JP2011163970A - Eccentricity measuring method and eccentricity measuring device of aspherical lens - Google Patents

Eccentricity measuring method and eccentricity measuring device of aspherical lens Download PDF

Info

Publication number
JP2011163970A
JP2011163970A JP2010027803A JP2010027803A JP2011163970A JP 2011163970 A JP2011163970 A JP 2011163970A JP 2010027803 A JP2010027803 A JP 2010027803A JP 2010027803 A JP2010027803 A JP 2010027803A JP 2011163970 A JP2011163970 A JP 2011163970A
Authority
JP
Japan
Prior art keywords
lens
measured
eccentricity
light
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2010027803A
Other languages
Japanese (ja)
Inventor
Nariya Matsumoto
斉也 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2010027803A priority Critical patent/JP2011163970A/en
Publication of JP2011163970A publication Critical patent/JP2011163970A/en
Abandoned legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an eccentricity measuring method and eccentricity measuring device performing eccentricity measurement easily and inexpensively even for aspherical lens deviated largely from spherical shape. <P>SOLUTION: Based on a design formula of a measured lens, spherical surface approximation domain is computed (S1) which is approximated as a part of spherical surface from a vertex of the measured lens; an optical diaphragm for irradiating only spherical surface approximation domain is created (S2); an objective lens is selected (S3) corresponding to the spherical surface approximation domain, the measured lens L; the optical diaphragm and the objective lens are deployed (S4), respectively; measuring light is irradiated (S5) to the measured lens; by performing alignment of the objective lens and the measured lens, measuring light is forced to irradiate (S6) only the spherical surface approximation domain; the measured lens is rotated (S7) around an optical axis of measuring light as rotary shaft; and a value of eccentricity of optical axis of the measured lens to the rotary shaft is measured (S8) by detecting reflection light of measuring light reflected at the spherical surface approximation domain of the measured lens. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、非球面レンズの偏芯測定方法および偏芯測定装置に係り、特に、オートコリメーション法を用いて非球面レンズの偏芯量を測定する方法および装置に関するものである。   The present invention relates to an aspherical lens eccentricity measuring method and an eccentricity measuring apparatus, and more particularly to a method and an apparatus for measuring the eccentricity of an aspherical lens using an autocollimation method.

いわゆるオートコリメーション法を用いて非球面レンズの偏芯測定を行う従来の方法が特許文献1に開示されている。
このオートコリメーション法は、本来、球面形状の偏芯測定に有効であることが知られており、測定が短時間で済み、精度が高いという特徴を有している。
A conventional method for measuring the eccentricity of an aspherical lens using a so-called autocollimation method is disclosed in Patent Document 1.
This autocollimation method is inherently known to be effective for measuring the eccentricity of a spherical shape, and is characterized in that the measurement takes a short time and the accuracy is high.

しかし、非球面レンズを対象としたとき、球面形状からの変形量が小さいレンズでは測定可能であるが、球面形状から大きく乖離した非球面レンズでは、被測定レンズに照射した光が一定の位置に集光せず、偏芯測定ができなくなってしまう。   However, when an aspherical lens is used as a target, measurement is possible with a lens with a small amount of deformation from the spherical shape, but with an aspherical lens greatly deviating from the spherical shape, the light irradiated to the lens to be measured is at a fixed position. The light is not condensed and the eccentricity measurement cannot be performed.

近年、特に、携帯電話の内蔵カメラや医療機器用カメラ等に用いられる撮像系レンズ、DVDドライブ等に用いられる光ピックアップ用対物レンズ等に対する需要が高まっている。このような撮像系レンズや光ピックアップ用対物レンズは、超小型のレンズであり、高い光学精度が要求される。
また、これらのレンズとして非球面レンズを採用すれば、球面レンズの場合と比べてレンズの枚数を低減することができ、レンズ搭載機器の小型化、軽量化、低コスト化に役立つことが期待される。
In recent years, in particular, there has been an increasing demand for an imaging lens used for a built-in camera of a mobile phone, a camera for medical equipment, an objective lens for an optical pickup used for a DVD drive, and the like. Such an imaging lens and an optical pickup objective lens are ultra-compact lenses, and high optical accuracy is required.
In addition, if aspherical lenses are used as these lenses, the number of lenses can be reduced compared to the case of spherical lenses, which is expected to help reduce the size, weight, and cost of equipment equipped with lenses. The

よって、超小型の非球面レンズについて高い光学精度を保つためにも、その偏芯測定を短時間に低コストで行う意義は大きい。   Therefore, in order to maintain high optical accuracy for the ultra-small aspheric lens, it is significant to perform the eccentricity measurement in a short time and at a low cost.

球面形状から大きく乖離した非球面レンズに対しても、偏芯測定を可能とするための方法が特許文献2〜4に提案されている。
特許文献2に開示された方法においては、形状測定機によって被測定面の形状を直接測定することで、偏芯測定を行っている。
また、特許文献3に記載の方法では、被測定レンズとこの被測定レンズの形状に合わせたヌル光学素子とを干渉計の測定光束中に配置し、被測定レンズの基準面および被測定面とヌル光学素子の基準面をそれぞれ干渉計の共通の参照面で検出することで、偏芯測定を行っている。
さらに、特許文献4に記載の方法では、回転軸の回りに回転する被測定面に2つの光束を照射し、この被測定面で反射したこれらの光束により形成される干渉縞の変動を測定することで偏芯測定を行っている。
Patent Documents 2 to 4 propose methods for enabling decentration measurement even for an aspherical lens greatly deviating from a spherical shape.
In the method disclosed in Patent Document 2, the eccentricity measurement is performed by directly measuring the shape of the surface to be measured by a shape measuring machine.
In the method described in Patent Document 3, a lens to be measured and a null optical element that matches the shape of the lens to be measured are arranged in a measurement light beam of an interferometer, and a reference surface and a surface to be measured of the lens to be measured Eccentricity measurement is performed by detecting the reference plane of the null optical element with the common reference plane of each interferometer.
Further, according to the method described in Patent Document 4, two light beams are irradiated on the surface to be measured that rotates around the rotation axis, and fluctuations in interference fringes formed by these light beams reflected by the surface to be measured are measured. Thus, eccentricity measurement is performed.

