばらつきが多い場合には、磨き残された部分を選択的に研磨するために研磨条件を変更した研磨を改めて行う必要が生じるが、本発明によれば研磨量のばらつきを低減することができるため、研磨段数の低減が可能となり作業効率を大幅に改善することができる。
According to the present invention, in the surface to be polished having various surface shapes, it is possible to reduce the variation in the polishing amount in the surface. As a result, the optical surface can be formed while maintaining the surface shape formed by machining. Moreover, since the shape maintenance accuracy in polishing is high, the influence on the optical performance due to polishing can also be reduced. As a result, it is possible to suppress the occurrence of frequency defects.
In addition, when there is a large amount of variation in the polishing amount in the surface, it is necessary to perform polishing again by changing the polishing conditions in order to selectively polish the unpolished portion. Since the variation can be reduced, the number of polishing steps can be reduced, and the working efficiency can be greatly improved.

被研磨面と研磨治具との配置例を示す概略図である。図1(a)は、中あたりの状態、図1(b)は外あたりの状態を示す。It is the schematic which shows the example of arrangement | positioning of a to-be-polished surface and a grinding | polishing jig | tool. FIG. 1A shows a middle hit state, and FIG. 1B shows an outer hit state. 本発明において使用可能な研磨装置の概略構成図である。It is a schematic block diagram of the polisher which can be used in this invention. 研磨対象のレンズをレンズ保持体に取り付けた状態を示す断面図である。It is sectional drawing which shows the state which attached the lens of grinding | polishing object to the lens holding body. 揺動装置と研磨治具の首振り旋回運動の説明図である。It is explanatory drawing of the swing rotation motion of a rocking | fluctuation apparatus and a grinding | polishing jig | tool. 研磨治具の一例を示す平面図である。It is a top view which shows an example of a grinding | polishing jig | tool. 図5に示す研磨治具に研磨パッドを取り付けた状態を示す平面図である。It is a top view which shows the state which attached the polishing pad to the grinding | polishing jig | tool shown in FIG. 研磨治具の一例を示す底面図である。It is a bottom view which shows an example of a grinding | polishing jig | tool. 図6のXII-XII線断面図である。It is the XII-XII sectional view taken on the line of FIG. 研磨対象のレンズの移動軌跡の一例を示す図である。It is a figure which shows an example of the movement locus | trajectory of the lens of grinding | polishing object. 実施例の評価結果を示す。The evaluation result of an Example is shown.

本発明は、弾性材料からなる凸部を有する研磨治具と凹面を有するレンズ形状に成形された成形体とを、研磨治具の凸部と成形体の凹面との間に研磨剤を供給しながら相対的に移動させることにより、上記凹面を研磨することを含む光学レンズの製造方法に関する。本発明の光学レンズの製造方法では、研磨に使用する研磨治具として、下記(1)および(2)を満たす研磨治具を選択する。
(1)研磨治具凸部を研磨対象である成形体の凹面と嵌合させると、中心部で接触するが周縁部で離間する形状を有する。
(2)研磨治具凸部を研磨対象である成形体の凹面と、凹面上の基準軸と凸部上の基準軸とが対向する状態で嵌合させると、周縁部における離間距離は予め設定した許容離間距離以下である。
本発明によれば、上記(1)および(2)を満たす研磨治具を使用することにより、面内での研磨量のばらつきを抑えることができ、これにより機械加工により形成した面形状を維持し所望の光学面を有する光学レンズを得ることが可能となる。
以下、本発明の光学レンズの製造方法について、更に詳細に説明する。
The present invention provides a polishing jig having a convex portion made of an elastic material and a molded body molded into a lens shape having a concave surface by supplying an abrasive between the convex portion of the polishing jig and the concave surface of the molded body. The present invention relates to a method of manufacturing an optical lens including polishing the concave surface by relatively moving the surface. In the optical lens manufacturing method of the present invention, a polishing jig satisfying the following (1) and (2) is selected as a polishing jig used for polishing.
(1) When the convex part of the polishing jig is fitted to the concave surface of the molded object to be polished, it has a shape that comes into contact with the central part but separates at the peripheral part.
(2) When the polishing jig convex part is fitted in a state in which the concave surface of the molded object to be polished is opposed to the reference axis on the concave surface and the reference axis on the convex part, the separation distance at the peripheral part is set in advance. Or less than the allowable separation distance.
According to the present invention, by using the polishing jig satisfying the above (1) and (2), variation in the polishing amount in the surface can be suppressed, and thereby the surface shape formed by machining is maintained. Thus, an optical lens having a desired optical surface can be obtained.
Hereinafter, the manufacturing method of the optical lens of the present invention will be described in more detail.

研磨治具
本発明において使用される研磨治具は、弾性材料からなる凸部を有するものである。先に説明したように、弾性材料からなる研磨治具を使用することは、金属製の研磨皿を使用する研磨方法と比べて用意すべき研磨治具の数を大幅に低減できるためコスト面および生産効率の点できわめて有利である。
Polishing jig The polishing jig used in the present invention has a convex portion made of an elastic material. As described above, using a polishing jig made of an elastic material can greatly reduce the number of polishing jigs to be prepared as compared with a polishing method using a metal polishing dish, so that the cost and This is extremely advantageous in terms of production efficiency.

上記研磨治具としては、凸部全体が弾性材料からなるものを用いることができ、または、凸部が内部に空洞(中空構造)を有するバルーン部材であり、この空洞に流体を供給することによりバルーン部材に張りを与えながら研磨を行うことができる研磨治具を用いることもできる。後者の研磨治具は、流体により加える圧力によっても研磨条件を制御することができるため、形状精度を高めるうえで有利である。   As the polishing jig, one having the entire convex portion made of an elastic material can be used, or the convex portion is a balloon member having a cavity (hollow structure) inside, and a fluid is supplied to the cavity. A polishing jig that can perform polishing while applying tension to the balloon member can also be used. The latter polishing jig is advantageous in improving the shape accuracy because the polishing conditions can be controlled by the pressure applied by the fluid.

弾性材料としては、弾性体としての性質を有し、JIS k 6253(デュロメータタイプAまたはタイプE)により定義される硬さ5〜70程度のものが好ましい。具体例としては、天然ゴム、スチレンブタジエンゴム(SBR)およびシリコンゴムなどの合成ゴム等を挙げることができる。前記バルーン部材としては、弾性材料部分の厚さが1〜10mm程度のものが好適である。このバルーン部材に供給される流体としては、通常、圧縮空気、窒素、水等の液体が使用される。バルーン部材を含む研磨治具の具体的構成については、例えば特開2004−261954号公報段落[0033]〜[0037]、特開2008−283714号公報段落[0036]〜[0057]等を参照できる。   The elastic material preferably has a property as an elastic body and has a hardness of about 5 to 70 as defined by JIS k 6253 (durometer type A or type E). Specific examples include natural rubber, synthetic rubber such as styrene butadiene rubber (SBR) and silicon rubber. The balloon member preferably has an elastic material portion with a thickness of about 1 to 10 mm. As the fluid supplied to the balloon member, liquids such as compressed air, nitrogen and water are usually used. Regarding the specific configuration of the polishing jig including the balloon member, reference can be made to, for example, paragraphs [0033] to [0037] of Japanese Patent Application Laid-Open No. 2004-261554, paragraphs [0036] to [0057] of Japanese Patent Application Laid-Open No. 2008-283714, and the like. .

