JP2011163461A - Continuously variable transmission mechanism - Google Patents

Continuously variable transmission mechanism Download PDF

Info

Publication number
JP2011163461A
JP2011163461A JP2010027612A JP2010027612A JP2011163461A JP 2011163461 A JP2011163461 A JP 2011163461A JP 2010027612 A JP2010027612 A JP 2010027612A JP 2010027612 A JP2010027612 A JP 2010027612A JP 2011163461 A JP2011163461 A JP 2011163461A
Authority
JP
Japan
Prior art keywords
meshing
movable
movable tooth
pulley
link
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010027612A
Other languages
Japanese (ja)
Other versions
JP5515818B2 (en
Inventor
Akihiko Iwasaki
晶彦 岩崎
Yoshitaka Miura
吉孝 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2010027612A priority Critical patent/JP5515818B2/en
Publication of JP2011163461A publication Critical patent/JP2011163461A/en
Application granted granted Critical
Publication of JP5515818B2 publication Critical patent/JP5515818B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gears, Cams (AREA)
  • Transmissions By Endless Flexible Members (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent slip between a chain link and pulley, in a chain and V-belt type continuously variable transmission. <P>SOLUTION: A movable tooth meshing groove 14b of a link plate 14 is arranged within the range of the angle obtained by subtracting a delayed phase angle which is defined as the angle around the rotation center of the pulley for the range of the meshing contact between a movable tooth 17 and the movable tooth meshing groove 14b, from a link pace angle which is the angle between radial lines connecting the centers Op of link pin insertion holes 14a of the link plate 14 on both ends and the rotation center Os of the pulley, so as to mesh with the radially movable tooth 17 on the periphery of a pulley center boss part 16. The number of the movable gear meshing grooves 14b is set to a number (four pieces) with which the number of effective meshing teeth of the movable tooth 17 which meshes with the movable tooth meshing groove 14b within the winding range of the pulley (from a first tooth to seventh tooth) becomes one or more (three pieces). Thereby, at least one movable tooth 17 always meshes with the movable tooth meshing groove 14b of the link plate 14, and the slip between the chain link 13 and pulley can be prevented. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、多数のリンク板を順次、リンクピンで数珠繋ぎに連結して成る無終端チェーンリンクと、この無終端チェーンリンクを無段変速可能に巻き掛けしたプーリとから成る無段変速伝動機構に関するものである。   TECHNICAL FIELD The present invention relates to a continuously variable transmission mechanism comprising an endless chain link in which a large number of link plates are sequentially connected in a daisy chain with link pins, and a pulley around which the endless chain link is wound so as to be continuously variable. Is.

この種の無段変速伝動機構としてはVベルト式無段変速機が良く知られており、無終端チェーンリンクをプーリのV溝に掛け渡して動力伝達可能となす一方、
この動力伝達中にプーリV溝の溝幅を変更することでプーリに対する無終端チェーンリンクの巻き掛け径を連続的に変化させることにより、無段変速が可能となるよう構成する。
As this type of continuously variable transmission mechanism, a V-belt type continuously variable transmission is well known, and the endless chain link is stretched over the V groove of the pulley to enable power transmission,
By continuously changing the winding diameter of the endless chain link with respect to the pulley by changing the groove width of the pulley V groove during the power transmission, the continuously variable transmission can be performed.

他方、無段変速伝動機構のスリップを抑制して伝動効率を高める技術として従来、例えば特許文献1に記載のごとく、プーリV溝の底面を画成するプーリの中心ボス部外周面に歯を突設し、
無終端チェーンリンクの内周に形成した歯溝がプーリ中心ボス部外周面の歯と噛み合う伝動比である間、プーリおよび無終端チェーンリンク間のスリップを防止して無段変速伝動機構の伝動効率を高める技術が提案されている。
On the other hand, as a technique for increasing the transmission efficiency by suppressing the slip of the continuously variable transmission mechanism, conventionally, as described in Patent Document 1, for example, teeth are projected on the outer peripheral surface of the central boss portion of the pulley that defines the bottom surface of the pulley V groove. Set up
While the tooth groove formed on the inner periphery of the endless chain link is in the transmission ratio that meshes with the teeth on the outer peripheral surface of the pulley center boss, the transmission efficiency of the continuously variable transmission mechanism is prevented by preventing slippage between the pulley and the endless chain link. A technique for improving the above has been proposed.

しかしこの技術は、プーリ中心ボス部の外周面に設ける歯をプーリ中心ボス部外周面に固設していたため、これら歯が無終端チェーンリンクの内周歯溝と噛み合い損なった場合に無終端チェーンリンクと干渉して、これを損傷させるという問題があった。   However, in this technology, since the teeth provided on the outer peripheral surface of the pulley central boss portion are fixed on the outer peripheral surface of the pulley central boss portion, when these teeth fail to mesh with the inner peripheral tooth groove of the endless chain link, the endless chain There was a problem of interfering with and damaging the link.

そこで本願出願人は先に特許文献2により、プーリ中心ボス部の外周面に設ける歯をプーリ中心ボス部外周に対し径方向進退可能にした可動歯となし、
この可動歯が無終端チェーンリンクの内周歯溝と噛み合い損なった場合は、無終端チェーンリンクの内周により径方向内方へ後退され得るようにすることで、プーリ中心ボス部外周の歯が無終端チェーンリンクとの干渉によりこれを損傷させることのないようにした無段変速伝動機構を提案済である。
Therefore, the applicant of the present application previously described in Patent Document 2, the tooth provided on the outer peripheral surface of the pulley center boss part is a movable tooth that is movable in the radial direction with respect to the outer periphery of the pulley center boss part,
If this movable tooth fails to mesh with the inner peripheral tooth groove of the endless chain link, the teeth on the outer periphery of the pulley center boss can be retracted radially inward by the inner periphery of the endless chain link. A continuously variable transmission mechanism has been proposed in which it is not damaged by interference with the endless chain link.

特開昭63−120950号公報JP-A-63-120950 特開2010−014269号公報JP 2010-014269 A

しかし上記した先の提案技術にあっては、上記の無終端チェーンリンク内周歯溝が1個ずつ設けられている複数のリンク板と、プーリ中心ボス部外周可動歯との噛み合いが、或る瞬間に(或る位相で)同時噛み合い状態となるが、次の瞬間に(次の位相で)同時非噛み合い状態となる場面が存在するため、以下のような問題が生ずる。   However, in the above-described proposed technique, there is a meshing between the plurality of link plates provided with one endless chain link inner peripheral tooth groove and the pulley center boss outer peripheral movable tooth. Although there is a scene where a simultaneous meshing state occurs at an instant (at a certain phase) but a simultaneous non-meshing state occurs at the next moment (at the next phase), the following problems occur.

つまり、上記のように同時噛み合い状態になる位相と、同時非噛み合い状態になる位相とが存在するのでは、無終端チェーンリンクとプーリとの間におけるスリップが一定でないことになり、安定したスリップ防止を期待できない。
なおこの問題解決のため、各リンク板に設ける可動歯噛合溝の数を1個から複数個に増やすことが考えられるが、何の考慮もなしに可動歯噛合溝の数を増やしても、同時噛み合いの確率が増えるだけで、同時非噛み合い状態は無くならないため、抜本的な解決策たり得ない。
In other words, when there is a phase that is in the simultaneous meshing state and a phase that is in the simultaneous non-meshing state as described above, the slip between the endless chain link and the pulley is not constant, and stable slip prevention is achieved. I can not expect.
In order to solve this problem, the number of movable tooth meshing grooves provided on each link plate may be increased from one to a plurality. However, even if the number of movable tooth meshing grooves is increased without any consideration, Since only the probability of meshing increases, the simultaneous non-meshing state does not disappear, so a radical solution cannot be obtained.

