JP2011162875A - Phosphorus-containing copper anode for electrolytic copper plating, method of producing the same and electrolytic copper plating method - Google Patents

Phosphorus-containing copper anode for electrolytic copper plating, method of producing the same and electrolytic copper plating method Download PDF

Info

Publication number
JP2011162875A
JP2011162875A JP2010141721A JP2010141721A JP2011162875A JP 2011162875 A JP2011162875 A JP 2011162875A JP 2010141721 A JP2010141721 A JP 2010141721A JP 2010141721 A JP2010141721 A JP 2010141721A JP 2011162875 A JP2011162875 A JP 2011162875A
Authority
JP
Japan
Prior art keywords
grain boundary
anode
electroplating
boundary length
copper anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010141721A
Other languages
Japanese (ja)
Other versions
JP5499933B2 (en
Inventor
Kiyotaka Nakaya
清隆 中矢
Koichi Kita
晃一 喜多
Tsutomu Kumagai
訓 熊谷
Naoki Kato
直樹 加藤
Mami Watanabe
眞美 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2010141721A priority Critical patent/JP5499933B2/en
Priority to US13/521,584 priority patent/US20150308009A1/en
Priority to PCT/JP2011/050179 priority patent/WO2011086978A1/en
Priority to CN201180005807.9A priority patent/CN102713022B/en
Priority to KR1020127015436A priority patent/KR20120123272A/en
Priority to TW100100819A priority patent/TWI522497B/en
Publication of JP2011162875A publication Critical patent/JP2011162875A/en
Application granted granted Critical
Publication of JP5499933B2 publication Critical patent/JP5499933B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/16Control of thickness, width, diameter or other transverse dimensions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a phosphorus-containing copper anode for electrolytic copper plating, a method of producing the phosphorus-containing copper anode for electrolytic copper plating and an electrolytic copper plating method capable of reducing plating defectives due to slime. <P>SOLUTION: Working is performed onto a phosphorus-containing copper for electrolytic copper plating to give a working strain to the phosphorus-containing copper for electrolytic copper plating, thereafter, re-crystallizing heat treatment is performed, thereby, such a crystal grain boundary structure that the special grain boundary length rate Lσ<SB>N</SB>/L<SB>N</SB>of the unit total special grain boundary length Lσ<SB>N</SB>calculated by converting the total special grain boundary length Lσ of a special grain boundary into the value per unit area 1 mm<SP>2</SP>to the unit total grain boundary length L<SB>N</SB>calculated by converting the total grain boundary length L of a crystal grain boundary of a copper crystal grain on the anode surface into the value per unit area 1 mm<SP>2</SP>becomes 0.4 or more is produced, a black film is evenly formed on the initial time of electrolytic copper plating, the black film is prevented from coming off and, thereby, the plating defectives can be reduced. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、例えば、半導体ウエハ等への電気銅めっきを行う際に、含リン銅アノード電極から生じるアノードスライムの発生を抑制するとともに、半導体ウエハ等からなるカソード表面の汚染、突起等のめっき欠陥の発生を防止する電気銅めっき用含リン銅アノード、該含リン銅アノードの製造方法およびこの含リン銅アノード電極を用いた電気銅めっき方法に関する。   The present invention, for example, suppresses generation of anode slime generated from a phosphorus-containing copper anode electrode when performing electrolytic copper plating on a semiconductor wafer or the like, and contamination of the cathode surface made of a semiconductor wafer or the like, plating defects such as protrusions TECHNICAL FIELD The present invention relates to a phosphorous copper anode for electrolytic copper plating that prevents the occurrence of copper, a method for producing the phosphorous copper anode, and an electrolytic copper plating method using the phosphorous copper anode electrode.

従来から、電気銅めっきのアノード電極として電気銅や無酸素銅を用いた電気銅めっきが行われているが、多量のアノードスライムが発生しやすく、また、これを原因として被処理材にめっき欠陥が発生しやすいという問題点があった。
そして、これを解決するために、含リン銅をアノード電極として用いた電気銅めっきが行われるようになってきている。
含リン銅アノードを用いた電気銅めっきによれば、電解時にアノード表面に亜酸化銅や銅粉等を主成分とするブラックフィルムが形成されるため、アノードスライムの発生は低減され、その結果として、めっき欠陥の発生も減少するようになってきたが、例えば、半導体ウエハ等への精緻な銅配線を形成する場合には、含リン銅をアノードとして用いた電気銅めっきによっても、半導体ウエハ表面の汚染、突起等のめっき欠陥発生防止が十分に行われているとはいえない。
Conventionally, electrolytic copper plating using electrolytic copper or oxygen-free copper has been performed as an anode electrode for electrolytic copper plating, but a large amount of anode slime is likely to occur, and this causes plating defects in the material to be treated. There was a problem that was likely to occur.
In order to solve this problem, electrolytic copper plating using phosphorous copper as an anode electrode has been performed.
According to electrolytic copper plating using a phosphorous copper anode, a black film mainly composed of cuprous oxide or copper powder is formed on the anode surface during electrolysis, so that the generation of anode slime is reduced. The occurrence of plating defects has also been reduced. For example, when forming precise copper wiring on a semiconductor wafer or the like, the surface of the semiconductor wafer can also be obtained by electrolytic copper plating using phosphorous copper as an anode. It cannot be said that the prevention of plating defects such as contamination and protrusions is sufficiently performed.

そこで、最近では、アノードに含有される酸素含有量を規定するとともに、アノード電極の結晶粒度を規定した純銅アノードを用いた電気銅めっき(特許文献1参照)、あるいは、アノードに含有されるリン含有量を規定するとともに、アノード電極の結晶粒径を規定した含リン銅アノードを用いた電気銅めっき(特許文献2,3参照)が開発され、アノードスライムの発生低減およびめっき欠陥の発生防止が図られている。   Therefore, recently, the amount of oxygen contained in the anode is specified, and copper electroplating using a pure copper anode in which the crystal grain size of the anode electrode is specified (see Patent Document 1), or the phosphorus content contained in the anode The copper electroplating (see Patent Documents 2 and 3) using a phosphorous copper anode that defines the amount and the crystal grain size of the anode electrode has been developed to reduce the generation of anode slime and prevent plating defects. It has been.

特許第4011336号明細書Japanese Patent No. 4011336 特許第4034095号明細書Patent No. 4034095 specification 特許第4076751号明細書Patent No. 4076751