研磨治具凸部の表面形状は、球面、平面視楕円形、非球面、トーリック面、アトーリック面、自由曲面、またはこれらを合成した曲面等の任意の形状とすることができる。また、凸部表面は、被研磨面よりも大面積とすることが研磨効率が高く好ましい。
後述するように、本発明では研磨治具凸部表面上および被成形面上にそれぞれ基準軸を設定し、基準軸間の離間距離に基づき、研磨治具を選択する。この際の基準軸設定の容易性の観点、更には後述するように基準軸同士を対向配置させた状態で研磨を行うためのセッティングの容易性の観点からは、研磨治具凸部の表面形状を、トーリック面やアトーリック面のように、面内で平均曲率が異なる互いに垂直な2つの軸方向を有する面形状とし、これら2つの軸方向の少なくとも1つに基準軸を設定することが好ましく、これら2つの軸方向にそれぞれ基準軸を設定することがより好ましい。
なお、研磨治具の凸部を球面のように面内で曲率一定な表面形状とすることも考えられ、これは研磨対象が球面の場合に好適である。ただし乱視レンズや加入度が大きい累進屈折力レンズでは、被研磨面となる凹面上の面内での曲率差が大きい。そのため研磨治具凸部表面の曲率が一定であると、面内各部で研磨治具と被研磨面とのフィッティングが大きく異なることになる。従来の研磨方法で乱視レンズの乱視軸上で研磨量のばらつきが特に大きかった理由はこの点にあると推察される。これに対し研磨治具凸部表面の面内に曲率に違いを設ければ、上記の通り面内で曲率差のある被研磨面とのフィッティングの均一化を図ることができる。ここで基準軸として、面内の曲率を代表する1つ(またはそれ以上)を選択し、該基準軸における被研磨面との離間状態に基づき研磨治具を選択すれば、被研磨面とのフィッティングが良好な研磨治具を選択することが可能となる。
The surface shape of the convex portion of the polishing jig can be any shape such as a spherical surface, an elliptical shape in plan view, an aspherical surface, a toric surface, an atoric surface, a free-form surface, or a curved surface obtained by combining these. Moreover, it is preferable that the convex surface has a larger area than the surface to be polished because of high polishing efficiency.
As will be described later, in the present invention, a reference axis is set on each of the convex surface of the polishing jig and the surface to be molded, and the polishing jig is selected based on the distance between the reference axes. From the viewpoint of ease of setting the reference axis at this time, and also from the viewpoint of ease of setting for performing polishing with the reference axes facing each other as will be described later, the surface shape of the convex portion of the polishing jig Is preferably a surface shape having two axial directions that are perpendicular to each other, such as a toric surface or an atoric surface, with different average curvatures in the surface, and a reference axis is preferably set in at least one of these two axial directions. More preferably, the reference axis is set in each of these two axial directions.
Note that it is conceivable that the convex portion of the polishing jig has a surface shape with a constant curvature within the surface, such as a spherical surface, which is suitable when the object to be polished is a spherical surface. However, in an astigmatic lens or a progressive addition lens with a large addition, there is a large difference in curvature in the surface on the concave surface to be polished. For this reason, if the curvature of the surface of the convex portion of the polishing jig is constant, the fitting between the polishing jig and the surface to be polished is greatly different in each part of the surface. It is inferred that this is the reason why the polishing amount variation was particularly large on the astigmatic axis of the astigmatic lens in the conventional polishing method. On the other hand, if a difference in curvature is provided within the surface of the polishing jig convex surface, the fitting with the surface to be polished having a difference in curvature within the surface can be made uniform as described above. Here, if one (or more) representative of the in-plane curvature is selected as the reference axis, and a polishing jig is selected based on the state of separation from the surface to be polished on the reference axis, It becomes possible to select a polishing jig with good fitting.

研磨時には通常、研磨治具の凸部上に研磨パッドが配置される。この研磨パッドは、研磨剤を保持し研磨効率を高める役割を果たすものである。研磨パッドとしては、特に限定されるものではないが、例えば、発泡ポリウレタン、フェルト、不織布、羊毛等の繊維性の布、合成樹脂等を材料とするものを用いることができる。本発明では被研磨面との間に所定の隙間が形成される研磨治具を選択して使用するため、その形状の対応関係が研磨パッドにより大きく損なわれない範囲の厚さの研磨パッドを使用することが好ましい。具体的には、研磨パッドの厚さは0.5〜3.0mm程度とすることが好適である。また、研磨パッドの形状および配置方法については、例えば特開2004−261954号公報段落[0034]、特開2008−183714号公報段落[0026]〜[0027]、[0058]〜[0061]等を参照できる。   During polishing, a polishing pad is usually disposed on the convex portion of the polishing jig. This polishing pad plays a role of holding an abrasive and increasing polishing efficiency. Although it does not specifically limit as a polishing pad, For example, what uses fibrous cloth, synthetic resins, etc., such as foaming polyurethane, felt, a nonwoven fabric, and wool, can be used. In the present invention, since a polishing jig in which a predetermined gap is formed between the surface to be polished is selected and used, a polishing pad having a thickness within a range in which the correspondence of the shape is not greatly impaired by the polishing pad is used. It is preferable to do. Specifically, the thickness of the polishing pad is preferably about 0.5 to 3.0 mm. Regarding the shape and arrangement method of the polishing pad, for example, paragraphs [0034] of JP-A-2004-261904, paragraphs [0026] to [0027], [0058] to [0061] of JP-A-2008-183714, etc. You can refer to it.

研磨対象物
研磨対象である成形体は、凹面を有するレンズ形状に成形されたものであり、いわゆるセミフィニッシュ品であることができる。上記成形体は、注型重合法等の公知の成形法により得ることができる。素材としては、特に限定されるものではないが、例えば、ウレタン系、エピチオ系、ポリカーボネート系、ジエチレングリコールビスアリルカーボネート(CR39)等のプラスチックレンズに通常使用される各種樹脂を挙げることができる。
The molded object to be polished is a lens having a concave surface, and can be a so-called semi-finished product. The molded body can be obtained by a known molding method such as a casting polymerization method. Although it does not specifically limit as a raw material, For example, various resin normally used for plastic lenses, such as a urethane type, an epithio type | system | group, a polycarbonate type, diethylene glycol bisallyl carbonate (CR39), can be mentioned.

先に説明した通りセミフィニッシュ品の凹面には、レンズ処方に応じて機械加工が施される。この機械加工により、球面、非球面、トーリック面、アトーリック面、累進要素もしくは累進面を含む自由曲面、またはこれらを合成した曲面等が形成される。上記機械加工は、公知の研削および/または切削により行うことができる。一例としては、三次元NC制御を行うカーブジェネレータによる切削加工を挙げることができる。   As described above, the concave surface of the semi-finished product is machined according to the lens prescription. By this machining, a spherical surface, an aspherical surface, a toric surface, an atoric surface, a free-form surface including a progressive element or a progressive surface, or a curved surface obtained by combining these is formed. The machining can be performed by known grinding and / or cutting. As an example, cutting by a curve generator that performs three-dimensional NC control can be cited.

研磨治具の選択
本発明では、研磨に使用する研磨治具として、被研磨面の形状との間で、前記(1)および(2)の関係を満たす研磨治具を選択する。ある研磨治具が前記(1)および(2)を満たすか否かは、研磨治具と研磨対象である成形体とを実際に組み合わせることにより目視によって確認することができ、または、成形体および研磨治具それぞれの設計値から離間距離を算出することによって確認することができる。
以下、条件(1)、(2)について更に詳細に説明する。
Selection of Polishing Jig In the present invention, as a polishing jig used for polishing, a polishing jig that satisfies the relationship (1) and (2) above with respect to the shape of the surface to be polished is selected. Whether or not a certain polishing jig satisfies the above (1) and (2) can be confirmed visually by actually combining the polishing jig and the molded object to be polished, or This can be confirmed by calculating the separation distance from the design value of each polishing jig.
Hereinafter, the conditions (1) and (2) will be described in more detail.

条件(1)は、被研磨面と研磨治具の凸部とが、中あたりの関係にあることを規定するものである。ここで両者が接触する中心部とは、例えば被研磨面および凸部表面の幾何中心またはその近傍であることができる。従来の研磨方法では、この部分の研磨量が周縁部に比べて多いことが、面内の研磨量のばらつきの一因となっていた。これに対し本発明によれば、中あたりの関係を実現する研磨治具と被研磨面との組み合わせで研磨を行うことにより、中心部と周縁部の研磨量のばらつきを低減することができる。研磨治具凸部は、周縁部全周にわたって被研磨面と離間している状態であってもよく、周縁部の一部において被研磨面と接触していてもよい。好ましくは従来の方法では研磨量のばらつきが大きい軸方向の周縁部において、凸部表面と被研磨面とが離間していることが好ましい。従来の方法では研磨量のばらつきが大きい軸方向については後述する。   Condition (1) prescribes that the surface to be polished and the convex portion of the polishing jig have an intermediate relationship. Here, the central portion where both are in contact can be, for example, the geometric center of the surface to be polished and the surface of the convex portion or the vicinity thereof. In the conventional polishing method, the amount of polishing in this portion is larger than that in the peripheral portion, which is a cause of variation in the amount of polishing in the surface. On the other hand, according to the present invention, by performing polishing with a combination of a polishing jig and a surface to be polished that realizes the middle relation, variation in the polishing amount between the central portion and the peripheral portion can be reduced. The polishing jig convex part may be in a state of being separated from the surface to be polished over the entire periphery of the peripheral part, or may be in contact with the surface to be polished in a part of the peripheral part. Preferably, in the conventional method, it is preferable that the surface of the convex portion and the surface to be polished are separated from each other at the peripheral portion in the axial direction where the variation in polishing amount is large. In the conventional method, the axial direction in which the variation in the polishing amount is large will be described later.

ただし前述のように、周縁部における離間距離を過度に大きくすると周縁部を研磨することが困難となる。そこで本発明では条件(2)により、被研磨面と凸部表面との離間状態を、研磨可能な許容範囲に規定する。この研磨可能な離間範囲(許容離間距離)は、被研磨面と研磨治具表面との組み合わせにより定まるものであり予備実験を行い設定することが好ましいが、一般的な研磨条件においては、例えば1mm〜11mm程度、更には1〜8mm程度が好適である。   However, as described above, if the separation distance at the peripheral portion is excessively increased, it becomes difficult to polish the peripheral portion. Therefore, in the present invention, the separated state between the surface to be polished and the surface of the convex portion is defined by the condition (2) within an allowable range for polishing. This polishable separation range (allowable separation distance) is determined by the combination of the surface to be polished and the surface of the polishing jig, and is preferably set by conducting a preliminary experiment. However, under general polishing conditions, for example, 1 mm About 11 mm, and further about 1-8 mm are preferable.