特開平5−340838号JP-A-5-340838 特開平7−229811号Japanese Patent Application Laid-Open No. 7-229811 特開2007−3344号JP 2007-3344 特開平11−173812号JP-A-11-173812

しかし、特許文献2の方法では、偏芯測定に多大の手間と時間を要し、特許文献3および4の方法では、偏芯測定のための設備が複雑となり、大きなコストが掛かるという問題があった。   However, the method of Patent Document 2 requires a lot of labor and time for the eccentricity measurement, and the methods of Patent Documents 3 and 4 have a problem that the equipment for the eccentricity measurement is complicated and the cost is high. It was.

上記従来技術の問題点を解決するべく、本発明は、球面形状から大きく乖離した非球面レンズに対しても、簡単かつ安価に偏芯測定することのできる非球面レンズの偏芯測定方法および偏芯測定装置を提供することを目的とする。   In order to solve the above-mentioned problems of the prior art, the present invention provides an aspherical lens decentration measuring method and a decentering method that can easily and inexpensively perform decentration measurement even for an aspherical lens greatly deviating from a spherical shape. An object is to provide a lead measuring device.

本発明に係る非球面レンズの偏芯測定方法は、少なくとも一部が非球面の表面を有する被測定レンズの偏芯量を測定する方法であって、被測定レンズの設計式に基づいて被測定レンズの頂点から球面の一部と近似される球面近似領域を算出し、被測定レンズを被測定レンズの光軸の近傍で且つこの光軸にほぼ平行に設定された回転軸の回りに回転し、被測定レンズの球面近似領域のみに測定光を照射し、被測定レンズの球面近似領域で反射する測定光の反射光を検出することにより回転軸に対する被測定レンズの光軸の偏芯量を測定する方法である。   The method for measuring the eccentricity of an aspheric lens according to the present invention is a method for measuring the amount of eccentricity of a lens to be measured that has at least a part of an aspheric surface, and is based on a design equation for the lens to be measured. A spherical approximate area approximated as a part of a spherical surface is calculated from the apex of the lens, and the lens to be measured is rotated around a rotation axis set in the vicinity of the optical axis of the lens to be measured and approximately parallel to the optical axis. The amount of eccentricity of the optical axis of the lens to be measured with respect to the rotation axis is determined by irradiating the measuring light only to the spherical approximate region of the lens to be measured and detecting the reflected light of the measuring light reflected by the spherical approximate region of the lens to be measured. It is a method of measuring.

なお、開口部を有する光学絞りを用いることにより測定光を球面近似領域のみに照射することができる。
また、被測定レンズは、位置決めを行うためのコバ部を有し、回転軸は、コバ部の中心を通るように設定されることが好ましい。
Note that the measurement light can be irradiated only to the spherical approximate region by using an optical aperture having an opening.
Moreover, it is preferable that the lens to be measured has an edge portion for positioning, and the rotation axis is set so as to pass through the center of the edge portion.

本発明に係る非球面レンズの偏芯測定装置は、少なくとも一部が非球面の表面を有する被測定レンズの偏芯量を測定する装置であって、被測定レンズの設計式に基づいて被測定レンズの頂点から球面の一部と近似される球面近似領域を算出する算出手段と、被測定レンズを被測定レンズの光軸の近傍で且つこの光軸にほぼ平行に設定された回転軸の回りに回転する回転手段と、被測定レンズの球面近似領域のみに測定光を照射する照射手段と、被測定レンズの球面近似領域で反射する測定光の反射光を検出することにより回転軸に対する被測定レンズの光軸の偏芯量を測定する測定手段とを備えたものである。   An aspherical lens eccentricity measuring apparatus according to the present invention is an apparatus for measuring the amount of eccentricity of a measured lens having at least a part of an aspherical surface, and is measured based on a design equation of the measured lens. Calculation means for calculating a spherical approximate area approximated to a part of a spherical surface from the apex of the lens, and a rotation axis set around the optical axis of the lens to be measured and approximately parallel to the optical axis. Rotating means that rotates to the measuring axis, irradiating means for irradiating the measuring light only to the spherical approximate area of the lens to be measured, and the reflected light of the measuring light reflected by the spherical approximate area of the lens to be measured to detect the measured light with respect to the rotation axis Measuring means for measuring the amount of eccentricity of the optical axis of the lens.

