JP4199723B2 - Optical lens polishing method - Google Patents

Optical lens polishing method Download PDF

Info

Publication number
JP4199723B2
JP4199723B2 JP2004346137A JP2004346137A JP4199723B2 JP 4199723 B2 JP4199723 B2 JP 4199723B2 JP 2004346137 A JP2004346137 A JP 2004346137A JP 2004346137 A JP2004346137 A JP 2004346137A JP 4199723 B2 JP4199723 B2 JP 4199723B2
Authority
JP
Japan
Prior art keywords
polishing
polished
lens
optical lens
curvature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004346137A
Other languages
Japanese (ja)
Other versions
JP2006150526A (en
Inventor
吉明 豊島
孝雄 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2004346137A priority Critical patent/JP4199723B2/en
Publication of JP2006150526A publication Critical patent/JP2006150526A/en
Application granted granted Critical
Publication of JP4199723B2 publication Critical patent/JP4199723B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、光学レンズの研磨方法に関し、特に被研磨面が非回転対称な光学レンズの研磨方法に関するものである。   The present invention relates to a polishing method for an optical lens, and more particularly to a polishing method for an optical lens whose surface to be polished is non-rotationally symmetric.

従来、NC制御のカーブジェネレータで球面やトーリック面形状に切削されたレンズの凹面を研磨装置によって研磨するには、研磨したい凹面の形状と略一致する凸面を有する金属製の研磨治具に研磨パッドを貼付け、これを研磨したい凹面に押し付けた状態で研磨治具とレンズとを相対的に摺動させることにより行っていた。しかしながら、このような方法で研磨する場合、研磨したいレンズの凹面の形状毎に異なった研磨治具を用意する必要がある。例えば、乱視矯正用のトーリックレンズの場合、トーリック面(円弧を、その円弧と同一面内にあり円弧の曲率中心を通らない軸の回りに回転させて得られる面の一部)が3000〜4000種類にも及ぶため、その数だけの研磨治具を用意する必要があった。このため、研磨治具の製造コストが嵩むばかりか、保管のために広い収納スペースを必要とし、その管理が煩雑であった。   Conventionally, in order to polish a concave surface of a lens, which has been cut into a spherical or toric surface shape by an NC control curve generator, with a polishing apparatus, a polishing pad is attached to a metal polishing jig having a convex surface that substantially matches the shape of the concave surface to be polished. Is applied by sliding the polishing jig and the lens relative to each other in a state where the polishing jig is pressed against the concave surface to be polished. However, when polishing by such a method, it is necessary to prepare a different polishing jig for each concave shape of the lens to be polished. For example, in the case of a toric lens for correcting astigmatism, a toric surface (a part of a surface obtained by rotating an arc around the axis that is in the same plane as the arc and does not pass through the center of curvature of the arc) is 3000 to 4000. Since there are many types, it was necessary to prepare as many polishing jigs as there were. For this reason, not only the manufacturing cost of the polishing jig is increased, but also a large storage space is required for storage, and its management is complicated.

また、球面、トーリック面だけではなく、非球面(頂点から周辺にかけて曲率が連続的に変化する回転面の一部)形状、非トーリック面(曲率が異なる互いに垂直な主経線をもつ面で、少なくとも一方の主経線の断面が円ではない面)形状、累進多焦点レンズのような自由曲面形状など複雑な形状の凹面を形成する場合があり、このような場合には研磨治具が複雑な凹面形状に対応できず研磨できないという問題があった。   Also, not only spherical and toric surfaces, but also aspherical surfaces (part of a rotating surface whose curvature continuously changes from the apex to the periphery), non-toric surfaces (surfaces having mutually perpendicular principal meridians with different curvatures, On the other hand, a concave surface with a complicated shape such as a free-form surface such as a progressive multifocal lens may be formed. There was a problem that the shape could not be accommodated and could not be polished.

そこで、このような問題を解決するための方法として、弾性材料からなり内部に流体を封入して膨らませた状態で研磨するようにした研磨治具が提案されている(例えば、特許文献1参照)。なお、本発明は 特許文献1に記載された研磨治具を用いて研磨する方法の改良に関するものである。   Accordingly, as a method for solving such a problem, a polishing jig made of an elastic material and polished in a state in which a fluid is sealed inside and inflated has been proposed (for example, see Patent Document 1). . In addition, this invention relates to the improvement of the method grind | polished using the grinding | polishing jig | tool described in patent document 1. FIG.

特許文献1に記載された研磨治具は、弾性材料によって平面視形状が楕円でカップ状に形成され内部に流体が導入されることにより上面側がドーム状に膨張するバルーン部材を備え、このバルーン部材の上面に設けた研磨パッドによりレンズの被研磨面を研磨するようにしたものである。レンズの凹面がトーリック面で互いに直交する方向での曲率が大幅に異なる場合、球面状のドームではこのような凹面に追随できないおそれがある。このため、バルーン部材を平面視楕円形状としてバルーン部材の上面の曲率を互いに直交する短軸方向と長軸方向で異ならせ、レンズのトーリック面に近づけるようにしている。研磨に際しては、レンズを左右方向に往復移動させるとともに前後方向に往復回動させ、研磨治具を首振り旋回運動させることにより、研磨軌跡が1周毎に少しずつずれる無軌道研磨軌跡でレンズの被研磨面を研磨するようにしている。   The polishing jig described in Patent Document 1 includes a balloon member that is formed into an oval cup shape with an elastic material and has a top surface that expands into a dome shape when a fluid is introduced therein. The polishing surface of the lens is polished by a polishing pad provided on the upper surface of the lens. If the concave surfaces of the lens are toric surfaces and the curvatures in directions orthogonal to each other are significantly different, the spherical dome may not be able to follow such a concave surface. For this reason, the balloon member has an elliptical shape in plan view, and the curvature of the upper surface of the balloon member is made different between the short axis direction and the long axis direction orthogonal to each other so as to be close to the toric surface of the lens. During polishing, the lens is reciprocated in the left-right direction and reciprocally rotated in the front-rear direction, and the polishing jig is swung in a swivel motion, so that the polishing trajectory slightly deviates every round. The polishing surface is polished.

このような研磨治具によれば、バルーン部材の内圧を変化させることで、ドームの曲率を変化させることができるため、被研磨面の曲率に応じてドームの曲率を変更するために格別な部品や手段を設ける必要がなく、研磨治具の種類を大幅に削減することができ、また確実に研磨することができるとしている。   According to such a polishing jig, since the curvature of the dome can be changed by changing the internal pressure of the balloon member, it is a special part for changing the curvature of the dome according to the curvature of the surface to be polished. No means is required, and the types of polishing jigs can be greatly reduced, and polishing can be reliably performed.

特開2003−266287号公報JP 2003-266287 A

従来の累進屈折力レンズは、一般に2つの光学面のうちいずれか一方の面に累進面を有している。また、累進屈折力レンズは累進面と対になる面に球面形状とトーリック成分を融合させたトーリック面を光学面としている。球面形状は回転対称であり、トーリック成分は回転対称である。したがって、トーリック面は回転対称となっており、このような眼鏡レンズを上記した特許文献1に記載の研磨治具と研磨装置を用いて研磨する場合、乱視軸の方向と研磨治具の長軸を一致させて研磨していた。ここで、トーリック成分は乱視の程度により適宜必要な大きさが処方される。乱視の大きさとその軸方向は処方に含まれており、レンズ受注時の処方箋より参照することができるため、乱視軸の方向と研磨治具の長軸を一致させることは容易である。   Conventional progressive-power lenses generally have a progressive surface on one of two optical surfaces. In addition, the progressive power lens uses a toric surface obtained by fusing a spherical shape and a toric component on a surface paired with the progressive surface as an optical surface. The spherical shape is rotationally symmetric, and the toric component is rotationally symmetric. Therefore, the toric surface is rotationally symmetric. When such a spectacle lens is polished using the polishing jig and the polishing apparatus described in Patent Document 1, the direction of the astigmatic axis and the long axis of the polishing jig are described. Were matched and polished. Here, the necessary size of the toric component is appropriately determined depending on the degree of astigmatism. Since the astigmatism magnitude and its axial direction are included in the prescription and can be referred to from the prescription when the lens is ordered, it is easy to match the astigmatic axis direction with the major axis of the polishing jig.

ところが、近年累進屈折力レンズは累進面形状とトーリック成分との融合面で光学面を形成したり、回転対称でない非球面形状(累進要素の一部)とトーリック成分をレンズの各光学面に配分して、両面での透過屈折力によって所望の累進屈折力や乱視矯正屈折力を構成している。これらの光学面は単純な回転対称な面ではない(以下、回転対称でないことを非回転対称という)。ここで、「非回転対称なレンズ」とは、レンズの一部または全体にわたって屈折力が連続的に変化する非回転対称面を有するレンズ、例えば累進屈折力レンズ、累進要素を有する非球面屈折力レンズ等である(ISO13666.JP REV.030 眼鏡レンズ)。   However, in recent years, progressive-power lenses form an optical surface with a fusion surface of a progressive surface shape and a toric component, or an aspherical shape that is not rotationally symmetric (part of a progressive element) and a toric component are distributed to each optical surface of the lens. Thus, the desired progressive refractive power and astigmatism correction refractive power are constituted by the transmission refractive power on both sides. These optical surfaces are not simple rotationally symmetric surfaces (hereinafter, non-rotational symmetry is referred to as non-rotational symmetry). Here, the “non-rotationally symmetric lens” means a lens having a non-rotationally symmetric surface whose refractive power continuously changes over a part or the whole of the lens, for example, a progressive power lens, an aspherical power having a progressive element. It is a lens etc. (ISO13666.JP REV.030 spectacle lens).