本発明は、上記の同時非噛み合い状態が無くなるような態様で、リンク板に設ける可動歯噛合溝の数を増やして、常時少なくとも1個の可動歯がリンク板の可動歯噛合溝と噛み合っているようになし、
これにより無終端チェーンリンクとプーリとの間における安定したスリップ防止を実現し得るようにして、上記の問題を生ずることのないようにした無段変速伝動機構を提案することを目的とする。
The present invention increases the number of movable tooth meshing grooves provided in the link plate in such a manner that the simultaneous non-meshing state is eliminated, and at least one movable tooth is always meshed with the movable tooth meshing groove of the link plate. No way,
Accordingly, it is an object of the present invention to propose a continuously variable transmission mechanism that can realize stable slip prevention between the endless chain link and the pulley and does not cause the above-described problem.

この目的のため、本発明による無段変速伝動機構は、以下のごとくにこれを構成する。
先ず、本発明の要旨構成の基礎前提となる無段変速伝動機構は、
多数のリンク板を順次、リンクピンで数珠繋ぎに連結して成る無終端チェーンリンクと、この無終端チェーンリンクを無段変速可能に巻き掛けしたプーリとから成り、該プーリの中心ボス部外周に径方向進退可能に設けた可動歯と、前記リンク板に設けた可動歯噛合溝との噛み合いにより、該噛み合いが可能な伝動比でのスリップ防止を可能にしたものである。
For this purpose, the continuously variable transmission mechanism according to the present invention is constituted as follows.
First, the continuously variable transmission mechanism that is the basic premise of the gist configuration of the present invention is:
It consists of an endless chain link formed by connecting a large number of link plates in a daisy chain with link pins and a pulley around which this endless chain link is wound so as to be continuously variable. By engaging the movable teeth provided so as to be able to advance and retreat and the movable teeth engaging grooves provided on the link plate, slip prevention at a transmission ratio capable of the engagement is made possible.

本発明は、かかる無段変速伝動機構において、
前記可動歯と噛み合った状態で前記リンク板の両端におけるリンクピン挿通孔の中心と、前記プーリの中心とをそれぞれ結んだ半径線間の角度であるリンクピッチ角θpsから、前記可動歯と可動歯噛合溝との噛み合い接触範囲を前記プーリ中心の周りの角度として定義した遅れ位相角Δθsubを差し引いて得られる角度範囲θps−Δθsub内に、前記可動歯噛合溝を、
前記無終端チェーンリンクのプーリ巻き付き範囲内で前記可動歯噛合溝と噛み合っている可動歯の有効噛み合い歯数Zeが1以上となるような数Zsubだけ設けたことを特徴とするものである。
The present invention provides such a continuously variable transmission mechanism.
From the link pitch angle θps, which is the angle between the radial lines that connect the center of the link pin insertion hole at both ends of the link plate and the center of the pulley in a state of meshing with the movable tooth, the movable tooth and the movable tooth The movable tooth meshing groove is within an angle range θps−Δθsub obtained by subtracting the delay phase angle Δθsub defined as the mesh contact range with the meshing groove as an angle around the pulley center.
A number Zsub is provided so that the number of effective meshing teeth Ze of the movable teeth meshing with the movable tooth meshing groove within the pulley winding range of the endless chain link is 1 or more.

このような本発明の無段変速伝動機構にあっては、上記の角度範囲θps−Δθsub内に可動歯噛合溝を配置して設け、且つその数を、プーリ巻き付き範囲内における可動歯の有効噛み合い歯数が1以上となるような数Zsubとしたため、
常時少なくとも1個の可動歯が可動歯噛合溝と噛み合っていることとなって同時非噛み合い状態となる位相が存在せず、これにより無終端チェーンリンクとプーリとの間における安定したスリップ防止を実現することができる。
In such a continuously variable transmission mechanism according to the present invention, the movable tooth meshing grooves are disposed in the angular range θps−Δθsub, and the number of the movable tooth meshing meshes is effectively meshed with the movable teeth within the pulley winding range. Because the number Zsub is such that the number of teeth is 1 or more,
At least one movable tooth is always meshed with the movable tooth meshing groove, so there is no phase that is not meshed at the same time, which realizes stable slip prevention between the endless chain link and the pulley can do.

本発明の着想を適用可能な無段変速伝動機構を例示する概略側面図である。It is a schematic side view which illustrates the continuously variable transmission mechanism to which the idea of this invention can be applied. 図1に示した無段変速伝動機構のセカンダリプーリ側における巻き掛け伝動部のスリップ防止機構を示す詳細図である。FIG. 2 is a detailed view showing a slip prevention mechanism of a winding transmission portion on the secondary pulley side of the continuously variable transmission mechanism shown in FIG. 図1,2に示した無段変速伝動機構の無終端チェーンリンクおよびセカンダリプーリ間におけるスリップ防止機構を示し、 (a)は、当該スリップ防止機構の噛み合い状態を示す詳細説明図、 (b)は、当該スリップ防止機構の非噛み合い状態を示す詳細説明図である。FIGS. 1 and 2 show an anti-slip mechanism between the endless chain link and the secondary pulley of the continuously variable transmission mechanism shown in FIGS. 1 and 2, (a) is a detailed explanatory view showing the meshing state of the anti-slip mechanism, and (b) FIG. 5 is a detailed explanatory view showing a non-engagement state of the slip prevention mechanism. 図1〜3に示した無段変速伝動機構のリンク板に設ける可動歯噛合溝の数と、これら可動歯噛合溝に対する可動歯の噛合状態との関係を示す説明図である。FIG. 4 is an explanatory diagram showing the relationship between the number of movable tooth meshing grooves provided on the link plate of the continuously variable transmission mechanism shown in FIGS. 1 to 3 and the meshing state of the movable teeth with respect to these movable tooth meshing grooves. 本発明の一実施例になる無段変速伝動機構のセカンダリプーリ側における巻き掛け伝動部のスリップ防止機構を示す詳細図である。It is detail drawing which shows the slip prevention mechanism of the winding transmission part in the secondary pulley side of the continuously variable transmission mechanism which becomes one Example of this invention. 図5に示した無段変速伝動機構の無終端チェーンリンクを構成するリンク板の各種諸元の説明図である。FIG. 6 is an explanatory diagram of various specifications of a link plate constituting an endless chain link of the continuously variable transmission mechanism shown in FIG. 図5に示した無段変速伝動機構のセカンダリプーリ側における巻き掛け伝動部のスリップ防止機構に関わる各種諸元の説明図である。FIG. 6 is an explanatory diagram of various specifications related to a slip prevention mechanism of a winding transmission portion on the secondary pulley side of the continuously variable transmission mechanism shown in FIG. 図5〜7に示した無段変速伝動機構のリンク板に設ける可動歯噛合溝の数と、これら可動歯噛合溝に対する可動歯の噛合状態との関係を示す説明図である。FIG. 8 is an explanatory diagram showing the relationship between the number of movable tooth meshing grooves provided on the link plate of the continuously variable transmission mechanism shown in FIGS. 5 to 7 and the meshing state of the movable teeth with respect to these movable tooth meshing grooves.

