JP2011168975A - Seismic strengthening method and seismic strengthening structure for structure - Google Patents

Seismic strengthening method and seismic strengthening structure for structure Download PDF

Info

Publication number
JP2011168975A
JP2011168975A JP2010031545A JP2010031545A JP2011168975A JP 2011168975 A JP2011168975 A JP 2011168975A JP 2010031545 A JP2010031545 A JP 2010031545A JP 2010031545 A JP2010031545 A JP 2010031545A JP 2011168975 A JP2011168975 A JP 2011168975A
Authority
JP
Japan
Prior art keywords
ground
back side
reinforcing member
hole
abutment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010031545A
Other languages
Japanese (ja)
Other versions
JP5504951B2 (en
Inventor
Akira Yamamoto
山本  彰
Takenobu Inagawa
雄宣 稲川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2010031545A priority Critical patent/JP5504951B2/en
Publication of JP2011168975A publication Critical patent/JP2011168975A/en
Application granted granted Critical
Publication of JP5504951B2 publication Critical patent/JP5504951B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Foundations (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a seismic strengthening method for a structure, which can apply seismic strengthening to the structure for bearing at least an earth pressure load from a back side, such as an abutment and a retaining wall. <P>SOLUTION: A hole 8, which horizontally passes through the structure 1 and the leading end of which reaches backside ground 7, is drilled from the front side of the structure 1 by a pipe-like reinforcing member 10; a core material 12 having a leading end fitted with a bag body 13 is inserted inside the pipe-like reinforcing member 10; the leading end of the core material 12 reaches that of the hole 8; the pipe-like reinforcing member 10 is pulled out from the hole 8; a leading end of the pipe-like reinforcing member 10 is disposed in a predetermined position on the ground 7 on the backside of the structure 1; grout 17 is pressurized and injected in the bag body 13; the bag body 13 is expanded and deformed for adhesion to an inner surface of the hole 8; the grout 17 is injected in an unpressurized state into the inside portion of the pipe-like reinforcing member 10 and the hole 8; and a head of the core material 12 is anchored to the side of the front surface 2 of the structure 1. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、構造物の耐震補強方法及び構造物の耐震補強構造に関し、特に、橋台、擁壁等のように、少なくとも背面側から土圧荷重を受ける構造物に耐震補強を施すのに有効な構造物の耐震補強方法及び構造物の耐震補強構造に関する。   The present invention relates to a seismic reinforcement method for a structure and a seismic reinforcement structure for a structure, and is particularly effective for applying seismic reinforcement to a structure that receives an earth load from at least the back side, such as an abutment and a retaining wall. The present invention relates to a seismic reinforcement method for structures and a seismic reinforcement structure for structures.

従来、鉄道、道路等の橋桁の鉛直荷重及び背面土圧荷重を支持する橋台は、それらの荷重を基礎及び杭を介して地盤側に伝達させているが、近年、耐震基準が見直しされたことにより、耐震基準を満たすように耐震補強して耐力を高め、地震による被害を防止する必要が生じている。   Conventionally, abutments that support the vertical load and backside earth pressure load of bridge girders such as railways and roads have transmitted those loads to the ground side via foundations and piles, but in recent years the earthquake resistance standards have been reviewed. Therefore, there is a need to prevent earthquake damage by increasing seismic reinforcement to meet seismic standards.

橋台の耐震補強方法として、例えば、
(1)図14に示すように、橋台25の基礎部分26間にストラッド27を突っ張った状態に設けて、橋台25が水平方向に滑動するのを防止する方法、
(2)図15に示すように、橋台25の前面側からグラウンドアンカー28を斜め下方に打設して、橋台25が滑動や転倒するのを防止する方法、
(3)図16に示すように、橋台25の前面側からネイリング部材29を水平方向に打設して、橋台25が滑動や転倒するのを防止する方法、
(4)図17に示すように、橋台25の背面側の裏栗部分30に薬液を注入して固化させ、裏栗部分30が沈下するのを防止する方法、
(5)特許文献1に記載されているように、橋台の背面側の受台に近接する部分及び受台から離れた部分に栗石等の裏込材を敷き固め、その上部にモルタル、砂等のレベル調整用裏込材を施して路盤工を構成し、この路盤工の上部に、下面に凹陥面が設けられた踏掛板を配置して、踏掛板の両端部を橋台の背面側の受台と受台から離れた部分の裏込材の上部との間で支持し、踏掛板を両端支持梁として機能させることにより、地震等によって裏込材に揺すり込み沈下が生じた場合であっても、踏掛板が埋没するのを防止し、路面に段差が生じるのを防止するように構成した方法
等が提案されている。
As a method of seismic reinforcement of abutments, for example,
(1) As shown in FIG. 14, a method for preventing the abutment 25 from sliding in the horizontal direction by providing a straddle 27 between the foundation portions 26 of the abutment 25.
(2) As shown in FIG. 15, the ground anchor 28 is driven diagonally downward from the front side of the abutment 25 to prevent the abutment 25 from sliding or overturning,
(3) As shown in FIG. 16, a method for preventing the abutment 25 from sliding or falling by driving the nailing member 29 in the horizontal direction from the front side of the abutment 25,
(4) As shown in FIG. 17, a method for injecting and solidifying a chemical solution into the back chestnut portion 30 on the back side of the abutment 25 to prevent the back chestnut portion 30 from sinking,
(5) As described in Patent Document 1, a backing material such as chestnut stone is spread and solidified on a portion close to the cradle on the back side of the abutment and a portion distant from the cradle, and mortar, sand, etc. are placed on the top. A roadbed work is constructed by applying a leveling backing material, and a footboard with a recessed surface on the lower surface is placed on the upper part of the roadworker, and both ends of the footboard are received on the back side of the abutment. Supporting between the base and the upper part of the backing material away from the cradle, and by causing the footboard to function as both-end support beams, the backing material is swayed and subsidized due to an earthquake, etc. However, a method or the like configured to prevent the stepping plate from being buried and to prevent a step on the road surface has been proposed.

図14に示す方法は、橋台25を支持する基礎部分26間をストラッド27によって突っ張っているので、橋台25が水平方向に滑動するのを防止するには有効である。
図15に示す方法は、橋台25をグラウンドアンカー28によって地盤31に支持しているので、橋台25が滑動や転倒するのを防止するには有効である。
図16に示す方法は、橋台25をネイリング部材29によって地盤31に支持しているので、橋台25が滑動や転倒をするのを防止するのには有効である。
図17に示す方法は、橋台25の背面側の裏栗部分30に薬液を注入して固化しているので、裏栗部分30の揺すり込み沈下を防止するのには有効である。
特許文献1に記載の方法は、橋台の背面側の裏込材に揺すり込み沈下が生じても、その上部の両端支持梁の踏掛板によって路面を支持することができるので、路面に段差が生じるのを防止するのには有効である。
The method shown in FIG. 14 is effective in preventing the abutment 25 from sliding in the horizontal direction because the base 27 supporting the abutment 25 is stretched by the strut 27.
The method shown in FIG. 15 is effective in preventing the abutment 25 from sliding or falling because the abutment 25 is supported on the ground 31 by the ground anchor 28.
The method shown in FIG. 16 is effective in preventing the abutment 25 from sliding or falling because the abutment 25 is supported on the ground 31 by the nailing member 29.
The method shown in FIG. 17 is effective in preventing the sinking and sinking of the back chestnut portion 30 because the chemical solution is injected into the back chestnut portion 30 on the back side of the abutment 25 and solidified.
In the method described in Patent Document 1, the road surface can be supported by the struts of the support beams on both ends of the abutment on the back material on the back side of the abutment, so that a step is generated on the road surface. It is effective in preventing this.