前記条件(2)は、被研磨面と凸部表面の全面で満たされることが最も望ましいが、使用する研磨治具の選択においては、全面における離間距離を求めることは測定点が膨大となるため、実用上困難である。そこで本発明では、被研磨面、凸部表面のそれぞれに基準軸を設定し、両軸を対向配置させた状態での離間距離を指標として、研磨治具を選択する。ここで基準軸は、従来の研磨方法では研磨量のばらつきが大きい軸方向に設定することが、研磨量の面内均一性を高める上で好ましい。本願発明者の検討によれば、従来の研磨方法では、被研磨面が面内で曲率分布を有する場合、平均曲率が小さい軸方向ほど周縁部の研磨量が少なく面内で研磨量のばらつきが生じやすい傾向が見られた。例えばトーリック面からなる凹面を有する乱視レンズにおいては、該凹面上のベース方向(乱視軸方向)は面内で平均曲率が最小となる軸方向であり、従来はこの軸方向において研磨量のばらつきが大きく、特に、周縁部の磨き残しが生じやすい傾向があった。また、累進屈折力レンズにおいても加入度数の差が大きい場合には遠用部と近用部との曲率差が大きいため、面内で平均曲率が最小となる軸方向において、周縁部に磨き残しが生じやすい傾向があった。そこで本発明では、被研磨面上の基準軸は、上記の通り研磨量のばらつきが大きい、面内で平均曲率が最小となる軸方向に設定することが好ましい。また、被研磨面上の基準軸は1つに限られるものではなく2つ以上であってもよい。例えば2つの基準軸を設定する場合には、基準軸設定の容易性の点からは、上記の通り磨き残しが生じやすい軸方向と、これと直交する軸方向に設定することが好ましい。または、面内の形状を代表する基準軸として、2つ目の基準軸を、研磨量のばらつきが大きい軸方向と最も形状差が大きい軸方向、即ち面内で平均曲率が最大となる軸方向に設定することも好適である。   The condition (2) is most preferably satisfied over the entire surface of the surface to be polished and the surface of the convex portion. However, in selecting a polishing jig to be used, obtaining the separation distance over the entire surface results in enormous measurement points. It is difficult for practical use. Therefore, in the present invention, a reference axis is set for each of the surface to be polished and the surface of the convex portion, and the polishing jig is selected using as an index the separation distance in a state where both axes are opposed to each other. Here, it is preferable to set the reference axis in the axial direction in which the polishing amount varies greatly in the conventional polishing method in order to increase the in-plane uniformity of the polishing amount. According to the inventor's study, in the conventional polishing method, when the surface to be polished has an in-plane curvature distribution, the amount of polishing at the peripheral portion is smaller in the axial direction where the average curvature is smaller, and the amount of polishing varies in the surface. A tendency to occur was observed. For example, in an astigmatic lens having a concave surface made of a toric surface, the base direction (astigmatic axis direction) on the concave surface is an axial direction in which the average curvature is the smallest in the surface, and conventionally, the amount of polishing varies in this axial direction. In particular, there was a tendency that unpolished portions of the peripheral portion were liable to occur. Also, in the progressive addition lens, when the difference in the addition power is large, the difference in curvature between the distance portion and the near portion is large, so that the peripheral edge portion is left unpolished in the axial direction where the average curvature is minimum in the plane. Tended to occur. Therefore, in the present invention, the reference axis on the surface to be polished is preferably set in the axial direction in which the variation in the polishing amount is large as described above and the average curvature is minimum in the surface. Further, the reference axis on the surface to be polished is not limited to one, and may be two or more. For example, when two reference axes are set, from the viewpoint of ease of setting the reference axis, it is preferable to set the axial direction in which unpolishing is likely to occur as described above and the axial direction perpendicular thereto. Alternatively, as the reference axis representing the in-plane shape, the second reference axis is the axial direction having the largest shape difference from the axial direction having the largest variation in polishing amount, that is, the axial direction having the maximum average curvature in the plane. It is also preferable to set to.

以下、具体例として乱視レンズおよび累進屈折力レンズを例に説明すると、例えば乱視レンズにおいては、いわゆるベース方向と呼ばれる方向は面内で平均曲率が最小となる軸方向(最小曲率方向)であり、これと直交する、いわゆるクロス方向と呼ばれる方向は面内で平均曲率が最大となる軸方向(最大曲率方向)となる。したがって乱視レンズにおいて凹面上の基準軸は、最小曲率方向(ベース方向)と最大曲率方向(クロス方向)に設定することが好ましい。また、累進屈折力レンズにおいては、面内で平均曲率が最小となる軸方向と最大となる軸方向に、基準軸を設定することが好ましい。   Hereinafter, as an example, an astigmatic lens and a progressive power lens will be described as an example. A so-called cross direction orthogonal to this is an axial direction (maximum curvature direction) in which the average curvature is maximum in the plane. Therefore, it is preferable to set the reference axis on the concave surface in the astigmatic lens in the minimum curvature direction (base direction) and the maximum curvature direction (cross direction). In the progressive-power lens, it is preferable to set the reference axis in the axial direction in which the average curvature is minimum and the maximum axial direction in the plane.

研磨時の研磨治具凸部表面と被研磨面とのフィッティングの点からは、凹面上の基準軸を面内で平均曲率が最小となる軸方向に設定する場合には、研磨治具凸部表面上の基準軸も、凸部表面上で平均曲率が最小となる軸方向に設定することが好ましい。同様に、凹面上の基準軸を、面内で平均曲率が最大となる軸方向に設定する場合には、研磨治具凸部上の基準軸も、凸部表面上で平均曲率が最大となる軸方向に設定することが好ましい。なお、ある面上の各軸方向における平均曲率は、レンズ処方値や研磨治具の設計値に基づき決定することができる。または特許第4199723号明細書段落[0023]〜[0059]に記載の方法もしくはこれに準じた方法によって、ある面上の各軸方向における平均曲率を決定することもできる。
以上、被研磨面上に1つまたは2つの基準軸を設定する態様について説明したが、3つまたはそれ以上の基準軸を設定することも、もちろん可能である。
From the point of fitting between the surface of the convex part of the polishing jig during polishing and the surface to be polished, if the reference axis on the concave surface is set in the axial direction that minimizes the average curvature in the plane, the convex part of the polishing jig The reference axis on the surface is also preferably set in the axial direction that minimizes the average curvature on the convex surface. Similarly, when the reference axis on the concave surface is set in an axial direction that maximizes the average curvature in the surface, the reference axis on the polishing jig convex portion also has the maximum average curvature on the convex portion surface. It is preferable to set in the axial direction. In addition, the average curvature in each axial direction on a certain surface can be determined based on the lens prescription value and the design value of the polishing jig. Alternatively, the average curvature in each axial direction on a certain surface can be determined by the method described in paragraphs [0023] to [0059] of Japanese Patent No. 4199723 or a method based thereon.
As described above, the mode in which one or two reference axes are set on the surface to be polished has been described, but it is of course possible to set three or more reference axes.

研磨方法
次に、研磨対象である成形体の凹面(被研磨面)の形状に対して上記(1)および(2)を満たす研磨治具を用いて、被研磨面を研磨する方法について説明する。
研磨時には、前述の通り、通常研磨治具凸部上に研磨パッドを配置した状態で、研磨治具凸部を被研磨面に押し付けた状態で両面を相対的に移動(摺動)させることにより、被研磨面を研磨する。ここで研磨時には、研磨治具の凸部と成形体の凹面との間に研磨剤が供給される。研磨剤としては、研磨処理に通常使用される市販のスラリーを使用することができる。または、アルミナ、ダイヤモンドパウダー等の研磨砥粒を水または水系溶媒に分散させることにより調製したスラリーを使用することもできる。
Polishing Method Next, a method of polishing the surface to be polished using a polishing jig that satisfies the above (1) and (2) with respect to the shape of the concave surface (surface to be polished) of the molded body to be polished will be described. .
At the time of polishing, as described above, by moving (sliding) both surfaces relatively with the polishing pad convex portion pressed against the surface to be polished with the polishing pad placed on the normal polishing jig convex portion. The surface to be polished is polished. Here, during polishing, an abrasive is supplied between the convex portion of the polishing jig and the concave surface of the molded body. As a polishing agent, a commercially available slurry that is usually used for polishing treatment can be used. Alternatively, a slurry prepared by dispersing abrasive grains such as alumina and diamond powder in water or an aqueous solvent can be used.