以下、本発明の実施の形態を、図面に示す実施例に基づき詳細に説明する。
<本発明を適用可能な無段変速伝動機構の例示>
図1,2は、本発明の着想を適用可能な無段変速伝動機構を例示し、図1は、無段変速伝動機構10の概略側面図、図2は、そのセカンダリプーリ側における巻き掛け伝動部の詳細図である。
Hereinafter, embodiments of the present invention will be described in detail based on examples shown in the drawings.
<Example of continuously variable transmission mechanism to which the present invention is applicable>
1 and 2 illustrate a continuously variable transmission mechanism to which the concept of the present invention can be applied, FIG. 1 is a schematic side view of a continuously variable transmission mechanism 10, and FIG. 2 is a winding transmission on the secondary pulley side thereof. FIG.

図1において、11は、無段変速伝動機構10の駆動側プーリであるプライマリプーリ、12は、従動側プーリであるセカンダリプーリを示す。
これらプライマリプーリ11およびセカンダリプーリ12間に無終端チェーンリンク13を掛け渡して設け、
無段変速伝動機構10は、この無終端チェーンリンク13を介しプライマリプーリ11およびセカンダリプーリ12間で動力伝達を行い得るものとする。
In FIG. 1, 11 is a primary pulley that is a driving pulley of the continuously variable transmission mechanism 10, and 12 is a secondary pulley that is a driven pulley.
An endless chain link 13 is provided between the primary pulley 11 and the secondary pulley 12, and
The continuously variable transmission mechanism 10 can transmit power between the primary pulley 11 and the secondary pulley 12 via the endless chain link 13.

プライマリプーリ11およびセカンダリプーリ12はそれぞれ、回転軸線方向に正対する対向シーブ11a,12a(図1では便宜上、手前側のシーブを除去して、向こう側のシーブのみを示す)を具え、これら対向シーブ11a間および対向シーブ12a間にプーリV溝を画成するV溝プーリとする。   Each of the primary pulley 11 and the secondary pulley 12 has opposed sheaves 11a and 12a that face each other in the rotation axis direction (in FIG. 1, for convenience, the front sheave is removed and only the sheave on the other side is shown). A V-groove pulley that defines a pulley V-groove between 11a and between the opposing sheaves 12a.

無終端チェーンリンク13は、図2に明示するごとく、多数のリンク板14を順次、その両端におけるリンクピン挿通孔14a内のリンクピン15で数珠繋ぎに連結して連続円環状に構成する。
そして各リンクピン15の両端面は、プライマリプーリ11およびセカンダリプーリ12のプーリV溝側壁を提供する対向シーブ11aおよび対向シーブ12aの内側面と面接触するよう傾斜させる。
As clearly shown in FIG. 2, the endless chain link 13 is formed in a continuous annular shape by connecting a large number of link plates 14 in a chain shape with link pins 15 in link pin insertion holes 14a at both ends.
Both end surfaces of each link pin 15 are inclined so as to come into surface contact with the inner surfaces of the opposed sheave 11a and the opposed sheave 12a that provide the pulley V groove side walls of the primary pulley 11 and the secondary pulley 12.

かくて無終端チェーンリンク13は、プーリ巻き付き領域においてリンクピン15を、プライマリプーリ11の対向シーブ11a間およびセカンダリプーリ12の対向シーブ12a間に挟圧され、プライマリプーリ11およびセカンダリプーリ12間での動力伝達を行うことができる。   Thus, the endless chain link 13 is clamped between the opposed sheave 11a of the primary pulley 11 and the opposed sheave 12a of the secondary pulley 12 in the pulley winding region, and between the primary pulley 11 and the secondary pulley 12. Power transmission can be performed.

プライマリプーリ11の対向シーブ11aは、その一方を固定シーブとし、他方を軸線方向にストローク制御可能な可動シーブとする。
セカンダリプーリ12の対向シーブ12aは、プライマリプーリ11の可動シーブと同じ側におけるシーブを固定シーブとし、プライマリプーリ11の固定シーブと同じ側におけるシーブを軸線方向にストローク制御可能な可動シーブとする。
One of the opposed sheaves 11a of the primary pulley 11 is a fixed sheave, and the other is a movable sheave capable of stroke control in the axial direction.
The facing sheave 12a of the secondary pulley 12 has a sheave on the same side as the movable sheave of the primary pulley 11 as a fixed sheave, and a sheave on the same side as the fixed sheave of the primary pulley 11 as a movable sheave capable of stroke control in the axial direction.

プライマリプーリ11の可動シーブを固定シーブに対し接近させてプーリV溝幅を狭くすると同時に、セカンダリプーリ12の可動シーブを固定シーブから遠ざけてプーリV溝幅を広くするにつれ、
無終端チェーンリンク13は、プライマリプーリ11に対する巻き掛け径を増大されると共に、セカンダリプーリ12に対する巻き掛け径を小さくされ、無段変速伝動機構10は図1に示す最ハイ変速比選択状態に向け無段変速下にアップ可能である。
As the movable sheave of the primary pulley 11 approaches the fixed sheave to narrow the pulley V groove width, the movable sheave of the secondary pulley 12 is moved away from the fixed sheave to widen the pulley V groove width.
The endless chain link 13 has an increased winding diameter with respect to the primary pulley 11 and a reduced winding diameter with respect to the secondary pulley 12, and the continuously variable transmission mechanism 10 moves toward the highest gear ratio selection state shown in FIG. It can be increased under infinitely variable speed.

逆に、プライマリプーリ11の可動シーブを固定シーブから遠ざけてプーリV溝幅を広くすると同時に、セカンダリプーリ12の可動シーブを固定シーブに対し接近させてプーリV溝幅を狭くするにつれ、
無終端チェーンリンク13は、プライマリプーリ11に対する巻き掛け径を小さくされると共に、セカンダリプーリ12に対する巻き掛け径を増大され、無段変速伝動機構10は図1に示す最ハイ変速比選択状態から図示せざる最ロー変速比選択状態に向け無段変速下にダウンシフト可能である。
Conversely, as the movable sheave of the primary pulley 11 is moved away from the fixed sheave to increase the pulley V groove width, the movable sheave of the secondary pulley 12 is brought closer to the fixed sheave to narrow the pulley V groove width.
The endless chain link 13 has a reduced winding diameter with respect to the primary pulley 11 and an increased winding diameter with respect to the secondary pulley 12, and the continuously variable transmission mechanism 10 is shown in the state from the highest gear ratio selection state shown in FIG. It is possible to downshift under a continuously variable transmission toward a lowest gear ratio selection state not shown.

上記した最ハイ変速比選択状態でセカンダリプーリ12に対する無終端チェーンリンク13のスリップを抑制して無段変速伝動機構10の伝動効率を向上させるため、図1,2では、セカンダリプーリ12の中心ボス部16に、その外周面から突出するよう複数個の可動歯17を円周方向等間隔に配して設ける。
これら可動歯17は、セカンダリプーリ中心ボス部16の外周面に嵌着した円筒状の可動歯ホルダー18に対し制限範囲内で径方向進退可能に嵌合し、バネなどの弾性手段19により図1,2に示すごとく可動歯ホルダー18から径方向外方へ突出した進出位置に弾支する。
In order to improve the transmission efficiency of the continuously variable transmission mechanism 10 by suppressing the slip of the endless chain link 13 with respect to the secondary pulley 12 in the state where the highest gear ratio is selected, the central boss of the secondary pulley 12 is shown in FIGS. The portion 16 is provided with a plurality of movable teeth 17 arranged at equal intervals in the circumferential direction so as to protrude from the outer peripheral surface thereof.
These movable teeth 17 are fitted to a cylindrical movable tooth holder 18 fitted to the outer peripheral surface of the secondary pulley central boss portion 16 so as to be able to advance and retreat in the radial direction within a limited range, and by means of elastic means 19 such as a spring, FIG. , 2 is elastically supported at the advancing position protruding radially outward from the movable tooth holder 18.