しかし、図14に示す方法では、橋台25の転倒を防止することができない。また、図15に示す方法では、グラウンドアンカー28を定着させる堅硬な地盤31が深い場合には、グラウンドアンカー28が非常に長くなるため、不経済となる。また、図14、図15、及び図16に示す方法は、裏栗部分30の揺すり込み沈下を防止することができないため、地震によって橋台25の背面側の地盤31に段差が生じるのを避けることができず、橋桁を安定した状態で支持し続けることが困難になる。また、図17に示す方法では、裏栗部分30の栗石間に薬液が完全に充填されているか否かを確認することが難しく、また、注入した薬液が周囲の地盤31に流出し、周辺環境に影響を与えるおそれがある。さらに、特許文献1に記載の方法は、裏込材の沈下対策としては有効であるが、橋台の滑動、転倒を防止する効果はない。   However, the method shown in FIG. 14 cannot prevent the abutment 25 from toppling over. Further, in the method shown in FIG. 15, when the hard ground 31 for fixing the ground anchor 28 is deep, the ground anchor 28 becomes very long, which is uneconomical. Moreover, since the method shown in FIG.14, FIG15 and FIG.16 cannot prevent the sinking sinking of the back chestnut part 30, it avoids that a level | step difference arises in the ground 31 on the back side of the abutment 25 by an earthquake. It becomes difficult to continue to support the bridge girder in a stable state. Further, in the method shown in FIG. 17, it is difficult to confirm whether or not the chemical solution is completely filled between chestnuts of the back chestnut portion 30, and the injected chemical solution flows out to the surrounding ground 31 and the surrounding environment. May be affected. Furthermore, the method described in Patent Document 1 is effective as a countermeasure against settlement of the backing material, but has no effect of preventing the abutment from sliding and falling.

実開昭64−407号公報Japanese Utility Model Publication No. 64-407

本発明は、上記のような従来の問題に鑑みなされたものであって、橋台等のように、少なくとも背面側からの土圧荷重を支持する構造物の地震時における滑動、転倒に対する耐力を向上させながら、構造物の背面側の地盤(例えば、裏栗部分)の揺すり込み沈下を確実に防止することができる構造物の耐震補強方法及び構造物の耐震補強構造を提供することを目的とする。   The present invention has been made in view of the conventional problems as described above, and improves the resistance to sliding and falling of a structure supporting an earth pressure load from at least the back side, such as an abutment, at the time of an earthquake. An object of the present invention is to provide a seismic reinforcement method for a structure and a seismic reinforcement structure for a structure that can reliably prevent the subsidence and sinking of the ground (eg, back chestnut portion) on the back side of the structure. .

上記のような課題を解決するために、本発明は、以下のような手段を採用している。
すなわち、本発明は、前面側が開放されるとともに、少なくとも背面からの土圧荷重を支持する構造物の耐震補強方法であって、前記構造物の前面側から、管状補強部材により、前記構造物を水平方向に貫通して先端が背面側の地盤に到達する孔を、前記構造物の幅方向に間隔をおいて複数箇所に削孔し、削孔した各孔内において、前記管状補強部材の内側に、袋体を取り付けた芯材を挿入し、前記管状補強部材を前記孔から引き抜いて、前記管状補強部材の先端を前記構造物の背面側の地盤の所定の位置に配置させ、前記袋体に固化材を加圧注入して、前記袋体を膨張変形させて前記孔の内面に密着させ、前記管状補強部材の内側部分及び前記孔内に固化材を無加圧注入するとともに、前記芯材の頭部を前記構造物の前面側に定着させることを特徴とする。
In order to solve the above problems, the present invention employs the following means.
That is, the present invention provides a seismic reinforcement method for a structure in which the front side is opened and supports earth pressure load from at least the back side, and the structure is formed by a tubular reinforcing member from the front side of the structure. A hole penetrating in the horizontal direction and having a tip reaching the ground on the back side is drilled at a plurality of positions at intervals in the width direction of the structure, and the inside of the tubular reinforcing member is formed in each drilled hole. A core member attached with a bag body is inserted, the tubular reinforcing member is pulled out from the hole, and the tip of the tubular reinforcing member is disposed at a predetermined position on the ground on the back side of the structure, and the bag body The bag is inflated and deformed to be in close contact with the inner surface of the hole, and the solidifying material is injected without pressure into the inner portion of the tubular reinforcing member and the hole. Fix the head of the material to the front side of the structure. The features.

本発明の構造物の耐震補強方法によれば、構造物と構造物の背面側の地盤の所定の位置との間に、固化材を注入することによって曲げ剛性及びせん断剛性を高めた管状補強部材を水平に配置し、この管状補強部材によって構造物の背面側の地盤の沈下を防止することができる。従って、構造物の背面側の地盤に地震による揺すり込み沈下が生じるのを防止でき、その部分に段差が生じるのを防止できる。
また、管状補強部材の内側に芯材を挿入し、この芯材の先端に取り付けた袋体の内部に固化材を加圧注入して膨張変形させ、袋体をボーリング孔の内面に密着させることにより、芯材を構造物の背面側の地盤に定着させているので、地震による構造物の転倒及び滑動を防止することができる。
さらに、削孔で使用した管状補強部材の一部を地盤の沈下を防止する部材として利用するとともに、管状補強部材の不用部分を引き抜くことで、その部分を再利用することができるので、経済性を高めることができる。
According to the seismic reinforcement method for a structure of the present invention, a tubular reinforcing member having increased bending rigidity and shear rigidity by injecting a solidifying material between the structure and a predetermined position of the ground on the back side of the structure. Are horizontally disposed, and the subsidence of the ground on the back side of the structure can be prevented by the tubular reinforcing member. Therefore, it is possible to prevent the sunk subsidence due to the earthquake from occurring on the ground on the back side of the structure, and it is possible to prevent the level difference from occurring at that portion.
In addition, a core material is inserted inside the tubular reinforcing member, and a solidified material is pressure-injected into the bag body attached to the tip of the core material so as to be inflated and deformed so that the bag body is in close contact with the inner surface of the boring hole. Thus, since the core material is fixed on the ground on the back side of the structure, it is possible to prevent the structure from falling and sliding due to an earthquake.
Furthermore, since a part of the tubular reinforcing member used in the drilling hole is used as a member for preventing ground subsidence, and the unnecessary part of the tubular reinforcing member can be pulled out, the part can be reused. Can be increased.