さらに、トーリック成分が両面に配分されるため片面当たりのトーリック成分が小さくなったり、トーリック成分の処方値の絶対値が小さくなる場合がある。しかしながら、トーリック成分による形状変化がトーリック成分以外の累進面等の回転対称でない変化と比較して小さくなると、トーリック成分の軸方向と研磨治具の長軸とを一致させて研磨した場合、レンズの被研磨面と研磨治具の曲率の相違により被研磨面全体を高い精度で研磨することができなくなるという問題があった。すなわち、被研磨面が非回転対称な面の場合、トーリック成分の軸方向を研磨治具の長軸方向と一致させてレンズを研磨装置に装着すると、レンズの最小曲率とその軸方向がトーリック成分の曲率とその軸方向と相違し、最小曲率がトーリック成分の曲率より小さくなるため、レンズの被研磨面の外周縁部と研磨治具の外周部との間に隙間が生じ、被研磨面全体を均一に研磨することができなくなる。   Furthermore, since the toric component is distributed on both sides, the toric component per one side may be small, or the absolute value of the prescription value of the toric component may be small. However, when the shape change due to the toric component is smaller than the non-rotationally symmetric change such as the progressive surface other than the toric component, when polishing is performed with the axial direction of the toric component and the major axis of the polishing jig matched, There is a problem that the entire surface to be polished cannot be polished with high accuracy due to the difference in curvature between the surface to be polished and the polishing jig. That is, when the surface to be polished is a non-rotationally symmetric surface, when the lens is mounted on the polishing apparatus with the axial direction of the toric component aligned with the long axis direction of the polishing jig, the minimum curvature of the lens and its axial direction are the toric component. And the minimum curvature is smaller than the curvature of the toric component, creating a gap between the outer peripheral edge of the lens surface to be polished and the outer periphery of the polishing jig, and the entire surface to be polished Cannot be uniformly polished.

そこで、本発明者らは特に光学レンズの非回転対称な被研磨面を上記した特許文献1に記載されている研磨治具を用いて研磨する際には、レンズを研磨治具に対してどのように配置して研磨すればよいかを検討し種々の実験を行った結果、レンズ毎に最小曲率の軸方向を算出し、この最小曲率の軸方向を研磨治具の長軸方向と一致させて研磨すると、レンズの被研磨面の外周縁部と研磨治具の外周部との間に隙間が生じさせることなく、被研磨面全体を良好に研磨することができることを確認した。   Therefore, the inventors of the present invention particularly determine the non-rotationally symmetric polished surface of the optical lens using the polishing jig described in Patent Document 1 described above. As a result of examining various arrangements and polishing, and calculating the axial direction of the minimum curvature for each lens, the axial direction of the minimum curvature is matched with the major axis direction of the polishing jig. It was confirmed that the entire surface to be polished could be satisfactorily polished without creating a gap between the outer peripheral edge of the surface to be polished of the lens and the outer periphery of the polishing jig.

本発明は上記した知見に基づいてなされたものであり、その目的とするところは、非回転対称な被研磨面を全面にわたって良好に研磨することができる光学レンズの研磨方法を提供することにある。   The present invention has been made based on the above-described findings, and an object of the present invention is to provide an optical lens polishing method that can satisfactorily polish a non-rotationally symmetric polished surface over the entire surface. .

上記目的を達成するために本発明は、弾性材料によって平面視形状が楕円でカップ状に形成され内部に流体が導入されることにより上面側が曲面形状に膨張するバルーン部材と、このバルーン部材の上面に取付けた研磨パッドとを用いて光学レンズの非回転対称な被研磨面を研磨する光学レンズの研磨方法であって、前記光学レンズの被研磨面の平均曲率が最小となる軸方向を算出し特定する工程と、前記光学レンズの被研磨面の平均曲率が最小となる軸方向が前記バルーン部材の長軸方向と一致するように前記光学レンズを研磨装置に取付ける工程と、前記光学レンズの被研磨面が前記研磨パッドと接触した状態で前記バルーン部材を首振り旋回運動させ、前記光学レンズを前記被研磨面の平均曲率が最小となる軸方向に往復移動させるとともに前記軸方向と直交する方向に往復回動させることにより、研磨の軌跡が1周毎に少しずつずれる無軌道研磨軌跡で前記被研磨面を研磨する工程とを備えたものである。   In order to achieve the above object, the present invention provides a balloon member that is formed into a cup shape with an elliptical shape in plan view and is inflated into a curved surface by introducing a fluid therein, and an upper surface of the balloon member. A polishing method for an optical lens that polishes a non-rotationally symmetric polished surface of an optical lens using a polishing pad attached to an optical lens, and calculates an axial direction that minimizes the average curvature of the polished surface of the optical lens. A step of identifying, a step of attaching the optical lens to a polishing apparatus so that an axial direction in which an average curvature of a surface to be polished of the optical lens is minimum coincides with a major axis direction of the balloon member, The balloon member is swung and swung while the polishing surface is in contact with the polishing pad, and the optical lens is reciprocated in the axial direction that minimizes the average curvature of the surface to be polished. By reciprocating rotation in a direction perpendicular to the axial direction is also one in which the locus of the polishing and a step of polishing the surface to be polished with non-orbital polishing path deviates slightly every one rotation.

また、本発明は、前記光学レンズの被研磨面の平均曲率が最小となる軸方向を算出し特定する工程が、前記被研磨面上の幾何学中心と外周縁の点対称な2点とを結ぶ前記被研磨面に沿った仮想曲線を前記被研磨面の周方向に所要角度ずつずらして複数本定め、各仮想曲線上に少なくとも任意の3点を定め、これらの点の座標から当該仮想曲線の平均曲率をそれぞれ算出し、そのうちの最も小さい平均曲率となる仮想曲線を選択してその軸方向を特定するものである。   In the present invention, the step of calculating and specifying the axial direction in which the average curvature of the surface to be polished of the optical lens is minimum is determined by the geometric center on the surface to be polished and two point symmetric points of the outer periphery. A plurality of virtual curves along the to-be-polished surface to be connected are determined by shifting by a required angle in the circumferential direction of the to-be-polished surface, at least three arbitrary points are defined on each virtual curve, and the virtual curve is determined from the coordinates of these points The average curvature is calculated, the virtual curve having the smallest average curvature is selected, and the axial direction is specified.

さらに、本発明は、光学レンズがメニスカスレンズに適用したものである。   Furthermore, in the present invention, the optical lens is applied to a meniscus lens.

本発明においては、光学レンズの被研磨面の平均曲率が最小となる軸方向と、バルーン部材の長軸方向とを一致させて研磨するようにしたので、レンズの被研磨面の外周縁部とバルーン部材の外周部との間に隙間が生じるようなことはなく、被研磨面全体を研磨パッドに接触させることができる。したがって、被研磨面全体を確実に研磨することができる。   In the present invention, since the axial direction in which the average curvature of the polished surface of the optical lens is minimized and the major axis direction of the balloon member are matched, the outer peripheral edge portion of the polished surface of the lens is used. There is no gap between the outer periphery of the balloon member and the entire surface to be polished can be brought into contact with the polishing pad. Therefore, the entire surface to be polished can be reliably polished.

以下、本発明を図面に示す実施の形態に基づいて詳細に説明する。
図1(a)、(b)は本発明による研磨方法によって研磨されるレンズの平面図および、同レンズの断面図である。同図において、1は円形に形成された乱視矯正用のプラスチックレンズ(以下、レンズと略称する)で、凸面2aと、凹面2bと、これら両面2a,2bの外周縁を接続する円筒状のコバ面2cとにより、メニスカスレンズを形成している。また、レンズ1は、凸面2aのみが所定の光学面に仕上げられ、凹面2bが切削加工されたウレタン系またはエピチオ系の樹脂からなるセミフィニッシュレンズである。そして、凹面2bは、トーリック成分の軸方向3と凹面2bの最小曲率の軸方向4が異なる非回転対称な被研磨面を形成しており、本発明による研磨方法によって研磨され所定の光学面に仕上げられるものである。
Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings.
FIGS. 1A and 1B are a plan view of a lens polished by the polishing method according to the present invention and a cross-sectional view of the lens. In the figure, reference numeral 1 denotes a plastic lens for correcting astigmatism (hereinafter abbreviated as “lens”), which is formed in a circular shape. A meniscus lens is formed by the surface 2c. The lens 1 is a semi-finished lens made of urethane or epithio resin in which only the convex surface 2a is finished to a predetermined optical surface and the concave surface 2b is cut. The concave surface 2b forms a non-rotationally symmetric polished surface in which the axial direction 3 of the toric component and the axial direction 4 of the minimum curvature of the concave surface 2b are different and is polished by the polishing method according to the present invention to a predetermined optical surface. It will be finished.

図2は本発明に係る光学レンズの研磨方法の手順を示すフローチャートである。同図において、本発明に係る光学レンズの研磨方法は、レンズ1の被研磨面2bの平均曲率が最小となる軸方向4を算出し特定する工程(ステップS1)を備えている。レンズ1の最小曲率を算出しその軸方向4を特定するには、図3に示すように先ず被研磨面2b上に複数の仮想曲線U1 ,U2 ,U3 ・・・を定める。これらの仮想曲線U1 ,U2 ,U3 ・・・は、被研磨面2b上の幾何学中心Oと外周縁の点対称な2点(点Q1 と点Q1 、点Q2 と点Q2 ・・)とをそれぞれ結ぶ、被研磨面2bの周方向に所要角度(θ)ずつずれた曲線である。各仮想曲線U1 ,U2 ,U3 ・・・を水平面に投影した投影線は、直線である。 FIG. 2 is a flowchart showing the procedure of the optical lens polishing method according to the present invention. In the figure, the optical lens polishing method according to the present invention includes a step (step S1) of calculating and specifying the axial direction 4 at which the average curvature of the polished surface 2b of the lens 1 is minimized. In order to calculate the minimum curvature of the lens 1 and specify the axial direction 4, first, a plurality of virtual curves U 1 , U 2 , U 3 ... Are defined on the polished surface 2 b as shown in FIG. These virtual curves U 1 , U 2 , U 3 ... Are two point-symmetric points (point Q 1 and point Q 1 , point Q 2 and point Q 2) on the polished surface 2b and the geometric center O. Q 2 ... Are curves that are each shifted by a required angle (θ) in the circumferential direction of the polished surface 2b. Projection lines obtained by projecting the virtual curves U 1 , U 2 , U 3 ... Onto the horizontal plane are straight lines.