無終端チェーンリンク13の内周縁を画成する各リンク板14の内側縁には、セカンダリプーリ12対する巻き掛け領域において可動歯17の突出先端が噛み合うための可動歯噛合溝14bを設け、
可動歯17と可動歯噛合溝14bとの噛み合いにより、最ハイ変速比選択状態でセカンダリプーリ12に対する無終端チェーンリンク13のスリップを抑制し、無段変速伝動機構10の伝動効率を向上させることができる。
Provided on the inner edge of each link plate 14 that defines the inner peripheral edge of the endless chain link 13 is a movable tooth engagement groove 14b for engaging the protruding tip of the movable tooth 17 in the winding region with respect to the secondary pulley 12.
By engaging the movable tooth 17 and the movable tooth meshing groove 14b, it is possible to suppress the slip of the endless chain link 13 with respect to the secondary pulley 12 in the highest gear ratio selection state, and to improve the transmission efficiency of the continuously variable transmission mechanism 10. it can.

しかして可動歯17は、可動歯噛合溝14bと整列せずこれとの噛み合いが不能な場合、弾性手段19に抗してリンク板14の内側縁により可動歯ホルダー18内に押し込まれた後退位置となり得て、無終端チェーンリンク13との干渉によりこれを損傷させることがない。   Accordingly, when the movable tooth 17 is not aligned with the movable tooth engagement groove 14b and cannot be engaged with the movable tooth engagement groove 14b, the retracted position is pushed into the movable tooth holder 18 by the inner edge of the link plate 14 against the elastic means 19. And can be prevented from being damaged by interference with the endless chain link 13.

<上記無段変速伝動機構の問題点>
しかし上記した無段変速伝動機構では、可動歯噛合溝14bが1個ずつ設けられている複数のリンク板14と、プーリ中心ボス部16の外周における可動歯17との噛み合いが、或る瞬間に(或る位相で)図3(a)に示す同時噛み合いとなるが、次の瞬間に(次の位相で) 図3(b)に示す同時非噛み合い状態となる場面が存在するため、以下のような問題が生ずる。
<Problems of the above continuously variable transmission mechanism>
However, in the continuously variable transmission mechanism described above, the meshing between the plurality of link plates 14 each having one movable tooth meshing groove 14b and the movable tooth 17 on the outer periphery of the pulley center boss portion 16 occurs at a certain moment. Since the simultaneous meshing shown in FIG. 3 (a) (at a certain phase), the following non-meshing state shown in FIG. 3 (b) exists at the next moment (at the next phase). Such a problem arises.

図3(a)に示す同時噛み合い状態と、同図(b)に示す同時非噛み合い状態とが、位相の進み具合に応じてどのように発生するかを、図4の最も左側の列に示す。
位相1では図4の最も左側の列に記号「1」で示すように、第1の可動歯から第6の可動歯まで全ての可動歯17が、対応するリンク板14の可動歯噛合溝14bと図3(a)に示すように噛み合った同時噛み合い状態となるが、
以後の位相2〜20では図4の最も左側の列に空欄で示すように、第1の可動歯から第6の可動歯まで全ての可動歯17が、対応するリンク板14の可動歯噛合溝14bに対し図3(b)に示すごとく噛み合わない同時非噛み合い状態となる。
The leftmost column in FIG. 4 shows how the simultaneous meshing state shown in FIG. 3 (a) and the simultaneous non-meshing state shown in FIG. 3 (b) occur according to the progress of the phase. .
In phase 1, as shown by the symbol “1” in the leftmost column of FIG. 4, all the movable teeth 17 from the first movable tooth to the sixth movable tooth are moved to the movable tooth meshing grooves 14b of the corresponding link plate 14. As shown in FIG.
In the subsequent phases 2 to 20, as shown in the leftmost column in FIG. 4, all the movable teeth 17 from the first movable tooth to the sixth movable tooth are movable gear meshing grooves of the corresponding link plate 14. As shown in FIG. 3 (b) with respect to 14b, a simultaneous non-engagement state is established.

このように同時噛み合い状態になる位相と、同時非噛み合い状態になる位相とが存在するのでは、無終端チェーンリンク13とセカンダリプーリ12との間におけるスリップが一定でないことになり、安定したスリップ防止を期待できない。   In this way, when there is a phase that is in the simultaneous meshing state and a phase that is in the simultaneous non-meshing state, the slip between the endless chain link 13 and the secondary pulley 12 is not constant, and stable slip prevention Can not expect.

ちなみに、各リンク14板に設ける可動歯噛合溝14bの数を1個から複数個に増やした場合を以下に考察する。   Incidentally, the case where the number of movable tooth meshing grooves 14b provided on each link 14 plate is increased from one to a plurality will be considered below.

各リンク14板に設ける可動歯噛合溝14bの数を2個に増やした場合、図4の左側から二番目の列に記号「1」で示すごとく、
位相1において、第1の可動歯から第6の可動歯まで全ての可動歯17が、対応するリンク板14の可動歯噛合溝14bに対し図3(a)のように噛み合った同時噛み合い状態となるのに加え、
位相11においても、第1の可動歯から第6の可動歯まで全ての可動歯17が、対応するリンク板14の可動歯噛合溝14bに対し図3(a)のように噛み合った同時噛み合い状態となる。
When the number of movable tooth meshing grooves 14b provided on each link 14 plate is increased to 2, as indicated by the symbol “1” in the second column from the left side of FIG.
In phase 1, all the movable teeth 17 from the first movable teeth to the sixth movable teeth are engaged with the movable teeth meshing grooves 14b of the corresponding link plate 14 as shown in FIG. In addition to
Also in phase 11, all the movable teeth 17 from the first movable tooth to the sixth movable tooth are simultaneously meshed with the movable tooth meshing grooves 14b of the corresponding link plate 14 as shown in FIG. It becomes.

しかし、それ以外の位相2〜10および位相12〜20では図4の左側から二番目の列に空欄で示すように、第1の可動歯から第6の可動歯まで全ての可動歯17が、対応するリンク板14の可動歯噛合溝14bに対し図3(b)に示すごとく噛み合わない同時非噛み合い状態となる。   However, in the other phases 2 to 10 and phases 12 to 20, as shown in the blank in the second column from the left side of FIG. 4, all the movable teeth 17 from the first movable tooth to the sixth movable tooth, As shown in FIG. 3B, the movable tooth meshing grooves 14b of the corresponding link plates 14 are not meshed at the same time and are in a non-meshing state.

各リンク14板に設ける可動歯噛合溝14bの数を3個に増やした場合、図4の左側から三番目の列に記号「1」で示すごとく、
位相1,8,15においてそれぞれ、第1の可動歯から第6の可動歯まで全ての可動歯17が、対応するリンク板14の可動歯噛合溝14bに対し図3(a)のように噛み合った同時噛み合い状態となるが、
それ以外の位相2〜7、位相9〜14および位相16〜20では図4の左側から三番目の列に空欄で示すように、第1の可動歯から第6の可動歯まで全ての可動歯17が、対応するリンク板14の可動歯噛合溝14bに対し図3(b)に示すごとく噛み合わない同時非噛み合い状態となる。
When the number of movable tooth meshing grooves 14b provided on each link 14 plate is increased to 3, as indicated by the symbol “1” in the third column from the left side of FIG.
In each of the phases 1, 8, and 15, all the movable teeth 17 from the first movable tooth to the sixth movable tooth mesh with the movable tooth meshing groove 14b of the corresponding link plate 14 as shown in FIG. Will be engaged at the same time,
In the other phases 2 to 7, phase 9 to 14, and phase 16 to 20, all the movable teeth from the first movable tooth to the sixth movable tooth are shown as blank in the third column from the left side of FIG. As shown in FIG. 3 (b), 17 is in a simultaneous non-engagement state as shown in FIG. 3 (b) with respect to the movable tooth engagement groove 14b of the corresponding link plate 14.