従来の含リン銅アノードを用いた電気銅めっきにおいては、電解の進行とともに、含リン銅アノード表面に、銅粉、亜酸化銅、リン化銅、塩化銅等を主成分とするブラックフィルムが形成されるが、電解がさらに進行しブラックフィルムが厚く成長すると、これが含リン銅アノード表面から脱落しアノードスライム発生の原因となったり、あるいは、めっき浴中に拡散することにより被めっき材表面(カソード表面)に付着し、半導体ウエハ等の被めっき材表面の汚染、突起等のめっき欠陥発生の原因となったりしていた。
そこで、本発明は、電気銅めっきにより、例えば、半導体ウエハ等への精緻な銅配線を形成する場合にも、アノードスライムの発生を抑制するとともに、半導体ウエハ等の被めっき材表面における汚染、突起等のめっき欠陥の発生防止を図ることができる電気銅めっき用の含リン銅アノードを提供することを一つの目的とする。
また、アノードスライムの発生を低減し、被めっき材表面における汚染、突起等のめっき欠陥の発生防止を図ることができる前記電気銅めっき用の含リン銅アノードの新たな製造方法を提供することを他の目的とする。
さらに、前記電気銅めっき用の含リン銅アノードを用いることによって、アノードスライムの発生低減を図ると同時に、例えば、半導体ウエハ等の被めっき材表面における汚染、突起等のめっき欠陥の発生防止を図ることができる電気銅めっき方法を提供することを、更に他の目的とする。
In electrolytic copper plating using a conventional phosphorous copper anode, as the electrolysis progresses, a black film composed mainly of copper powder, cuprous oxide, copper phosphide, copper chloride, etc. is formed on the phosphorous copper anode surface. However, when the electrolysis progresses further and the black film grows thick, it falls off the surface of the phosphorous copper anode and causes the generation of anode slime, or diffuses into the plating bath to cause the surface of the material to be plated (cathode). The surface of the material to be plated such as a semiconductor wafer or the like, causing plating defects such as protrusions.
Therefore, the present invention suppresses the generation of anode slime and prevents contamination and protrusions on the surface of a material to be plated such as a semiconductor wafer, even when forming an accurate copper wiring on a semiconductor wafer or the like by electrolytic copper plating. Another object is to provide a phosphorous copper anode for electrolytic copper plating that can prevent the occurrence of plating defects such as the above.
It is another object of the present invention to provide a new method for producing a phosphorous copper anode for electrolytic copper plating, which can reduce the generation of anode slime and prevent the occurrence of plating defects such as contamination and protrusions on the surface of the material to be plated. For other purposes.
Further, by using the phosphorous copper anode for the electrolytic copper plating, it is possible to reduce the generation of anode slime, and at the same time, prevent the occurrence of plating defects such as contamination and protrusions on the surface of the material to be plated such as a semiconductor wafer. It is still another object to provide an electrolytic copper plating method that can be used.

本発明者らは、電気銅めっき時における、含リン銅アノードの結晶粒界の形態とアノードスライムの発生、めっき欠陥の関連性について鋭意研究を行った結果、以下の知見を得た。
従来の含リン銅アノードを用いた電気銅めっきにおいては、電解の進行とともにブラックフィルムが厚く成長し脱落するのは、一価銅の不均一化反応、例えば、
2Cu→Cu(粉)+Cu2+
により、金属銅や亜酸化銅が生成するためであるが、電解初期に形成されるブラックフィルムの性状は、後々まで影響を及ぼすことから、電解初期に均一で一価銅イオン(Cu)の発生の少ないブラックフィルムを形成することが重要であるとの観点から、電解初期に均一で一価銅イオン(Cu)の発生の少ないブラックフィルムを形成する諸条件について検討したところ、含リン銅アノードの結晶粒界の形態が、電解初期に形成されるブラックフィルムの性状に大きな影響を与えることを見出した。
As a result of intensive studies on the relationship between the grain boundary form of the phosphorous copper anode, the generation of anode slime, and plating defects during electrolytic copper plating, the present inventors have obtained the following knowledge.
In electrolytic copper plating using a conventional phosphorous copper anode, the black film grows thick and falls off as the electrolysis progresses.
2Cu + → Cu (powder) + Cu 2+
This is because metallic copper and cuprous oxide are produced, but the properties of the black film formed in the early stage of electrolysis affect the later, so that uniform and monovalent copper ions (Cu + ) are produced in the early stage of electrolysis. From the viewpoint that it is important to form a black film with less generation, various conditions for forming a black film that is uniform and low in the generation of monovalent copper ions (Cu + ) at the beginning of electrolysis were examined. It has been found that the shape of the grain boundary of the anode has a great influence on the properties of the black film formed in the early stage of electrolysis.

即ち、本発明者らは、電気銅めっき用の含リン銅アノードにおいて、該含リン銅アノード表面の結晶粒の粒界のうち、所謂、特殊粒界の形成割合を高め、特殊粒界の全特殊粒界長さLσを単位面積1mm当たりに換算した単位全特殊粒界長さLσが、全結晶粒の全粒界長さLを単位面積1mm当たりに換算した単位全粒界長さLに対して特定の値以上になった場合(Lσ/L≧0.4)に、電解初期段階でアノード全体に、均一にブラックフィルムを形成することができ、その結果として、ブラックフィルムの脱落を防止することができ、また、アノードスライムに起因するめっき不良を大幅に低減し得ることを見出したのである。
ここで、特殊粒界とは、「Trans.Met.Soc.AIME,185,501(1949)」に基づき定義されるΣ値で3≦Σ≦29に属する対応粒界であって、かつ、「Acta.Metallurgica.Vol.14,p.1479,(1966)」で述べられている当該対応粒界における固有対応部位格子方位欠陥Dqが、Dq≦15°/Σ1/2を満たす結晶粒界であるとして定義される。
That is, the present inventors, in the phosphorous copper anode for electrolytic copper plating, increase the formation rate of so-called special grain boundaries among the grain boundaries of the crystal grains on the phosphorous copper anode surface, Convert the units all special grain boundary length per unit area 1 mm 2 per special grain boundary length Lσ Lσ N is the unit total grain boundary length in terms of unit area 1 mm 2 per total grain boundary length L of all crystal grains if it becomes more than a specific value for the L N (Lσ N / L N ≧ 0.4), the entire anode in the electrolytic early stage, it is possible to form a uniform black film, as a result, It has been found that the black film can be prevented from falling off and the plating defects caused by the anode slime can be greatly reduced.
Here, the special grain boundary is a corresponding grain boundary belonging to 3 ≦ Σ ≦ 29 with a Σ value defined based on “Trans.Met.Soc.AIME, 185,501 (1949)”, and “ Acta.Metallurica.Vol.14, p.1479, (1966) ”, the corresponding corresponding portion lattice orientation defect Dq in the corresponding grain boundary is a grain boundary satisfying Dq ≦ 15 ° / Σ1 / 2. Is defined as being.

また、本発明者らは、電気銅めっき用の含リン銅アノードの製造に際し、所定の冷間加工、熱間加工を施して加工歪みを与えた後、所定の温度範囲(350〜900℃)で再結晶化熱処理を行うことによって、銅アノードの表面に存在する結晶粒界のうちの、所謂、特殊粒界の形成割合の高い(Lσ/L≧0.4)電気銅めっき用の含リン銅アノードを製造し得ることを見出したのである。 In addition, the present inventors gave a predetermined cold working and hot working to produce a processing strain in producing a phosphorous copper anode for electrolytic copper plating, and then given a predetermined temperature range (350 to 900 ° C.). By performing the recrystallization heat treatment in the above, a so-called special grain boundary formation ratio (Lσ N / L N ≧ 0.4) among the grain boundaries existing on the surface of the copper anode is high. It has been found that a phosphorous copper anode can be produced.

さらに、本発明者らは、特殊粒界の形成割合の高い(Lσ/L≧0.4)含リン銅アノードを使用し、例えば、半導体ウエハ等に銅めっきした場合には、半導体ウエハ表面に汚染、突起等のめっき欠陥のない精緻な銅配線を形成し得ることを見出したのである。 Furthermore, the present inventors use a phosphorous copper anode having a high special grain boundary formation rate (Lσ N / L N ≧ 0.4). For example, when copper plating is performed on a semiconductor wafer or the like, the semiconductor wafer It has been found that a fine copper wiring having no plating defects such as contamination and protrusions can be formed on the surface.