次に、各仮想曲線U1 ,U2 ,U3 ・・・上に少なくとも任意の3点(P1 ,P2 ,P3 )を定め、これらの点P1 ,P2 ,P3 から各仮想曲線U1 ,U2 ,U3 ・・・の平均曲率をそれぞれ算出する(算出方法についてはさらに後述する)。そして、算出した平均曲率のうち最も小さい平均曲率の仮想曲線を選び、その軸方向を特定する。各仮想曲線U1 ,U2 ,U3 ・・・の平均曲率は、その仮想曲線上に距離Sだけ離れた2点(例えば、点P1 と点P3 )をとり、これらの点P1 と点P3 における接線の方向の差ψ(=接線の角度α1 ,−α2 )と、点P1 〜点P3 間の弧の長さSとの比(ψ/S)である。 Next, at least three arbitrary points (P 1 , P 2 , P 3 ) are determined on each virtual curve U 1 , U 2 , U 3 ..., And each of these points P 1 , P 2 , P 3 The average curvatures of the virtual curves U 1 , U 2 , U 3 ... Are calculated (the calculation method will be further described later). Then, the virtual curve having the smallest average curvature is selected from the calculated average curvatures, and the axial direction is specified. The average curvature of each virtual curve U 1 , U 2 , U 3 ... Takes two points (for example, point P 1 and point P 3 ) separated by a distance S on the virtual curve, and these points P 1. DOO point P tangential direction in the 3 difference [psi (= tangent of the angle α 1,2) and is the ratio of the length S of the arc between the points P 1 ~ point P 3 ([psi / S).

また、本発明による光学レンズの研磨方法は、後述する研磨治具の長軸方向とレンズ1の被研磨面2bの平均曲率が最小となる軸方向4とを一致させる工程(ステップS2)と、被研磨面2bを研磨装置によって研磨する工程(ステップS3)とを備えている。被研磨面2bの研磨は、前述した特許文献1に記載されている研磨治具と研磨装置によって行う。   The optical lens polishing method according to the present invention includes a step of aligning a major axis direction of a polishing jig to be described later with an axial direction 4 in which the average curvature of the polished surface 2b of the lens 1 is minimized (step S2); And a step (step S3) of polishing the surface 2b to be polished by a polishing apparatus. The surface 2b to be polished is polished by the polishing jig and the polishing apparatus described in Patent Document 1 described above.

研磨治具の長軸方向とレンズ1の被研磨面2bの平均曲率が最小となる軸方向4とを一致させる工程は、被研磨面2bの平均曲率が最小となる軸方向4が研磨治具の長軸方向と一致するようにレンズ1を研磨装置に装着することである。この場合、レンズ1はレンズ保持体によって保持され、研磨装置に装着される。   The step of matching the major axis direction of the polishing jig with the axial direction 4 in which the average curvature of the polished surface 2b of the lens 1 is the smallest is that the axial direction 4 in which the average curvature of the polished surface 2b is minimized is the polishing jig. The lens 1 is attached to the polishing apparatus so as to coincide with the major axis direction of the lens. In this case, the lens 1 is held by a lens holder and attached to the polishing apparatus.

研磨装置によってレンズ1の被研磨面2bを研磨する工程は、研磨治具に取付けた研磨パッドにレンズ1の被研磨面2bを接触させた状態で研磨治具と研磨パッドを首振り旋回運動させ、レンズ1を被研磨面2bの平均曲率が最小となる軸方向に往復移動させるとともに前記軸方向と直交する方向に往復回動させることにより、研磨の軌跡が1周毎に少しずつずれる無軌道研磨軌跡で前記被研磨面2bを前記研磨パッドによって研磨する工程である。研磨治具としては、弾性材料によって平面視形状が楕円でカップ状に形成され内部に流体が導入されることにより上面側が所定の曲面形状に膨張するバルーン部材が用いられる。そして、このバルーン部材は、研磨時に長軸と短軸の方向を一定に保ったままの状態で首振り旋回運動する。なお、研磨治具と研磨装置についてはさらに後述する。   The step of polishing the polished surface 2b of the lens 1 by the polishing apparatus is performed by swinging and swinging the polishing jig and the polishing pad while the polished surface 2b of the lens 1 is in contact with the polishing pad attached to the polishing jig. Then, the lens 1 is reciprocated in the axial direction in which the average curvature of the surface to be polished 2b is minimized, and is reciprocally rotated in the direction orthogonal to the axial direction, so that the track of polishing is slightly shifted every round. This is a step of polishing the surface 2b to be polished by the polishing pad along a locus. As the polishing jig, a balloon member is used which is formed into an elliptical cup shape with an elastic material and the upper surface side expands into a predetermined curved surface shape by introducing a fluid therein. The balloon member swings and swings while maintaining the direction of the major axis and the minor axis constant during polishing. The polishing jig and the polishing apparatus will be described later.

次に、レンズの被研磨面2bの最小曲率の軸方向を算出し特定する方法について詳述する。
レンズ1の被研磨面2bの最小曲率kを算出する方法としては、前記各仮想曲線U1 ,U2 ,U3 ・・・上の少なくとも任意の3点(P1 ,P2 ,P3 )の座標より連立方程式を解いて算出する方法と、3点以上(P1 ,P2 ,P3 ・・)の座標より最小二乗法によって算出する方法がある。前者の算出方法は、座標点が少ないため被研磨面2bの形状によっては後者の算出方法に比べて誤差が大きくなる。このため、本発明においては、レンズ毎にその被研磨面2bの最小曲率を前者の連立方程式と後者の最小二乗法によってそれぞれ算出してその結果を比較し、研磨精度に問題ない場合は前者の簡易な計算方法による算出結果に基づいて研磨し、研磨精度に問題がある場合は後者の方法による算出結果に基づいて研磨するようにしている。
Next, a method for calculating and specifying the axial direction of the minimum curvature of the polished surface 2b of the lens will be described in detail.
As a method for calculating the minimum curvature k of the polished surface 2b of the lens 1, at least three arbitrary points (P 1 , P 2 , P 3 ) on the virtual curves U 1 , U 2 , U 3. There are a method of calculating by solving simultaneous equations from the coordinates of, and a method of calculating by the least square method from the coordinates of three or more points (P 1 , P 2 , P 3 ...). In the former calculation method, since there are few coordinate points, an error becomes larger than the latter calculation method depending on the shape of the polished surface 2b. For this reason, in the present invention, for each lens, the minimum curvature of the surface to be polished 2b is calculated by the former simultaneous equations and the latter least square method, respectively, and the results are compared. Polishing is performed based on a calculation result obtained by a simple calculation method, and if there is a problem in polishing accuracy, polishing is performed based on the calculation result obtained by the latter method.

レンズ1の表面(被研磨面)形状は、縦横に分割した格子状行列(例えば110×110)の各格子上にレンズ表面の高さを数値として与えることにより表される。この場合、被研磨面2bの形状は、累進形状も含めた自由曲面である。この被研磨面2b上の(X,Y)点における高さZは、式1で表される。式1は、点列データの補間データを算出することができる公知の補間関数を用いることが可能であり、本発明においてはB−スプライン関数を使用する。   The surface (surface to be polished) shape of the lens 1 is represented by giving the height of the lens surface as a numerical value on each lattice of a lattice matrix (for example, 110 × 110) divided vertically and horizontally. In this case, the shape of the polished surface 2b is a free-form surface including a progressive shape. The height Z at the (X, Y) point on the polished surface 2b is expressed by Equation 1. Formula 1 can use a known interpolation function that can calculate the interpolation data of the point sequence data. In the present invention, the B-spline function is used.

Figure 0004199723
Figure 0004199723

A.3点の座標値より連立方程式を解いて平均曲率を算出する方法
図3において、被研磨面2bの近似曲率半径rを円の方程式の連立方程式から算出する。曲率半径rは曲率kの逆数である。したがって、レンズ1の中心Oを通る各仮想曲線U1 ,U2 ,U3 ・・・上の任意の3点(P1 ,P2 ,P3 )の座標を使って各仮想曲線U1 ,U2 ,U3 ・・・の平均曲率を算出する。この場合、被研磨面2bの最小曲率とその軸方向を検出する必要があるので、角度θのピッチで周方向の全周にわたって複数の仮想曲線U1 〜Um を被研磨面2b上に設定し、各仮想曲線U1 〜Um 上の任意の3点(P1 ,P2 ,P3 )の座標を使用してその仮想曲線における被研磨面2bの平均曲率を算出する。本発明においては、隣り合う仮想曲線の角度ピッチ(θ)を1°とした。したがって、>0°から179°までの180本の仮想曲線Q1〜Q180についてその平均曲率rを算出すれば、360°にわたる全方向の平均曲率を求めたことになる。
A. Method of calculating an average curvature by solving simultaneous equations from three coordinate values In FIG. 3, an approximate radius of curvature r of the surface to be polished 2b is calculated from simultaneous equations of circle equations. The curvature radius r is the reciprocal of the curvature k. Therefore, using the coordinates of arbitrary three points (P 1 , P 2 , P 3 ) on each virtual curve U 1 , U 2 , U 3 ... Passing through the center O of the lens 1, each virtual curve U 1 , The average curvature of U 2 , U 3 ... Is calculated. In this case, since it is necessary to detect the minimum curvature of the surface 2b to be polished and its axial direction, a plurality of virtual curves U 1 to U m are set on the surface 2b to be polished over the entire circumference in the circumferential direction at a pitch of angle θ. Then, using the coordinates of arbitrary three points (P 1 , P 2 , P 3 ) on the virtual curves U 1 to U m , the average curvature of the polished surface 2b in the virtual curves is calculated. In the present invention, the angle pitch (θ) between adjacent virtual curves is set to 1 °. Therefore, if the average curvature r is calculated for 180 virtual curves Q 1 to Q 180 from> 0 ° to 179 °, the average curvature in all directions over 360 ° is obtained.