各リンク14板に設ける可動歯噛合溝14bの数を4個に増やした場合、図4の左側から四番目の列に記号「1」で示すごとく、
位相1,6,11,16においてそれぞれ、第1の可動歯から第6の可動歯まで全ての可動歯17が、対応するリンク板14の可動歯噛合溝14bに対し噛み合った同時噛み合い状態となるが、
それ以外の位相2〜5、位相7〜10、位相12〜15および位相17〜20では図4の左側から四番目の列に空欄で示すごとく、第1の可動歯から第6の可動歯まで全ての可動歯17が、対応するリンク板14の可動歯噛合溝14bに対し噛み合わない同時非噛み合い状態となる。
When the number of movable tooth meshing grooves 14b provided on each link 14 plate is increased to 4, as shown by the symbol “1” in the fourth column from the left side of FIG.
In each of the phases 1, 6, 11, and 16, all the movable teeth 17 from the first movable tooth to the sixth movable tooth are simultaneously meshed with the movable tooth meshing groove 14b of the corresponding link plate 14. But,
In other phases 2 to 5, phase 7 to 10, phase 12 to 15, and phase 17 to 20, as indicated by a blank in the fourth column from the left side of FIG. 4, from the first movable tooth to the sixth movable tooth All the movable teeth 17 are brought into a simultaneous non-engagement state in which the movable teeth 17 do not mesh with the corresponding movable tooth meshing grooves 14b of the link plate 14.

各リンク14板に設ける可動歯噛合溝14bの数を5個に増やした場合、図4の左側から五番目の列に記号「1」で示すごとく、
位相1,5,9,13,17においてそれぞれ、第1の可動歯から第6の可動歯まで全ての可動歯17が、対応するリンク板14の可動歯噛合溝14bに対し噛み合った同時噛み合い状態となるが、
それ以外の位相2〜4、位相6〜8、位相10〜12、位相14〜16および位相18〜20では図4の左側から五番目の列に空欄で示すごとく、第1の可動歯から第6の可動歯まで全ての可動歯17が、対応するリンク板14の可動歯噛合溝14bに対し噛み合わない同時非噛み合い状態となる。
When the number of movable tooth engagement grooves 14b provided on each link 14 plate is increased to 5, as indicated by the symbol “1” in the fifth column from the left side of FIG.
In the phases 1, 5, 9, 13, and 17, all the movable teeth 17 from the first movable tooth to the sixth movable tooth are simultaneously meshed with the movable tooth meshing groove 14b of the corresponding link plate 14, respectively. But
In the other phases 2 to 4, phase 6 to 8, phase 10 to 12, phase 14 to 16, and phase 18 to 20, as indicated by the blank in the fifth column from the left side of FIG. All the movable teeth 17 up to the six movable teeth are in a non-engagement state at the same time where they do not mesh with the movable tooth meshing grooves 14b of the corresponding link plate 14.

以上のことから明らかなように、何の考慮もなしに各リンク14板に設ける可動歯噛合溝14bの数を増やしただけでは、同時噛み合いの確率が増えるだけで、同時非噛み合い状態は無くならないため、抜本的な解決策たり得ない。   As is clear from the above, simply increasing the number of movable tooth meshing grooves 14b provided on each link 14 plate without any consideration only increases the probability of simultaneous meshing and does not eliminate the simultaneous non-meshing state. Therefore, it cannot be a radical solution.

<実施例の構成>
図5は、本発明の一実施例になる無段変速伝動機構の要部を示し、本実施例においては無段変速伝動機構を基本的には図1,2につき前述したと同様な構成とするが、セカンダリプーリ中心ボス部16と無終端チェーンリンク13との間におけるスリップ防止機構を、上記の問題解決を実現可能にするため、図5に示すごときものとする。
なお図5中、図1,2におけると同様に機能する部分には同一符号を付して示し、重複説明を避けた。
<Configuration of Example>
FIG. 5 shows a main part of a continuously variable transmission mechanism according to an embodiment of the present invention. In this embodiment, the continuously variable transmission mechanism is basically configured in the same manner as described above with reference to FIGS. However, the slip prevention mechanism between the secondary pulley central boss portion 16 and the endless chain link 13 is as shown in FIG. 5 in order to make it possible to solve the above problem.
In FIG. 5, parts that function in the same manner as in FIGS. 1 and 2 are denoted by the same reference numerals, and redundant description is avoided.

図1,2におけると同様に可動歯ホルダー18を介してセカンダリプーリ中心ボス部16の外周に径方向進退可能に設ける可動歯17を、本実施例では18個一組として円周方向等間隔に配置する。
そして、これら可動歯17が噛み合うよう各リンク板14の内側縁に設ける可動歯噛合溝14bの数および配置を以下のごとくに決定する。
As in FIGS. 1 and 2, the movable teeth 17 provided in the outer periphery of the secondary pulley central boss portion 16 through the movable tooth holder 18 so as to be able to advance and retract in the radial direction are set at equal intervals in the circumferential direction as a set of 18 in this embodiment. Deploy.
Then, the number and arrangement of the movable tooth engagement grooves 14b provided on the inner edge of each link plate 14 so that the movable teeth 17 are engaged with each other are determined as follows.

つまり、図5に示すごとく可動歯17と噛み合った状態でリンク板14の両端におけるリンクピン挿通孔14aの中心Opと、セカンダリプーリ回転中心Osとをそれぞれ結んだ半径線A1,A2(図6参照)間の角度であるリンクピッチ角θpsから、図7に示すごとく可動歯17と可動歯噛合溝14bとの噛み合い接触範囲をセカンダリプーリ回転中心Os周りの角度として定義した遅れ位相角Δθsubを差し引いて得られる角度範囲θps−Δθsub(図6参照)内に、可動歯噛合溝14bを配置して設ける。   That is, as shown in FIG. 5, the radial lines A1 and A2 connecting the center Op of the link pin insertion hole 14a at both ends of the link plate 14 and the secondary pulley rotation center Os in a state of meshing with the movable tooth 17 (see FIG. 6). ) Is subtracted from the link pitch angle θps, which is the angle between them, as shown in FIG. The movable tooth meshing groove 14b is disposed and provided within the obtained angle range θps−Δθsub (see FIG. 6).

そして、かかる角度範囲θps−Δθsub内に設ける可動歯噛合溝14bの数Zsubは、以下のように決定する。
つまり、図5に示す無終端チェーンリンク13のプーリ巻き付き範囲(噛み合い始めの第1歯から第7歯までの可動歯7歯分)内で可動歯噛合溝14bと噛み合っている可動歯17の有効噛み合い歯数Zeが1以上(図5では、第1歯から第3歯までの3個の可動歯17が可動歯噛合溝14bと噛み合う有効噛み合い歯であり、Ze=3)となるよう、可動歯噛合溝14bの数Zsubを図6に明示するようにZsub=4と決定する。
Then, the number Zsub of the movable tooth meshing grooves 14b provided in the angle range θps−Δθsub is determined as follows.
That is, the effective movement of the movable teeth 17 meshing with the movable tooth meshing groove 14b within the pulley wrapping range of the endless chain link 13 shown in FIG. 5 (seven movable teeth from the first tooth to the seventh tooth at the start of meshing) It is movable so that the number of meshing teeth Ze is 1 or more (in FIG. 5, three movable teeth 17 from the first tooth to the third tooth are effective meshing teeth meshing with the movable tooth meshing groove 14b, Ze = 3). The number Zsub of the tooth engagement grooves 14b is determined as Zsub = 4 as clearly shown in FIG.