本発明は、前記知見に基づいてなされたものであって、
「(1) 電気めっき用含リン銅アノードにおいて、
(a)走査型電子顕微鏡を用いて、アノード表面の個々の結晶粒に電子線を照射し、隣接する結晶粒相互の配向方位差が15°以上の結晶粒の界面を結晶粒界とし、測定範囲における結晶粒界の全粒界長さLを測定し、これを単位面積1mm当たりに換算した単位全粒界長さLを求め
(b)また、同じく走査型電子顕微鏡を用いて、アノード表面の個々の結晶粒に電子線を照射し、相互に隣接する結晶粒の界面が特殊粒界を構成する結晶粒界の位置を決定するとともに、特殊粒界の全特殊粒界長さLσを測定し、これを単位面積1mm当たりに換算して単位全特殊粒界長さLσを求めた場合、
(c)前記測定した結晶粒界の単位全粒界長さLと、同じく前記測定した特殊粒界の単位全特殊粒界長さLσとの特殊粒界長比率Lσ/Lが、
Lσ/L≧0.4
の関係を満足する結晶粒界組織を有することを特徴とする電気めっき用含リン銅アノード。
(2) 質量%で、100〜800ppmのリンを含有する前記(1)に記載の電気めっき用含リン銅アノード。
(3) 平均結晶粒径が3〜1000μmである前記(1)または(2)に記載の電気めっき用含リン銅アノード。
(4) 電気めっき用含リン銅に加工を施して加工歪みを与えた後、350〜900℃で再結晶化熱処理を行うことにより、特殊粒界長比率Lσ/Lを0.4以上とすることを特徴とする前記(1)乃至(3)の何れかに記載の電気めっき用含リン銅アノードの製造方法。
(5) 前記加工は、冷間加工または熱間加工の内の少なくとも何れかにより行う前記(4)に記載の電気めっき用含リン銅アノードの製造方法。
(6) 冷間加工と再結晶化熱処理、あるいは、熱間加工と再結晶化熱処理、またはこれらを組み合わせた処理を、特殊粒界長比率Lσ/Lが0.4以上となるまで繰り返し行う前記(4)または(5)に記載の電気めっき用含リン銅アノードの製造方法。
(7) 400〜900℃の温度範囲で圧下率5〜80%の熱間加工を施し、その後、3〜300秒間、前記加工歪みを与えずに静的に保持し、再結晶化熱処理を行う前記(4)に記載の電気めっき用含リン銅アノードの製造方法。
(8) 圧下率5〜80%の冷間加工を施し、その後、350〜900℃の温度範囲に加熱し、5分〜5時間、前記加工歪みを与えずに静的に保持し、再結晶化熱処理を行う前記(4)に記載の電気めっき用含リン銅アノードの製造方法。
(9) 前記(1)乃至(3)の何れかに記載の電気めっき用含リン銅アノードを用いた電気銅めっき方法。」
を特徴とするものである。
The present invention has been made based on the above findings,
“(1) In the phosphorous copper anode for electroplating,
(A) Using a scanning electron microscope, each crystal grain on the anode surface is irradiated with an electron beam, and the interface between crystal grains having an orientation difference between adjacent crystal grains of 15 ° or more is used as a grain boundary. The total grain boundary length L of the crystal grain boundary in the range was measured, and the unit total grain boundary length L N was calculated by converting this per unit area 1 mm 2 (b). Similarly, using a scanning electron microscope, The individual crystal grains on the anode surface are irradiated with an electron beam to determine the position of the crystal grain boundary where the interface between adjacent crystal grains constitutes the special grain boundary, and the total special grain boundary length Lσ of the special grain boundary. When this is converted per unit area 1 mm 2 and the unit total special grain boundary length Lσ N is obtained,
(C) The special grain boundary length ratio Lσ N / L N between the measured unit total grain boundary length L N of the crystal grain boundary and the unit total special grain boundary length Lσ N of the measured special grain boundary is ,
N / L N ≧ 0.4
A phosphorous copper anode for electroplating, characterized by having a grain boundary structure satisfying the following relationship:
(2) The phosphorus-containing copper anode for electroplating according to (1) above, containing 100 to 800 ppm of phosphorus in mass%.
(3) The phosphorous copper anode for electroplating according to (1) or (2), wherein the average crystal grain size is 3 to 1000 μm.
(4) After processing the phosphor-containing copper for electroplating to give processing strain, a recrystallization heat treatment is performed at 350 to 900 ° C., so that the special grain boundary length ratio Lσ N / L N is 0.4 or more. The method for producing a phosphorous copper anode for electroplating according to any one of the above (1) to (3).
(5) The method for producing a phosphorous copper anode for electroplating according to (4), wherein the processing is performed by at least one of cold processing and hot processing.
(6) Repeat cold working and recrystallization heat treatment, or hot working and recrystallization heat treatment, or a combination of these until the special grain boundary length ratio Lσ N / L N is 0.4 or more. The manufacturing method of the phosphorous copper anode for electroplating as described in said (4) or (5) performed.
(7) Hot working is performed at a reduction rate of 5 to 80% in a temperature range of 400 to 900 ° C., and then statically held without giving the processing strain for 3 to 300 seconds, and a recrystallization heat treatment is performed. The manufacturing method of the phosphorous copper anode for electroplating as described in said (4).
(8) Cold-working at a rolling reduction of 5 to 80%, and then heating to a temperature range of 350 to 900 ° C. and statically holding without applying the processing strain for 5 minutes to 5 hours, followed by recrystallization The manufacturing method of the phosphorous copper anode for electroplating as described in said (4) which performs crystallization heat processing.
(9) An electrolytic copper plating method using the phosphorous copper anode for electroplating according to any one of (1) to (3). "
It is characterized by.

つぎに、本発明について詳細に説明する。   Next, the present invention will be described in detail.

まず、本発明者らは、電気銅めっきにおける含リン銅アノード表面の溶解進行状況について調査したところ、以下の知見を得た。
図1(a)〜(d)の模式図に示すように、電解が開始された初期状態(a)では、アノード表面に大きな変化は生じないが、電解開始後、一定の時間経過した(b)では、アノード表面の結晶粒は、粒内に比べ化学的に不安定な粒界から選択的な溶解が開始し、さらに電解が進行した時点(c)では、粒界が選択的に溶解される結果、形状因子による電流密度の不均一化が生じ、そのため、さらに加速度的に粒界が選択溶解を起こすようになり、さらに電解が進行した時点(d)では、粒界の溶解が進むため、アノード表面に形成されたブラックフィルム(表面酸化皮膜)とともに、未溶解の結晶粒が剥離・剥落を生じるようになり、アノードスライムの発生原因となり、また、これがめっき不良発生原因ともなる。また、未溶解の結晶粒が剥離・剥落したアノード部分には新生面が生成し、電圧変動が発生するようになり、安定した電解操業を行うことが次第に困難となる。
First, the present inventors investigated the progress of dissolution of the phosphorous copper anode surface in electrolytic copper plating, and obtained the following knowledge.
As shown in the schematic diagrams of FIGS. 1A to 1D, in the initial state (a) in which electrolysis is started, a large change does not occur on the anode surface, but a certain period of time has elapsed after the start of electrolysis (b ), Selective dissolution of the crystal grains on the anode surface starts from the grain boundaries that are chemically unstable compared to the inside of the grains, and at the time point (c) when electrolysis proceeds, the grain boundaries are selectively dissolved. As a result, the current density becomes non-uniform due to the shape factor. Therefore, the grain boundary is selectively dissolved at an accelerated rate, and the dissolution of the grain boundary proceeds at the point (d) when the electrolysis proceeds. Along with the black film (surface oxide film) formed on the anode surface, undissolved crystal grains are peeled off and peeled off, resulting in generation of anode slime, which also causes plating failure. In addition, a new surface is generated in the anode portion where undissolved crystal grains are peeled off and peeled off, voltage fluctuations are generated, and it becomes increasingly difficult to perform stable electrolytic operation.