図4において、X軸に対して角度θだけ傾斜した第i番目の仮想曲線をUiとし、その平均曲率を算出する方法を説明する。
仮想曲線Ui上に任意の3点をP1 (X1 ,Y1 ,),P2 (X2 ,Y2 ),P3 (X3 ,Y3 )とする。また、仮想曲線Ui の方向の座標軸をW軸とすると、ZW断面での点P1 ,P2 ,P3 の座標値は、P1 (W1 ,Z1 ),P2 (W2 ,Z2 ),P3 (W3 ,Z3 )となる。W1 ,W2 ,W3 の座標値の設定は、前述したように直径Dのレンズ1の幾何学中心Oを通り両端の点(点P1 ,P3 )を結んだ仮想曲線Ui上の三点(P1 ,P2 ,P3 )として予め行っておく。W1 ,W2 ,W3 の座標値は、どの方向について計算するときも同じ値である。以上設定したW座標値を基にXY座標を算出する式と、算出したXY座標からZを算出する式は上記式1より次式となる。
In FIG. 4, a method of calculating the average curvature of the i-th virtual curve inclined by an angle θ with respect to the X axis as Ui will be described.
Any three points on the virtual curve Ui are defined as P 1 (X 1 , Y 1 ), P 2 (X 2 , Y 2 ), and P 3 (X 3 , Y 3 ). If the coordinate axis in the direction of the virtual curve Ui is the W axis, the coordinate values of the points P 1 , P 2 , P 3 on the ZW section are P 1 (W 1 , Z 1 ), P 2 (W 2 , Z 2 ), P 3 (W 3 , Z 3 ). As described above, the coordinate values of W 1 , W 2 , and W 3 are set on the virtual curve Ui that passes through the geometric center O of the lens 1 having the diameter D and connects the points (points P 1 and P 3 ) at both ends. This is performed in advance as three points (P 1 , P 2 , P 3 ). The coordinate values of W 1 , W 2 , and W 3 are the same when calculating for any direction. The equation for calculating the XY coordinate based on the set W coordinate value and the equation for calculating Z from the calculated XY coordinate are the following equations from the above equation 1.

Figure 0004199723
Figure 0004199723

したがって、ZX断面にける3点P1 ,P2 ,P3 を通る円の方程式を求めるには、以下の連立方程式を解けばよい。ただし、この3点P1 ,P2 ,P3 がZW断面において直線上にないことを条件とする。 Therefore, the following simultaneous equations can be solved in order to obtain an equation of a circle passing through the three points P 1 , P 2 , and P 3 in the ZX cross section. However, it is a condition that these three points P 1 , P 2 , and P 3 are not on a straight line in the ZW cross section.

Figure 0004199723
Figure 0004199723

a,bはそれぞれ円の中心のW,Z値の座標値、rは円の半径である。
a,b,rは式4、式5、式6によってそれぞれ求められる。
a and b are the coordinate values of the W and Z values at the center of the circle, respectively, and r is the radius of the circle.
a, b, and r are calculated | required by Formula 4, Formula 5, and Formula 6, respectively.

Figure 0004199723
Figure 0004199723

Figure 0004199723
Figure 0004199723

Figure 0004199723
Figure 0004199723

さらに、求める平均曲率kは、曲率半径rの逆数なので、次式   Further, since the average curvature k to be obtained is the reciprocal of the curvature radius r,

Figure 0004199723
Figure 0004199723

となる。
このようにして各仮想曲線U1 〜U180 の平均曲率kを順次算出し、そのうちの最も小さい平均曲率(kO )を選択する。
It becomes.
In this way, the average curvature k of each of the virtual curves U 1 to U 180 is sequentially calculated, and the smallest average curvature (k O ) is selected.

上記方法による平均曲率kの算出例を下記の表1に示す。

Figure 0004199723
An example of calculating the average curvature k by the above method is shown in Table 1 below.
Figure 0004199723

算出対象レンズは、非回転対称レンズである累進屈折力レンズである。
表1は非研磨面の幾何学中心Oを通り周方向にθ=10°のピッチでずれた18本の仮想曲線U1 〜U18についての平均曲率の算出例である。点P1 ,P2 ,P3 は被研磨面の各仮想曲線U1 〜U18上の座標値を示す。表1より最小曲率kO は1.103×10-0.2、その軸方向はθ=170°である。
The calculation target lens is a progressive addition lens that is a non-rotationally symmetric lens.
Table 1 is an example of calculating the average curvature for 18 virtual curves U 1 to U 18 that pass through the geometric center O of the non-polished surface and are shifted in the circumferential direction at a pitch of θ = 10 °. Points P 1 , P 2 and P 3 indicate coordinate values on the virtual curves U 1 to U 18 of the surface to be polished. From Table 1, the minimum curvature k O is 1.103 × 10 −0.2 and the axial direction is θ = 170 °.

B.3点以上の座標値より最小二乗法によって平均曲率を算出する方法
図5において、レンズ1の被研磨面2b上の幾何学中心Oを通り3点以上の点、例えば9つの点P1 〜P9 を通る被研磨面2b上の座標値を使って仮想曲線U1 の近似曲率半径を円の方程式から最小二乗法で算出する。
B. Method for calculating average curvature from least three coordinate values by least square method In FIG. 5, three or more points, for example, nine points P 1 to P passing through the geometric center O on the polished surface 2 b of the lens 1. Using the coordinate value on the polished surface 2b passing through 9 , the approximate radius of curvature of the virtual curve U 1 is calculated from the equation of the circle by the method of least squares.

また、最小曲率とその方向を検出する必要があるので、所要の角度ピッチで周方向の全周にわたって複数の仮想曲線U1 〜Um を被研磨面2b上に設定し、各仮想曲線上の点P1 〜P9 の座標を使用してその仮想曲線における被研磨面2bの平均曲率を算出する。ここで、隣り合う仮想曲線の角度ピッチθを1°とした。したがって、この場合も0°から180°までの180本の仮想曲線U1 〜U180 についてその平均曲率を算出すれば、360°にわたる全方向の平均曲率を求めたことになる。 Further, since it is necessary to detect the minimum curvature and its direction, a plurality of virtual curves U 1 to U m are set on the polished surface 2b over the entire circumference in the circumferential direction at a required angular pitch, Using the coordinates of the points P 1 to P 9 , the average curvature of the polished surface 2b in the virtual curve is calculated. Here, the angle pitch θ between adjacent virtual curves was set to 1 °. Therefore, also in this case, if the average curvature is calculated for 180 virtual curves U 1 to U 180 from 0 ° to 180 °, the average curvature in all directions over 360 ° is obtained.

次に、角度θの方向を第i番目の仮想曲線Ui とし、その平均曲率を算出する方法を説明する。
3点以上の座標値としては、例えば図5(b)に示すように仮想曲線Ui 上でレンズ直径を8等分する9つの点P1(X1 ,Y1 ,),P2 (X2 ,Y2 )・・・P9 (X9 ,Y9 )とする。また、仮想曲線Ui の方向の座標軸をW軸とすると、ZW断面での点P1 〜P9 の座標値は、P1 (W1 ,Z1 ),P2 (W2 ,Z2 )・・・P9 (W9 ,Z9 )となる。W1 〜W9 の座標値の設定は、レンズ1の直径Dを等間隔に分ける仮想曲線Ui 上の位置(点P1 〜P9 )に予め行っておく。W1 〜W9 の座標値は、どの方向について計算するときも同じ値である。以上設定したW座標値を基にXY座標を算出する式と、算出したXY座標からZを算出する式は、次式(8)となる。
Next, a method of calculating the average curvature of the angle θ as the i-th virtual curve U i will be described.
The above three coordinate values, e.g., FIG. 5 (b) virtual curve as shown in U i on the lens diameter of 8 equal parts of nine points P 1 (X 1, Y 1 ,), P 2 (X 2 , Y 2 )... P 9 (X 9 , Y 9 ). If the coordinate axis in the direction of the virtual curve U i is the W axis, the coordinate values of the points P 1 to P 9 on the ZW section are P 1 (W 1 , Z 1 ), P 2 (W 2 , Z 2 ). the ··· P 9 (W 9, Z 9). The coordinate values W 1 to W 9 are set in advance at positions (points P 1 to P 9 ) on the virtual curve U i that divides the diameter D of the lens 1 at equal intervals. The coordinate values of W 1 to W 9 are the same when calculating for any direction. The equation for calculating the XY coordinates based on the set W coordinate value and the equation for calculating Z from the calculated XY coordinates are the following equation (8).

Figure 0004199723
Figure 0004199723

ZW断面において、これらの点P1 〜P9 の座標値に最も近い円の方程式を求めるには、最小二乗法(式9)を使用して式(10)の連立方程式を解く。ただし、全ての点P1 〜P9 がZW断面において直線上にないことを条件とする。 In the ZW cross section, to obtain the equation of the circle closest to the coordinate values of these points P 1 to P 9 , the simultaneous equations of Equation (10) are solved using the least square method (Equation 9). However, it is a condition that all the points P 1 to P 9 are not on a straight line in the ZW cross section.

Figure 0004199723
Figure 0004199723

式9のSが最小となるときが最も近似した円の方程式となる。したがって、Sを最小にするa,b,rを求めるにはSをa,b,rでそれぞれ微分して0とおくと、次式(10)   When S in Equation 9 is minimum, the equation of the circle that is most approximated is obtained. Therefore, in order to obtain a, b, and r that minimizes S, S is differentiated by a, b, and r, and is set to 0.

Figure 0004199723
Figure 0004199723

となり、これらを連立して解くと以下のようになる。 Then, when these are solved together, it becomes as follows.

Figure 0004199723
Figure 0004199723

と置いて、
a,b,rを式12、式13、式14によってそれぞれ求める。
And put
a, b, and r are obtained by Expression 12, Expression 13, and Expression 14, respectively.

Figure 0004199723
Figure 0004199723

Figure 0004199723
Figure 0004199723

Figure 0004199723
Figure 0004199723

さらに、求める平均曲率kは、曲率半径rの逆数なので、 Further, since the average curvature k to be obtained is the reciprocal of the curvature radius r,

Figure 0004199723
Figure 0004199723

となる。このようにして各仮想曲線U1 〜U180 の平均曲率kを順次算出し、そのうちの最も小さい平均曲率kO を選択する。 It becomes. In this way, the average curvature k of each of the virtual curves U 1 to U 180 is sequentially calculated, and the smallest average curvature k O is selected.

上記算出方法による平均曲率の算出例を下記の表2に示す。

Figure 0004199723
An example of calculating the average curvature according to the above calculation method is shown in Table 2 below.
Figure 0004199723

算出対象レンズは、非回転対称レンズである累進屈折力レンズである。
表2は非研磨面の幾何学中心Oを通り周方向にθ=10°のピッチでずれた18本の仮想曲線U1 〜U18についての算出例である。点P1 ,P2 ,P3 は被研磨面の各仮想曲線U1 〜U18上の座標値を示す。表2より最小曲率kO は1.103×10-0.2、その軸方向はθ=170°である。
The calculation target lens is a progressive addition lens that is a non-rotationally symmetric lens.
Table 2 shows an example of calculation for 18 virtual curves U 1 to U 18 that pass through the geometric center O of the non-polished surface and are shifted at a pitch of θ = 10 ° in the circumferential direction. Points P 1 , P 2 and P 3 indicate coordinate values on the virtual curves U 1 to U 18 of the surface to be polished. From Table 2, the minimum curvature k O is 1.103 × 10 −0.2 and the axial direction is θ = 170 °.