なお、照射手段は、光源と、光源から発せられた光を所定の照射角で被測定レンズに向けて照射するための対物レンズと、対物レンズと被測定レンズとの間に配置されると共に開口部を有する光学絞りとを含むように構成することができる。この場合、光学絞りは、算出手段で算出された被測定レンズの球面近似領域に対応するサイズの開口部を有することが好ましい。また、光学絞りとして、開口部のサイズを調整可能な可変絞りを用いてもよい。
あるいは、照射手段を、光源と、光源から発せられた光を所定の照射角で被測定レンズに向けて照射するための対物レンズと、被測定レンズの表面上に形成された遮光マスクとを含むように構成することもできる。
また、被測定レンズは、位置決めを行うためのコバ部を有し、回転手段は、回転軸をコバ部の中心を通るように設定することが好ましい。
The irradiating means is disposed between the objective lens and the lens to be measured and an aperture for irradiating the light to the lens to be measured at a predetermined irradiation angle with light emitted from the light source. And an optical diaphragm having a portion. In this case, the optical diaphragm preferably has an opening having a size corresponding to the spherical approximate area of the lens to be measured calculated by the calculating means. Further, as the optical diaphragm, a variable diaphragm that can adjust the size of the opening may be used.
Alternatively, the irradiation means includes a light source, an objective lens for irradiating light emitted from the light source toward the lens to be measured at a predetermined irradiation angle, and a light-shielding mask formed on the surface of the lens to be measured. It can also be configured as follows.
Moreover, it is preferable that the lens to be measured has an edge portion for positioning, and the rotation means sets the rotation axis so as to pass through the center of the edge portion.

本発明によれば、球面形状から大きく乖離した非球面レンズに対しても、簡単かつ安価に偏芯測定をすることができる。   According to the present invention, it is possible to measure the eccentricity easily and inexpensively even for an aspherical lens greatly deviating from the spherical shape.

本発明の実施の形態1に係る偏芯測定装置の構成を示す図である。It is a figure which shows the structure of the eccentricity measuring apparatus which concerns on Embodiment 1 of this invention. 実施の形態1における偏芯測定方法を示すフローチャートである。3 is a flowchart showing an eccentricity measuring method in the first embodiment. 被測定レンズの頂点近傍における球面近似領域を示す概略図である。It is the schematic which shows the spherical approximate area in the vertex vicinity of a to-be-measured lens. 実施の形態1において被測定レンズに測定光が入射する様子を示す図である。FIG. 3 is a diagram illustrating a state in which measurement light is incident on a lens to be measured in the first embodiment. 被測定レンズのコバ部の中心と被測定レンズの光軸との偏芯量を示す図である。It is a figure which shows the eccentric amount of the center of the edge part of a to-be-measured lens, and the optical axis of to-be-measured lens. 実施の形態1の変形例で用いられる光学絞りを示す平面図である。FIG. 10 is a plan view showing an optical aperture used in a modification of the first embodiment. 実施の形態2に係る偏芯測定装置の構成を示す図である。It is a figure which shows the structure of the eccentricity measuring apparatus which concerns on Embodiment 2. FIG.

実施の形態1
図1に、本発明の実施の形態1に係る偏芯測定装置10の構成を示す。偏芯測定装置10は、いわゆるオートコリメーション法を利用して偏芯測定を行うもので、測定光Mを発する光源12を有し、この光源12にハーフミラー14を備えたコリメータ16が接続されている。コリメータ16により平行光とされる測定光Mの光軸A上には、コリメータ16の前方に対物レンズ18とその中心に開口部20aが形成された光学絞り20とが順次配置され、さらに、光学絞り20の前方に被測定レンズLを保持するためのレンズ保持具22が配置されている。被測定レンズLは、光学機器等に搭載される際の位置合わせを行うために、その周縁に形成されたコバ部Kを有しており、レンズ保持具22は、コバ部Kを押さえることで被測定レンズLの保持を行う。また、レンズ保持具22は、回転ステージ24の上に固定されており、回転ステージ24によって被測定レンズLと共に測定光Mの光軸Aの回りに回転されるように構成されている。
Embodiment 1
In FIG. 1, the structure of the eccentricity measuring apparatus 10 which concerns on Embodiment 1 of this invention is shown. The eccentricity measuring apparatus 10 performs eccentricity measurement using a so-called autocollimation method, and includes a light source 12 that emits measurement light M, and a collimator 16 that includes a half mirror 14 is connected to the light source 12. Yes. On the optical axis A of the measurement light M that is collimated by the collimator 16, an objective lens 18 and an optical aperture 20 having an opening 20 a formed at the center thereof are sequentially arranged in front of the collimator 16. A lens holder 22 for holding the lens L to be measured is disposed in front of the diaphragm 20. The lens L to be measured has an edge portion K formed on the periphery thereof for positioning when mounted on an optical device or the like, and the lens holder 22 holds the edge portion K in place. The lens L to be measured is held. The lens holder 22 is fixed on the rotary stage 24, and is configured to be rotated around the optical axis A of the measurement light M together with the lens L to be measured by the rotary stage 24.