本発明者らは、前記知見をもとに、電気銅めっき用の含リン銅アノードとして、電解時間の経過とともに、粒界からの選択的溶解(不均一溶解)を生じないようなアノードについてさらに研究したところ、含リン銅アノードにおける前記定義したところの特殊粒界(Σ値で3≦Σ≦29に属する対応粒界であって、かつ、当該対応粒界における固有対応部位格子方位欠陥Dqが、Dq≦15°/Σ1/2を満たす結晶粒界)の全特殊粒界長さLσを単位面積1mm当たりに換算した単位全特殊粒界長さLσと、含リン銅アノードにおける結晶粒界の全結晶粒界長さLを単位面積1mm当たりに換算した単位全粒界長さLとの特殊粒界長比率Lσ/Lが、Lσ/L≧0.4の関係を満足する結晶粒界組織を有する場合には、結晶構造的に安定、かつ、化学的にも安定である特殊粒界の割合が増加するため、粒界の前記選択的溶解が生じにくくなり、その結果として、未溶解の結晶粒の剥離・剥落が抑制されて均一なブラックフィルムが形成されるようになり、アノードスライムの発生が低減され、同時に、スライム起因のめっき欠陥の発生も低減されるようになることを見出して本発明に至ったのである。
ここで、全結晶粒界長さLは、走査型電子顕微鏡を用いてアノード表面の個々の結晶粒に電子線を照射し、得られた後方散乱電子回折パターンから求めた結晶の配向データを基に隣接する結晶粒相互の配向方位差が15°以上の結晶粒の界面を結晶粒界として、測定範囲における結晶粒界の全粒界長さLを測定することによって求めることができる。
特殊粒界長比率Lσ/Lが、Lσ/L<0.4では、電解時の結晶粒界の選択溶解を抑えることができず、均一なブラックフィルムの形成、アノードスライムの発生低減、スライム起因のめっき欠陥の発生低減を図ることができないので、特殊粒界長比率Lσ/Lを、Lσ/L≧0.4と定めた。
Based on the above knowledge, the present inventors have further developed a phosphorous copper anode for electrolytic copper plating that does not cause selective dissolution (non-uniform dissolution) from grain boundaries with the passage of electrolysis time. As a result of the research, the special grain boundary as defined above in the phosphorus-containing copper anode (corresponding grain boundary belonging to 3 ≦ Σ ≦ 29 in Σ value), and the inherent corresponding site lattice orientation defect Dq in the corresponding grain boundary is , Dq ≦ 15 ° / Σ1 / 2 ), and the total special grain boundary length Lσ N converted from the total special grain boundary length Lσ per unit area 1 mm 2 , and the crystal in the phosphorous copper anode The special grain boundary length ratio Lσ N / L N with respect to the unit total grain boundary length L N obtained by converting the total grain boundary length L of the grain boundary per unit area 1 mm 2 is Lσ N / L N ≧ 0.4 When having a grain boundary structure that satisfies the relationship of Since the ratio of special grain boundaries that are stable in terms of crystal structure and chemically stable increases, the selective dissolution of the grain boundaries is less likely to occur, and as a result, peeling and peeling of undissolved crystal grains occurs. As a result, the present invention found out that the formation of a uniform black film is suppressed, the generation of anode slime is reduced, and at the same time, the occurrence of plating defects due to slime is also reduced. is there.
Here, the total grain boundary length L is based on crystal orientation data obtained from a backscattered electron diffraction pattern obtained by irradiating individual crystal grains on the anode surface with an electron beam using a scanning electron microscope. By measuring the total grain boundary length L of the crystal grain boundary in the measurement range with the interface between crystal grains having an orientation difference between adjacent crystal grains of 15 ° or more as the crystal grain boundary.
When the special grain boundary length ratio Lσ N / L N is Lσ N / L N <0.4, selective dissolution of crystal grain boundaries during electrolysis cannot be suppressed, and formation of a uniform black film and generation of anode slime Since the reduction and generation of plating defects due to slime cannot be achieved, the special grain boundary length ratio Lσ N / L N was determined to be Lσ N / L N ≧ 0.4.

本発明の含リン銅アノードは、質量%で、100〜800ppmのリンを含有していることが望ましく、リン含有量がこの範囲から外れると安定したブラックフィルムが形成されずアノードスライムが発生する。
また、本発明の含リン銅アノードの平均結晶粒径(双晶も結晶粒としてカウント)は、3〜1000μmであることが望ましく、平均結晶粒径がこの範囲から外れるとアノードスライムがより多く発生する。
The phosphorus-containing copper anode of the present invention desirably contains 100 to 800 ppm of phosphorus by mass%. If the phosphorus content is out of this range, a stable black film is not formed and anode slime is generated.
The average crystal grain size of the phosphorous-containing copper anode of the present invention (twins are also counted as crystal grains) is desirably 3 to 1000 μm, and when the average crystal grain size is out of this range, more anode slime is generated. To do.

特殊粒界の全特殊粒界長さLσを単位面積1mm当たりに換算した単位全特殊粒界長さLσと、結晶粒界の全結晶粒界長さLを単位面積1mm当たりに換算した単位全粒界長さLとの特殊粒界長比率Lσ/Lが、Lσ/L≧0.4の関係を満足する結晶粒界組織を有する含リン銅アノードは、電気めっき用含リン銅の製造に際し、加工(冷間加工及び/又は熱間加工)を施して加工歪みを与えた後、350〜900℃で再結晶化熱処理を行うことにより、製造することができる。
具体的な製造例としては、例えば、
(イ)400〜900℃の温度範囲で、電気めっき用含リン銅に圧下率5〜80%の熱間加工を施した後、3〜300秒間、前記加工歪みを与えずに静的に保持し、再結晶化熱処理を行うことによって、Lσ/L≧0.4の関係を満足する結晶粒界組織を有する電気めっき用の含リン銅アノードの製造方法、
また、他の製造例としては、
(ロ)圧下率5〜80%の冷間加工を施した後、350〜900℃の温度範囲に加熱し、5分〜5時間、前記加工歪みを与えずに静的に保持し、再結晶化熱処理を行うことによって、Lσ/L≧0.4の関係を満足する結晶粒界組織を有する電気めっき用の含リン銅アノードの製造方法、
を挙げることができる。
前記(イ)、(ロ)の特定の圧下率の熱間加工、冷間加工により歪みを与えた後、再結晶化温度範囲で、歪みを付与せず静的に保持した状態で再結晶させることによって、特殊粒界の形成が促進され、単位全特殊粒界長さLσの比率を高め、特殊粒界長比率Lσ/Lの値を0.4以上とすることができる。
また、前記熱間加工、冷間加工および再結晶化熱処理を、何度か繰り返し行うことによりLσ/L≧0.4となる結晶粒界組織を得ることも何ら差し支えない。
The unit total special grain boundary length Lσ N obtained by converting the total special grain boundary length Lσ of the special grain boundary per unit area 1 mm 2 and the total grain boundary length L of the crystal grain boundary are converted per unit area 1 mm 2. The phosphorous copper anode having a grain boundary structure in which the special grain boundary length ratio Lσ N / L N to the unit total grain boundary length L N satisfies the relationship of Lσ N / L N ≧ 0.4 is When producing phosphorous copper for plating, after processing (cold processing and / or hot processing) to give processing strain, it can be manufactured by performing recrystallization heat treatment at 350 to 900 ° C. .
As a specific manufacturing example, for example,
(B) Hot-working with a rolling reduction of 5 to 80% on phosphorous-containing copper for electroplating in a temperature range of 400 to 900 ° C., and then statically holding for 3 to 300 seconds without giving the processing strain And a method for producing a phosphorous copper anode for electroplating having a grain boundary structure satisfying a relationship of Lσ N / L N ≧ 0.4 by performing recrystallization heat treatment,
As other production examples,
(B) After cold working at a reduction rate of 5 to 80%, the steel is heated to a temperature range of 350 to 900 ° C., statically held for 5 minutes to 5 hours without giving the above-described distortion, and recrystallized. A method for producing a phosphorous copper anode for electroplating having a grain boundary structure satisfying a relationship of Lσ N / L N ≧ 0.4 by performing a crystallization heat treatment,
Can be mentioned.
After straining by hot working or cold working at a specific reduction ratio of (A) and (B) above, recrystallization is performed in a recrystallization temperature range in a statically maintained state without imparting strain. it allows promotes the formation of special grain boundaries, increasing the proportion of the unit total special grain boundary length Erushiguma N, the value of the special grain boundary length ratio Lσ N / L N may be 0.4 or more.
It is also possible to obtain a grain boundary structure satisfying Lσ N / L N ≧ 0.4 by repeatedly performing the hot working, cold working and recrystallization heat treatment.