また、本発明において、前記構造物の背面側には、栗石を敷き詰めた裏栗部分が設けられ、前記管状補強部材は、前記構造物及び前記裏栗部分を貫通して、先端が前記裏栗部分よりも背面側の前記地盤内に配置されていることとしてもよい。
このように構成すれば、構造物の背面側の裏栗部分の地震による揺すり込み沈下を防止できるので、裏栗部分の上部の地盤に段差が生じるのを防止できる。
In the present invention, a back chestnut portion laid with chestnut stone is provided on the back side of the structure, and the tubular reinforcing member penetrates the structure and the back chestnut portion, and a tip thereof is the back chestnut. It is good also as arrange | positioning in the said ground of the back side rather than a part.
If comprised in this way, since the sinking sinking by the earthquake of the back chestnut part of the back side of a structure can be prevented, it can prevent that a level | step difference arises in the ground above the back chestnut part.

また、本発明において、前記孔は、前記構造物の高さ方向に間隔をおいて複数箇所に削孔されていることとしてもよい。
このように構成すれば、構造物の幅方向だけでなく、高さ方向に削孔した各孔内にも管状補強部材及び芯材を配置することができるので、構造物の背面側に裏栗部分が設けられている場合には、管状補強部材及び芯材を複数段に配置することで、管状補強部材1本当たりが支持する地盤の厚さを小さくすることができるので、裏栗部分の沈下量を小さくすることができる。
In the present invention, the holes may be drilled at a plurality of locations at intervals in the height direction of the structure.
If comprised in this way, since a tubular reinforcement member and a core material can be arrange | positioned not only in the width direction of a structure but in each hole drilled in the height direction, a back chestnut is provided on the back side of the structure. When the portion is provided, the thickness of the ground supported by one tubular reinforcing member can be reduced by arranging the tubular reinforcing member and the core material in a plurality of stages. The amount of settlement can be reduced.

さらに、本発明において、前記芯材は、鉄筋又は鋼管であることとしてもよい。
このように構成すれば、芯材として入手が容易な材料(鉄筋又は鋼管)を使用することができるので、材料の調達が容易であり、経済的な施工が可能である。
Furthermore, in the present invention, the core material may be a reinforcing bar or a steel pipe.
If comprised in this way, since an easily available material (rebar or steel pipe) can be used as a core material, procurement of the material is easy and economical construction is possible.

さらに、本発明は、前面側が開放されるとともに、少なくとも背面からの土圧荷重を支持する構造物の耐震補強構造であって、前記構造物の幅方向に間隔をおいて複数箇所に、前記構造物を前面側から水平方向に貫通して先端が背面側の地盤に到達するように形成された各孔内に、前記構造物と前記構造物の背面側の地盤の所定の位置との間に亘って設けられる管状補強部材と、前記各管状補強部材の内側に挿入されるとともに、前記各管状補強部材の内側部分及び前記各孔内に無加圧注入された固化材によって前記各孔内に定着される芯材と、該各芯材の一部に取り付けられるとともに、内部に加圧注入された固化材によって膨張変形して前記各孔の内面に密着される袋体と、前記各芯材の頭部を前記構造物の前面側に定着させる定着部材とを備えていることを特徴とする。   Furthermore, the present invention provides an earthquake-proof reinforcement structure for a structure that is open on the front side and supports earth pressure load from at least the back side, and the structure is provided at a plurality of positions at intervals in the width direction of the structure. In each hole formed so as to penetrate the object horizontally from the front side and reach the ground on the back side between the structure and the predetermined position of the ground on the back side of the structure A tubular reinforcing member provided over the tubular reinforcing member, and inserted into the inside of each tubular reinforcing member, and the solidified material injected without pressure into the inner portion of each tubular reinforcing member and into each hole. A core material to be fixed, a bag body that is attached to a part of each core material, and that is inflated and deformed by a solidified material injected into the inside of the core material and is in close contact with the inner surface of each hole; and each core material Fixing member for fixing the head of the head to the front side of the structure Characterized in that it comprises a.

以上、説明したように、前面側が開放され、少なくとも背面からの土圧荷重を支持する構造物に対して本発明の構造物の耐震補強方法により耐震補強を施工すれば、地震時における構造物の転倒、滑動に対する耐力を向上させながら、構造物の背面側の地盤(例えば、裏栗部分)の揺すり込み沈下を確実に防止することができる。
従って、例えば、道路、鉄道等の橋桁を支持する橋台に適用した場合には、地震によって構造物が被害を受けた場合であっても、段差等の生じない一つの連続した面を確保することができるので、大地震直後にも道路や鉄道等を緊急車両等の通行に支障をきたさないような状態に維持し続けることができる橋台を提供することができる。
As described above, if the seismic reinforcement is applied by the seismic reinforcement method of the structure of the present invention to the structure that opens the front side and supports the earth pressure load from at least the back side, the structure of the structure at the time of the earthquake It is possible to reliably prevent the sinking and sinking of the ground on the back side of the structure (for example, the back chestnut portion) while improving the resistance to falling and sliding.
Therefore, for example, when applied to an abutment that supports a bridge girder such as a road or a railway, even if a structure is damaged by an earthquake, a single continuous surface that does not cause a step is secured. Therefore, it is possible to provide an abutment that can maintain roads, railways, and the like in a state that does not hinder the passage of emergency vehicles even immediately after a major earthquake.