研磨時の研磨治具、研磨対象である成形体の動作は、通常の研磨工程と同様とすることもできるが、周縁部において設定した離間距離を実際の研磨工程において正確に実現するためには、研磨治具選択において基準軸とした軸同士の方向を一定に維持した状態で研磨を行うことが好ましく、具体的には、基準軸同士が略平行となるように、研磨治具、研磨対象の成形体の一方または両方を前後または左右に往復運動させることが好ましい。そのような動作を行うためには、研磨治具と研磨対象の成形体を、基準軸同士が対向するように研磨装置に設置した後、研磨治具凸部を被研磨面(凹面)に押し付けた状態で、研磨治具凸部を首振り旋回運動させ、成形体を凹面の基準軸方向に往復運動させることにより、研磨の軌跡が1周毎に少しずつずれる無軌道研磨軌跡で被研磨面を研磨することが好ましい。   The operation of the polishing jig at the time of polishing and the molded object to be polished can be the same as the normal polishing process, but in order to accurately realize the separation distance set at the peripheral edge in the actual polishing process In the selection of the polishing jig, it is preferable to perform the polishing while maintaining the direction of the axes as the reference axes to be constant, and specifically, the polishing jig and the object to be polished so that the reference axes are substantially parallel to each other. It is preferable to reciprocate one or both of the molded bodies back and forth or left and right. In order to perform such an operation, the polishing jig and the molded object to be polished are placed in the polishing apparatus so that the reference axes face each other, and then the polishing jig convex portion is pressed against the surface to be polished (concave surface). In this state, the polishing jig convex portion is swung and swung, and the molded body is reciprocated in the direction of the reference axis of the concave surface. It is preferable to polish.

上記動作が可能な研磨装置の一例を、以下に図面に基づき説明する。
図2は本発明において使用可能な係る研磨方法に用いられる研磨装置の概略構成図である。
同図において、全体を符号30で示す研磨装置は、床面に設置された装置本体32と、この装置本体32に紙面において左右方向(矢印X方向)に移動自在でかつ水平な軸33を中心として紙面と直交する方向(矢印AB方向)に回動自在に配設されたアーム34と、このアーム34を左右方向に往復移動させるとともに紙面と直交する方向に回動させる図示しない駆動装置と、前記アーム34に設けられレンズ1の凸面2aをレンズ保持体37を介して保持するレンズ取付部36と、このレンズ取付部36の下方に位置するように前記装置本体32に配設され、図示しない駆動装置により垂直な軸線Kを中心として首振り旋回運動(自転はしない)を行う揺動装置38等を備えている。また、前記揺動装置38上に着脱自在に設けられた研磨治具39、この研磨治具39に着脱自在に取付けられた研磨パッド40、前記レンズ取付部36を昇降させる昇降装置41等を備えている。このような研磨装置30は、例えば特開2008−183714号公報に記載されている。
An example of a polishing apparatus capable of the above operation will be described below with reference to the drawings.
FIG. 2 is a schematic configuration diagram of a polishing apparatus used in such a polishing method that can be used in the present invention.
In the figure, a polishing apparatus generally indicated by reference numeral 30 has an apparatus main body 32 installed on the floor, and a horizontal axis 33 that can move in the left-right direction (arrow X direction) on the apparatus main body 32 in the drawing. An arm 34 rotatably disposed in a direction orthogonal to the paper surface (arrow AB direction), and a drive device (not shown) that reciprocates the arm 34 in the left-right direction and rotates in a direction orthogonal to the paper surface, A lens mounting portion 36 provided on the arm 34 for holding the convex surface 2a of the lens 1 via a lens holding body 37, and disposed in the apparatus main body 32 so as to be positioned below the lens mounting portion 36, not shown. A swinging device 38 that swings (does not rotate) around a vertical axis K by a driving device is provided. Further, a polishing jig 39 detachably provided on the rocking device 38, a polishing pad 40 detachably attached to the polishing jig 39, an elevating device 41 for raising and lowering the lens attaching portion 36, and the like are provided. ing. Such a polishing apparatus 30 is described in, for example, Japanese Patent Application Laid-Open No. 2008-183714.

被研磨面2bは、予め3次元NC制御を行うカーブジェネレータ等によって所定の面形状に機械加工されている。   The surface 2b to be polished is machined into a predetermined surface shape by a curve generator or the like that performs three-dimensional NC control in advance.

図3は前記レンズをレンズ保持体37に取付けた状態を示す断面図である。
同図において、レンズ1を保持するレンズ保持体37は、金属製(工具鋼等)のヤトイ44と、このヤトイ44とレンズ1を接合する接着剤45とで構成されている。ヤトイ44の背面側には、前記レンズ取付部36に対して嵌合する嵌合凹部47が形成されている。この嵌合凹部47は、ハメアイの方向性を有している。接着剤45としては、通常低融点のアロイ(例えば、Bi,Pb,Sn,In,Gaの合金、融点約49℃)が用いられる。レンズ1の凸面2aと接着剤45との間には、傷防止用の保護フィルム46が介在されている。接着剤45によってレンズ1をヤトイ44に接合するには、例えばLOH社製のレイアウトブロッカーと呼ばれる装置が用いられる。また、レンズ1は、前述の基準軸の位置を考慮してヤトイ44に取付けられる。具体的には、ヤトイ44をレンズ取付部36に取付けたとき、被研磨面2bの基準軸方向が研磨治具39の基準軸と一致するように、レンズ1をヤトイ44に取付ける。なお、ヤトイ44は、レンズ1の度数、外径、凸面2aの曲率に応じて大きさの異なるものが用いられる。
FIG. 3 is a cross-sectional view showing a state in which the lens is attached to the lens holder 37.
In the figure, a lens holder 37 that holds the lens 1 is composed of a metal (tool steel, etc.) yatoi 44 and an adhesive 45 that joins the yatoi 44 and the lens 1. A fitting recess 47 that fits into the lens mounting portion 36 is formed on the back side of the yatoi 44. The fitting recess 47 has a hame-eye orientation. As the adhesive 45, an alloy having a low melting point (for example, an alloy of Bi, Pb, Sn, In, and Ga, a melting point of about 49 ° C.) is used. A scratch-preventing protective film 46 is interposed between the convex surface 2 a of the lens 1 and the adhesive 45. In order to join the lens 1 to the Yatei 44 with the adhesive 45, for example, a device called a layout blocker manufactured by LOH is used. The lens 1 is attached to the yatoi 44 in consideration of the position of the reference axis described above. Specifically, the lens 1 is attached to the yatoy 44 so that the reference axis direction of the surface to be polished 2 b coincides with the reference axis of the polishing jig 39 when the yatoy 44 is attached to the lens attachment portion 36. As the Yatoi 44, those having different sizes according to the power of the lens 1, the outer diameter, and the curvature of the convex surface 2a are used.

図2において、前記揺動装置38は、垂直な回転軸21の上端に垂直方向に所要角度(α)傾斜して取付けられており、上端面に前記研磨治具39が着脱可能に設置されている。回転軸48は研磨時に軸線周りに回転する。揺動装置38は回転軸48が回転すると、回転軸48の軸線周りを首振り旋回運動するように構成されている。回転軸48に対する揺動装置38の傾斜角度αは、例えば、5°である。図4は揺動装置38と研磨治具39の首振り旋回運動の軌跡50を示す。揺動装置38は、首振り旋回運動において回転軸48の周りを公転するだけで自転はしない。   In FIG. 2, the swinging device 38 is attached to the upper end of the vertical rotating shaft 21 at a required angle (α) in the vertical direction, and the polishing jig 39 is detachably installed on the upper end surface. Yes. The rotating shaft 48 rotates around the axis during polishing. The swinging device 38 is configured to swing around the axis of the rotating shaft 48 when the rotating shaft 48 rotates. The inclination angle α of the swing device 38 with respect to the rotation shaft 48 is, for example, 5 °. FIG. 4 shows the locus 50 of the swinging movement of the swinging device 38 and the polishing jig 39. The oscillating device 38 only revolves around the rotation shaft 48 in the swinging and swinging motion, and does not rotate.

図5〜図8において、前記研磨治具39は、弾性材料によってカップ状に形成された下面側が開放するバルーン部材51と、このバルーン部材51の下面側開口部を閉塞し内部を気密に保持する固定具52と、前記バルーン部材51の内部に圧縮空気を供給するバルブ53とで構成されている。   5-8, the said grinding | polishing jig | tool 39 obstruct | occludes the lower surface side opening part of this balloon member 51 which the lower surface side formed in the cup shape with the elastic material open | releases, and hold | maintains the inside airtightly. The fixture 52 and a valve 53 for supplying compressed air to the balloon member 51 are configured.