ちなみに、プーリ巻き付き範囲内における第4歯から第7歯までの4個の可動歯17は、可動歯噛合溝14bと噛み合わないため、弾性手段19に抗して無終端チェーンリンク13により後退位置に押し込まれている。   Incidentally, the four movable teeth 17 from the fourth tooth to the seventh tooth in the pulley winding range do not mesh with the movable tooth meshing groove 14b, so that the endless chain link 13 moves to the retracted position against the elastic means 19. It is pushed in.

なお上記のごとくに定義した図7に示す遅れ位相角Δθsubは、可動歯17の圧力角をαとし、可動歯17の歯丈をhとし、可動歯17の噛み合いピッチ径Rpとしたとき、次式
Δθsub≡{sin-1〔((h×tanα)/2)/Rp〕}×2 ‥‥(1)
で表される。
Note that the lagging phase angle Δθsub shown in FIG. 7 defined above is the following when the pressure angle of the movable tooth 17 is α, the height of the movable tooth 17 is h, and the meshing pitch diameter Rp of the movable tooth 17 is Formula Δθsub≡ {sin −1 [((h × tanα) / 2) / Rp]} × 2 (1)
It is represented by

また、上記のごとくリンクピッチ角θpsから遅れ位相角Δθsubを差し引いた角度範囲θps−Δθsub(図6参照)内に、可動歯噛合溝14bを、プーリ巻き付き範囲内における可動歯17の有効噛み合い歯数Zeが1以上となるような数Zsubだけ設けた場合、1溝分の角度であるサブピッチ角θsubは、次式で示すようなものとなる。
θsub=(θps−Δθsub)/Zsub ‥‥(2)
Further, as described above, the movable tooth meshing groove 14b is provided in the angle range θps−Δθsub (see FIG. 6) obtained by subtracting the delay phase angle Δθsub from the link pitch angle θps, and the number of effective meshing teeth of the movable tooth 17 within the pulley winding range. When only a few Zsubs are provided such that Ze is 1 or more, the sub-pitch angle θsub, which is an angle for one groove, is as shown in the following equation.
θsub = (θps−Δθsub) / Zsub (2)

<実施例の作用効果>
上記した実施例の無段変速伝動機構にあっては、上記の角度範囲θps−Δθsub内に可動歯噛合溝14bを配置して設け、且つその数Zsubを、プーリ巻き付き範囲内における可動歯17の有効噛み合い歯数Zeが1以上(Ze=3)となるような数Zsub=4としたため、以下の作用効果が奏し得られる。
<Effects of Example>
In the continuously variable transmission mechanism of the above-described embodiment, the movable tooth meshing groove 14b is disposed in the angular range θps−Δθsub, and the number Zsub is determined by the number of the movable teeth 17 in the pulley winding range. Since the number Zsub = 4 so that the number of effective meshing teeth Ze is 1 or more (Ze = 3), the following effects can be obtained.

図8は、図5において各リンク板14に設ける可動歯噛合溝14bが1個である場合と、2個である場合と、3個である場合と、図6につき前述した本実施例のように4個である場合と、それよりも更に多い5個である場合につき、
可動歯17のうち第1歯〜第6歯が可動歯噛合溝14bと噛み合う状況(図4におけると同様に、可動歯17が噛み合っている場合を記号「1」で示し、可動歯17が噛み合っていない場合を空欄で示した)を、位相の進み具合に応じて示したものである。
FIG. 8 shows the case where there is one movable tooth engagement groove 14b provided in each link plate 14 in FIG. 5, two cases, and three cases, as in the present embodiment described above with reference to FIG. In the case of 4 and the case of 5 more than that,
A situation in which the first to sixth teeth of the movable teeth 17 mesh with the movable teeth meshing groove 14b (similar to FIG. 4, the case where the movable teeth 17 are meshed is indicated by the symbol “1”, and the movable teeth 17 mesh. The case where it is not shown is indicated by a blank) according to the progress of the phase.

各リンク板14に設ける可動歯噛合溝14bが1個である場合、図8の最も左側の列に記号「1」を付して示すように、位相1〜6では第1歯から第6歯までの何れか1つの可動歯17が、対応するリンク板14の可動歯噛合溝14bと噛み合った噛み合い状態となるが、
以後の位相7〜20では図8の最も左側の列に空欄で示すように、第1歯から第6歯までの何れの可動歯17も、対応するリンク板14の可動歯噛合溝14bに対し噛み合っていない非噛み合い状態となる。
When there is one movable tooth meshing groove 14b provided on each link plate 14, as shown in FIG. 8 with the symbol “1” in the leftmost column, the first to sixth teeth in phases 1-6. Any one of the movable teeth 17 until is meshed with the corresponding movable tooth meshing groove 14b of the link plate 14,
In the subsequent phases 7 to 20, as indicated by blanks in the leftmost column of FIG. 8, any movable tooth 17 from the first tooth to the sixth tooth is in contact with the movable tooth meshing groove 14b of the corresponding link plate 14. It will be in the non-engagement state which is not meshing.

各リンク板14に設ける可動歯噛合溝14bが2個である場合、図8の左側から二番目の列に記号「1」を付して示すように、位相1〜6および位相11〜16では第1歯から第6歯までの何れか1つの可動歯17が、対応するリンク板14の可動歯噛合溝14bと噛み合った噛み合い状態となるが、
それ以外の位相7〜10および位相17〜20では図8の左側から二番目の列に空欄で示すように、第1歯から第6歯までの何れの可動歯17も、対応するリンク板14の可動歯噛合溝14bに対し噛み合っていない非噛み合い状態となる。
In the case where there are two movable tooth meshing grooves 14b provided in each link plate 14, as indicated by the symbol "1" in the second row from the left side of FIG. Any one movable tooth 17 from the first tooth to the sixth tooth is engaged with the movable tooth engagement groove 14b of the corresponding link plate 14,
In other phases 7 to 10 and phases 17 to 20, any movable tooth 17 from the first tooth to the sixth tooth is the corresponding link plate 14 as shown in the blank in the second column from the left side of FIG. In this state, the movable tooth meshing groove 14b is not meshed.

各リンク板14に設ける可動歯噛合溝14bが3個である場合、図8の左側から三番目の列に記号「1」を付して示すように、位相1〜6、位相8〜13および位相15〜20では第1歯から第6歯までの何れか1つの可動歯17が、対応するリンク板14の可動歯噛合溝14bと噛み合った噛み合い状態となるが、
それ以外の位相7および位相14では図8の左側から三番目の列に空欄で示すように、第1歯から第6歯までの何れの可動歯17も、対応するリンク板14の可動歯噛合溝14bに対し噛み合っていない非噛み合い状態となる。
When there are three movable tooth meshing grooves 14b provided in each link plate 14, as shown in FIG. 8 with the symbol “1” in the third column from the left side, phase 1-6, phase 8-13, and In the phases 15 to 20, any one of the movable teeth 17 from the first tooth to the sixth tooth is engaged with the movable tooth engagement groove 14b of the corresponding link plate 14,
In other phases 7 and 14, as shown in the blank in the third column from the left side of FIG. 8, any movable tooth 17 from the first tooth to the sixth tooth is engaged with the movable tooth mesh of the corresponding link plate 14. A non-engagement state in which the groove 14b is not meshed is established.