本発明による構造物の耐震補強方法の一実施の形態を示した断面図であって、二重管削孔装置により孔を削孔し、鋼管の先端を裏栗部分の背面側の地盤に到達させた状態を示した断面図である。It is sectional drawing which showed one Embodiment of the earthquake-proof reinforcement method of the structure by this invention, Comprising: A hole is drilled with a double pipe drilling apparatus, and the front-end | tip of a steel pipe reaches the ground on the back side of a back chestnut part It is sectional drawing which showed the state made to do. 鋼管の内側にネイリング部材を挿入した状態を示した断面図である。It is sectional drawing which showed the state which inserted the nailing member inside the steel pipe. 鋼管を引き抜く途中の過程を示した断面図である。It is sectional drawing which showed the process in the middle of pulling out a steel pipe. 鋼管の先端を裏栗部分と地盤との境界に位置させ、ネイリング部材の袋体にグラウトを加圧注入して、袋体を膨張変形させた状態を示した断面図である。It is sectional drawing which showed the state which positioned the front-end | tip of a steel pipe in the boundary of a back chestnut part and the ground, pressurized and injected grout into the bag body of a nailing member, and the bag body was inflated and deformed. 鋼管の内側及び削孔した孔内にグラウトを無加圧注入した状態を示した断面図である。It is sectional drawing which showed the state which injected the grout into the hole inside the steel pipe and the drilled hole without applying pressure. ネイリング部材の芯材の頭部を橋台の前面側に定着させた状態を示した断面図である。It is sectional drawing which showed the state which fixed the head of the core material of the nailing member to the front side of the abutment. 構造物の全体に複数の孔を削孔し、各孔内にネイリング部材及び鋼管を設けた状態を示した断面図である。It is sectional drawing which showed the state which drilled several holes in the whole structure, and provided the nailing member and the steel pipe in each hole. 図6のA部の拡大図である。It is an enlarged view of the A section of FIG. 図7のB−B線断面図である。It is the BB sectional view taken on the line of FIG. 図6のC部の拡大図である。It is an enlarged view of the C section of FIG. 図6の芯材の定着部の拡大図である。It is an enlarged view of the fixing part of the core material of FIG. 芯材の定着部の変形例を示した拡大図である。It is the enlarged view which showed the modification of the fixing | fixed part of a core material. 本発明による構造物の耐震補強方法の他の実施の形態を示した断面図であって、図6のC部に対応する部分の拡大図である。It is sectional drawing which showed other embodiment of the earthquake-proof reinforcement method of the structure by this invention, Comprising: It is an enlarged view of the part corresponding to the C section of FIG. 従来の耐震補強方法の一例を示した断面図である。It is sectional drawing which showed an example of the conventional seismic reinforcement method. 従来の耐震補強方法の他の例を示した断面図である。It is sectional drawing which showed the other example of the conventional seismic reinforcement method. 従来の耐震補強方法の他の例を示した断面図である。It is sectional drawing which showed the other example of the conventional seismic reinforcement method. 従来の耐震補強方法の他の例を示した断面図である。It is sectional drawing which showed the other example of the conventional seismic reinforcement method.

以下、図面を参照しながら本発明の実施の形態について説明する。
図1〜図7には、本発明による構造物の耐震補強方法の一実施の形態が示されている。
本実施の形態では、道路や鉄道等の橋桁22等の鉛直荷重、背面側からの土圧荷重を支持し、それらの荷重を基礎4及び杭5を介して地盤7側に伝達させる構造物である橋台1に耐震補強を施す際に、本発明の構造物の耐震補強方法を適用している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 to 7 show an embodiment of a method for seismic reinforcement of a structure according to the present invention.
In this embodiment, it is a structure that supports vertical loads such as bridge girder 22 such as roads and railways, earth pressure loads from the back side, and transmits those loads to the ground 7 side via the foundation 4 and the pile 5. When applying a seismic reinforcement to a certain abutment 1, the seismic reinforcement method for a structure of the present invention is applied.

なお、以下の説明においては、地盤7のうち、地山を基礎地盤7aとし、埋め戻した部分を盛土体7bとしている。
また、本実施の形態においては、本発明による構造物の耐震補強方法を橋台1に適用している。但し、図示はしないが、背面側からの土圧荷重を支持する擁壁を構造物とし、この擁壁に本発明による構造物の耐震補強方法を適用してもよい。
In the following description, among the ground 7, the ground is the basic ground 7 a and the backfilled portion is the embankment body 7 b.
Moreover, in this Embodiment, the earthquake-proof reinforcement method of the structure by this invention is applied to the abutment 1. However, although not shown, a retaining wall that supports the earth pressure load from the back side may be used as a structure, and the seismic reinforcement method for a structure according to the present invention may be applied to the retaining wall.

本実施の形態の構造物の耐震補強方法は、図1〜図7に示すように、管状補強部材10及びネイリング部材11を用い、管状補強部材10により橋台1の背面3側の栗石を敷き詰めた裏栗部分6の揺すり込み沈下を防止し、ネイリング部材11によって橋台1の滑動及び転倒を防止するように構成したものである。   As shown in FIGS. 1 to 7, the seismic reinforcement method for a structure according to the present embodiment uses a tubular reinforcing member 10 and a nailing member 11, and the tubular reinforcing member 10 spreads chestnuts on the back surface 3 side of the abutment 1. The back chestnut portion 6 is prevented from shaking and sinking, and the nailing member 11 prevents the abutment 1 from sliding and falling.

具体的には、二重管削孔装置を用い、図1に示すように、二重管削孔装置から管状補強部材としての鋼管10を繰り出し、必要に応じて複数本の鋼管10を連結しながら、鋼管10の先端の削孔ビット(図示せず)により、橋台1の前面2側から、橋台1及び橋台1の背面3側の盛土体7bの裏栗部分6を水平方向に貫通し、先端が裏栗部分6の背面側の基礎地盤7aの所定の位置に到達する孔8を削孔する。   Specifically, using a double pipe drilling device, as shown in FIG. 1, a steel pipe 10 as a tubular reinforcing member is fed out from the double pipe drilling device, and a plurality of steel pipes 10 are connected as necessary. However, the drill bit (not shown) at the end of the steel pipe 10 penetrates the back chestnut portion 6 of the embankment 1 and the embankment body 7b on the back surface 3 side of the abutment 1 from the front surface 2 side of the abutment 1 in the horizontal direction. A hole 8 whose tip reaches a predetermined position of the foundation ground 7a on the back side of the back chestnut portion 6 is drilled.

次に、図2に示すように、ボーリング孔8内において、鋼管10の内側から削孔ビットを引き抜く。そして、鉄筋からなる芯材12の一部に袋体13を取り付け、袋体13に注入ホース15を接続して構成したネイリング部材11(図10参照)を鋼管10の内側に挿入し、ネイリング部材11の芯材12の先端をボーリング孔8の先端に到達させることにより、袋体13をボーリング孔8内の所定の位置に位置決めする。
この場合、ネイリング部材11の芯材12の先端を、ボーリング孔8の先端との間に所定の間隙が形成される位置に位置決めし、袋体13の先端とボーリング孔8の先端との間に所定の間隙が形成されるように構成してもよい。
Next, as shown in FIG. 2, the drill bit is pulled out from the inside of the steel pipe 10 in the boring hole 8. And the bag body 13 is attached to a part of the core 12 made of reinforcing steel, and the nailing member 11 (see FIG. 10) configured by connecting the injection hose 15 to the bag body 13 is inserted inside the steel pipe 10, and the nailing member The bag body 13 is positioned at a predetermined position in the boring hole 8 by causing the tip of the eleven core member 12 to reach the tip of the boring hole 8.
In this case, the tip of the core member 12 of the nailing member 11 is positioned at a position where a predetermined gap is formed between the tip of the boring hole 8 and between the tip of the bag 13 and the tip of the boring hole 8. You may comprise so that a predetermined | prescribed gap | interval may be formed.