前記バルーン部材51は、ドーム部51Aと、このドーム部51Aの外周より下方に向かって一体に延設された略楕円形の筒部51Bと、この筒部51Bの下端に一体に延設された環状の内フランジ51Cとで構成されている。   The balloon member 51 is integrally extended to a dome portion 51A, a substantially elliptical cylindrical portion 51B integrally extending downward from the outer periphery of the dome portion 51A, and a lower end of the cylindrical portion 51B. It is comprised with the cyclic | annular inner flange 51C.

前記固定具52は、内側固定具55と外側固定具56の2部材からなり、これらによってバルーン部材51の内フランジ51Cを内側と外側から挟持することにより、バルーン部材51の下面側開口部を気密に封止している。このため、バルーン部材51の内部は、密閉空間57を形成している。内側固定具55は、バルーン部材51の筒部51Bの内側の形状と略同一の大きさの楕円板からなり、下面外周部に前記内フランジ51Cが嵌合する環状溝58が形成されている。   The fixing member 52 is composed of two members, an inner fixing member 55 and an outer fixing member 56. By sandwiching the inner flange 51C of the balloon member 51 from the inner side and the outer side by these members, the lower surface side opening of the balloon member 51 is hermetically sealed. Is sealed. For this reason, a sealed space 57 is formed inside the balloon member 51. The inner fixture 55 is formed of an elliptical plate having the same size as the inner shape of the cylindrical portion 51B of the balloon member 51, and an annular groove 58 into which the inner flange 51C is fitted is formed on the outer peripheral portion of the lower surface.

前記外側固定具56は、上方が開放するカップ状に形成されていることにより、円板状の底板56Aと、この底板56Aの上面外周に一体に突設された円筒部56Bとからなり、この円筒部56B内に前記内側固定具55が前記バルーン部材51の筒部51Bとともに嵌挿される。円筒部56Bは、外形が円形で、内形がバルーン部材51の筒部51Bの外形と略同一の大きさの楕円形に形成されている。そして、外側固定具56は、内側固定具55が複数個の止めねじ60によって一体的に結合された後、前記揺動装置38の上面に、前記バルーン部材51の基準軸方向(図5の矢印F方向)を、被研磨面2bの基準軸方向である、前記アーム34の往復移動方向(図2のX方向)と一致させて取付けられる。   The outer fixture 56 is formed in a cup shape that opens upward, and thus includes a disk-shaped bottom plate 56A and a cylindrical portion 56B that protrudes integrally from the outer periphery of the upper surface of the bottom plate 56A. The inner fixture 55 is fitted and inserted into the cylindrical portion 56 </ b> B together with the cylindrical portion 51 </ b> B of the balloon member 51. The cylindrical portion 56 </ b> B has a circular outer shape, and an inner shape is formed in an elliptical shape having substantially the same size as the outer shape of the cylindrical portion 51 </ b> B of the balloon member 51. Then, after the inner fixing device 55 is integrally coupled by a plurality of set screws 60, the outer fixing device 56 is placed on the upper surface of the swinging device 38 in the reference axial direction of the balloon member 51 (the arrow in FIG. 5). F direction) is attached so as to coincide with the reciprocating movement direction (X direction in FIG. 2) of the arm 34, which is the reference axis direction of the polished surface 2b.

前記バルブ53は逆止弁からなり、前記内側固定具55に取付けられている。   The valve 53 is a check valve and is attached to the inner fixture 55.

前記ドーム部材51の密閉空間57に圧縮空気を前記バルブ53を介して供給すると、ドーム部51Aは上方に膨張し、ドーム部51Aの中心軸を含む断面の平均曲率が短軸方向(図5の矢印G方向)で最大、長軸方向(矢印F方向)で最小なトーリック面となる。この場合、ドーム部51Aの曲率は、ドーム部51Aの中央高さ(頂点高さ)に対応して変化するため、適宜な装置によってドーム中央の高さを測定し調整することにより、ドーム部51Aの曲率を所望の曲率とすることができる。   When compressed air is supplied to the sealed space 57 of the dome member 51 through the valve 53, the dome portion 51A expands upward, and the average curvature of the cross section including the central axis of the dome portion 51A is in the minor axis direction (FIG. 5). The toric surface is maximum in the direction of arrow G) and minimum in the long axis direction (direction of arrow F). In this case, since the curvature of the dome portion 51A changes corresponding to the center height (vertex height) of the dome portion 51A, the dome portion 51A is measured and adjusted with an appropriate device to measure the height of the dome portion 51A. Can be set to a desired curvature.

研磨パッド40は、前記締付部材76によって前記研磨治具39に着脱自在に取付けられる。前記締付部材76は、適宜な太さの線ばねをリング状に塑性変形させて両端部を重ね合わせたもので、自然状態では前記外側固定具56の外径より小さい直径を有し、両端部76a,76bが外側にそれぞれ略直角に折り曲げられている。   The polishing pad 40 is detachably attached to the polishing jig 39 by the fastening member 76. The fastening member 76 is obtained by plastically deforming a wire spring having an appropriate thickness into a ring shape and superimposing both ends, and has a diameter smaller than the outer diameter of the outer fixture 56 in a natural state. The portions 76a and 76b are bent outward at substantially right angles.

前記研磨パッド40を研磨治具39に取付けるには、先ず圧縮空気の供給によってバルーン部材51のドーム部51Aを所定のドーム形状に膨張させた後、その上に研磨パッド40の研磨部70を載置する。次に、締付部材76の両端部76a,76bを指先で挟んでその間隔を弾性に抗して狭めることにより締付部材76を拡径化し、この状態で締付部材76を研磨パッド40の固定片71に上方から押しつけてこれらの固定片71を下方に折り曲げ外側固定具56の外周に接触させる。そして、両端部76a,76bから指先を離すと、締付部材76は元の形状に復帰して固定片71を外側固定具56の外周に締付け固定し、もって研磨パッド40の取付けが終了する。   In order to attach the polishing pad 40 to the polishing jig 39, first, the dome portion 51A of the balloon member 51 is expanded into a predetermined dome shape by supplying compressed air, and then the polishing portion 70 of the polishing pad 40 is mounted thereon. Put. Next, both ends 76a and 76b of the tightening member 76 are sandwiched between fingertips, and the distance between the end portions 76a and 76b is narrowed against elasticity, so that the tightening member 76 is expanded in diameter. The fixing pieces 71 are pressed from above, and the fixing pieces 71 are bent downward and brought into contact with the outer periphery of the outer fixture 56. When the fingertips are released from both end portions 76a and 76b, the fastening member 76 returns to its original shape, and the fixing piece 71 is fastened and fixed to the outer periphery of the outer fixing tool 56, whereby the attachment of the polishing pad 40 is completed.

このような構造からなる研磨装置30によるレンズ1の研磨は、以下の手順によって行われる。
先ず、アーム34のレンズ取付部36にレンズ1をレンズ保持体37を介して装着する。次に、揺動装置38の上面に研磨パッド40が取付けられた研磨治具39を設置する。レンズ取付部36にレンズ1を取付ける際には、レンズ1の被研磨面2bの基準軸軸方向がアーム34の往復移動方向(図2の矢印X方向)と一致するように取付ける。研磨治具39を揺動装置38に設置する際には、バルーン部材51の基準軸方向(F方向)をアーム34の往復移動方向(矢印X方向)と一致させて設置する。
The lens 1 is polished by the polishing apparatus 30 having such a structure according to the following procedure.
First, the lens 1 is mounted on the lens mounting portion 36 of the arm 34 via the lens holder 37. Next, a polishing jig 39 to which a polishing pad 40 is attached is installed on the upper surface of the rocking device 38. When the lens 1 is attached to the lens attaching portion 36, the lens 1 is attached so that the reference axis direction of the polished surface 2b of the lens 1 coincides with the reciprocating direction of the arm 34 (the arrow X direction in FIG. 2). When the polishing jig 39 is installed on the rocking device 38, the reference axis direction (F direction) of the balloon member 51 is set to coincide with the reciprocating movement direction (arrow X direction) of the arm 34.

レンズ1がレンズ取付部36に取付けられると、昇降装置41によってレンズ1を下降させ、凹面2bを研磨パッド40の表面に押し付ける。この状態で研磨剤を研磨パッド40の表面に供給し、アーム34を左右方向に往復移動させるとともに軸33を中心として前後方向に回動させる。このようなアーム34の動きによるレンズ1の移動軌跡を図9に示す。   When the lens 1 is attached to the lens attachment portion 36, the lens 1 is lowered by the elevating device 41, and the concave surface 2 b is pressed against the surface of the polishing pad 40. In this state, an abrasive is supplied to the surface of the polishing pad 40, and the arm 34 is reciprocated in the left-right direction and rotated in the front-rear direction around the shaft 33. The movement trajectory of the lens 1 due to the movement of the arm 34 is shown in FIG.