一方、コリメータ16の後方には、測定光Mの光軸A上に、被測定レンズLの光学面による測定光Mの反射光を捉えるためのCCDイメージセンサ26a等を備えた受光部26が配置され、この受光部26にコンピュータからなる演算装置28が接続されている。
なお、光源12、コリメータ16、対物レンズ18および光学絞り20により、被測定レンズLの球面近似領域のみに測定光Mを照射する照射手段が構成されている。また、レンズ保持具22および回転ステージ24により、被測定レンズLを回転する回転手段が構成され、受光部26と演算装置28により、被測定レンズLの光軸の偏芯量を測定する測定手段が、それぞれ構成されている。また、演算装置28は、被測定レンズLの設計式に基づいて球面近似領域を算出する算出手段をも構成している。
On the other hand, on the optical axis A of the measurement light M, a light receiving unit 26 including a CCD image sensor 26a for capturing the reflected light of the measurement light M from the optical surface of the lens L to be measured is disposed behind the collimator 16. The light receiving unit 26 is connected to an arithmetic unit 28 made up of a computer.
The light source 12, the collimator 16, the objective lens 18, and the optical diaphragm 20 constitute irradiation means for irradiating the measurement light M only to the spherical approximate region of the lens L to be measured. The lens holder 22 and the rotating stage 24 constitute a rotating means for rotating the lens L to be measured, and the measuring means for measuring the eccentricity of the optical axis of the lens L to be measured by the light receiving unit 26 and the arithmetic unit 28. Are each configured. The computing device 28 also constitutes a calculation means for calculating a spherical approximate area based on the design formula of the lens L to be measured.

次に、図2のフローチャートを参照して、この実施の形態1における偏芯測定方法を説明する。
まず、ステップS1で、被測定レンズLの設計式が演算装置28に入力され、この設計式に基づいて被測定レンズLの頂点から球面の一部と近似し得る球面近似領域が算出される。例えば、図3に示されるように、少なくとも頂点付近が球面形状から離れた形状を有する被測定レンズLに対して、頂点部の曲率に見合った近似球面Cを想定し、頂点から球面の一部と近似し得る球面近似領域Rを求める。
Next, the eccentricity measuring method in the first embodiment will be described with reference to the flowchart of FIG.
First, in step S1, a design formula of the lens L to be measured is input to the arithmetic unit 28, and a spherical approximate area that can be approximated to a part of the spherical surface from the apex of the lens L to be measured is calculated based on this design formula. For example, as shown in FIG. 3, an approximate spherical surface C corresponding to the curvature of the vertex portion is assumed for a lens L to be measured having a shape at least near the vertex away from the spherical shape, and a part of the spherical surface from the vertex is assumed. A spherical approximation region R that can be approximated as follows.

次に、ステップS2で、ステップS1において演算装置28で算出された球面近似領域Rのみを照射するための光学絞り20が作成される。
球面近似領域R以外の部分に測定光Mが照射されると、被測定レンズLからの反射光が一定の位置に集光しなくなり、偏芯測定が困難になる。このため、球面近似領域Rのみに測定光Mが照射されるようなサイズの開口部20aを有する光学絞り20の作成が行われる。
Next, in step S2, an optical aperture 20 for irradiating only the spherical approximate region R calculated by the arithmetic unit 28 in step S1 is created.
When the measurement light M is irradiated to a portion other than the spherical approximate region R, the reflected light from the lens L to be measured does not converge at a certain position, and the eccentricity measurement becomes difficult. For this reason, the optical diaphragm 20 having the opening 20a having such a size that the measurement light M is irradiated only on the spherical approximate region R is created.

さらに、ステップS3で、被測定レンズLの球面近似領域Rに対応する対物レンズ18が選択される。図4に示されるように、被測定レンズLの球面近似領域Rに対して測定光Mが垂直に入射するような対物レンズ18、すなわち、被測定レンズLがレンズ保持具22に保持されたときに球面近似領域Rの見かけの曲率中心Pに測定光Mが集光するような焦点距離を有する対物レンズ18の選択が行われる。選択する代わりに、このような対物レンズ18を作成してもよい。   In step S3, the objective lens 18 corresponding to the spherical approximate region R of the lens L to be measured is selected. As shown in FIG. 4, when the objective lens 18 in which the measurement light M is perpendicularly incident on the spherical approximate region R of the lens L to be measured, that is, the lens L to be measured is held by the lens holder 22. The objective lens 18 having a focal length such that the measurement light M is collected at the apparent center of curvature P of the spherical approximate region R is selected. Instead of selection, such an objective lens 18 may be created.

次に、ステップS4で、レンズ保持具22に被測定レンズLを保持させると共に、ステップS2で作成された光学絞り20およびステップS3で選択された対物レンズ18をそれぞれコリメータ16の前方における測定光Mの光軸A上に配設する。
このとき、レンズ保持具22は、被測定レンズLのコバ部Kを押さえることで被測定レンズLを保持するが、コバ部Kの中心が測定光Mの光軸Aと一致するように被測定レンズLが保持される。
Next, at step S4, the lens holder 22 holds the lens L to be measured, and the optical aperture 20 created at step S2 and the objective lens 18 selected at step S3 are respectively measured light M in front of the collimator 16. On the optical axis A.
At this time, the lens holder 22 holds the lens L to be measured by pressing the edge K of the lens L to be measured, but the object to be measured is such that the center of the edge K coincides with the optical axis A of the measurement light M. The lens L is held.

その後、ステップS5で、被測定レンズLに測定光Mを照射する。光源12から発せられた測定光Mは、ハーフミラー14で反射され、コリメータ16によって平行光とされた後、対物レンズ18により集光されると共に光学絞り20の開口部20aを通過することによって絞られた状態で被測定レンズLを照射する。   Thereafter, in step S5, the measurement light M is irradiated to the lens L to be measured. The measurement light M emitted from the light source 12 is reflected by the half mirror 14, converted into parallel light by the collimator 16, condensed by the objective lens 18, and passed through the opening 20 a of the optical aperture 20. In this state, the lens L to be measured is irradiated.