ここで、袋体13は、耐圧性及び伸縮性を有する材料からなる袋状をなすものであって、麻袋等のように、内部に注入したグラウト17を表面側にある程度滲出させることができる機能を有するものが好ましい。このような機能を有する袋体13を用いることにより、袋体13と基礎地盤7aとの定着を図ることができる。
なお、浸透性の高い基礎地盤7aの場合には、非透水性を有する袋体13を用い、グラウト17が袋体13の表面側に滲出するのを阻止することにより、袋体と基礎地盤7aとの定着を図ればよい。
Here, the bag 13 has a bag shape made of a material having pressure resistance and stretchability, and can function to exude the grout 17 injected therein to the surface side to some extent, such as a hemp bag. Those having the following are preferred. By using the bag body 13 having such a function, the bag body 13 and the foundation ground 7a can be fixed.
In addition, in the case of the foundation ground 7a with high permeability, the bag body and the foundation ground 7a are used by preventing the grouting 17 from exuding to the surface side of the bag body 13 using the non-water-permeable bag body 13. It is only necessary to try to fix it.

また、図10に示すように、袋体13の口部14は、ゴム、合成樹脂等からなる栓部材16によってシールされ、この栓部材16を貫通して注入ホース15の先端が袋体13の内部に挿入され、注入ホース15の後端はボーリング孔8外に引き出されている。   Further, as shown in FIG. 10, the mouth portion 14 of the bag body 13 is sealed by a plug member 16 made of rubber, synthetic resin, or the like. Inserted inside, the rear end of the injection hose 15 is drawn out of the boring hole 8.

なお、袋体13は、裏栗部分6の背面側の基礎地盤7aに挿入された芯材12の部分に、所定の間隔ごとに複数箇所に取り付けてもよいし、その芯材13の部分の全体に行き渡る長さのものを取り付けてもよい。要は、基礎地盤7aの地質、地層構造等に応じて、使用する袋体13の数量、取付位置等を設定すればよい。
なお、本実施の形態においては、裏栗部分6の背面側の基礎地盤7aの全体に行き渡る長さの袋体13を取り付けている。
In addition, the bag body 13 may be attached to a portion of the core material 12 inserted in the base ground 7a on the back side of the back chestnut portion 6 at a plurality of predetermined intervals. The thing of the length which spreads to the whole may be attached. In short, the number of bag bodies 13 to be used, the mounting position, etc. may be set according to the geology of the foundation ground 7a, the stratum structure, and the like.
In the present embodiment, a bag 13 having a length extending over the entire foundation ground 7a on the back side of the back chestnut portion 6 is attached.

次に、図3及び図4に示すように、ボーリング孔8内から鋼管10を橋台1の前面2側に引き抜くことにより、鋼管10の先端を橋台1の背面3側の裏栗部分6と裏栗部分6の背面側の基礎地盤7aとの境界部分に位置させ、橋台1の前面2から突出している鋼管10の部分を分離し、鋼管10を橋台1及び裏栗部分6の全体に行き渡るように配置する。   Next, as shown in FIGS. 3 and 4, the steel pipe 10 is pulled out from the boring hole 8 toward the front surface 2 side of the abutment 1, so that the tip of the steel pipe 10 is connected to the back chestnut portion 6 on the back surface 3 side of the abutment 1 and the back. It is located in the boundary part with the foundation ground 7a of the back side of the chestnut part 6, the part of the steel pipe 10 which protrudes from the front surface 2 of the abutment 1 is separated, and the steel pipe 10 is spread over the abutment 1 and the whole back chestnut part 6 To place.

次に、図4に示すように、ボーリング孔8において、ネイリング部材11の袋体13の内部に注入ホース15を介して固化材であるグラウト17を加圧注入し、袋体13を膨張変形させることにより、袋体13をボーリング孔8の内面側(基礎地盤7a側)に密着させ、ネイリング部材11の引き抜き抵抗力を高める。
なお、注入ホース15は、グラウト17の注入後に、ボーリング孔8内に残置させてもよいし、ボーリング孔8から引き抜いてもよい。
Next, as shown in FIG. 4, in the boring hole 8, the grout 17 that is a solidifying material is pressurized and injected into the bag 13 of the nailing member 11 through the injection hose 15, and the bag 13 is inflated and deformed. Thus, the bag 13 is brought into close contact with the inner surface side (the foundation ground 7a side) of the boring hole 8 and the pulling resistance force of the nailing member 11 is increased.
The injection hose 15 may be left in the boring hole 8 after the grout 17 is injected, or may be pulled out from the boring hole 8.

次に、図5に示すように、ボーリング孔8において、鋼管10の内側に固化材であるグラウト17を無加圧注入し、そのグラウト17の一部をネイリング部材11とボーリング孔8との間の隙間内にも回り込ませ、鋼管10の曲げ剛性及びせん断剛性を高めるとともに、ネイリング部材11を鋼管10及び裏栗部分6の背面側の基礎地盤7aに全面接着させる。   Next, as shown in FIG. 5, in the boring hole 8, a grout 17 that is a solidifying material is injected into the steel pipe 10 without pressure, and a part of the grout 17 is interposed between the nailing member 11 and the boring hole 8. The steel pipe 10 is bent and sheared to increase the bending rigidity and shear rigidity, and the nailing member 11 is adhered to the steel pipe 10 and the foundation ground 7a on the back side of the back chestnut portion 6 in its entirety.

次に、袋体13の内部、鋼管10の内側、及びボーリング孔8内に注入したグラウト17が固化した後に、図6及び図11に示すように、橋台1の前面2側に金属、コンクリート等からなるプレート18を配置し、プレート18を貫通させたネイリング部材11の芯材12の頭部にナット19を螺合させて締め付けることにより、芯材12の頭部を橋台1の前面2側に定着させる。または、図12に示すように、橋台1の前面2側に、金属、コンクリート等からなる基台20を配置し、この基台20の上部に金属、コンクリート等からなるプレート18を架け渡し、このプレート18を貫通させた芯材12の頭部にナット19を螺合させて締め付けることにより、芯材12の頭部を橋台1の前面2側に定着させる。   Next, after the grout 17 injected into the inside of the bag 13, the inside of the steel pipe 10, and the boring hole 8 is solidified, as shown in FIGS. 6 and 11, metal, concrete, etc. are formed on the front surface 2 side of the abutment 1. The plate 18 is arranged, and the nut 19 is screwed into the head of the core member 12 of the nailing member 11 penetrating the plate 18 and tightened, whereby the head of the core member 12 is brought to the front 2 side of the abutment 1. Let it settle. Alternatively, as shown in FIG. 12, a base 20 made of metal, concrete, or the like is disposed on the front surface 2 side of the abutment 1, and a plate 18 made of metal, concrete, etc. is bridged over the base 20, The nut 19 is screwed into the head of the core member 12 that has penetrated the plate 18 and tightened to fix the head of the core member 12 to the front surface 2 side of the abutment 1.

この場合、必要に応じて、橋台1の前面2側にコンクリート(図示せず)を所定の厚さで打設し、このコンクリートの内部に芯材12の頭部、プレート18、基台20、及びナット19を埋設させるように構成してもよい。   In this case, if necessary, concrete (not shown) is placed on the front surface 2 side of the abutment 1 with a predetermined thickness, and the head of the core 12, the plate 18, the base 20, The nut 19 may be embedded.