また、回転軸21の回転によって揺動装置38を図4に示すように首振り旋回運動させる。このようなレンズ1と揺動装置38の運動により、研磨の軌跡が1周毎に少しずつずれる無軌道研磨軌跡でレンズ1の凹面2bを前記研磨パッド40と研磨剤によって研磨し、所望のトーリック面に仕上げる。
なお、2つの基準軸を設定する場合には、アーム34の左右方向(矢印X方向)への移動に加えて、アーム34の水平な軸33を中心とした紙面と直交する方向(矢印AB方向)への回動を利用することにより、凸部表面上の2つの基準軸と、凹面上の2つの基準軸との軸同士の方向を、それぞれの方向で一定に維持した状態で研磨を行うことができる。
Further, as the rotating shaft 21 rotates, the swinging device 38 is swung as shown in FIG. By such movement of the lens 1 and the swinging device 38, the concave surface 2b of the lens 1 is polished by the polishing pad 40 and the abrasive with a trackless polishing locus in which the polishing locus is slightly shifted every round, and a desired toric surface is obtained. Finish.
When two reference axes are set, in addition to the movement of the arm 34 in the left-right direction (arrow X direction), a direction (arrow AB direction) perpendicular to the paper surface with the horizontal axis 33 of the arm 34 as the center. ) Is used in the state where the directions of the two reference axes on the convex surface and the two reference axes on the concave surface are kept constant in the respective directions. be able to.

成形体の凹面の研磨は1段階の研磨で行ってもよく、2段階以上の研磨で行ってもよい。カーブジェネレータによって切削加工された凹面には、NC制御によるバックラッシュ等に起因する加工段差が含まれている場合があるので、その場合には光学面を得るために加工段差を研磨によって除去する必要がある。したがって、その場合には、凹面の研磨工程を荒研磨と仕上げ研磨の2段階研磨とすることが好ましい。例えば、荒研磨においては、研磨砥粒の平均粒径が1.6〜1.8μmのものを用い、温度を8〜14℃に制御して研磨することができる。また、研磨時間は2〜6分、研磨圧は5〜400ミリバール、回転速度は400〜1000rpmとすることができる。   Polishing of the concave surface of the molded body may be performed by one-step polishing or may be performed by two-step polishing or more. The concave surface cut by the curve generator may contain a machining step due to backlash by NC control. In that case, it is necessary to remove the machining step by polishing to obtain an optical surface. There is. Therefore, in this case, it is preferable that the concave surface polishing step is a two-step polishing of rough polishing and final polishing. For example, in rough polishing, polishing abrasive grains having an average particle diameter of 1.6 to 1.8 μm can be used, and the temperature can be controlled to 8 to 14 ° C. for polishing. The polishing time can be 2 to 6 minutes, the polishing pressure can be 5 to 400 mbar, and the rotation speed can be 400 to 1000 rpm.

次に、仕上げ研磨においては、例えば、研磨砥粒の平均粒径が0.8μm程度のものを用いて研磨することができる。研磨時間は30秒〜1分程度、研磨圧は5〜400ミリバール、回転速度は400〜1000rpmとすることができる。このように研磨条件を変えて研磨することにより、加工段差を確実に取り除くことができる。   Next, in the finish polishing, for example, polishing can be performed using a polishing abrasive having an average particle size of about 0.8 μm. The polishing time can be about 30 seconds to 1 minute, the polishing pressure can be 5 to 400 mbar, and the rotation speed can be 400 to 1000 rpm. In this way, the polishing step can be reliably removed by changing the polishing conditions.

以上説明した本発明によれば、各種形状の被研磨面において、面内における研磨量のばらつきを低減することができるため、機械加工により形成された面形状を維持した状態で研磨を行うことができる。これにより本発明によれば、所望の光学面を有する光学レンズを得ることができる。   According to the present invention described above, in the surface to be polished having various shapes, it is possible to reduce the variation in the polishing amount in the surface, and thus it is possible to perform polishing while maintaining the surface shape formed by machining. it can. Thereby, according to this invention, the optical lens which has a desired optical surface can be obtained.

以下に、本発明を実施例により更に説明する。ただし本発明は、実施例に示す態様に限定されるものではない。   In the following, the present invention will be further illustrated by examples. However, the present invention is not limited to the embodiment shown in the examples.

1.研磨対象レンズ(乱視レンズ)の成形
注型重合法により、一方が凸面、他方が凹面のポリカーボネート製のφ75mmのセミフィニッシュレンズを成形した。凹面はトーリック面であり、ベース方向(乱視軸方向)が面内で平均曲率が最小となる方向、これと直交するクロス方向が面内で平均曲率が最大となる方向である。成形したレンズ凹面のベース方向(乱視軸方向)の曲率半径は120.188mm、これと直交するクロス方向の曲率半径は91.891mmであった。
1. Molding of Lens to be Polished (Astigmatic Lens) A semi-finished lens made of polycarbonate having one convex surface and the other concave surface was cast by a casting polymerization method. The concave surface is a toric surface, and the base direction (astigmatic axis direction) is the direction in which the average curvature is minimum in the plane, and the cross direction orthogonal to this is the direction in which the average curvature is maximum in the plane. The curvature radius in the base direction (astigmatic axis direction) of the concave lens surface was 120.188 mm, and the curvature radius in the cross direction perpendicular thereto was 91.891 mm.

2.凹面の機械加工
上記1.で成形したセミフィニッシュレンズの凹面を、3次元NC制御を行うカーブジェネレータによって所定の面形状に切削加工した(加工精度3μm以内、表面粗さRy0.3〜0.5μm)。
2. Concavity machining 1. The concave surface of the semi-finished lens molded in step 1 was cut into a predetermined surface shape by a curve generator that performs three-dimensional NC control (processing accuracy within 3 μm, surface roughness Ry 0.3 to 0.5 μm).

3.研磨治具の作製
テスト研磨治具として、図5〜図8に示す構成の研磨治具であって、ドーム部51Aがトーリック面でありベース方向、クロス方向高さ(sag.値)が異なるものを複数種作製した。バルーン部材としては、外径90φmm、JIS k6253(デュロメータタイプE)で定義される硬度50、素材厚み約3mmのSBRを使用した。
3. Production of a polishing jig As a test polishing jig, a polishing jig having the structure shown in FIGS. 5 to 8, in which the dome portion 51A is a toric surface and the height in the base direction and the cross direction (sag. Values) are different. A plurality of types were produced. As the balloon member, SBR having an outer diameter of 90 mm, a hardness defined by JIS k6253 (durometer type E), and a material thickness of about 3 mm was used.

4.研磨加工の実施
上記2.で切削加工を施したレンズと上記3.で作製した研磨治具を、図2〜4に示す研磨装置に取り付けて、研磨時間5分、研磨圧200ミリバール、回転速度530rpm、研磨剤として平均粒径0.8μmのアルミナを水に分散させたスラリーを使用して研磨加工を行った。研磨装置への取り付けは、被研磨面のベース方向とドーム部表面のベース方向、被研磨面のクロス方向とドーム部表面のクロス方向が一致するように行い、研磨時の動作は前記の通りベース方向同士、クロス方向同士の略一致した関係が位置されるようにして研磨を行った。研磨パッドとしては厚さ約2mmの羊毛製の研磨パッドを使用した。
4). Implementation of polishing process 2. And the lens subjected to the cutting process in 3 above and 3. 2-4 is attached to the polishing apparatus shown in FIGS. 2 to 4, and an alumina having an average particle size of 0.8 μm as an abrasive is dispersed in water with a polishing time of 5 minutes, a polishing pressure of 200 mbar, a rotation speed of 530 rpm. Polishing was performed using the obtained slurry. Mounting to the polishing device is performed so that the base direction of the surface to be polished and the base direction of the surface of the dome part match, and the cross direction of the surface to be polished and the cross direction of the surface of the dome part coincide with each other. Polishing was performed so that the substantially coincident relationship between the directions and the cross directions was located. A polishing pad made of wool having a thickness of about 2 mm was used as the polishing pad.

5.研磨後のレンズの評価
上記4.で研磨加工を施した凹面の表面性状、研磨取り代、光学性能を、以下の方法で評価した。
(1)表面性状(面内研磨量のばらつき)
目視による反射光および透過光の観察と、高輝度ランプによる透過検査とを併用し、表面性状(面内研磨量のばらつきに起因する表面性状の低下有無)を評価した。
(2)研磨取り代
研磨前後の中心部部分の肉厚変化量を測定した。本実施例では、測定される肉厚変化量が5μm以下である場合、研磨取り代の評価結果良好と判断した。
(3)光学性能
眼鏡用光学測定装置(レンズメーター)によって、各種光学測定点における設計値(S度数、C度数、プリズム)からの誤差の有無および程度を評価した。
5. Evaluation of lens after polishing 4. The surface properties, polishing allowance, and optical performance of the concave surface subjected to the polishing process were evaluated by the following methods.
(1) Surface properties (variation of in-plane polishing amount)
Observation of reflected light and transmitted light by visual observation and transmission inspection using a high-intensity lamp were used in combination to evaluate the surface properties (whether or not the surface properties were reduced due to variations in the in-plane polishing amount).
(2) Polishing allowance The change in thickness of the central portion before and after polishing was measured. In this example, when the measured change in thickness was 5 μm or less, it was determined that the polishing removal allowance evaluation result was good.
(3) Optical performance Using an optical measuring device for eyeglasses (lens meter), the presence or absence and degree of errors from design values (S frequency, C frequency, prism) at various optical measurement points were evaluated.