ところで各リンク板14に設ける可動歯噛合溝14bが4個以上である場合、図8の左側から四番目および五番目の列に記号「1」を付して示すように、全ての位相で第1歯から第6歯までの何れかの可動歯17が、対応するリンク板14の可動歯噛合溝14bと噛み合っており、
第1歯から第6歯までの何れの可動歯17も、対応するリンク板14の可動歯噛合溝14bに対し噛み合わない同時非噛み合い状態となる位相が存在しない。
By the way, when there are four or more movable tooth meshing grooves 14b provided on each link plate 14, the fourth and fifth columns from the left side of FIG. Any one of the movable teeth 17 from the first tooth to the sixth tooth meshes with the movable tooth meshing groove 14b of the corresponding link plate 14,
None of the movable teeth 17 from the first tooth to the sixth tooth has a phase in which the movable teeth 17 are not meshed with the movable teeth meshing grooves 14b of the corresponding link plate 14 and are not meshed simultaneously.

従って、本実施例のように前記の角度範囲θps−Δθsub内に可動歯噛合溝14bを配置して設け、且つその数Zsubを、プーリ巻き付き範囲内における可動歯17の有効噛み合い歯数Zeが1以上(Ze=3)となるような数Zsub=4とする場合、
常時少なくとも1個の可動歯17が可動歯噛合溝14bと噛み合っていることとなって同時非噛み合い状態となる位相が存在せず、これにより無終端チェーンリンク13とセカンダリプーリとの間における安定したスリップ防止を実現することができる。
Therefore, as in this embodiment, the movable tooth meshing groove 14b is disposed in the angle range θps−Δθsub, and the number Zsub is equal to the number of effective meshing teeth Ze of the movable tooth 17 within the pulley winding range. When the number Zsub = 4 so that (Ze = 3)
Since at least one movable tooth 17 is always meshed with the movable tooth meshing groove 14b, there is no phase that is in a non-engagement state at the same time, which makes it stable between the endless chain link 13 and the secondary pulley. Slip prevention can be realized.

なお図示例で可動歯17の有効噛み合い歯数Zeを3個とした理由は、無段変速伝動機構の使用条件に応じた必要な有効噛み合い歯数Zeが3個であるためであり、
この場合、可動歯17の一歯当りのトルク伝達容量が入力トルクに対し不足していても、3個の可動歯17の共働により伝達すべきトルクを確実に伝達することができ、各可動歯17の小型化により無段変速伝動機構の小型化を実現し得ると共に、それにもかかわらず可動歯17の破損や摩耗を減じて無段変速伝動機構の耐久性を向上させることができる。
In the illustrated example, the reason why the number of effective meshing teeth Ze of the movable teeth 17 is three is that the required number of effective meshing teeth Ze according to the use condition of the continuously variable transmission mechanism is three,
In this case, even if the torque transmission capacity per tooth of the movable teeth 17 is insufficient with respect to the input torque, the torque to be transmitted can be reliably transmitted by the cooperation of the three movable teeth 17, and each movable tooth 17 The size of the continuously variable transmission mechanism can be reduced by reducing the size of the teeth 17, and nevertheless, the damage and wear of the movable teeth 17 can be reduced and the durability of the continuously variable transmission mechanism can be improved.

<その他の実施例>
前記の角度範囲θps−Δθsub内に設ける可動歯噛合溝14bの数Zsub、およびプーリ巻き付き範囲内における可動歯17の有効噛み合い歯数Zeを、前記した実施例のように決定するに際しては、
無終端チェーンリンク13のプーリ巻き付き範囲内における可動歯歯数をZfとし、各リンク板14内の噛み合い歯数をesubとしたとき、次式
Ze=Zf×esub ・・・(3)
esub≡(Δθsub/θps)×Zsub ・・・(4)
が満足されるよう、可動歯17の有効噛み合い歯数Ze、および前記角度範囲θps−Δθsub内における可動歯噛合溝数Zsubを決定することができる。
<Other examples>
When determining the number Zsub of the movable tooth meshing grooves 14b provided in the angle range θps−Δθsub and the effective meshing tooth number Ze of the movable teeth 17 in the pulley winding range as in the above-described embodiment,
When the number of movable teeth in the pulley wrapping range of the endless chain link 13 is Zf and the number of meshing teeth in each link plate 14 is esub, the following formula
Ze = Zf × esub (3)
esub≡ (Δθsub / θps) × Zsub (4)
So that the effective meshing tooth number Ze of the movable tooth 17 and the movable tooth meshing groove number Zsub within the angular range θps−Δθsub can be determined.

この場合、上記の(3),(4)式を満足させるだけで、前記した実施例の作用効果が得られるよう可動歯有効噛み合い歯数Zeおよび可動歯噛合溝数Zsubの決定することができ、設計が容易になって大いに有利である。   In this case, it is possible to determine the movable tooth effective meshing tooth number Ze and the movable tooth meshing groove number Zsub so as to obtain the operational effects of the above-described embodiment only by satisfying the above expressions (3) and (4). This is a great advantage, making the design easier.

また可動歯17の有効噛み合い歯数Zeは、実施例の3個に限られるものではなく、無段変速伝動機構の使用条件に応じ、大トルクを伝達する使用条件なら可動歯17の有効噛み合い歯数Zeを4個以上にしたり、小さいトルクを伝達する使用条件なら可動歯17の有効噛み合い歯数Zeを3個未満にすることができる。
かように可動歯17の有効噛み合い歯数Zeを、無段変速伝動機構の使用条件に応じて加減する場合、可動歯17の有効噛み合い歯数Zeを、無段変速伝動機構の使用条件に応じた必要最小限の歯数にして、可動歯17の破損や摩耗を減じて無段変速伝動機構の耐久性を向上させつつ、無段変速伝動機構の低廉化を実現することができる。
The number of effective meshing teeth Ze of the movable tooth 17 is not limited to the three in the embodiment, and according to the use condition of the continuously variable transmission mechanism, the effective meshing tooth of the movable tooth 17 if the use condition transmits a large torque. The number of effective meshing teeth Ze of the movable tooth 17 can be reduced to less than 3 if the number Ze is set to 4 or more, or under a use condition in which a small torque is transmitted.
Thus, when the effective meshing tooth number Ze of the movable tooth 17 is adjusted according to the use conditions of the continuously variable transmission mechanism, the effective meshing tooth number Ze of the movable tooth 17 depends on the use conditions of the continuously variable transmission mechanism. Therefore, the cost of the continuously variable transmission mechanism can be reduced while reducing the damage and wear of the movable teeth 17 and improving the durability of the continuously variable transmission mechanism.

更に図示例では、最ハイ変速比選択状態で無終端チェーンリンク13とセカンダリプーリ12との間のスリップを防止すべく、これら無終端チェーンリンク13およびセカンダリプーリ12間にスリップ防止機構(可動歯17、可動歯噛合溝14b)が存在する場合について本発明の着想を適用したが、
最ロー変速比選択状態で無終端チェーンリンク13とプライマリプーリ11との間のスリップを防止すべく、これら無終端チェーンリンク13およびプライマリプーリ11間に同様なスリップ防止機構が存在する場合も本発明の上記した着想は適用可能であり、この適用によっても前記したと同様な作用効果が奏し得られのは言うまでもない。
Further, in the illustrated example, a slip prevention mechanism (movable teeth 17) is provided between the endless chain link 13 and the secondary pulley 12 in order to prevent slippage between the endless chain link 13 and the secondary pulley 12 in the highest gear ratio selection state. The idea of the present invention was applied to the case where the movable tooth meshing groove 14b) exists,
The present invention also includes a case in which a similar slip prevention mechanism exists between the endless chain link 13 and the primary pulley 11 in order to prevent a slip between the endless chain link 13 and the primary pulley 11 in the lowest speed ratio selection state. It is needless to say that the above-described idea can be applied, and that the same effect as described above can be obtained by this application.