次に、ステップS6で、対物レンズ18による測定光Mの焦点と被測定レンズLとの位置合わせが行われる。具体的には、図4に示したように、被測定レンズLの球面近似領域Rに対して測定光Mが垂直に入射する、すなわち、球面近似領域Rの見かけの曲率中心Pに測定光Mが集光するように、対物レンズ18と被測定レンズLの相対距離が調整される。
このとき、測定光Mの光軸Aに沿って、対物レンズ18を移動してもよく、また、被測定レンズLを移動してもよい。さらに、対物レンズ18と被測定レンズLの両者を移動しながら相対距離を調整してもよい。ただし、対物レンズ18を移動する場合には、被測定レンズLの球面近似領域Rのみへの測定光Mの照射を実現するために、対物レンズ18と光学絞り20との相対的な位置関係を維持したまま、光学絞り20も対物レンズ18と共に移動する必要がある。
Next, in step S6, the focus of the measurement light M by the objective lens 18 and the lens L to be measured are aligned. Specifically, as shown in FIG. 4, the measurement light M is perpendicularly incident on the spherical approximate region R of the lens L to be measured, that is, the measurement light M is in the apparent center of curvature P of the spherical approximate region R. Is adjusted so that the relative distance between the objective lens 18 and the lens L to be measured is adjusted.
At this time, the objective lens 18 may be moved along the optical axis A of the measurement light M, or the lens L to be measured may be moved. Further, the relative distance may be adjusted while moving both the objective lens 18 and the lens L to be measured. However, when the objective lens 18 is moved, the relative positional relationship between the objective lens 18 and the optical diaphragm 20 is changed in order to realize the irradiation of the measuring light M only to the spherical approximate region R of the lens L to be measured. The optical diaphragm 20 also needs to move with the objective lens 18 while maintaining.

このようにして、対物レンズ18と被測定レンズLとの位置合わせを行うことにより、測定光Mが被測定レンズLの球面近似領域Rに垂直に入射しながら、この球面近似領域Rのみに照射されることとなる。このため、測定光Mは、被測定レンズLの球面近似領域Rで反射され、入射の時と同じ経路をたどって、光学絞り20の開口部20a、対物レンズ18およびコリメータ16を順次通り、さらにハーフミラー14を透過して受光部26のCCDイメージセンサ26a上に集光する。   In this way, by aligning the objective lens 18 and the lens L to be measured, the measurement light M is incident on only the spherical approximate region R while being incident perpendicularly to the spherical approximate region R of the lens L to be measured. Will be. For this reason, the measurement light M is reflected by the spherical approximate region R of the lens L to be measured, and follows the same path as that at the time of incidence, and sequentially passes through the opening 20a of the optical diaphragm 20, the objective lens 18 and the collimator 16, and further. The light passes through the half mirror 14 and is condensed on the CCD image sensor 26 a of the light receiving unit 26.

さらに、ステップS7において、回転ステージ24によりレンズ保持具22と共に被測定レンズLを、測定光Mの光軸Aの回りに回転させる。上述したように、レンズ保持具22は、コバ部Kの中心が測定光Mの光軸Aと一致するように被測定レンズLを保持しているため、被測定レンズLは回転ステージ24によりコバ部Kの中心を通る回転軸の回りに回転する。
このとき、図5に示されるように、被測定レンズLの光学面の中心を通る被測定レンズLの光軸G1と、被測定レンズLのコバ部Kの中心G2とが一致せず、これらの間に偏芯量ΔWが存在する場合には、被測定レンズLは、被測定レンズLの光軸G1の近傍にあってこの光軸G1にほぼ平行に設定された回転軸の回りに回転することとなり、被測定レンズLの回転に伴って被測定レンズLの光軸G1がコバ部Kの中心G2を通る回転軸の回りに回転する。これに伴い、受光部26のCCDイメージセンサ26a上に集光していた測定光Mの反射光も測定光Mの光軸Aを中心として回転する。
Further, in step S 7, the lens L 22 and the lens L to be measured are rotated around the optical axis A of the measurement light M by the rotation stage 24. As described above, since the lens holder 22 holds the lens L to be measured so that the center of the edge portion K coincides with the optical axis A of the measurement light M, the lens L to be measured is supported by the rotary stage 24. It rotates around a rotation axis passing through the center of the part K.
At this time, as shown in FIG. 5, the optical axis G1 of the lens L to be measured passing through the center of the optical surface of the lens L to be measured and the center G2 of the edge portion K of the lens L to be measured do not match. If there is a decentering amount ΔW, the lens L to be measured rotates around a rotation axis that is set in the vicinity of the optical axis G1 of the lens L to be measured and substantially parallel to the optical axis G1. As the lens L to be measured rotates, the optical axis G1 of the lens L to be measured rotates around the rotation axis passing through the center G2 of the edge portion K. Along with this, the reflected light of the measurement light M collected on the CCD image sensor 26 a of the light receiving unit 26 also rotates around the optical axis A of the measurement light M.