6.評価結果
上記において評価した研磨治具とレンズとの組み合わせにおいては、被研磨面である凹面とドーム部表面が基準軸上の中心部(幾何中心)で接触し周縁部で離間する場合、研磨治具のドーム部表面のφ75mmの位置が、離間距離が最大となる位置である。そこでドーム部表面のφ75mmの位置において、ベース方向およびクロス方向における凹面との離間距離を設計値から求めた。図10に示す数値は、こうして求めた離間距離であり、例えば右上カラムの(8−0)とは、ベース方向の離間距離が8mm、クロス方向の離間距離は0mm(=密着)であることを示す。他のカラムについても同様である。またカラム中、数値がマイナスになっているものは、周縁部が中心部に優先して離間する形状、即ち外あたりの状態であることを示す。(0−0)のカラムは凹面とドーム部表面の形状が一致している状態であり、この状態でのsag.値はベース方向で2mm、クロス方向で4mmであった。上記5.における評価結果と最大離間距離との対応関係を確認したところ、以下の結果が得られた。
ベース方向、クロス方向において研磨治具凸部表面と被研磨面との関係が外あたりになる組み合わせでは、被研磨面の外周部2〜4mm程度の領域に磨き残しが生じたため周縁部に比べて中心部の研磨量が多くなり、その結果表面性状の評価結果は劣っていた。
これに対しベース方向、クロス方向において研磨治具凸部表面と被研磨面との関係が中あたりになる組み合わせでは、上記外あたりの関係と比べて被研磨面のベース方向、クロス方向における軸上の研磨量のばらつきは小さく均一な研磨が可能であった。特にベース方向、クロス方向のいずれにおいても最大離間距離が2〜5mmの範囲内(図10中の太枠内)のものは、表面性状、研磨取り代、光学性能のいずれにおいても評価結果が良好であった。
以上の結果から、ベース方向、クロス方向のいずれにおいても最大離間距離が2〜5mmの範囲内であれば適切な研磨取り代で、表面性状、光学性能とも良好な、所望の光学面を形成することができることが確認できる。したがって本評価により、被研磨面と中あたりの関係にあり被研磨面とドーム部表面の最大離間距離が2〜5mmの範囲内となるものを選択することにより、適切な研磨取り代で所望の光学面が得られることが確認された。
これとは別に、研磨対象のレンズのトーリック面形状を変更して同様の評価を行ったところ、以下の結果が得られた。
(1)ドーム部表面のトーリック面のsag.値がベース方向で8mm、クロス方向で10mmにおいて凹面とドーム部表面の形状が一致する態様においては、被研磨面と中あたりの関係にあり被研磨面とドーム部表面の最大離間距離が2〜5mmの範囲内において適切な研磨取り代で所望の光学面が得られた。
(2)ドーム部表面のトーリック面のsag.値がベース方向で10mm、クロス方向で12mmにおいて凹面とドーム部表面の形状が一致する態様においては、被研磨面と中あたりの関係にあり被研磨面とドーム部表面の最大離間距離が2〜6mmの範囲内において適切な研磨取り代で所望の光学面が得られた。
(3)ドーム部表面のトーリック面のsag.値がベース方向で12mm、クロス方向で16mmにおいて凹面とドーム部表面の形状が一致する態様においては、被研磨面と中あたりの関係にあり被研磨面とドーム部表面の最大離間距離が1〜6mmの範囲内において適切な研磨取り代で所望の光学面が得られた。
(4)ドーム部表面のトーリック面のsag.値がベース方向で14mm、クロス方向で18mmにおいて凹面とドーム部表面の形状が一致する態様においては、被研磨面と中あたりの関係にあり被研磨面とドーム部表面の最大離間距離が2〜7mmの範囲内において適切な研磨取り代で所望の光学面が得られた。
(5)ドーム部表面のトーリック面のsag.値がベース方向で18mm、クロス方向で20mmにおいて凹面とドーム部表面の形状が一致する態様においては、被研磨面と中あたりの関係にあり被研磨面とドーム部表面の最大離間距離が2〜8mmの範囲内において適切な研磨取り代で所望の光学面が得られた。
(6)ドーム部表面のトーリック面のsag.値がベース方向で8mm、クロス方向で12mmにおいて凹面とドーム部表面の形状が一致する態様においては、被研磨面と中あたりの関係にあり被研磨面とドーム部表面の最大離間距離が2〜5mmの範囲内において適切な研磨取り代で所望の光学面が得られた。
(7)ドーム部表面のトーリック面のsag.値がベース方向で8mm、クロス方向で18mmにおいて凹面とドーム部表面の形状が一致する態様においては、被研磨面と中あたりの関係にあり被研磨面とドーム部表面の最大離間距離が2〜5mmの範囲内において適切な研磨取り代で所望の光学面が得られた。
(8)バルーン部材の外径を80φmmとした場合、ドーム部表面のトーリック面のsag.値がベース方向で10mm、クロス方向で20mmにおいて凹面とドーム部表面の形状が一致する態様においては、被研磨面と中あたりの関係にあり被研磨面とドーム部表面の最大離間距離が2〜6mmの範囲内において適切な研磨取り代で所望の光学面が得られた。
6). Evaluation results In the combination of the polishing jig and the lens evaluated above, when the concave surface, which is the surface to be polished, and the dome surface contact at the center (geometric center) on the reference axis and are separated at the peripheral edge, the polishing treatment is performed. The position of φ75 mm on the surface of the dome portion of the tool is the position where the separation distance is maximized. Therefore, the distance from the concave surface in the base direction and the cross direction was determined from the design value at a position of φ75 mm on the surface of the dome. The numerical value shown in FIG. 10 is the separation distance thus obtained. For example, (8-0) in the upper right column means that the separation distance in the base direction is 8 mm and the separation distance in the cross direction is 0 mm (= contact). Show. The same applies to the other columns. In the column, a negative value indicates a shape in which the peripheral edge is separated with priority over the center, that is, the outer periphery. The column (0-0) is in a state where the concave surface and the dome surface have the same shape, and the sag. Value in this state was 2 mm in the base direction and 4 mm in the cross direction. 5. above. As a result of confirming the correspondence between the evaluation results and the maximum separation distance, the following results were obtained.
In a combination in which the relationship between the surface of the polishing jig convex portion and the surface to be polished is the outside in the base direction and the cross direction, an unpolished region is generated in the region of the outer peripheral portion of 2 to 4 mm compared to the peripheral portion. The amount of polishing at the center portion increased, and as a result, the evaluation result of the surface property was inferior.
On the other hand, in the combination in which the relationship between the surface of the polishing jig convex portion and the surface to be polished is the middle in the base direction and the cross direction, the base direction of the surface to be polished and the axis in the cross direction are higher than the above relationship The amount of polishing was small and uniform polishing was possible. Especially, in the base direction and the cross direction, those with a maximum separation distance of 2 to 5 mm (within the thick frame in FIG. 10) have good evaluation results in any of the surface properties, polishing allowance, and optical performance. Met.
From the above results, if the maximum separation distance is in the range of 2 to 5 mm in both the base direction and the cross direction, a desired optical surface with good surface properties and optical performance can be formed with an appropriate polishing allowance. It can be confirmed that Therefore, according to this evaluation, by selecting the one having a relationship between the surface to be polished and the middle surface and having the maximum separation distance between the surface to be polished and the surface of the dome within a range of 2 to 5 mm, the desired polishing allowance can be obtained. It was confirmed that an optical surface was obtained.
Separately from this, the same results were obtained by changing the toric surface shape of the lens to be polished, and the following results were obtained.
(1) When the sag. Value of the toric surface on the surface of the dome is 8 mm in the base direction and 10 mm in the cross direction, the shape of the concave surface and the surface of the dome is the same, and the surface to be polished is in the middle relationship. A desired optical surface was obtained with an appropriate polishing allowance within the range where the maximum distance between the surface and the dome surface was 2 to 5 mm.
(2) When the sag. Value of the toric surface on the dome surface is 10 mm in the base direction and 12 mm in the cross direction, the shape of the concave surface and the surface of the dome portion is the same, and the surface to be polished is in the middle and the surface to be polished A desired optical surface was obtained with an appropriate polishing allowance within the range where the maximum distance between the surface and the dome surface was 2 to 6 mm.
(3) When the sag. Value of the toric surface on the dome surface is 12 mm in the base direction and 16 mm in the cross direction, the shape of the concave surface and the dome surface is the same, and the surface to be polished is in the middle and the surface to be polished A desired optical surface was obtained with an appropriate polishing allowance within the range where the maximum distance between the surface and the dome surface was 1 to 6 mm.
(4) When the sag. Value of the toric surface on the dome surface is 14 mm in the base direction and 18 mm in the cross direction, the shape of the concave surface and the surface of the dome portion is the same, and the surface to be polished is in the middle relationship. A desired optical surface was obtained with an appropriate polishing allowance within the range where the maximum distance between the surface and the dome surface was 2 to 7 mm.
(5) When the sag. Value of the toric surface on the dome surface is 18 mm in the base direction and 20 mm in the cross direction, the shape of the concave surface and the surface of the dome portion is the same. A desired optical surface was obtained with an appropriate polishing allowance within the range where the maximum distance between the surface and the dome surface was 2 to 8 mm.
(6) When the sag. Value of the toric surface on the dome surface is 8 mm in the base direction and 12 mm in the cross direction, the concave surface and the dome surface have the same shape. A desired optical surface was obtained with an appropriate polishing allowance within the range where the maximum distance between the surface and the dome surface was 2 to 5 mm.
(7) When the sag. Value of the toric surface on the dome surface is 8 mm in the base direction and 18 mm in the cross direction, the concave surface and the dome surface have the same shape. A desired optical surface was obtained with an appropriate polishing allowance within the range where the maximum distance between the surface and the dome surface was 2 to 5 mm.
(8) When the outer diameter of the balloon member is 80 mm, the sag. Value of the toric surface on the dome surface is 10 mm in the base direction and 20 mm in the cross direction. A desired optical surface was obtained with an appropriate polishing allowance when the polishing surface was in the middle and the maximum distance between the surface to be polished and the surface of the dome portion was 2 to 6 mm.