また、表1と表2の結果を比較すると、最小曲率kO とその軸方向は一致している。レンズ形状にも依存するが、本発明の形態では3点P1 ,P2 ,P3 による簡易計算でも十分な精度で最小曲率kO とその軸方向が算出可能である。 Further, when the results of Table 1 and Table 2 are compared, the minimum curvature k O and the axial direction thereof coincide. Although depending on the lens shape, in the embodiment of the present invention, the minimum curvature k O and its axial direction can be calculated with sufficient accuracy even by simple calculation using the three points P 1 , P 2 and P 3 .

次に、研磨装置によるレンズの研磨について説明する。
図6は本発明に係る研磨方法に用いられる研磨装置の概略構成図である。
同図において、全体を符号30で示す研磨装置は、床面に設置された装置本体32と、この装置本体32に紙面において左右方向(矢印X方向)に移動自在でかつ水平な軸33を中心として紙面と直交する方向(矢印AB方向)に回動自在に配設されたアーム34と、このアーム34を左右方向に往復移動させるとともに紙面と直交する方向に回動させる図示しない駆動装置と、前記アーム34に設けられレンズ1の凸面2aをレンズ保持体37を介して保持するレンズ取付部36と、このレンズ取付部36の下方に位置するように前記装置本体32に配設され、図示しない駆動装置により垂直な軸線Kを中心として首振り旋回運動(自転はしない)を行う揺動装置38等を備えている。また、前記揺動装置38上に着脱自在に設けられた研磨治具39、この研磨治具39に着脱自在に取付けられた研磨パッド40、前記レンズ取付部36を昇降させる昇降装置41等を備えている。このような研磨装置30は、上記した特許文献1に記載されている研磨装置と同一のものである。
Next, lens polishing by the polishing apparatus will be described.
FIG. 6 is a schematic configuration diagram of a polishing apparatus used in the polishing method according to the present invention.
In the figure, a polishing apparatus generally indicated by reference numeral 30 has an apparatus main body 32 installed on the floor, and a horizontal axis 33 that can move in the left-right direction (arrow X direction) on the apparatus main body 32 in the drawing. An arm 34 rotatably disposed in a direction orthogonal to the paper surface (arrow AB direction), and a drive device (not shown) that reciprocates the arm 34 in the left-right direction and rotates in a direction orthogonal to the paper surface, A lens mounting portion 36 provided on the arm 34 for holding the convex surface 2a of the lens 1 via a lens holding body 37, and disposed in the apparatus main body 32 so as to be positioned below the lens mounting portion 36, not shown. A swinging device 38 that swings (does not rotate) around a vertical axis K by a driving device is provided. Further, a polishing jig 39 detachably provided on the rocking device 38, a polishing pad 40 detachably attached to the polishing jig 39, an elevating device 41 for raising and lowering the lens attaching portion 36, and the like are provided. ing. Such a polishing apparatus 30 is the same as the polishing apparatus described in Patent Document 1 described above.

レンズ1は前述した通り、凸面だけが仕上げられた乱視矯正用のプラスチック製セミフィニッシュレンズからなり、凹面2bが非回転対称な被研磨面である。この被研磨面2bは、予め3次元NC制御を行うカーブジェネレータによって所定の面形状に切削加工されている(加工精度3μm以内:外径50φ、表面粗さRy0.3〜0.5μm)。   As described above, the lens 1 is made of a plastic semi-finished lens for correcting astigmatism with only a convex surface, and the concave surface 2b is a non-rotationally symmetric polished surface. The surface 2b to be polished is cut in advance into a predetermined surface shape by a curve generator that performs three-dimensional NC control (processing accuracy within 3 μm: outer diameter 50φ, surface roughness Ry 0.3 to 0.5 μm).

図7は前記レンズをレンズ保持体37に取付けた状態を示す断面図である。
同図において、レンズ1を保持するレンズ保持体37は、金属製(工具鋼等)のヤトイ44と、このヤトイ44とレンズ1を接合する接着剤45とで構成されている。ヤトイ44の背面側には、前記レンズ取付部36に対して嵌合する嵌合凹部47が形成されている。この嵌合凹部47は、ハメアイの方向性を有している。接着剤45としては、通常低融点のアロイ(例えば、Bi,Pb,Sn,In,Gaの合金、融点約49℃)が用いられる。レンズ1の凸面2aと接着剤45との間には、傷防止用の保護フィルム46が介在されている。接着剤45によってレンズ1をヤトイ44に接合するには、例えばLOH社製のレイアウトブロッカーと呼ばれる装置が用いられる。また、レンズ1は、上述した連立方程式または最小二乗法によって算出した被研磨面2bの最小曲率の軸方向を考慮してヤトイ44に取付けられる。具体的には、ヤトイ44をレンズ取付部36に取付けたとき、被研磨面2bの最小曲率の軸方向が研磨治具の39の長軸方向と一致するように、レンズ1をヤトイ44に取付ける。なお、ヤトイ44は、レンズ1の度数、外径、凸面2aの曲率に応じて大きさの異なるものが用いられる。
FIG. 7 is a cross-sectional view showing a state where the lens is attached to the lens holder 37.
In the figure, a lens holder 37 that holds the lens 1 is composed of a metal (tool steel, etc.) yatoi 44 and an adhesive 45 that joins the yatoi 44 and the lens 1. A fitting recess 47 that fits into the lens mounting portion 36 is formed on the back side of the yatoi 44. The fitting recess 47 has a hame-eye orientation. As the adhesive 45, an alloy having a low melting point (for example, an alloy of Bi, Pb, Sn, In, and Ga, a melting point of about 49 ° C.) is used. A scratch-preventing protective film 46 is interposed between the convex surface 2 a of the lens 1 and the adhesive 45. In order to join the lens 1 to the Yatoi 44 with the adhesive 45, for example, an apparatus called a layout blocker manufactured by LOH is used. The lens 1 is attached to the yatoe 44 in consideration of the axial direction of the minimum curvature of the polished surface 2b calculated by the above-mentioned simultaneous equations or the least square method. Specifically, when the yatoi 44 is attached to the lens attachment portion 36, the lens 1 is attached to the yatoi 44 so that the axial direction of the minimum curvature of the surface 2b to be polished matches the major axis direction of the polishing jig 39. . As the Yatoi 44, those having different sizes according to the power of the lens 1, the outer diameter, and the curvature of the convex surface 2a are used.

図6において、前記揺動装置38は、垂直な回転軸21の上端に垂直方向に所要角度(α)傾斜して取付けられており、上端面に前記研磨治具39が着脱可能に設置されている。回転軸48は研磨時に軸線周りに回転する。揺動装置38は回転軸48が回転すると、回転軸48の軸線周りを首振り旋回運動するように構成されている。回転軸48に対する揺動装置38の傾斜角度αは、例えば、5°である。図8は揺動装置38と研磨治具39の首振り旋回運動の軌跡50を示す。揺動装置38は、首振り旋回運動において回転軸48の周りを公転するだけで自転はしない。   In FIG. 6, the rocking device 38 is attached to the upper end of the vertical rotating shaft 21 at a required angle (α) in the vertical direction, and the polishing jig 39 is detachably installed on the upper end surface. Yes. The rotating shaft 48 rotates around the axis during polishing. The swinging device 38 is configured to swing around the axis of the rotating shaft 48 when the rotating shaft 48 rotates. The inclination angle α of the swing device 38 with respect to the rotation shaft 48 is, for example, 5 °. FIG. 8 shows the trajectory 50 of the swinging movement of the swinging device 38 and the polishing jig 39. The oscillating device 38 only revolves around the rotation shaft 48 in the swinging and swinging motion, and does not rotate.

図9〜図12において、前記研磨治具39は、弾性材料によってカップ状に形成された下面側が開放するバルーン部材51と、このバルーン部材51の下面側開口部を閉塞し内部を気密に保持する固定具52と、前記バルーン部材51の内部に圧縮空気を供給するバルブ53とで構成されている。   9 to 12, the polishing jig 39 includes a balloon member 51 formed in a cup shape by an elastic material and having a lower surface opened, and a lower surface side opening of the balloon member 51 is closed to keep the inside airtight. The fixture 52 and a valve 53 for supplying compressed air to the balloon member 51 are configured.

前記バルーン部材51は、平面視形状が楕円形で表面が扁平または緩やかな凸曲面からなるドーム部51Aと、このドーム部51Aの外周より下方に向かって一体に延設された略楕円形の筒部51Bと、この筒部51Bの下端に一体に延設された環状の内フランジ51Cとで構成されている。   The balloon member 51 has an elliptical shape in plan view and a dome portion 51A having a flat or gentle convex curved surface, and a substantially elliptical tube integrally extending downward from the outer periphery of the dome portion 51A. The portion 51B and an annular inner flange 51C extending integrally with the lower end of the cylindrical portion 51B are configured.

バルーン部材51の材質としては、例えば硬度が20〜50度の天然ゴムに近い合成ゴム(例えば、IIR)または天然ゴムが用いられる。バルーン部材51の厚さは全体にわたって均一で、約0.5〜2mm(通常1mm程度の等厚)である。   As a material of the balloon member 51, for example, synthetic rubber (for example, IIR) or natural rubber close to natural rubber having a hardness of 20 to 50 degrees is used. The thickness of the balloon member 51 is uniform throughout and is about 0.5 to 2 mm (usually about 1 mm).

前記固定具52は、内側固定具55と外側固定具56の2部材からなり、これらによってバルーン部材51の内フランジ51Cを内側と外側から挟持することにより、バルーン部材51の下面側開口部を気密に封止している。このため、バルーン部材51の内部は、密閉空間57を形成している。内側固定具55は、バルーン部材51の筒部51Bの内側の形状と略同一の大きさの楕円板からなり、下面外周部に前記内フランジ51Cが嵌合する環状溝58が形成されている。   The fixing member 52 is composed of two members, an inner fixing member 55 and an outer fixing member 56. By sandwiching the inner flange 51C of the balloon member 51 from the inner side and the outer side by these members, the lower surface side opening of the balloon member 51 is hermetically sealed. Is sealed. For this reason, a sealed space 57 is formed inside the balloon member 51. The inner fixture 55 is formed of an elliptical plate having the same size as the inner shape of the cylindrical portion 51B of the balloon member 51, and an annular groove 58 into which the inner flange 51C is fitted is formed on the outer peripheral portion of the lower surface.