続くステップS8で、演算装置28は、受光部26で得られた信号に基づいて、回転軸とされた被測定レンズLのコバ部Kの中心G2に対する被測定レンズLの光軸G1の偏芯量ΔWを測定する。仮に偏芯量ΔWが0であれば、被測定レンズLを回転軸の回りに回転しても、測定光Mの反射光による受光部26のCCDイメージセンサ26a上における集光点は移動することがなく、偏芯量ΔWが大きくなるほど、被測定レンズLを回転した際に受光部26のCCDイメージセンサ26a上で観測される集光点は大きな半径を有する円周に沿って移動する。従って、CCDイメージセンサ26aで検出される集光点の位置の変化を捉えることで、被測定レンズLの偏芯量ΔWを求めることができる。   In subsequent step S8, the arithmetic unit 28 decenters the optical axis G1 of the lens L to be measured with respect to the center G2 of the edge portion K of the lens L to be measured as the rotation axis based on the signal obtained by the light receiving unit 26. The quantity ΔW is measured. If the amount of eccentricity ΔW is 0, the condensing point on the CCD image sensor 26a of the light receiving unit 26 by the reflected light of the measuring light M moves even if the lens L to be measured is rotated around the rotation axis. As the eccentricity ΔW increases, the condensing point observed on the CCD image sensor 26a of the light receiving unit 26 when the lens L to be measured is rotated moves along a circumference having a large radius. Therefore, the amount of eccentricity ΔW of the lens L to be measured can be obtained by capturing the change in the position of the condensing point detected by the CCD image sensor 26a.

このように、被測定レンズLの球面近似領域Rのみに測定光Mを照射しながら、被測定レンズLをコバ部Kの中心G2を通る回転軸の回りに回転することにより、球面形状から大きく乖離した非球面レンズに対しても、容易に偏芯測定をすることが可能となる。   In this way, by rotating the lens L to be measured around the rotation axis passing through the center G2 of the edge K while irradiating only the spherical approximate region R of the lens L to be measured, the spherical shape is greatly increased. Eccentricity measurement can be easily performed even with respect to a separated aspherical lens.

なお、光学絞り20として、図6に示されるような、開口部20aのサイズを調整可能の可変絞りを用いれば、個々の被測定レンズLに対応する光学絞りを測定毎に作成しなくても、容易に種々の被測定レンズLの測定を行うことができる。   If a variable diaphragm capable of adjusting the size of the opening 20a as shown in FIG. 6 is used as the optical diaphragm 20, it is not necessary to create an optical diaphragm corresponding to each lens L to be measured for each measurement. Thus, it is possible to easily measure various lenses L to be measured.

また、上記の実施の形態1では、受光部26に接続された演算装置28が、偏芯量を測定する測定手段を構成するだけでなく、被測定レンズLの設計式に基づいて球面近似領域を算出する算出手段をも兼ねていたが、この算出手段を測定手段と分けて、演算装置28から独立した別のコンピュータ等で球面近似領域を算出するようにしてもよい。   In the first embodiment, the arithmetic unit 28 connected to the light receiving unit 26 not only constitutes a measuring unit that measures the eccentricity, but also approximates the spherical approximation area based on the design equation of the lens L to be measured. However, the spherical approximation area may be calculated by another computer or the like independent of the arithmetic unit 28, separately from the measurement means.

実施の形態2
図7に実施の形態2に係る偏芯測定装置30の構成を示す。この偏芯測定装置30は、図1に示した実施の形態1の偏芯測定装置10において、測定光Mの光軸A上に配置された光学絞り20の代わりに、被測定レンズLの光学面上にマスク32を形成したものであり、他の部材は実施の形態1と同様である。
マスク32は、遮光性を有する材料からなり、被測定レンズLの光学面において、球面近似領域R以外の箇所をマスキングすることにより球面近似領域Rのみが露出するように形成されている。このマスク32は、遮光性材料からなるシート状部材を被測定レンズLの光学面上に貼付する、あるいは、遮光性材料からなる薄膜を被測定レンズLの光学面上に積層形成することにより形成することができる。
このような構成としても、被測定レンズLの球面近似領域Rのみに測定光Mを照射することができ、実施の形態1と同様の作用効果が得られる。
Embodiment 2
FIG. 7 shows the configuration of the eccentricity measuring apparatus 30 according to the second embodiment. This eccentricity measuring device 30 is the same as the eccentricity measuring device 10 according to the first embodiment shown in FIG. 1, but instead of the optical diaphragm 20 arranged on the optical axis A of the measuring light M, the optical of the lens L to be measured. A mask 32 is formed on the surface, and other members are the same as those in the first embodiment.
The mask 32 is made of a light-shielding material, and is formed such that only the spherical approximate region R is exposed by masking portions other than the spherical approximate region R on the optical surface of the lens L to be measured. The mask 32 is formed by sticking a sheet-like member made of a light-shielding material on the optical surface of the lens L to be measured, or by laminating a thin film made of a light-shielding material on the optical surface of the lens L to be measured. can do.
Even with such a configuration, it is possible to irradiate the measurement light M only to the spherical approximate region R of the lens L to be measured, and the same effects as those of the first embodiment can be obtained.

この実施の形態2においては、輪帯照明法により被測定レンズLに測定光Mを照射し、マスキングにより被測定レンズLの複数の領域で同様にして偏芯測定を行うことにより、非球面の軸の傾斜も測定することが可能となる。   In the second embodiment, the lens L to be measured is irradiated with the measuring light M by the annular illumination method, and the eccentricity measurement is similarly performed in a plurality of regions of the lens L to be measured by masking. The inclination of the shaft can also be measured.

この他、実施の形態1における光学絞り20および実施の形態2におけるマスク32の代わりに、被測定レンズLの球面近似領域Rのみに測定光Mが照射されるような透過領域を有する対物レンズ18を作成することもできる。このような対物レンズ18を用いても、実施の形態1および2と同様に、球面形状から大きく乖離した非球面レンズに対して、容易に偏芯測定をすることができる。   In addition, instead of the optical aperture 20 in the first embodiment and the mask 32 in the second embodiment, the objective lens 18 having a transmission region in which the measurement light M is irradiated only to the spherical approximate region R of the lens L to be measured. Can also be created. Even if such an objective lens 18 is used, as in the first and second embodiments, it is possible to easily perform decentration measurement with respect to an aspheric lens greatly deviating from the spherical shape.