そして、上記と同様の工程により、図7に示すように、ボーリング孔8を橋台1の高さ方向(鉛直方向)に所定の間隔ごとに複数箇所に削孔し、各ボーリング孔8内にネイリング部材11及び鋼管10を設置するとともに、上記と同様の工程により、図示はしないが、ボーリング孔8を橋台1の幅方向(水平方向)に所定の間隔ごとに複数箇所に削孔し、各ボーリング孔8内にネイリング部材11及び鋼管10を設置し、橋台1に耐震補強を施す。   Then, by the same process as described above, as shown in FIG. 7, the boring holes 8 are drilled at a plurality of positions at predetermined intervals in the height direction (vertical direction) of the abutment 1, and nailing is performed in each boring hole 8. The member 11 and the steel pipe 10 are installed, and the boring holes 8 are drilled at a plurality of positions at predetermined intervals in the width direction (horizontal direction) of the abutment 1 by the same process as described above. A nailing member 11 and a steel pipe 10 are installed in the hole 8, and the abutment 1 is subjected to seismic reinforcement.

上記のように構成した本実施の形態の構造物の耐震補強方法にあっては、橋台1及び裏栗部分6の全体に行き渡るように鋼管10を水平に配置し、このような鋼管10を橋台1の高さ方向(鉛直方向)及び幅方向(水平方向)に所定の間隔ごとに複数箇所に配置し、さらに、各鋼管10の内側にグラウト17を注入して、各鋼管10の曲げ剛性及びせん断剛性を高めたので、これらの複数の鋼管10によって裏栗部分6の揺すり込み沈下を防止できるとともに、複数の鋼管10の断面積の分だけ橋台1の背面側の裏栗部分6を締め固めることができる。   In the seismic reinforcement method of the structure of the present embodiment configured as described above, the steel pipe 10 is horizontally arranged so as to reach the entire abutment 1 and the back chestnut portion 6, and the steel pipe 10 is attached to the abutment. 1 in the height direction (vertical direction) and in the width direction (horizontal direction) at a plurality of predetermined intervals, and further, grout 17 is injected inside each steel pipe 10, Since the shear rigidity is increased, the plurality of steel pipes 10 can prevent the sinking and sinking of the back chestnut portion 6 and the back chestnut portion 6 on the back side of the abutment 1 is compacted by the cross-sectional area of the plurality of steel pipes 10. be able to.

従って、大規模な地震によって橋台1が被害を受けた場合であっても、裏栗部分6の上方の盛土体7bの部分、或いは、橋台1と盛土体7bとの境界部分に段差が生じるのを防止できるので、その部分に一つの連続した面を確保することができ、道路や鉄道等を緊急車両等の通行に支障をきたさないような状態に維持し続けることができる。   Therefore, even when the abutment 1 is damaged by a large-scale earthquake, a step is generated in the embankment portion 7b above the back chestnut portion 6 or the boundary portion between the abutment 1 and the embankment body 7b. Therefore, one continuous surface can be secured in that portion, and roads, railways, etc. can be kept in a state that does not hinder the passage of emergency vehicles.

また、鋼管10の基端部は橋台1に定着され、先端部は基礎地盤7aに定着されたネイリング部材11により支持されるので、鋼管10は、その両端が支持されることにより片持ち状態にはならない。
従って、大規模な地震により橋台1に変位等が生じるような場合であっても、裏栗部分6の上部の盛土体7bの部分、或いは、橋台1と盛土体7bとの境界部分の連続性を保つことができるので、道路や鉄道等を緊急車両等の通行に支障をきたさないような状態に維持し続けることができる。
Moreover, since the base end part of the steel pipe 10 is fixed to the abutment 1 and the tip part is supported by the nailing member 11 fixed to the foundation ground 7a, the steel pipe 10 is in a cantilever state by supporting both ends thereof. Must not.
Therefore, even when a displacement or the like occurs in the abutment 1 due to a large-scale earthquake, the continuity of the embankment body 7b above the back chestnut portion 6 or the boundary portion between the abutment 1 and the embankment body 7b. Therefore, roads, railways, etc. can be kept in a state that does not hinder the passage of emergency vehicles.

さらに、各鋼管10の内側にネイリング部材11を挿入し、ネイリング部材11の鉄筋からなる芯材12を、芯材12に取り付けた袋体13にグラウト17を加圧注入して膨張変形させることにより、裏栗部分6の背面側の基礎地盤7aに定着させるとともに、鋼管10の内側及びボーリング孔8内に注入したグラウト17によってネイリング部材11を鋼管10及び裏栗部分6の背面側の基礎地盤7aに全面接着させているので、ネイリング部材11の引き抜き抵抗力を高めることができる。従って、地震によって橋台1が転倒したり、滑動するのを効果的に防止しながら、裏栗部分6の上部の盛土体7bの部分、或いは、橋台1と盛土体7bとの境界部分に段差が生じるのを防止でき、盛土体7bの連続性を保ち続けることができる。   Further, by inserting a nailing member 11 inside each steel pipe 10 and inflating and deforming a core material 12 made of reinforcing bars of the nailing member 11 by injecting a grout 17 into a bag body 13 attached to the core material 12. The ground ground 7 a on the back side of the back chestnut portion 6 is fixed, and the nailing member 11 is fixed to the base ground 7 a on the back side of the steel pipe 10 and back chestnut portion 6 by the grout 17 injected into the inside of the steel pipe 10 and the bore hole 8. As a result, the pulling resistance of the nailing member 11 can be increased. Therefore, there is a step in the embankment portion 7b above the back chestnut portion 6 or the boundary portion between the abutment 1 and the embankment body 7b while effectively preventing the abutment 1 from falling or sliding due to the earthquake. Generation | occurence | production can be prevented and the continuity of the embankment body 7b can be maintained.

図13には、本発明による構造物の耐震補強方法の他の実施の形態が示されている。
本実施の形態の構造物の耐震補強方法は、芯材12に鋼管を用い、この鋼管からなる芯材12の一部に袋体13を取り付け、この鋼管からなる芯材12の内側の部分を注入孔として利用して、袋体13の内部にグラウト17を加圧注入するとともに、鋼管からなる芯材12の内部にもグラウト17を注入するように構成したものであって、その他の構成は前記第1の実施の形態に示すものと同様である。
なお、芯材12の袋体13の内部に位置する部分に、必要に応じて、芯材12の内外面間を貫通する複数の孔12aを設け、この孔12aと芯材12の先端の開口とを利用して、袋体13の内部にグラウト17を充填するように構成してもよい。
FIG. 13 shows another embodiment of the seismic reinforcement method for structures according to the present invention.
In the seismic reinforcement method of the structure of the present embodiment, a steel pipe is used as the core material 12, a bag 13 is attached to a part of the core material 12 made of this steel pipe, and the inner part of the core material 12 made of this steel pipe is attached. The grout 17 is used as an injection hole to inject the grout 17 into the bag 13 under pressure, and to inject the grout 17 into the core 12 made of a steel pipe. This is the same as that shown in the first embodiment.
In addition, a plurality of holes 12 a penetrating between the inner and outer surfaces of the core material 12 are provided in a portion of the core material 12 located inside the bag body 13 as necessary, and the holes 12 a and an opening at the tip of the core material 12 are provided. The grout 17 may be filled in the bag body 13 by using.