特殊粒界の単位全特殊粒界長さLσと、結晶粒界の単位全粒界長さLとの特殊粒界長比率Lσ/Lが、Lσ/L≧0.4の関係を満足する結晶粒界組織を有する含リン銅アノードを電気めっき用のアノードとして用いて電気銅めっきを行うことにより、アノードスライムの発生低減を図ることができ、さらに、例えば、半導体ウエハ等の被めっき材表面に銅めっきした場合には、半導体ウエハ表面に汚染、突起等のめっき欠陥のない精緻な銅配線を形成することが可能となる。 The special grain boundary length ratio Lσ N / L N between the unit total special grain boundary length Lσ N of the special grain boundary and the unit total grain boundary length L N of the crystal grain boundary is Lσ N / L N ≧ 0.4 The generation of anode slime can be reduced by performing electrolytic copper plating using a phosphorous copper anode having a grain boundary structure satisfying the above relationship as an anode for electroplating. When the surface of the material to be plated is copper-plated, it is possible to form a precise copper wiring free from plating defects such as contamination and protrusions on the surface of the semiconductor wafer.

含リン銅アノードの結晶粒界の特定と単位全粒界長さLの測定は、走査型電子顕微鏡を用いてアノード表面の個々の結晶粒に電子線を照射し、得られた後方散乱電子回折パターンから求めた結晶の配向データを基に隣接する結晶粒相互の配向方位差が15°以上の結晶粒の界面を結晶粒界として、測定範囲における結晶粒界の全粒界長さLを測定、これを測定面積で除算し、単位面積1mm当たりの単位全粒界長さに換算することにより行う。また、特殊粒界の特定と単位全特殊粒界長さLσの測定は、同じく電界放出型走査電子顕微鏡を用いて、アノード表面の個々の結晶粒に電子線を照射し、相互に隣接する結晶粒の界面が特殊粒界を構成する粒界の位置を決定するとともに、特殊粒界の全特殊粒界長さLσを測定、これを測定面積で除算し、単位面積1mm当たりの単位全特殊粒界長さに換算することにより行う。
具体的には、電界放出型走査電子顕微鏡を用いたEBSD測定装置(HITACHI社製 S4300−SE,EDAX/TSL社製 OIM Data Collection)と、解析ソフト(EDAX/TSL社製 OIM Data Analysis ver.5.2)によって、結晶粒界、特殊粒界を特定し、その長さを算出することにより行うことができる。
また、含リン銅アノードの平均結晶粒径(双晶も結晶粒としてカウントする)の測定は、前記EBSD測定装置と解析ソフトによって得られた結果から結晶粒界を決定し、観察エリア内の結晶粒子数を算出し、エリア面積を結晶粒子数で割って結晶粒子面積を算出し、それを円換算することにより平均結晶粒径(直径)を求めることができる。
The grain boundary of the phosphorous copper anode is specified and the total grain boundary length L N is measured by irradiating the individual crystal grains on the anode surface with an electron beam using a scanning electron microscope, and the obtained backscattered electrons. Based on the crystal orientation data obtained from the diffraction pattern, the interface between adjacent crystal grains having an orientation difference between adjacent crystal grains of 15 ° or more is used as the crystal grain boundary, and the total grain boundary length L of the crystal grain boundary in the measurement range is calculated. Measurement is performed by dividing this by the measurement area and converting it to the unit total grain boundary length per 1 mm 2 of unit area. Also, the special grain boundary is specified and the unit total special grain boundary length Lσ N is measured by irradiating each crystal grain on the anode surface with an electron beam and using the field emission scanning electron microscope. While determining the position of the grain boundary where the interface of the crystal grains constitutes the special grain boundary, the total special grain boundary length Lσ of the special grain boundary is measured, and this is divided by the measurement area to obtain the total unit per unit area of 1 mm 2 This is done by converting to a special grain boundary length.
Specifically, an EBSD measuring apparatus using a field emission scanning electron microscope (S4300-SE manufactured by HITACHI, OIM Data Collection manufactured by EDAX / TSL) and analysis software (OIM Data Analysis ver. 5 manufactured by EDAX / TSL). .2), the crystal grain boundary and the special grain boundary are specified, and the length can be calculated.
In addition, the average grain size of the phosphorous-containing copper anode (twices are counted as crystal grains) is determined by determining the grain boundaries from the results obtained by the EBSD measuring device and analysis software, and the crystals in the observation area. The average crystal grain size (diameter) can be obtained by calculating the number of particles, dividing the area by the number of crystal grains, calculating the crystal grain area, and converting it into a circle.

本発明の電気銅めっき用の含リン銅アノード、その製造方法および電気銅めっき方法によれば、例えば、電気銅めっきにより、半導体ウエハ等への精緻な銅配線を形成する場合にも、アノードスライムの発生を抑制するとともに、半導体ウエハ等の被めっき材表面におけるスライムに起因する汚染、突起等のめっき欠陥の発生防止を図ることができる   According to the phosphorous copper anode for electrolytic copper plating of the present invention, a method for producing the same, and an electrolytic copper plating method, for example, even when fine copper wiring is formed on a semiconductor wafer or the like by electrolytic copper plating, In addition to suppressing the occurrence of plating, it is possible to prevent the occurrence of plating defects such as contamination and protrusions due to slime on the surface of the material to be plated such as a semiconductor wafer.

(a)〜(d)は、電解によるアノード表面の溶解進行状況を示す模式図であり、(a)は電解が開始された初期状態、(b)は電解を開始し一定時間経過時点での粒界の選択的溶解が始まった状態、(c)は粒界の選択的溶解の結果、形状因子による電流密度の不均一化が生じ、そのため、さらに加速度的な粒界の選択溶解が起こっている状態、(d)は粒界の溶解によって、アノード表面に形成されたブラックフィルム(表面酸化皮膜)とともに、未溶解の結晶粒が剥離・剥落を生じる状態、をそれぞれ示す。(A)-(d) is a schematic diagram which shows the dissolution progress state of the anode surface by electrolysis, (a) is the initial state when electrolysis was started, (b) is the time when electrolysis was started and a fixed time elapsed. In the state where the selective dissolution of the grain boundary has started, (c) shows the result of the selective dissolution of the grain boundary, resulting in non-uniform current density due to the shape factor. (D) shows the state in which undissolved crystal grains are peeled off and peeled off together with the black film (surface oxide film) formed on the anode surface by dissolution of the grain boundaries. 本発明3のEBSD解析結果を示し、太い線が特殊粒界、細い線が一般粒界を示す(図3〜9についても同じ)。The EBSD analysis result of this invention 3 is shown, a thick line shows a special grain boundary, and a thin line shows a general grain boundary (the same also about FIGS. 3-9). 本発明7のEBSD解析結果を示す。The EBSD analysis result of this invention 7 is shown. 本発明11のEBSD解析結果を示す。The EBSD analysis result of this invention 11 is shown. 本発明13のEBSD解析結果を示す。The EBSD analysis result of this invention 13 is shown. 本発明21のEBSD解析結果を示す。The EBSD analysis result of this invention 21 is shown. 本発明27のEBSD解析結果を示す。The EBSD analysis result of this invention 27 is shown. 比較例4のEBSD解析結果を示す。The EBSD analysis result of the comparative example 4 is shown. 比較例6のEBSD解析結果を示す。The EBSD analysis result of the comparative example 6 is shown.