10、30 偏芯測定装置
12 光源
14 ハーフミラー
16 コリメータ
18 対物レンズ
20 光学絞り
20a 開口部
22 レンズ保持具
24 回転ステージ
26 受光部
26a CCDイメージセンサ
28 演算装置
32 マスク
DESCRIPTION OF SYMBOLS 10, 30 Eccentricity measuring device 12 Light source 14 Half mirror 16 Collimator 18 Objective lens 20 Optical aperture 20a Opening part 22 Lens holder 24 Rotating stage 26 Light receiving part 26a CCD image sensor 28 Arithmetic unit 32 Mask

Claims (10)

少なくとも一部が非球面の表面を有する被測定レンズの偏芯量を測定する方法であって、
被測定レンズの設計式に基づいて前記被測定レンズの頂点から球面の一部と近似される球面近似領域を算出し、
前記被測定レンズを前記被測定レンズの光軸の近傍で且つこの光軸にほぼ平行に設定された回転軸の回りに回転し、
前記被測定レンズの前記球面近似領域のみに測定光を照射し、
前記被測定レンズの前記球面近似領域で反射する前記測定光の反射光を検出することにより前記回転軸に対する前記被測定レンズの光軸の偏芯量を測定する
ことを特徴とする非球面レンズの偏芯測定方法。
A method for measuring the amount of eccentricity of a lens to be measured having at least a part of an aspheric surface,
Based on the design equation of the lens to be measured, calculate a spherical approximate area approximated to a part of the sphere from the apex of the lens to be measured,
Rotating the lens to be measured around a rotation axis set in the vicinity of the optical axis of the lens to be measured and substantially parallel to the optical axis;
Irradiate measurement light only to the spherical approximate region of the lens to be measured,
An aspherical lens comprising: an aspheric lens that measures an eccentric amount of the optical axis of the lens to be measured with respect to the rotation axis by detecting reflected light of the measurement light that is reflected from the spherical approximate region of the lens to be measured. Eccentricity measuring method.
開口部を有する光学絞りを用いることにより前記測定光を前記球面近似領域のみに照射する請求項1に記載の非球面レンズの偏芯測定方法。   The method for measuring the eccentricity of an aspherical lens according to claim 1, wherein the measurement light is irradiated only on the spherical approximate region by using an optical aperture having an opening. 前記被測定レンズの表面をマスキングすることにより前記測定光を前記球面近似領域のみに照射する請求項1に記載の非球面レンズの偏芯測定方法。   The decentering measurement method for an aspherical lens according to claim 1, wherein the measurement light is irradiated only on the spherical approximate region by masking a surface of the lens to be measured. 前記被測定レンズは、位置決めを行うためのコバ部を有し、
前記回転軸は、前記コバ部の中心を通るように設定される請求項1〜3のいずれか一項に記載の非球面レンズの偏芯測定方法。
The lens to be measured has an edge portion for positioning,
The eccentricity measurement method of the aspherical lens according to any one of claims 1 to 3, wherein the rotation shaft is set so as to pass through a center of the edge portion.
少なくとも一部が非球面の表面を有する被測定レンズの偏芯量を測定する装置であって、
被測定レンズの設計式に基づいて前記被測定レンズの頂点から球面の一部と近似される球面近似領域を算出する算出手段と、
前記被測定レンズを前記被測定レンズの光軸の近傍で且つこの光軸にほぼ平行に設定された回転軸の回りに回転する回転手段と、
前記被測定レンズの前記球面近似領域のみに測定光を照射する照射手段と、
前記被測定レンズの前記球面近似領域で反射する前記測定光の反射光を検出することにより前記回転軸に対する前記被測定レンズの光軸の偏芯量を測定する測定手段と
を備えたことを特徴とする非球面レンズの偏芯測定装置。
An apparatus for measuring the amount of eccentricity of a lens to be measured having at least a part of an aspheric surface,
Calculating means for calculating a spherical approximate area approximated to a part of a spherical surface from the apex of the measured lens based on a design formula of the measured lens;
Rotating means for rotating the lens to be measured around a rotation axis set in the vicinity of the optical axis of the lens to be measured and substantially parallel to the optical axis;
Irradiating means for irradiating measuring light only to the spherical approximate region of the lens to be measured;
Measuring means for measuring the amount of eccentricity of the optical axis of the lens to be measured with respect to the rotation axis by detecting the reflected light of the measuring light reflected by the spherical approximate region of the lens to be measured. An aspherical lens eccentricity measuring device.
前記照射手段は、
光源と、
前記光源から発せられた光を所定の照射角で前記被測定レンズに向けて照射するための対物レンズと、
前記対物レンズと前記被測定レンズとの間に配置されると共に開口部を有する光学絞りと
を含む請求項5に記載の非球面レンズの偏芯測定装置。
The irradiation means includes
A light source;
An objective lens for irradiating light emitted from the light source toward the lens to be measured at a predetermined irradiation angle;
The aspherical lens eccentricity measuring device according to claim 5, further comprising: an optical aperture disposed between the objective lens and the lens to be measured and having an opening.
前記光学絞りは、前記算出手段で算出された前記被測定レンズの前記球面近似領域に対応するサイズの開口部を有する請求項6に記載の非球面レンズの偏芯測定装置。   The aspherical lens eccentricity measuring apparatus according to claim 6, wherein the optical aperture has an opening having a size corresponding to the spherical approximate region of the lens to be measured calculated by the calculating unit. 前記光学絞りは、開口部のサイズを調整可能な可変絞りからなる請求項7に記載の非球面レンズの偏芯測定装置。   The aspherical lens eccentricity measuring apparatus according to claim 7, wherein the optical aperture is a variable aperture capable of adjusting an opening size. 前記照射手段は、
光源と、
前記光源から発せられた光を所定の照射角で前記被測定レンズに向けて照射するための対物レンズと、
前記被測定レンズの表面上に形成された遮光マスクと
を含む請求項5に記載の非球面レンズの偏芯測定装置。
The irradiation means includes
A light source;
An objective lens for irradiating light emitted from the light source toward the lens to be measured at a predetermined irradiation angle;
The aspherical lens eccentricity measuring device according to claim 5, further comprising: a light shielding mask formed on a surface of the lens to be measured.
前記被測定レンズは、位置決めを行うためのコバ部を有し、
前記回転手段は、前記回転軸を前記コバ部の中心を通るように設定する請求項5〜9のいずれか一項に記載の非球面レンズの偏芯測定装置。
The lens to be measured has an edge portion for positioning,
The aspherical lens eccentricity measuring apparatus according to any one of claims 5 to 9, wherein the rotating means sets the rotating shaft so as to pass through a center of the edge portion.
JP2010027803A 2010-02-10 2010-02-10 Eccentricity measuring method and eccentricity measuring device of aspherical lens Abandoned JP2011163970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010027803A JP2011163970A (en) 2010-02-10 2010-02-10 Eccentricity measuring method and eccentricity measuring device of aspherical lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010027803A JP2011163970A (en) 2010-02-10 2010-02-10 Eccentricity measuring method and eccentricity measuring device of aspherical lens