前記外側固定具56は、上方が開放するカップ状に形成されていることにより、円板状の底板56Aと、この底板56Aの上面外周に一体に突設された円筒部56Bとからなり、この円筒部56B内に前記内側固定具55が前記バルーン部材51の筒部51Bとともに嵌挿される。円筒部56Bは、外形が円形で、内形がバルーン部材51の筒部51Bの外形と略同一の大きさの楕円形に形成されている。そして、外側固定具56は、内側固定具55が複数個の止めねじ60によって一体的に結合された後、前記揺動装置38の上面に、前記バルーン部材51の長軸方向(図9の矢印F方向)を前記アーム34の往復移動方向(図6のX方向)と一致させて取付けられる。   The outer fixture 56 is formed in a cup shape that opens upward, and thus includes a disk-shaped bottom plate 56A and a cylindrical portion 56B that protrudes integrally from the outer periphery of the upper surface of the bottom plate 56A. The inner fixture 55 is fitted and inserted into the cylindrical portion 56 </ b> B together with the cylindrical portion 51 </ b> B of the balloon member 51. The cylindrical portion 56 </ b> B has a circular outer shape, and an inner shape is formed in an elliptical shape having substantially the same size as the outer shape of the cylindrical portion 51 </ b> B of the balloon member 51. Then, after the inner fixing device 55 is integrally coupled by a plurality of set screws 60, the outer fixing device 56 is arranged on the upper surface of the swinging device 38 in the major axis direction of the balloon member 51 (the arrow in FIG. 9). F direction) is attached so as to coincide with the reciprocating direction of the arm 34 (X direction in FIG. 6).

前記バルブ53は逆止弁からなり、前記内側固定具55に取付けられている。   The valve 53 is a check valve and is attached to the inner fixture 55.

前記ドーム部材51の密閉空間57に圧縮空気を前記バルブ53を介して供給すると、ドーム部51Aは上方に膨張し、ドーム部51Aの中心軸を含む断面の曲率半径が楕円の短軸方向(図9の矢印G方向)で最小、長軸方向(矢印F方向)で最大なトーリック面に近い形状となる。この場合、ドーム部51Aの曲率半径は、図13に示すようにドーム部51Aの中央高さ(頂点高さ)に対応して変化するため、適宜な装置によってドーム中央の高さを測定し調整することにより、ドーム部51Aの曲率半径を所望の曲率半径とすることができる。なお、ドーム部51Aの形状をレンズ1の凹面2bにより近づけるには長軸と短軸の寸法またはその比率が異なるドーム部材を複数種用意しておき、レンズ1の凹面2bの形状に近いものを選択して使用することが好ましい。この場合、ドーム部51Aの長軸方向の曲率半径は、レンズ1の凹面2bの最大曲率半径(最小曲率)と略等しく設定されていることが好ましい。   When compressed air is supplied to the sealed space 57 of the dome member 51 via the valve 53, the dome portion 51A expands upward, and the radius of curvature of the cross section including the central axis of the dome portion 51A is in the short axis direction (see FIG. 9 is the shape closest to the toric surface in the minimum (G direction of arrow G) and maximum in the long axis direction (direction of arrow F). In this case, since the radius of curvature of the dome portion 51A changes corresponding to the center height (vertex height) of the dome portion 51A as shown in FIG. 13, the height of the dome center is measured and adjusted by an appropriate device. Thus, the radius of curvature of the dome portion 51A can be set to a desired radius of curvature. In order to bring the shape of the dome 51A closer to the concave surface 2b of the lens 1, a plurality of types of dome members having different major axis and minor axis dimensions or ratios thereof are prepared, and the one close to the shape of the concave surface 2b of the lens 1 is prepared. It is preferable to select and use. In this case, it is preferable that the radius of curvature of the dome portion 51A in the major axis direction is set to be approximately equal to the maximum radius of curvature (minimum curvature) of the concave surface 2b of the lens 1.

ここで、本実施の形態においては、凹面2bがトーリック面でレンズ径65φ、70φ、75φ、80φ(mm)、屈折率1.7、凹面2bのベースカーブ0.00〜11.25〔D〕、乱視度数範囲0.00〜4.00〔D〕のレンズの研磨を行うのに、バルーン部材51の短軸の長軸に対する比率が0.9で、長軸の寸法が65φ、70φ、75φ、80φ、85φ、90φ、95φ、100φ(mm)の8種類と、バルーン部材51が略円形で外径が100mmの1種類の計9種類の研磨治具39を用意しておき、これらをレンズ1径に対応させて適宜選定し使い分ける。   Here, in the present embodiment, the concave surface 2b is a toric surface, the lens diameters 65φ, 70φ, 75φ, 80φ (mm), the refractive index 1.7, and the base curve 0.00-11.25 [D] of the concave surface 2b. When polishing a lens with an astigmatic power range of 0.00 to 4.00 [D], the ratio of the short axis to the long axis of the balloon member 51 is 0.9, and the long axis dimensions are 65φ, 70φ, and 75φ. , 80φ, 85φ, 90φ, 95φ, 100φ (mm), and 9 types of polishing jigs 39 in total, one type having a balloon member 51 of a substantially circular shape and an outer diameter of 100 mm, are prepared as lenses. Select and use them appropriately according to the diameter.

研磨治具39の選定は、レンズ径と被研磨面2bの曲率によって適宜選定されるが、同一径のレンズの場合、曲率が大きくなる程長軸が短い研磨治具を使用するとよい。例えば、直径が70mmのトーリックレンズを研磨する場合、ベースカーブ0.00〜1.50〔D〕で乱視度数0.00〜2.00〔D〕の場合は長軸100φ(mm)の研磨治具、同ベースカーブで乱視度数2.25〜4.00〔D〕以上の場合は90φの研磨治具、ベースカーブ1.75〜6.00〔D〕で乱視度数0.00〜4.00〔D〕の場合は長軸90φの研磨治具(ただし、ベースカーブ2.75〜6.00〔D〕でかつ乱視度数が2.25〜4.00〔D〕の場合は80φ)、ベースカーブ6.25〜11.25〔D〕で乱視度数0.00〜4.00〔D〕の場合は長軸80φの研磨治具(ただし、ベースカーブ10.00〜11.25〔D〕でかつ乱視度数が2.25〜4.00〔D〕の場合は除く)を使用する。   Selection of the polishing jig 39 is appropriately selected according to the lens diameter and the curvature of the surface to be polished 2b. However, in the case of a lens having the same diameter, it is preferable to use a polishing jig having a shorter major axis as the curvature increases. For example, when a toric lens having a diameter of 70 mm is polished, when the base curve is 0.00 to 1.50 [D] and the astigmatic power is 0.00 to 2.00 [D], the long axis 100φ (mm) is polished. If the base curve has an astigmatic power of 2.25 to 4.00 [D] or more, a 90φ polishing jig, and a base curve of 1.75 to 6.00 [D] has an astigmatic power of 0.00 to 4.00. In the case of [D], a long axis 90 φ polishing jig (however, in the case of a base curve of 2.75 to 6.00 [D] and an astigmatic power of 2.25 to 4.00 [D], 80 φ), base When the curve is 6.25 to 11.25 [D] and the astigmatic power is 0.00 to 4.00 [D], the long axis 80φ polishing jig (however, the base curve is 10.00 to 11.25 [D]) And the astigmatic power is 2.25 to 4.00 [D]).

図10および図14において、レンズ1の凹面2bの研磨に用いられる前記研磨パッド40は、例えば発泡ポリウレタン、フェルト、または不織布等の繊維性の布や合成樹脂等を材料とする厚さ1mm程度のシート材によって形成されたもので、前記バルーン部材51のドーム部51Aの正面視形状と略同一の大きさの楕円形に形成された研磨部70と、この研磨部70の外周から外側に伸びる複数本の固定片71とで一体に形成されている。研磨部70は、外周より中心に向かって形成された複数の溝72により放射状に分割形成された8個の花弁片73で構成されている。各花弁片73は、中心側の幅が狭く、外周側の幅が広くなるように平面視台形状に形成されており、中央において互いに連結している。前記固定片71は、8個の花弁片73のうち、長軸方向(F方向)と短軸方向(G方向)に位置する合計4つの花弁片73の外縁に径方向にそれぞれ延設されている。固定片71の幅は、花弁片73の外縁の幅より狭く設定されている。これは、研磨中にバルーン部材51の変形や固定片71が図15に示す締付部材76から引き出された際、固定片71の撓みを容易にするためである。   10 and 14, the polishing pad 40 used for polishing the concave surface 2b of the lens 1 has a thickness of about 1 mm made of, for example, a fibrous cloth such as polyurethane foam, felt, or nonwoven fabric, or a synthetic resin. A polishing member 70 formed of a sheet material and formed in an oval shape having a size substantially the same as the front view shape of the dome portion 51A of the balloon member 51, and a plurality of polishing portions 70 extending outward from the outer periphery of the polishing portion 70 It is integrally formed with the fixed piece 71 of the book. The polishing portion 70 is composed of eight petal pieces 73 that are radially formed by a plurality of grooves 72 formed from the outer periphery toward the center. Each petal piece 73 is formed in a trapezoidal shape in plan view so that the width on the center side is narrow and the width on the outer peripheral side is wide, and is connected to each other at the center. The fixed piece 71 is extended in the radial direction on the outer edges of a total of four petal pieces 73 located in the major axis direction (F direction) and the minor axis direction (G direction) among the eight petal pieces 73. Yes. The width of the fixed piece 71 is set narrower than the width of the outer edge of the petal piece 73. This is because the deformation of the balloon member 51 during polishing and the bending of the fixing piece 71 when the fixing piece 71 is pulled out from the fastening member 76 shown in FIG. 15 are facilitated.