以上の結果から、離間距離に基づく研磨治具の選択基準の妥当性が示された。本発明によれば、被研磨面の形状に対する研磨治具形状の許容範囲が広がるため、従来の弾性研磨体を使用する研磨方法と比べて1つの研磨治具により対応可能なアイテム数を増やすことができる。例えば数千個のアイテムを数十個の研磨治具を使い分けることにより研磨することが可能となる。   From the above results, the validity of the selection criteria for the polishing jig based on the separation distance was shown. According to the present invention, since the allowable range of the shape of the polishing jig with respect to the shape of the surface to be polished is widened, the number of items that can be handled by one polishing jig is increased compared to the conventional polishing method using an elastic polishing body. Can do. For example, it is possible to polish several thousand items by using several tens of polishing jigs.

本発明は、眼鏡レンズの製造分野に有用である。   The present invention is useful in the field of manufacturing eyeglass lenses.

Claims (6)

弾性材料からなる凸部を有する研磨治具と凹面を有するレンズ形状に成形された成形体とを、研磨治具の凸部と成形体の凹面との間に研磨剤を供給しながら相対的に移動させることにより、上記凹面を研磨することを含む光学レンズの製造方法であって、
前記研磨治具として、下記(1)および(2)を満たす研磨治具を選択して使用することを特徴とする、光学レンズの製造方法。
(1)研磨治具凸部を研磨対象である成形体の凹面と嵌合させると、中心部で接触するが周縁部で離間する形状を有する。
(2)研磨治具凸部を研磨対象である成形体の凹面と、凹面上の基準軸と凸部上の基準軸とが対向する状態で嵌合させると、周縁部における離間距離は予め設定した許容離間距離以下である。
A polishing jig having a convex portion made of an elastic material and a molded body molded into a lens shape having a concave surface are relatively disposed while supplying an abrasive between the convex portion of the polishing jig and the concave surface of the molded body. A method of manufacturing an optical lens comprising polishing the concave surface by moving,
A method for producing an optical lens, wherein a polishing jig satisfying the following (1) and (2) is selected and used as the polishing jig.
(1) When the convex part of the polishing jig is fitted to the concave surface of the molded object to be polished, it has a shape that comes into contact with the central part but separates at the peripheral part.
(2) When the polishing jig convex part is fitted in a state in which the concave surface of the molded object to be polished is opposed to the reference axis on the concave surface and the reference axis on the convex part, the separation distance at the peripheral part is set in advance. Or less than the allowable separation distance.
前記凹面上の基準軸を、該凹面上で平均曲率が最小となる軸方向に設定する、請求項1に記載の光学レンズの製造方法。 The method of manufacturing an optical lens according to claim 1, wherein the reference axis on the concave surface is set in an axial direction that minimizes the average curvature on the concave surface. 前記研磨治具の凸部上の基準軸を、該凸部表面において平均曲率が最小となる軸方向に設定する、請求項1または2に記載の光学レンズの製造方法。 The method for manufacturing an optical lens according to claim 1, wherein a reference axis on the convex portion of the polishing jig is set in an axial direction in which an average curvature is minimum on the surface of the convex portion. 前記相対的な移動を、凹面上の基準軸と凸部上の基準軸とが略平行にある状態で行う、請求項1〜3のいずれか1項に記載の光学レンズの製造方法。 The method of manufacturing an optical lens according to claim 1, wherein the relative movement is performed in a state where a reference axis on the concave surface and a reference axis on the convex portion are substantially parallel. 前記凹面上の基準軸は、乱視レンズの乱視軸である、請求項1〜4のいずれか1項に記載の光学レンズの製造方法。 The optical lens manufacturing method according to claim 1, wherein the reference axis on the concave surface is an astigmatic axis of the astigmatic lens. 前記許容離間距離を、1〜8mmの範囲に設定する、請求項1〜5のいずれか1項に記載の光学レンズの製造方法。 The method of manufacturing an optical lens according to claim 1, wherein the allowable separation distance is set in a range of 1 to 8 mm.
JP2010038549A 2010-02-24 2010-02-24 Manufacturing method of optical lens Active JP5466968B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010038549A JP5466968B2 (en) 2010-02-24 2010-02-24 Manufacturing method of optical lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010038549A JP5466968B2 (en) 2010-02-24 2010-02-24 Manufacturing method of optical lens

Publications (2)

Publication Number Publication Date
JP2011173204A true JP2011173204A (en) 2011-09-08
JP5466968B2 JP5466968B2 (en) 2014-04-09

Family

ID=44686567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010038549A Active JP5466968B2 (en) 2010-02-24 2010-02-24 Manufacturing method of optical lens

Country Status (1)

Country Link
JP (1) JP5466968B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08206952A (en) * 1991-10-14 1996-08-13 Yachiyo Micro Sci Kk Curved surface polishing tool
JP2000117604A (en) * 1998-10-09 2000-04-25 Seiko Epson Corp Abrasive device and abrasive jig
JP2006150526A (en) * 2004-11-30 2006-06-15 Hoya Corp Optical lens polishing method
JP2006272466A (en) * 2005-03-28 2006-10-12 Seiko Epson Corp Polishing pad and polishing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08206952A (en) * 1991-10-14 1996-08-13 Yachiyo Micro Sci Kk Curved surface polishing tool
JP2000117604A (en) * 1998-10-09 2000-04-25 Seiko Epson Corp Abrasive device and abrasive jig
JP2006150526A (en) * 2004-11-30 2006-06-15 Hoya Corp Optical lens polishing method
JP2006272466A (en) * 2005-03-28 2006-10-12 Seiko Epson Corp Polishing pad and polishing method

Also Published As

Publication number Publication date
JP5466968B2 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
JP5166037B2 (en) Grinding wheel
JP4681024B2 (en) Glasses lens polishing method
JP3829435B2 (en) Manufacturing method of spectacle lens
US6932678B2 (en) Polishing apparatus
US7556554B2 (en) Apparatus and method for manufacturing optical objects
US8951097B2 (en) Method for mounting an optical lens to be polished
JP4084081B2 (en) Yatoi, lens holding method, and spectacle lens manufacturing method using this holding method
JP5466968B2 (en) Manufacturing method of optical lens
JP4387708B2 (en) Polishing method and manufacturing method for plastic spectacle lens
JP2011173205A (en) Method for manufacturing optical lens
JP5206231B2 (en) Manufacturing method of spectacle lens
JP4199723B2 (en) Optical lens polishing method
JP2012213821A (en) Method for manufacturing spectacle lens
JP4550907B2 (en) Lens holding method and spectacle lens manufacturing method
WO2010110271A1 (en) Manufacturing method for lens and lens holder
JP2001353650A (en) Polisher, and method and device of polishing optical component using it
JP4186809B2 (en) Optical lens polishing method
JP4013966B2 (en) Lens polishing method
JP2005224904A (en) Polishing jig and polishing device
JP2001225250A (en) Polisher, and manufacture of optical lens and optical- lens forming die using same
JP2012213822A (en) Spectacle lens manufacturing method
JPH11114790A (en) Manufacture of optical lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130208

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131227

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140127

R150 Certificate of patent or registration of utility model

Ref document number: 5466968

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250