この場合、袋体13は、その口部14を、シール部材21を介して鋼管からなる芯材12に気密に接合され、袋体13の内部にグラウト17を加圧注入する際に漏れが生じるのを防止し、袋体13を所定の大きさに膨張変形可能に構成している。   In this case, the bag body 13 is hermetically bonded to the core member 12 made of a steel pipe through the mouth portion 14 via the seal member 21, and leakage occurs when the grout 17 is injected under pressure into the bag body 13. The bag body 13 is configured to be inflatable and deformable to a predetermined size.

そして、本実施の形態においても、前記実施の形態に示すものと同様の作用効果を奏する他、鋼管によって芯材12を構成しており、注入ホースが不要になるので、全体の構成を簡素化することができる。   Also in this embodiment, in addition to the same effects as those shown in the above embodiment, the core material 12 is constituted by a steel pipe, and an injection hose is not required, so the overall configuration is simplified. can do.

なお、前記各実施の形態においては、ボーリング孔8内の鋼管10の内側にネイリング部材11を挿入し、ネイリング部材11の先端を、袋体13を介して裏栗部分6の背面側の基礎地盤7aに定着させたが、ネイリング部材11の代わりにグラウンドアンカー(図示せず)を用い、グラウンドアンカーを鋼管10の内側に打設し、グランドアンカーの先端を裏栗部分6の背面側の基礎地盤7aに定着させ、グラウントアンカーに緊張力を付与した状態で、グラウンドアンカーの頭部を橋台1の前面2側に定着させるように構成してもよい。   In each of the above embodiments, the nailing member 11 is inserted inside the steel pipe 10 in the boring hole 8, and the tip of the nailing member 11 is connected to the base ground on the back side of the back chestnut portion 6 through the bag body 13. Although fixed to 7a, a ground anchor (not shown) is used instead of the nailing member 11, the ground anchor is driven inside the steel pipe 10, and the tip of the ground anchor is the foundation ground on the back side of the back chestnut portion 6. You may comprise so that the head of a ground anchor may be fixed to the front 2 side of the abutment 1 in the state which fixed to 7a and gave tension | tensile_strength to the ground anchor.

また、前各実施の形態においては、本発明を、構造物である橋台1の背面側に栗石を敷き詰めた裏栗部分6を有する場合に適用したが、橋台1の背面側に栗石以外のものを敷き詰めた場合に本発明を適用してもよい。   Moreover, in each previous embodiment, although this invention was applied when it has the back chestnut part 6 which spread the chestnut on the back side of the abutment 1 which is a structure, things other than the chestnut on the back side of the abutment 1 The present invention may be applied to the case where the material is spread.

1 橋台
2 前面
3 背面
4 基礎
5 杭
6 裏栗部分
7 地盤
7a 基礎地盤
7b 盛土体
8 孔(ボーリング孔)
10 管状補強部材(鋼管)
11 ネイリング部材
12 芯材
12a 孔
13 袋体
14 口部
15 注入ホース
16 栓部材
17 グラウト
18 プレート
19 ナット
20 基台
21 シール部材
22 橋桁
25 橋台
26 基礎部分
27 ストラッド
28 グラウンドアンカー
29 ネイリング部材
30 裏栗部分
31 地盤
DESCRIPTION OF SYMBOLS 1 Abutment 2 Front 3 Back 4 Foundation 5 Pile 6 Back chestnut 7 Ground 7a Foundation ground 7b Embankment 8 Hole (boring hole)
10 Tubular reinforcement member (steel pipe)
DESCRIPTION OF SYMBOLS 11 Nailing member 12 Core material 12a Hole 13 Bag body 14 Mouth part 15 Injection hose 16 Plug member 17 Grout 18 Plate 19 Nut 20 Base 21 Seal member 22 Bridge girder 25 Abutment 26 Base part 27 Strad 28 Ground anchor 29 Nailing member 30 Back chestnut Part 31 Ground

Claims (5)

前面側が開放されるとともに、少なくとも背面からの土圧荷重を支持する構造物の耐震補強方法であって、
前記構造物の前面側から、管状補強部材により、前記構造物を水平方向に貫通して先端が背面側の地盤に到達する孔を、前記構造物の幅方向に間隔をおいて複数箇所に削孔し、削孔した各孔内において、前記管状補強部材の内側に、袋体を取り付けた芯材を挿入し、前記管状補強部材を前記孔から引き抜いて、前記管状補強部材の先端を前記構造物の背面側の地盤の所定の位置に配置させ、前記袋体に固化材を加圧注入して、前記袋体を膨張変形させて前記孔の内面に密着させ、前記管状補強部材の内側部分及び前記孔内に固化材を無加圧注入するとともに、前記芯材の頭部を前記構造物の前面側に定着させることを特徴とする構造物の耐震補強方法。
A seismic reinforcement method for a structure that supports the earth pressure load from at least the back side while the front side is open,
From the front side of the structure, holes that penetrate the structure in the horizontal direction and reach the ground on the back side through the structure are cut into a plurality of locations at intervals in the width direction of the structure by a tubular reinforcing member. In each hole that has been drilled and drilled, a core member attached with a bag is inserted inside the tubular reinforcing member, the tubular reinforcing member is pulled out from the hole, and the tip of the tubular reinforcing member is placed in the structure An inner portion of the tubular reinforcing member is arranged at a predetermined position on the ground on the back side of the object, pressurizing and injecting a solidifying material into the bag body, inflating and deforming the bag body and closely contacting the inner surface of the hole And a method for seismic reinforcement of a structure, wherein a solidifying material is injected without pressure into the hole, and a head portion of the core material is fixed to the front side of the structure.
前記構造物の背面側には、栗石を敷き詰めた裏栗部分が設けられ、前記管状補強部材は、前記構造物及び前記裏栗部分を貫通して、先端が前記裏栗部分よりも背面側の前記地盤内に配置されていることを特徴とする請求項1に記載の構造物の耐震補強方法。   A back chestnut portion laid with chestnut stone is provided on the back side of the structure, and the tubular reinforcing member penetrates the structure and the back chestnut portion, and the tip is on the back side of the back chestnut portion. The method for seismic reinforcement of a structure according to claim 1, wherein the method is arranged in the ground. 前記孔は、前記構造物の高さ方向に間隔をおいて複数箇所に削孔されていることを特徴とする請求項1又は2に記載の構造物の耐震補強方法。   3. The method for seismic reinforcement of a structure according to claim 1, wherein the holes are drilled at a plurality of positions at intervals in the height direction of the structure. 前記芯材は、鉄筋又は鋼管であることを特徴とする請求項1〜3の何れか1項に記載の構造物の耐震補強方法。   The seismic reinforcement method for a structure according to any one of claims 1 to 3, wherein the core material is a reinforcing bar or a steel pipe. 前面側が開放されるとともに、少なくとも背面からの土圧荷重を支持する構造物の耐震補強構造であって、
前記構造物の幅方向に間隔をおいて複数箇所に、前記構造物を前面側から水平方向に貫通して先端が背面側の地盤に到達するように形成された各孔内に、前記構造物と前記構造物の背面側の地盤の所定の位置との間に亘って設けられる管状補強部材と、
前記各管状補強部材の内側に挿入されるとともに、前記各管状補強部材の内側部分及び前記各孔内に無加圧注入された固化材によって前記各孔内に定着される芯材と、
該各芯材の一部に取り付けられるとともに、内部に加圧注入された固化材によって膨張変形して前記各孔の内面に密着される袋体と、
前記各芯材の頭部を前記構造物の前面側に定着させる定着部材とを備えていることを特徴とする構造物の耐震補強構造。
A seismic reinforcement structure for a structure that supports the earth pressure load from at least the back side while the front side is open,
In each of the holes formed so as to penetrate the structure horizontally from the front side to reach the ground on the back side at a plurality of positions at intervals in the width direction of the structure. And a tubular reinforcing member provided between a predetermined position of the ground on the back side of the structure,
A core material inserted into each of the tubular reinforcing members and fixed in each of the holes by a solidified material injected without pressure into the inner portion of each of the tubular reinforcing members and each of the holes;
A bag that is attached to a part of each of the core members and that is inflated and deformed by a solidified material injected under pressure therein and is in close contact with the inner surface of each of the holes,
An anti-seismic reinforcing structure for a structure, comprising: a fixing member for fixing the head of each core member to the front side of the structure.
JP2010031545A 2010-02-16 2010-02-16 Seismic reinforcement method for structures and seismic reinforcement structure for structures Active JP5504951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010031545A JP5504951B2 (en) 2010-02-16 2010-02-16 Seismic reinforcement method for structures and seismic reinforcement structure for structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010031545A JP5504951B2 (en) 2010-02-16 2010-02-16 Seismic reinforcement method for structures and seismic reinforcement structure for structures