10 無段変速伝動機構
11 プライマリプーリ
12 セカンダリプーリ
13 無終端チェーンリンク
14 リンク板
14a リンクピン挿通孔
14b 可動歯噛合溝
15 リンクピン
16 プーリ中心ボス部
17 可動歯
18 可動歯ホルダー
19 弾性手段
10 Continuously variable transmission mechanism
11 Primary pulley
12 Secondary pulley
13 Endless chain link
14 Link plate
14a Link pin insertion hole
14b Movable tooth engagement groove
15 Link pin
16 Pulley center boss
17 movable teeth
18 Movable tooth holder
19 Elastic means

Claims (3)

多数のリンク板を順次、リンクピンで数珠繋ぎに連結して成る無終端チェーンリンクと、この無終端チェーンリンクを無段変速可能に巻き掛けしたプーリとから成り、該プーリの中心ボス部外周に径方向進退可能に設けた可動歯と、前記リンク板に設けた可動歯噛合溝との噛み合いにより、該噛み合いが可能な伝動比でのスリップ防止を可能にした無段変速伝動機構において、
前記可動歯と噛み合った状態で前記リンク板の両端におけるリンクピン挿通孔の中心と、前記プーリの中心とをそれぞれ結んだ半径線間の角度であるリンクピッチ角θpsから、前記可動歯と可動歯噛合溝との噛み合い接触範囲を前記プーリ中心の周りの角度として定義した遅れ位相角Δθsubを差し引いて得られる角度範囲θps−Δθsub内に、前記可動歯噛合溝を、
前記無終端チェーンリンクのプーリ巻き付き範囲内で前記可動歯噛合溝と噛み合っている可動歯の有効噛み合い歯数Zeが1以上となるような数Zsubだけ設けたことを特徴とする無段変速伝動機構。
It consists of an endless chain link formed by connecting a large number of link plates in a daisy chain with link pins and a pulley around which this endless chain link is wound so as to be continuously variable. In a continuously variable transmission mechanism capable of preventing slipping at a transmission ratio capable of meshing by meshing a movable tooth provided so as to be able to advance and retreat and a movable tooth meshing groove provided on the link plate,
From the link pitch angle θps, which is the angle between the radial lines that connect the center of the link pin insertion hole at both ends of the link plate and the center of the pulley in a state of meshing with the movable tooth, the movable tooth and the movable tooth The movable tooth meshing groove is within an angle range θps−Δθsub obtained by subtracting the delay phase angle Δθsub defined as the mesh contact range with the meshing groove as an angle around the pulley center.
A continuously variable transmission mechanism having a number Zsub of effective meshing teeth Ze of 1 or more of movable teeth meshing with the movable teeth meshing groove within the pulley winding range of the endless chain link. .
請求項1に記載された無段変速伝動機構において、
前記無終端チェーンリンクのプーリ巻き付き範囲内における可動歯歯数をZfとし、1リンク板内の噛み合い歯数をesubとしたとき、前記可動歯の有効噛み合い歯数Ze、および前記角度範囲θps−Δθsub内における前記可動歯噛合溝数Zsubをそれぞれ、次式
Ze=Zf×esub
esub≡(Δθsub/θps)×Zsub
が満足されるよう決定したことを特徴とする無段変速伝動機構。
In the continuously variable transmission mechanism according to claim 1,
When the number of movable teeth in the pulley wrapping range of the endless chain link is Zf and the number of meshing teeth in one link plate is esub, the effective meshing number Ze of the movable teeth and the angle range θps−Δθsub The number of movable tooth meshing grooves Zsub in the
Ze = Zf × esub
esub≡ (Δθsub / θps) × Zsub
Is a continuously variable transmission mechanism characterized in that
請求項1または2に記載の無段変速伝動機構において、
前記可動歯の有効噛み合い歯数Zeを、無段変速伝動機構の使用条件に応じた所定値以上となるよう決定したことを特徴とする無段変速伝動機構。
In the continuously variable transmission mechanism according to claim 1 or 2,
A continuously variable transmission mechanism, wherein the number of effective meshing teeth Ze of the movable teeth is determined to be equal to or greater than a predetermined value according to a use condition of the continuously variable transmission mechanism.
JP2010027612A 2010-02-10 2010-02-10 Continuously variable transmission mechanism Expired - Fee Related JP5515818B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010027612A JP5515818B2 (en) 2010-02-10 2010-02-10 Continuously variable transmission mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010027612A JP5515818B2 (en) 2010-02-10 2010-02-10 Continuously variable transmission mechanism

Publications (2)

Publication Number Publication Date
JP2011163461A true JP2011163461A (en) 2011-08-25
JP5515818B2 JP5515818B2 (en) 2014-06-11

Family

ID=44594388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010027612A Expired - Fee Related JP5515818B2 (en) 2010-02-10 2010-02-10 Continuously variable transmission mechanism

Country Status (1)

Country Link
JP (1) JP5515818B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016013060A1 (en) * 2014-07-22 2016-01-28 日産自動車株式会社 Continuously variable transmission
CN113236723A (en) * 2021-05-18 2021-08-10 璞灵(上海)汽车技术有限公司 Stepless speed change multifunctional tooth-shaped transmission chain and control method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009293681A (en) * 2008-06-04 2009-12-17 Nissan Motor Co Ltd Continuously variable transmission
JP2010014269A (en) * 2008-03-26 2010-01-21 Nissan Motor Co Ltd Continuously variable transmission device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010014269A (en) * 2008-03-26 2010-01-21 Nissan Motor Co Ltd Continuously variable transmission device
JP2009293681A (en) * 2008-06-04 2009-12-17 Nissan Motor Co Ltd Continuously variable transmission

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016013060A1 (en) * 2014-07-22 2016-01-28 日産自動車株式会社 Continuously variable transmission
CN113236723A (en) * 2021-05-18 2021-08-10 璞灵(上海)汽车技术有限公司 Stepless speed change multifunctional tooth-shaped transmission chain and control method

Also Published As

Publication number Publication date
JP5515818B2 (en) 2014-06-11

Similar Documents

Publication Publication Date Title
JP6177327B2 (en) Wave gear device
WO2018173488A1 (en) Dog clutch and transmission
US11280385B2 (en) Transfer belt
KR101419568B1 (en) Timing chain driving system
JP6165716B2 (en) Rotation transmission element, power on / off transmission device, transmission and transmission system
JP5515818B2 (en) Continuously variable transmission mechanism
WO2016093204A1 (en) Transmission mechanism
JP5614223B2 (en) Continuously variable transmission mechanism
US11585414B2 (en) Chain drive mechanism
JP2015045344A (en) Continuously variable transmission mechanism
JP5430532B2 (en) Continuously variable transmission mechanism
JP6200081B2 (en) Speed change mechanism
CN111197647A (en) Sprocket and drive mechanism
WO2015073403A1 (en) Sprocket assembly including teeth having an enlarged profile
US20190154114A1 (en) Power transfer belt for continuously variable transmission
JP2015075155A (en) Continuously variable transmission mechanism
JP2013241996A (en) Chain link clamping force control device for continuously-variable transmission mechanism
CN110319175B (en) Sprocket and drive mechanism
JP6561335B2 (en) Automatic transmission
JP5349442B2 (en) Continuously variable transmission mechanism
JP2014016008A (en) Continuously variable transmission mechanism
JP6175026B2 (en) Speed change mechanism
EP2110343B1 (en) A device for activating a cogged flexible transmission organ
JP2013113433A (en) Continuously variable transmission mechanism
JP2010121732A (en) Belt-type continuously variable transmission

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140317

LAPS Cancellation because of no payment of annual fees