前記固定片71は、幅が広すぎると柔軟性に欠けて撓み難くなり、狭すぎると強度的に弱くなるため研磨時に破断し易くなる。したがって、固定片71の幅は強度と柔軟性を考慮して決められる。例えば、厚さ1mmのフェルトを使用した場合、幅は5〜15mm程度とすることが望ましい。5mm以下では耐久性が低下し、15mm以上であると柔軟性が低下して、バルーン部材51の変形に追随しなくなる。固定片71の数としては、2つ以上で一定の間隔をおいて設けられることが好ましい。なお、固定片71の数が多すぎると、固定片71と締付部材76との接触面積が大きくなり、固定片71にかかる締付部材76の圧力が分散して小さくなるため外れ易くなる。反対に少なすぎると研磨パッド40の研磨治具39に対する安定した固定が得られなくなる。したがって、固定片71の数としては3〜5つ程度であるとより好ましい。   If the width of the fixing piece 71 is too wide, the fixing piece 71 lacks flexibility and is difficult to bend. If the width is too narrow, the fixing piece 71 is weak in strength, and thus is easily broken during polishing. Therefore, the width of the fixed piece 71 is determined in consideration of strength and flexibility. For example, when a 1 mm thick felt is used, the width is preferably about 5 to 15 mm. If it is 5 mm or less, the durability is lowered, and if it is 15 mm or more, the flexibility is lowered and the balloon member 51 does not follow the deformation. The number of the fixing pieces 71 is preferably two or more and provided at a constant interval. If the number of the fixing pieces 71 is too large, the contact area between the fixing pieces 71 and the fastening members 76 increases, and the pressure of the fastening members 76 applied to the fixing pieces 71 is dispersed and becomes small, so that the fixing pieces 71 are easily detached. On the other hand, if the amount is too small, stable fixing of the polishing pad 40 to the polishing jig 39 cannot be obtained. Therefore, the number of the fixing pieces 71 is more preferably about 3 to 5.

このような研磨パッド40は、前記締付部材76によって前記研磨治具39に着脱自在に取付けられる。前記締付部材76は、適宜な太さの線ばねをリング状に塑性変形させて両端部を重ね合わせたもので、自然状態では前記外側固定具56の外径より小さい直径を有し、両端部76a,76bが外側にそれぞれ略直角に折り曲げられている。   Such a polishing pad 40 is detachably attached to the polishing jig 39 by the fastening member 76. The fastening member 76 is obtained by plastically deforming a wire spring having an appropriate thickness into a ring shape and superimposing both ends, and has a diameter smaller than the outer diameter of the outer fixture 56 in a natural state. The portions 76a and 76b are bent outward at substantially right angles.

前記研磨パッド40を研磨治具39に取付けるには、先ず圧縮空気の供給によってバルーン部材51のドーム部51Aを所定のドーム形状に膨張させた後、その上に研磨パッド40の研磨部70を載置する。次に、締付部材76の両端部76a,76bを指先で挟んでその間隔を弾性に抗して狭めることにより締付部材76を拡径化し、この状態で締付部材76を研磨パッド40の固定片71に上方から押しつけてこれらの固定片71を下方に折り曲げ外側固定具56の外周に接触させる。そして、両端部76a,76bから指先を離すと、締付部材76は元の形状に復帰して固定片71を外側固定具56の外周に締付け固定し、もって研磨パッド40の取付けが終了する。   In order to attach the polishing pad 40 to the polishing jig 39, first, the dome portion 51A of the balloon member 51 is expanded into a predetermined dome shape by supplying compressed air, and then the polishing portion 70 of the polishing pad 40 is mounted thereon. Put. Next, both ends 76a and 76b of the tightening member 76 are sandwiched between fingertips, and the distance between the end portions 76a and 76b is narrowed against elasticity, so that the tightening member 76 is expanded in diameter. The fixing pieces 71 are pressed from above, and the fixing pieces 71 are bent downward and brought into contact with the outer periphery of the outer fixture 56. When the fingertips are released from both end portions 76a and 76b, the fastening member 76 returns to its original shape, and the fixing piece 71 is fastened and fixed to the outer periphery of the outer fixing tool 56, whereby the attachment of the polishing pad 40 is completed.

このような構造からなる研磨装置30によるレンズ1の研磨は、以下の手順によって行われる。
先ず、アーム34のレンズ取付部36にレンズ1をレンズ保持体37を介して装着する。次に、揺動装置38の上面に研磨パッド40が取付けられた研磨治具39を設置する。レンズ取付部36にレンズ1を取付ける際には、レンズ1の被研磨面2bの最小曲率の軸方向がアーム34の往復移動方向(図6の矢印X方向)と一致するように取付ける。研磨治具39を揺動装置38に設置する際には、バルーン部材51の長軸方向(F方向)をアーム34の往復移動方向(矢印X方向)と一致させて設置する。
The lens 1 is polished by the polishing apparatus 30 having such a structure according to the following procedure.
First, the lens 1 is mounted on the lens mounting portion 36 of the arm 34 via the lens holder 37. Next, a polishing jig 39 to which a polishing pad 40 is attached is installed on the upper surface of the rocking device 38. When the lens 1 is attached to the lens attachment portion 36, the lens 1 is attached so that the axial direction of the minimum curvature of the polished surface 2b of the lens 1 coincides with the reciprocating movement direction of the arm 34 (the arrow X direction in FIG. 6). When the polishing jig 39 is installed on the swing device 38, the major axis direction (F direction) of the balloon member 51 is set to coincide with the reciprocating movement direction (arrow X direction) of the arm 34.

レンズ1がレンズ取付部36に取付けられると、昇降装置41によってレンズ1を下降させ、凹面2bを研磨パッド40の表面に押し付ける。この状態で研磨剤を研磨パッド40の表面に供給し、アーム34を左右方向に往復移動させるとともに軸33を中心として前後方向に回動させる。このようなアーム34の動きによるレンズ1の運動軌跡を図16に示す。   When the lens 1 is attached to the lens attachment portion 36, the lens 1 is lowered by the elevating device 41, and the concave surface 2 b is pressed against the surface of the polishing pad 40. In this state, an abrasive is supplied to the surface of the polishing pad 40, and the arm 34 is reciprocated in the left-right direction and rotated in the front-rear direction around the shaft 33. The movement locus of the lens 1 due to the movement of the arm 34 is shown in FIG.

また、回転軸21の回転によって揺動装置38を図8に示すように首振り旋回運動させる。このようなレンズ1と揺動装置38の運動により、研磨の軌跡が1周毎に少しずつずれる無軌道研磨軌跡でレンズ1の凹面2bを前記研磨パッド40と研磨剤によって研磨し、所望のトーリック面に仕上げる。研磨パッド40による研磨代は5〜9μm程度である。研磨剤としては、例えば酸化アルミナ、ダイヤモンドパウダー等の研磨材(砥粒)を研磨液に分散させた溶液状のものが用いられる。   Further, as the rotating shaft 21 rotates, the swinging device 38 is swung as shown in FIG. By such movement of the lens 1 and the swinging device 38, the concave surface 2b of the lens 1 is polished by the polishing pad 40 and the abrasive with a trackless polishing locus in which the polishing locus is slightly shifted every round, and a desired toric surface is obtained. Finish. The polishing allowance by the polishing pad 40 is about 5 to 9 μm. As the abrasive, for example, a solution in which an abrasive (abrasive grains) such as alumina oxide and diamond powder is dispersed in a polishing liquid is used.

カーブジェネレータによって切削加工された凹面2bには、NC制御によるバックラッシュ等に起因する加工段差が含まれているので、この段差を研磨によって除去する必要がある。このため、凹面2bの研磨工程を荒研磨と仕上げ研磨の2工程にわけて研磨することが好ましい。例えば、荒研磨においては、研磨材の平均粒径が1.6〜1.8μmのものを用い、温度を8〜14℃に制御して研磨する。また、研磨時間は2〜6分、研磨圧は5〜400ミリバール、回転速度は400〜1000rpmとする。   Since the concave surface 2b cut by the curve generator includes a machining step due to backlash or the like by NC control, it is necessary to remove this step by polishing. For this reason, it is preferable to polish the concave surface 2b by dividing the polishing step into two steps of rough polishing and finish polishing. For example, in rough polishing, an abrasive having an average particle diameter of 1.6 to 1.8 μm is used, and the temperature is controlled to 8 to 14 ° C. for polishing. The polishing time is 2 to 6 minutes, the polishing pressure is 5 to 400 mbar, and the rotation speed is 400 to 1000 rpm.

次に、仕上げ研磨においては、研磨材の平均粒径が0.8μm程度のものを用いて研磨する。研磨時間は30秒〜1分程度、研磨圧は5〜400ミリバール、回転速度は400〜1000rpmとする。このように研磨条件を変えて研磨すると、加工段差を確実に取り除くことができる。   Next, in finish polishing, polishing is performed using an abrasive having an average particle diameter of about 0.8 μm. The polishing time is about 30 seconds to 1 minute, the polishing pressure is 5 to 400 mbar, and the rotation speed is 400 to 1000 rpm. If the polishing is performed with the polishing conditions changed as described above, the processing step can be surely removed.

このように本発明においては、レンズ1の被研磨面2bの最小曲率kO を算出し、その軸方向をバルーン部材51の長軸方向と一致させて被研磨面2bを研磨するようにしたので、被研磨面が非回転対称な曲面であっても、被研磨面2bの最小曲率とその軸方向をバルーン部材51の長軸方向の曲率とその長軸方向と略一致させることができる。したがって、非研磨面2bの最小曲率の長軸方向における外周縁部と研磨治具39の長軸方向外周部との間に隙間が生じず、被研磨面全体を良好かつ均一に研磨することができ、所望の光学面を得ることができる。 As described above, in the present invention, the minimum curvature k O of the surface to be polished 2b of the lens 1 is calculated, and the surface to be polished 2b is polished with its axial direction coinciding with the major axis direction of the balloon member 51. Even if the surface to be polished is a non-rotationally symmetric curved surface, the minimum curvature of the surface to be polished 2b and its axial direction can be made to substantially coincide with the curvature of the major axis direction of the balloon member 51 and its long axis direction. Therefore, there is no gap between the outer peripheral edge in the major axis direction of the minimum curvature of the non-polished surface 2b and the outer peripheral part in the major axis direction of the polishing jig 39, and the entire surface to be polished can be polished well and uniformly. And a desired optical surface can be obtained.