Publications (2)

Publication Number Publication Date
JP2011168975A true JP2011168975A (en) 2011-09-01
JP5504951B2 JP5504951B2 (en) 2014-05-28

Family

ID=44683365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010031545A Active JP5504951B2 (en) 2010-02-16 2010-02-16 Seismic reinforcement method for structures and seismic reinforcement structure for structures

Country Status (1)

Country Link
JP (1) JP5504951B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103114521A (en) * 2013-01-21 2013-05-22 浙江大学宁波理工学院 Structure and construction method of junction position of bridge abutment and roadbed
WO2013168582A1 (en) 2012-05-11 2013-11-14 ソニー株式会社 Information processing device, information processing method, and program
CN108221647A (en) * 2018-02-09 2018-06-29 聂重军 A kind of bridge abutment structure and its construction method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003313864A (en) * 2002-04-18 2003-11-06 Sumitomo Denko Steel Wire Kk Grout entry prevention cap
JP2004232435A (en) * 2003-02-03 2004-08-19 Ohbayashi Corp Reinforcement method of abutment and its reinforced structure
JP2009191582A (en) * 2008-02-18 2009-08-27 Ohbayashi Corp Reinforcing member used for ground reinforcement, method for ground reinforcement, and ground reinforcement structure
JP2009256938A (en) * 2008-04-15 2009-11-05 Railway Technical Res Inst Rebuilding method for existing bridge

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003313864A (en) * 2002-04-18 2003-11-06 Sumitomo Denko Steel Wire Kk Grout entry prevention cap
JP2004232435A (en) * 2003-02-03 2004-08-19 Ohbayashi Corp Reinforcement method of abutment and its reinforced structure
JP2009191582A (en) * 2008-02-18 2009-08-27 Ohbayashi Corp Reinforcing member used for ground reinforcement, method for ground reinforcement, and ground reinforcement structure
JP2009256938A (en) * 2008-04-15 2009-11-05 Railway Technical Res Inst Rebuilding method for existing bridge

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013168582A1 (en) 2012-05-11 2013-11-14 ソニー株式会社 Information processing device, information processing method, and program
CN103114521A (en) * 2013-01-21 2013-05-22 浙江大学宁波理工学院 Structure and construction method of junction position of bridge abutment and roadbed
CN103114521B (en) * 2013-01-21 2015-02-11 浙江大学宁波理工学院 Structure and construction method of junction position of bridge abutment and roadbed
CN108221647A (en) * 2018-02-09 2018-06-29 聂重军 A kind of bridge abutment structure and its construction method

Also Published As

Publication number Publication date
JP5504951B2 (en) 2014-05-28

Similar Documents

Publication Publication Date Title
JP5274941B2 (en) Reinforcing method for embankment and embankment on its back
KR100934196B1 (en) Pressure type small pile for bearing bidirectional applied force and preventive methods for the buoyancy in construction using the same
JP4663541B2 (en) Seismic reinforcement method for existing concrete pier
JP5504951B2 (en) Seismic reinforcement method for structures and seismic reinforcement structure for structures
KR101914901B1 (en) Reinforcement pile for ground improvement and earthquake-proof and its construction method
KR100710867B1 (en) Method of upward type base reinforced a substitute for horizontal drainage and that of structure
KR100908085B1 (en) Ground adhering soil nailing structure and ground reinforcement method using the same
KR100926300B1 (en) Foundation structure reinfoeced by pile and the construction method for the same
CN105926637B (en) The prestressing force support system and design of a kind of existing subway of protection
JP2016053273A (en) Slope stabilizing method as countermeasure to earthquake and rain in soil structure with pressure insertion type bar reinforcement
KR100781492B1 (en) Structure of retaining wall, and construction methods for the same
CN207959225U (en) One kind is certainly into the pull-type steel sheet pile supporting construction of churning anchor
KR200381572Y1 (en) Paker can pressure with milk grouting
KR100951872B1 (en) The ground reinforcement apparatus and ground reinforcement method
CN210459233U (en) Pile anchor foundation pit supporting structure for soft soil area
KR100711054B1 (en) A construction method of concrete retaining wall using anchor
CN114411767A (en) Construction method of loose deformation slope reinforcement structure
KR100742775B1 (en) The anchor having conical jacket and the construction method using the same
JP2001303592A (en) Method for installing and fixing block
JPH1082057A (en) Method of earthquake-resisting pile foundation construction
JP5463043B2 (en) Method for reinforcing concrete structures
KR101020217B1 (en) rock construction structure of using anchor and method thereof
JPH1082056A (en) Method of earthquake-resisting pile foundation construction
CN110158498A (en) A kind of elasticity passive protection net pillar construction and construction method
CN216515697U (en) Rock drilling anchor cable and bearing platform combined anti-seismic foundation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140303

R150 Certificate of patent or registration of utility model

Ref document number: 5504951

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150