つぎに、本発明について、実施例により具体的に説明する。   Next, the present invention will be specifically described with reference to examples.

表1に示す所定量のP(リン)を含有し、不可避不純物としてのPb,Fe,Sn,Zn,Mn,Ni,Agの合計含有量が0.002質量%以下である含リン銅の再結晶材あるいは鋳造材に、同じく表1に示す条件で熱間加工(温度、加工法、加工率)、冷間加工(加工法、加工率)、再結晶化熱処理(温度、時間)を施し、あるいは、これらを繰り返し行い、再結晶化熱処理後に水冷し、表3に示す所定サイズの本発明の含リン銅アノード(本発明アノードという)1〜28を製造した。
なお、表1中の実施例としては、熱間加工―再結晶化熱処理,冷間加工―再結晶化熱処理あるいはこれらを所要回数繰り返し行う場合に、同一条件での繰り返しのみを挙げているが、必ずしも同一条件で繰り返す必要はなく、特許請求の範囲の各請求項で規定された条件の範囲内であれば、異なる条件(加工温度、加工法,加工率,保持温度,保持時間)での繰り返しを行うことは勿論可能である。
Recycled phosphorus-containing copper containing a predetermined amount of P (phosphorus) shown in Table 1 and having a total content of Pb, Fe, Sn, Zn, Mn, Ni, and Ag as inevitable impurities is 0.002% by mass or less. The crystal material or cast material is subjected to hot processing (temperature, processing method, processing rate), cold processing (processing method, processing rate), and recrystallization heat treatment (temperature, time) under the conditions shown in Table 1. Alternatively, these were repeated, and after the recrystallization heat treatment, water-cooled to produce phosphorous copper anodes (referred to as the present invention anodes) 1 to 28 of the present invention having predetermined sizes shown in Table 3.
As examples in Table 1, only hot processing-recrystallization heat treatment, cold processing-recrystallization heat treatment, or repetition of these under required conditions are listed, It does not necessarily have to be repeated under the same conditions, and it is repeated under different conditions (processing temperature, processing method, processing rate, holding temperature, holding time) as long as they are within the conditions specified in the claims. Of course, it is possible to perform.

前記で製造した本発明アノードについて、前記EBSD測定装置(HITACHI社製 S4300−SE,EDAX/TSL社製 OIM Data Collection)と、解析ソフト(EDAX/TSL社製 OIM Data Analysis ver.5.2)によって、結晶粒界、特殊粒界を特定し、単位全粒界長さLおよび単位全特殊粒界長さLσを求めた。
表3に、L、Lσ及び特殊粒界長比率Lσ/Lを示す。
前記EBSD測定装置と解析ソフトによって得た結果から求めた平均結晶粒径の値も表3に示す。
また、図2〜7に、それぞれ、本発明アノード3,7,11,13,21,27のEBSD解析結果を示す。
About the anode of the present invention manufactured as described above, the EBSD measurement apparatus (HITACHI S4300-SE, EDAX / TSL OIM Data Collection) and analysis software (EDAX / TSL OIM Data Analysis ver. 5.2) are used. The crystal grain boundaries and special grain boundaries were specified, and the unit total grain boundary length L N and the unit total special grain boundary length Lσ N were determined.
Table 3 shows L N , Lσ N and special grain boundary length ratio Lσ N / L N.
Table 3 also shows the average crystal grain size values obtained from the results obtained by the EBSD measuring apparatus and analysis software.
2 to 7 show the EBSD analysis results of the anodes 3, 7, 11, 13, 21, and 27 of the present invention, respectively.

比較のため、前記で作製した含リン銅アノード素材に対して、表2に示す条件(少なくとも一つの条件は本発明範囲外の条件である)で、熱間加工(温度、加工法、加工率)、冷間加工(加工法、加工率)、再結晶化熱処理(温度、時間)を行い、表4に示す比較例の含リン銅アノード(比較例アノードという)1〜8を製造した。
また、前記で製造した比較例アノードについても、本発明と同様にして、単位全粒界長さL、単位全特殊粒界長さLσ、特殊粒界長比率Lσ/Lおよび平均結晶粒径を求めた。
この値を表4に示す。
また、図8、9には、それぞれ、比較例アノード4,6のEBSD解析結果を示す。
For comparison, hot processing (temperature, processing method, processing rate) was performed on the phosphorous-containing copper anode material prepared above under the conditions shown in Table 2 (at least one condition is outside the scope of the present invention). ), Cold working (working method, working rate), and recrystallization heat treatment (temperature, time) were performed to produce phosphorous copper anodes (referred to as comparative example anodes) 1 to 8 of Comparative Examples shown in Table 4.
For the comparative anode produced as described above, the unit total grain boundary length L N , the unit total special grain boundary length Lσ N , the special grain boundary length ratio Lσ N / L N and the average were also obtained in the same manner as in the present invention. The crystal grain size was determined.
This value is shown in Table 4.
8 and 9 show the EBSD analysis results of the comparative anodes 4 and 6, respectively.

Figure 2011162875
Figure 2011162875

Figure 2011162875
Figure 2011162875

Figure 2011162875
Figure 2011162875

Figure 2011162875
Figure 2011162875

前記の本発明アノード1〜28、比較例アノード1〜8(いずれも、アノード表面積は530cm)を用い、半導体ウエハをカソードとして、5枚の半導体ウエハに対して、以下の条件で電気銅めっきを行った。
めっき液:CuSO・5HO 200g/L,
SO 50g/L,
Cl 50ppm,
添加剤 ポリエチレングリコール:400ppm(分子量6000)
めっき条件:液温25°C、
カソード電流密度 2A/dm
めっき時間 1時間/枚、
Using the above-described anodes 1 to 28 of the present invention and comparative anodes 1 to 8 (both having an anode surface area of 530 cm 2 ), using a semiconductor wafer as a cathode, electroplating copper on five semiconductor wafers under the following conditions Went.
Plating solution: CuSO 4 · 5H 2 O 200g / L,
H 2 SO 4 50 g / L,
Cl - 50 ppm,
Additives Polyethylene glycol: 400 ppm (molecular weight 6000)
Plating conditions: liquid temperature 25 ° C,
Cathode current density 2 A / dm 2 ,
Plating time 1 hour / sheet,

前記の本発明アノード1〜28、比較例アノード1〜8について、電気銅めっき開始から5枚目のウエハの電気銅めっき完了(5時間)後までに発生したアノードスライム発生量を測定した。
また、めっき後の半導体ウエハ表面を、光学顕微鏡で観察し、ウエハ表面に形成されている高さ5μm以上の突起を欠陥とみなして、突起欠陥数をカウントした。
これらの測定結果を表5、表6に示す。
For the above-described inventive anodes 1 to 28 and comparative anodes 1 to 8, the amount of anode slime generated from the start of electrolytic copper plating to the completion of electrolytic copper plating (5 hours) on the fifth wafer was measured.
Further, the surface of the semiconductor wafer after plating was observed with an optical microscope, and protrusions with a height of 5 μm or more formed on the wafer surface were regarded as defects, and the number of protrusion defects was counted.
The measurement results are shown in Tables 5 and 6.