上記した実施の形態においては、累進要素を有する非球面の乱視矯正用眼鏡レンズのトーリック面からなる凹面2bを研磨する例について説明したが、本発明はこれに何ら特定されるものではなく、球面、非球面、非トーリック面、累進面や累進面とトーリック成分の融合面、さらには累進要素を有する非球面、これらの複合面など自由曲面からなる凹面、さらには凸面の研磨に用いることができる。なお、凸面を研磨する場合は、圧搾空気の注入によって上面が楕円の凹面状に弾性変形するバルーン部材を用いればよい。   In the above-described embodiment, the example of polishing the concave surface 2b made of the toric surface of the aspherical astigmatism correction spectacle lens having a progressive element has been described. However, the present invention is not limited to this, and the spherical surface It can be used for polishing non-spherical surfaces, non-toric surfaces, progressive surfaces, surfaces where progressive surfaces and toric components are combined, aspheric surfaces with progressive elements, concave surfaces made of free-form surfaces such as composite surfaces, and convex surfaces. . In addition, what is necessary is just to use the balloon member which elastically deforms to a concave surface shape where an upper surface is an ellipse by injection | pouring of compressed air, when grinding | polishing a convex surface.

(a)、(b)は眼鏡レンズの平面図および断面図である。(A), (b) is the top view and sectional drawing of a spectacles lens. レンズの研磨工程を示すフローチャートである。It is a flowchart which shows the grinding | polishing process of a lens. (a)、(b)は被研磨面上の仮想曲線と座標位置を示す図である。(A), (b) is a figure which shows the virtual curve and coordinate position on a to-be-polished surface. (a)、(b)は3点から最小曲率を求めるときの仮想曲線と座標位置を示す図である。(A), (b) is a figure which shows the virtual curve and coordinate position when calculating | requiring the minimum curvature from three points. (a)、(b)は9点から最小曲率を求めるときの仮想曲線と座標位置を示す図である。(A), (b) is a figure which shows the virtual curve and coordinate position when calculating | requiring the minimum curvature from nine points. 本発明に係るレンズの研磨方法に用いられる研磨装置の概略構成図である。It is a schematic block diagram of the grinding | polishing apparatus used for the grinding | polishing method of the lens which concerns on this invention. レンズをレンズ保持体に取付けた状態を示す断面図である。It is sectional drawing which shows the state which attached the lens to the lens holding body. 揺動装置と研磨治具の首振り旋回運動を示す図である。It is a figure which shows the swivel turning motion of a rocking | fluctuation apparatus and a grinding | polishing jig | tool. 研磨治具の平面図である。It is a top view of a grinding jig. 研磨パッドが取付けられた同研磨治具の平面図である。It is a top view of the polishing jig to which a polishing pad is attached. 同研磨治具の底面図である。It is a bottom view of the grinding jig. 図10のXII−XII線断面図である。It is the XII-XII sectional view taken on the line of FIG. 研磨治具の高さと曲率半径の関係を示す図である。It is a figure which shows the relationship between the height of a grinding | polishing jig | tool, and a curvature radius. 研磨パッドの平面図である。It is a top view of a polishing pad. 締付部材の斜視図である。It is a perspective view of a fastening member. レンズの運動軌跡を示す図である。It is a figure which shows the movement locus | trajectory of a lens.

符号の説明Explanation of symbols

1…レンズ、2a…凸面、2b…凹面(被研磨面)、2c…コバ面、 30…研磨装置、32…装置本体、34…アーム、36…レンズ保持部、37…レンズ保持体、38…揺動装置、39…研磨治具、40…研磨パッド、51…バルーン部材。
DESCRIPTION OF SYMBOLS 1 ... Lens, 2a ... Convex surface, 2b ... Concave surface (surface to be polished), 2c ... Edge surface, 30 ... Polishing device, 32 ... Device main body, 34 ... Arm, 36 ... Lens holder, 37 ... Lens holder, 38 ... Oscillator, 39 ... polishing jig, 40 ... polishing pad, 51 ... balloon member.

Claims (3)

弾性材料によって平面視形状が楕円でカップ状に形成され内部に流体が導入されることにより上面側が曲面形状に膨張するバルーン部材と、このバルーン部材の上面に取付けた研磨パッドとを用いて光学レンズの非回転対称な被研磨面を研磨する光学レンズの研磨方法であって、
前記光学レンズの被研磨面の平均曲率が最小となる軸方向を算出し特定する工程と、
前記光学レンズの被研磨面の平均曲率が最小となる軸方向が前記バルーン部材の長軸方向と一致するように前記光学レンズを研磨装置に取付ける工程と、
前記光学レンズの被研磨面が前記研磨パッドと接触した状態で前記バルーン部材を首振り旋回運動させ、前記光学レンズを前記被研磨面の平均曲率が最小となる軸方向に往復移動させるとともに前記軸方向と直交する方向に往復回動させることにより、研磨の軌跡が1周毎に少しずつずれる無軌道研磨軌跡で前記被研磨面を研磨する工程と、
を備えていることを特徴とする光学レンズの研磨方法。
An optical lens using a balloon member which is formed into an elliptical cup shape with an elastic material and a top surface is expanded into a curved shape when a fluid is introduced therein, and a polishing pad attached to the upper surface of the balloon member An optical lens polishing method for polishing a non-rotationally symmetric polished surface,
Calculating and identifying an axial direction in which the average curvature of the polished surface of the optical lens is minimized; and
Attaching the optical lens to the polishing apparatus so that the axial direction in which the average curvature of the polished surface of the optical lens is minimized coincides with the long axis direction of the balloon member;
The balloon member is swung and swung while the polished surface of the optical lens is in contact with the polishing pad, and the optical lens is reciprocated in an axial direction in which the average curvature of the polished surface is minimized and the shaft Polishing the surface to be polished in a track-free polishing locus in which the polishing locus is slightly shifted every round by reciprocatingly rotating in a direction perpendicular to the direction;
An optical lens polishing method comprising:
前記光学レンズの被研磨面の平均曲率が最小となる軸方向を算出し特定する工程は、前記被研磨面上の幾何学中心と外周縁の点対称な2点とを結ぶ前記被研磨面に沿った仮想曲線を前記被研磨面の周方向に所要角度ずつずらして複数本定め、各仮想曲線上に少なくとも任意の3点を定め、これらの点の座標から当該仮想曲線の平均曲率をそれぞれ算出し、そのうちの最も小さい平均曲率となる仮想曲線を選択してその軸方向を特定することを特徴とする請求項1記載の光学レンズの研磨方法。   The step of calculating and specifying the axial direction in which the average curvature of the surface to be polished of the optical lens is the minimum is performed on the surface to be polished that connects the geometric center on the surface to be polished and two point-symmetric points on the outer periphery. A plurality of virtual curves along the circumferential direction of the surface to be polished are determined by shifting the required angle, and at least three arbitrary points are determined on each virtual curve, and the average curvature of the virtual curve is calculated from the coordinates of these points, respectively. 2. The method of polishing an optical lens according to claim 1, wherein an imaginary curve having the smallest average curvature is selected and its axial direction is specified. 前記光学レンズがメニスカスレンズであることを特徴とする請求項1または2記載の光学レンズの研磨方法。
The optical lens polishing method according to claim 1, wherein the optical lens is a meniscus lens.
JP2004346137A 2004-11-30 2004-11-30 Optical lens polishing method Active JP4199723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004346137A JP4199723B2 (en) 2004-11-30 2004-11-30 Optical lens polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004346137A JP4199723B2 (en) 2004-11-30 2004-11-30 Optical lens polishing method

Publications (2)

Publication Number Publication Date
JP2006150526A JP2006150526A (en) 2006-06-15
JP4199723B2 true JP4199723B2 (en) 2008-12-17

Family

ID=36629409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004346137A Active JP4199723B2 (en) 2004-11-30 2004-11-30 Optical lens polishing method

Country Status (1)

Country Link
JP (1) JP4199723B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109514355A (en) * 2018-11-06 2019-03-26 云南北方驰宏光电有限公司 The processing method and system of processing of aspherical cylindrical mirror

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5466968B2 (en) * 2010-02-24 2014-04-09 Hoya株式会社 Manufacturing method of optical lens
KR101610000B1 (en) * 2014-08-20 2016-04-07 주식회사 휴비츠 Method for processing eyeglass lens
CN115091305A (en) * 2022-07-19 2022-09-23 苏州贝亚特精密自动化机械有限公司 Valve core grinding machine
CN116984958B (en) * 2023-09-26 2023-12-22 南通蓬盛机械有限公司 Optical sighting telescope fine grinding process control method and system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109514355A (en) * 2018-11-06 2019-03-26 云南北方驰宏光电有限公司 The processing method and system of processing of aspherical cylindrical mirror

Also Published As

Publication number Publication date
JP2006150526A (en) 2006-06-15

Similar Documents

Publication Publication Date Title
JP4681024B2 (en) Glasses lens polishing method
EP1655102B1 (en) Elastic polishing tool and lens polishing method using this tool
US7500903B2 (en) Polishing apparatus
US4768308A (en) Universal lens polishing tool, polishing apparatus and method of polishing
WO2005084885A1 (en) Spectacle lens manufacturing method and spectacle lens manufacturing system
US7861626B2 (en) Lens surface cutting apparatus and lens surface cutting method for spectacle lens, and spectacle lens
JP2003275949A (en) Polishing method and polishing device
US6913356B2 (en) Method for fitting a holding block to a semifinished ophthalmic lens blank
US20070087669A1 (en) Polishing method
JP4199723B2 (en) Optical lens polishing method
JP4084081B2 (en) Yatoi, lens holding method, and spectacle lens manufacturing method using this holding method
JP4387708B2 (en) Polishing method and manufacturing method for plastic spectacle lens
JP2019055452A (en) Convex lens processing device, convex lens processing method and grindstone
US20050221721A1 (en) Method and apparatus for grinding and polishing free-form ophthalmic surfaces
WO2010110271A1 (en) Manufacturing method for lens and lens holder
JP4550907B2 (en) Lens holding method and spectacle lens manufacturing method
JP2012213821A (en) Method for manufacturing spectacle lens
JP5466968B2 (en) Manufacturing method of optical lens
JP2011173205A (en) Method for manufacturing optical lens
JP4186809B2 (en) Optical lens polishing method
JP2001353650A (en) Polisher, and method and device of polishing optical component using it
JP4013966B2 (en) Lens polishing method
JP2005224904A (en) Polishing jig and polishing device
JP2003300144A (en) Abrasive tool curvature setting method and abrasive tool curvature setting device
JP2012213822A (en) Spectacle lens manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081003

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4199723

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250