Publications (1)

Publication Number Publication Date
JP2011163970A true JP2011163970A (en) 2011-08-25

Family

ID=44594817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010027803A Abandoned JP2011163970A (en) 2010-02-10 2010-02-10 Eccentricity measuring method and eccentricity measuring device of aspherical lens

Country Status (1)

Country Link
JP (1) JP2011163970A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10132700A (en) * 1996-10-30 1998-05-22 Ricoh Co Ltd Eccentricity measuring device for aspherical lens
JP2007010609A (en) * 2005-07-04 2007-01-18 Olympus Corp Method for manufacturing aspheric lens, eccentricity measuring method of aspheric lens, eccentricity measuring device, and aspheric lens manufactured by this method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10132700A (en) * 1996-10-30 1998-05-22 Ricoh Co Ltd Eccentricity measuring device for aspherical lens
JP2007010609A (en) * 2005-07-04 2007-01-18 Olympus Corp Method for manufacturing aspheric lens, eccentricity measuring method of aspheric lens, eccentricity measuring device, and aspheric lens manufactured by this method

Similar Documents

Publication Publication Date Title
CN101452200B (en) Lens stray light detecting system
JP4681618B2 (en) Aberration measuring device for eye to be examined
US8913234B2 (en) Measurement of the positions of centres of curvature of optical surfaces of a multi-lens optical system
JP6494205B2 (en) Wavefront measuring method, shape measuring method, optical element manufacturing method, optical device manufacturing method, program, wavefront measuring apparatus
JP5084327B2 (en) Eccentricity inspection device and eccentricity adjustment device
KR102084457B1 (en) Optical system intended to measure brdf, bsdf and btdf
JP2011040548A (en) Measurement apparatus, exposure apparatus, and device manufacturing method
EP2549222B1 (en) Use of an abscissa calibration jig, abscissa calibration method and laser interference measuring apparatus
JP5540614B2 (en) Optical element eccentricity adjustment method, eccentricity measurement method, and lens processing method using an autocollimator
JP2010121960A (en) Measuring device and method of measuring subject
JP2006078849A (en) Lens system adjusting device and lens system adjusting method using the same
JP2015108582A (en) Three-dimensional measurement method and device
JP6376809B2 (en) Projection device and imaging device used in three-dimensional shape measurement system
JP2009229144A (en) Eccentricity measuring device
JP2011163970A (en) Eccentricity measuring method and eccentricity measuring device of aspherical lens
JP2013195410A (en) Detector and detection method
US8988752B2 (en) Beam control apparatus for an illumination beam and metrology system comprising an optical system containing such a beam control apparatus
JP2015094703A (en) Spectral transmission measuring instrument
JP2015004600A (en) Eccentricity measurement device, eccentricity measurement method and lens manufacturing method
US20160003611A1 (en) Aspherical surface measurement method, aspherical surface measurement apparatus, non-transitory computer-readable storage medium, processing apparatus of optical element, and optical element
JP2005024504A (en) Eccentricity measuring method, eccentricity measuring instrument, and object measured thereby
JPH1194700A (en) Measuring device and method for lens
JP2012093116A (en) Lens checking apparatus and chart plate
JP3437479B2 (en) Birefringence measurement device
JP2009121927A (en) Eccentricity measuring device and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130829

A131 Notification of reasons for refusal

Effective date: 20131001

Free format text: JAPANESE INTERMEDIATE CODE: A131

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20131025