Figure 2011162875
Figure 2011162875

Figure 2011162875
Figure 2011162875

表5、表6に示される結果から、本発明の電気銅めっき用の含リン銅アノード、電気銅めっき用の含リン銅アノードの製造方法および電気銅めっき方法によれば、例えば、半導体ウエハ等への精緻な銅配線を形成する場合にも、アノードスライムの発生を抑制するとともに、半導体ウエハ等の被めっき材表面における汚染、突起等のめっき欠陥の発生防止を図ることができる。
しかるに、特殊粒界長比率Lσ/Lが0.4未満である比較例アノードでは、アノードスライム発生量が多いばかりか、スライム起因のめっき欠陥が多発していることが分かる。
From the results shown in Tables 5 and 6, according to the phosphorous copper anode for electrolytic copper plating, the method for producing phosphorous copper anode for electrolytic copper plating and the electrolytic copper plating method of the present invention, for example, a semiconductor wafer or the like In the case of forming a precise copper wiring, it is possible to suppress the generation of anode slime and prevent the occurrence of plating defects such as contamination and protrusions on the surface of a material to be plated such as a semiconductor wafer.
However, it can be seen that in the comparative example anode in which the special grain boundary length ratio Lσ N / L N is less than 0.4, not only the amount of anode slime generated is large, but also plating defects due to slime frequently occur.

以上のとおり、本発明は、電気銅めっきに際して、アノードスライムの発生を抑制でき、被めっき材表面におけるめっき欠陥の発生を防止し得るという優れた効果を有し、特に、半導体ウエハ等への精緻な銅配線形成に適用された場合には、半導体ウエハ上への汚染、突起等の欠陥が発生を防止することができるため、工業的な有用性が極めて高い。   As described above, the present invention has an excellent effect that it can suppress the generation of anode slime during electrolytic copper plating and can prevent the occurrence of plating defects on the surface of the material to be plated. When it is applied to the formation of a copper wiring, it is possible to prevent the occurrence of defects such as contamination and protrusions on the semiconductor wafer, so that the industrial utility is extremely high.

Claims (9)

電気めっき用含リン銅アノードにおいて、
(a)走査型電子顕微鏡を用いて、アノード表面の個々の結晶粒に電子線を照射し、隣接する結晶粒相互の配向方位差が15°以上の結晶粒の界面を結晶粒界とし、測定範囲における結晶粒界の全粒界長さLを測定し、これを単位面積1mm当たりに換算した単位全粒界長さLNを求め
(b)また、同じく走査型電子顕微鏡を用いて、アノード表面の個々の結晶粒に電子線を照射し、相互に隣接する結晶粒の界面が特殊粒界を構成する結晶粒界の位置を決定するとともに、特殊粒界の全特殊粒界長さLσを測定し、これを単位面積1mm当たりに換算して単位全特殊粒界長さLσNを求めた場合、
(c)前記測定した結晶粒界の単位全粒界長さLNと、同じく前記測定した特殊粒界の単位全特殊粒界長さLσNとの特殊粒界長比率LσN/LNが、
LσN/LN≧0.4
の関係を満足する結晶粒界組織を有することを特徴とする電気めっき用含リン銅アノード。
In phosphorous copper anode for electroplating,
(A) Using a scanning electron microscope, each crystal grain on the anode surface is irradiated with an electron beam, and the interface between crystal grains having an orientation difference between adjacent crystal grains of 15 ° or more is used as a grain boundary. The total grain boundary length L of the crystal grain boundary in the range was measured, and the unit total grain boundary length L N was calculated by converting this per unit area 1 mm 2 (b). Similarly, using a scanning electron microscope, The individual crystal grains on the anode surface are irradiated with an electron beam to determine the position of the crystal grain boundary where the interface between adjacent crystal grains constitutes the special grain boundary, and the total special grain boundary length Lσ of the special grain boundary. When this is converted into a unit area of 1 mm 2 and the unit total special grain boundary length Lσ N is obtained,
(C) A special grain boundary length ratio Lσ N / L N between the unit grain boundary length L N of the measured grain boundary and the unit total special grain boundary length Lσ N of the special grain boundary that is also measured ,
N / L N ≧ 0.4
A phosphorous copper anode for electroplating, characterized by having a grain boundary structure satisfying the following relationship:
質量%で、100〜800ppmのリンを含有する請求項1に記載の電気めっき用含リン銅アノード。   The phosphorus-containing copper anode for electroplating according to claim 1, which contains 100 to 800 ppm of phosphorus by mass%. 平均結晶粒径が3〜1000μmである請求項1または2に記載の電気めっき用含リン銅アノード。   3. The phosphorous copper anode for electroplating according to claim 1, wherein the average crystal grain size is 3 to 1000 μm. 電気めっき用含リン銅に加工を施して加工歪みを与えた後、350〜900℃で再結晶化熱処理を行うことにより、特殊粒界長比率LσN/LNを0.4以上とすることを特徴とする請求項1乃至3の何れか一項に記載の電気めっき用含リン銅アノードの製造方法。 The special grain boundary length ratio Lσ N / L N is set to 0.4 or more by performing recrystallization heat treatment at 350 to 900 ° C. after processing the phosphor-containing copper for electroplating to give processing strain. The method for producing a phosphorous copper anode for electroplating according to any one of claims 1 to 3. 前記加工は、冷間加工または熱間加工の内の少なくとも何れかにより行う請求項4に記載の電気めっき用含リン銅アノードの製造方法。   The method for producing a phosphorous copper anode for electroplating according to claim 4, wherein the processing is performed by at least one of cold processing and hot processing. 冷間加工と再結晶化熱処理、あるいは、熱間加工と再結晶化熱処理、またはこれらを組み合わせた処理を、特殊粒界長比率LσN/LNが0.4以上となるまで繰り返し行う請求項4または5に記載の電気めっき用含リン銅アノードの製造方法。 Claims wherein cold working and recrystallization heat treatment, or hot working and recrystallization heat treatment, or a combination thereof are repeated until the special grain boundary length ratio Lσ N / L N becomes 0.4 or more. A method for producing a phosphorous copper anode for electroplating according to 4 or 5. 400〜900℃の温度範囲で圧下率5〜80%の熱間加工を施し、その後、3〜300秒間、前記加工歪みを与えずに静的に保持し、再結晶化熱処理を行う請求項4に記載の電気めっき用含リン銅アノードの製造方法。   5. A hot crystallization process is performed at a reduction rate of 5 to 80% in a temperature range of 400 to 900 ° C., and then statically held without applying the processing strain for 3 to 300 seconds, and a recrystallization heat treatment is performed. A method for producing a phosphorous copper anode for electroplating as described in 1. 圧下率5〜80%の冷間加工を施し、その後、350〜900℃の温度範囲に加熱し、5分〜5時間、前記加工歪みを与えずに静的に保持し、再結晶化熱処理を行う請求項4に記載の電気めっき用含リン銅アノードの製造方法。   Cold-working at a reduction rate of 5 to 80%, then heating to a temperature range of 350 to 900 ° C., and statically holding without applying the processing strain for 5 minutes to 5 hours, recrystallization heat treatment The manufacturing method of the phosphorous copper anode for electroplating of Claim 4 to perform. 請求項1乃至3の何れか一項に記載の電気めっき用含リン銅アノードを用いた電気銅めっき方法。   The electrolytic copper plating method using the phosphorus-containing copper anode for electroplating as described in any one of Claims 1 thru | or 3.
JP2010141721A 2010-01-12 2010-06-22 Phosphorous copper anode for electrolytic copper plating, method for producing the same, and electrolytic copper plating method Active JP5499933B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2010141721A JP5499933B2 (en) 2010-01-12 2010-06-22 Phosphorous copper anode for electrolytic copper plating, method for producing the same, and electrolytic copper plating method
US13/521,584 US20150308009A1 (en) 2010-01-12 2011-01-07 Phosphorous-containing copper anode for electrolytic copper plating, method for manufacturing same, and electrolytic copper plating method
PCT/JP2011/050179 WO2011086978A1 (en) 2010-01-12 2011-01-07 Phosphorous-containing copper anode for electrolytic copper plating, method for manufacturing same, and electrolytic copper plating method
CN201180005807.9A CN102713022B (en) 2010-01-12 2011-01-07 Cathode copper plating phosphorous copper anode, its manufacture method and plating method of electrocytic copper
KR1020127015436A KR20120123272A (en) 2010-01-12 2011-01-07 Phosphorous-containing copper anode for electrolytic copper plating, method for manufacturing same, and electrolytic copper plating method
TW100100819A TWI522497B (en) 2010-01-12 2011-01-10 Phosphorous containing anode for copper electroplating, method for producing the same, and method for copper electroplating

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010003718 2010-01-12
JP2010003718 2010-01-12
JP2010141721A JP5499933B2 (en) 2010-01-12 2010-06-22 Phosphorous copper anode for electrolytic copper plating, method for producing the same, and electrolytic copper plating method

Publications (2)

Publication Number Publication Date
JP2011162875A true JP2011162875A (en) 2011-08-25
JP5499933B2 JP5499933B2 (en) 2014-05-21

Family

ID=44304251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010141721A Active JP5499933B2 (en) 2010-01-12 2010-06-22 Phosphorous copper anode for electrolytic copper plating, method for producing the same, and electrolytic copper plating method

Country Status (6)

Country Link
US (1) US20150308009A1 (en)
JP (1) JP5499933B2 (en)
KR (1) KR20120123272A (en)
CN (1) CN102713022B (en)
TW (1) TWI522497B (en)
WO (1) WO2011086978A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016164290A (en) * 2015-03-06 2016-09-08 Jx金属株式会社 Copper anode or phosphorous-containing copper anode used for copper electroplating for semiconductor wafer and method for producing the copper anode or phosphorous-containing copper anode

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY171026A (en) * 2011-07-22 2019-09-23 Mitsubishi Materials Corp Copper strand for bonding wire and method for producing copper strand for bonding wire
CN106381410B (en) * 2016-11-28 2019-01-22 佛山市承安铜业有限公司 A kind of preparation method and its system of phosphorus-copper anode for integrated circuit
TWI727586B (en) * 2019-02-28 2021-05-11 日商Jx金屬股份有限公司 Copper electrode material
WO2021060023A1 (en) * 2019-09-27 2021-04-01 三菱マテリアル株式会社 Pure copper plate
JP7315120B1 (en) * 2021-09-02 2023-07-26 三菱マテリアル株式会社 Terminal material with plated film and copper sheet for terminal material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002275698A (en) * 2001-03-13 2002-09-25 Mitsubishi Materials Corp Phosphorous copper anode for electroplating
JP2003231995A (en) * 2002-02-13 2003-08-19 Nikko Materials Co Ltd Phosphor-containing copper anode for copper electroplating, copper electroplating method using phosphor-containing copper anode, and semiconductor wafer plated by using them with few adhering particles
JP2008095203A (en) * 2007-11-20 2008-04-24 Nikko Kinzoku Kk Electrolytic copper plating method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5702543A (en) * 1992-12-21 1997-12-30 Palumbo; Gino Thermomechanical processing of metallic materials
US6627055B2 (en) * 2001-07-02 2003-09-30 Brush Wellman, Inc. Manufacture of fine-grained electroplating anodes
JP4076751B2 (en) * 2001-10-22 2008-04-16 日鉱金属株式会社 Electro-copper plating method, phosphor-containing copper anode for electrolytic copper plating, and semiconductor wafer plated with these and having less particle adhesion

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002275698A (en) * 2001-03-13 2002-09-25 Mitsubishi Materials Corp Phosphorous copper anode for electroplating
JP2003231995A (en) * 2002-02-13 2003-08-19 Nikko Materials Co Ltd Phosphor-containing copper anode for copper electroplating, copper electroplating method using phosphor-containing copper anode, and semiconductor wafer plated by using them with few adhering particles
JP2008095203A (en) * 2007-11-20 2008-04-24 Nikko Kinzoku Kk Electrolytic copper plating method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016164290A (en) * 2015-03-06 2016-09-08 Jx金属株式会社 Copper anode or phosphorous-containing copper anode used for copper electroplating for semiconductor wafer and method for producing the copper anode or phosphorous-containing copper anode

Also Published As

Publication number Publication date
TWI522497B (en) 2016-02-21
CN102713022B (en) 2016-06-01
JP5499933B2 (en) 2014-05-21
US20150308009A1 (en) 2015-10-29
CN102713022A (en) 2012-10-03
TW201139748A (en) 2011-11-16
WO2011086978A1 (en) 2011-07-21
KR20120123272A (en) 2012-11-08

Similar Documents

Publication Publication Date Title
JP5499933B2 (en) Phosphorous copper anode for electrolytic copper plating, method for producing the same, and electrolytic copper plating method
JP6152212B1 (en) Cu-Ni-Si copper alloy sheet
JP4869415B2 (en) Pure copper plate manufacturing method and pure copper plate
JP4792116B2 (en) Pure copper plate manufacturing method and pure copper plate
JP2014025110A (en) Aluminum alloy having excellent anodic oxidation treatability, and anodic oxidation treated aluminum alloy member
JP5376168B2 (en) High purity copper anode for electrolytic copper plating, manufacturing method thereof, and electrolytic copper plating method
JP5668915B2 (en) Method for producing phosphorus-containing copper anode material for plating, in which phosphorus component is uniformly dispersed and having a fine uniform crystal structure, and phosphorus-containing copper anode material for plating
JP2019002042A (en) Cu-Ni-Al-BASED COPPER ALLOY SHEET MATERIAL, MANUFACTURING METHOD THEREOF, AND CONDUCTIVE SPRING MEMBER
CN107354482B (en) Method for producing refined copper, method for producing electric wire, and electric wire
TW201736612A (en) Cu-Ni-Si series copper alloy bar and its production method for enhancing strength and lowering surface irregularities after etching
JP2011046973A (en) Copper electroplating method and copper electroplated product
JP4607165B2 (en) Electro copper plating method
JP5626582B2 (en) Phosphorus copper anode for electrolytic copper plating and electrolytic copper plating method using the same
JP6066010B1 (en) Method for producing purified copper and electric wire
JP5590328B2 (en) Phosphorus-containing copper anode for electrolytic copper plating and electrolytic copper plating method using the same
JP6619942B2 (en) Copper anode or phosphorus-containing copper anode used for electrolytic copper plating on semiconductor wafer and method for producing copper anode or phosphorus-containing copper anode
JP5234844B2 (en) Electro-copper plating method, phosphor-containing copper anode for electrolytic copper plating, and semiconductor wafer plated with these and having less particle adhesion
TWI683040B (en) Co anode and Co plating method using Co anode
JP2011122174A (en) Phosphorus-containing copper anode electrode for copper electroplating, method of producing the same, and copper electroplating method
JP5179549B2 (en) Electro copper plating method
JP2007246971A (en) Aluminum alloy for foil for anode of electrolytic capacitor
JP2005154897A (en) Aluminum alloy foil for cathode of electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140225

R150 Certificate of patent or registration of utility model

Ref document number: 5499933

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150