JP2019002042A - Cu-Ni-Al-BASED COPPER ALLOY SHEET MATERIAL, MANUFACTURING METHOD THEREOF, AND CONDUCTIVE SPRING MEMBER - Google Patents
Cu-Ni-Al-BASED COPPER ALLOY SHEET MATERIAL, MANUFACTURING METHOD THEREOF, AND CONDUCTIVE SPRING MEMBER Download PDFInfo
- Publication number
- JP2019002042A JP2019002042A JP2017117209A JP2017117209A JP2019002042A JP 2019002042 A JP2019002042 A JP 2019002042A JP 2017117209 A JP2017117209 A JP 2017117209A JP 2017117209 A JP2017117209 A JP 2017117209A JP 2019002042 A JP2019002042 A JP 2019002042A
- Authority
- JP
- Japan
- Prior art keywords
- rolling
- copper alloy
- temperature
- less
- cold rolling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000881 Cu alloy Inorganic materials 0.000 title claims abstract description 59
- 239000000463 material Substances 0.000 title claims abstract description 55
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- 238000005096 rolling process Methods 0.000 claims abstract description 52
- 239000002244 precipitate Substances 0.000 claims abstract description 48
- 229910003310 Ni-Al Inorganic materials 0.000 claims abstract description 47
- 239000002245 particle Substances 0.000 claims abstract description 42
- 239000010949 copper Substances 0.000 claims abstract description 11
- 229910052796 boron Inorganic materials 0.000 claims abstract description 8
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 8
- 229910052742 iron Inorganic materials 0.000 claims abstract description 8
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 8
- 239000000203 mixture Substances 0.000 claims abstract description 8
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 8
- 229910052718 tin Inorganic materials 0.000 claims abstract description 8
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 8
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 8
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 8
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 5
- 239000012535 impurity Substances 0.000 claims abstract description 4
- 238000010438 heat treatment Methods 0.000 claims description 49
- 239000013078 crystal Substances 0.000 claims description 45
- 238000005097 cold rolling Methods 0.000 claims description 41
- 238000005098 hot rolling Methods 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 15
- 230000032683 aging Effects 0.000 claims description 13
- 230000008569 process Effects 0.000 claims description 13
- 238000010894 electron beam technology Methods 0.000 claims description 7
- 229910052698 phosphorus Inorganic materials 0.000 claims description 7
- 238000002050 diffraction method Methods 0.000 claims description 5
- 238000005530 etching Methods 0.000 abstract description 30
- 229910017870 Cu—Ni—Al Inorganic materials 0.000 abstract description 26
- 239000000126 substance Substances 0.000 abstract description 5
- 229910052759 nickel Inorganic materials 0.000 abstract description 2
- 238000001887 electron backscatter diffraction Methods 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 39
- 238000012360 testing method Methods 0.000 description 14
- 238000002845 discoloration Methods 0.000 description 13
- 230000003746 surface roughness Effects 0.000 description 10
- 238000009749 continuous casting Methods 0.000 description 8
- 238000005259 measurement Methods 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- 229920005989 resin Polymers 0.000 description 7
- 238000000137 annealing Methods 0.000 description 6
- 238000005336 cracking Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000005266 casting Methods 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 238000005498 polishing Methods 0.000 description 4
- 238000003466 welding Methods 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 238000005204 segregation Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910001369 Brass Inorganic materials 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910000936 Naval brass Inorganic materials 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 229910001361 White metal Inorganic materials 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000009529 body temperature measurement Methods 0.000 description 2
- 239000010951 brass Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 2
- 239000013067 intermediate product Substances 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 239000010969 white metal Substances 0.000 description 2
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 241001424392 Lucia limbaria Species 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Landscapes
- Conductive Materials (AREA)
- Non-Insulated Conductors (AREA)
Abstract
Description
本発明は、Cu−Ni−Al系銅合金板材およびその製造方法、並びに前記板材を用いた導電ばね部材に関する。 The present invention relates to a Cu—Ni—Al based copper alloy sheet, a method for producing the same, and a conductive spring member using the sheet.
Cu−Ni−Al系銅合金は、Ni−Al系の析出物により高強度化が可能であり、また、Niを例えば10質量%程度以上含有するものでは一般的な銅合金に比べて白色の金属外観を呈する。この銅合金は、リードフレーム、コネクタなどの導電ばね部材や非磁性高強度部材として有用である。 Cu-Ni-Al-based copper alloys can be strengthened by Ni-Al-based precipitates, and those containing Ni of, for example, about 10% by mass or more are whiter than general copper alloys. Presents a metallic appearance. This copper alloy is useful as a conductive spring member such as a lead frame or a connector or a nonmagnetic high-strength member.
これまでに、Cu−Ni−Al系銅合金の高強度特性を活かしながら、他の諸特性(導電性、加工性、疲労特性、応力緩和特性など)を改善する検討が種々行われてきた(例えば特許文献1〜9)。 So far, various studies have been made to improve other characteristics (conductivity, workability, fatigue characteristics, stress relaxation characteristics, etc.) while utilizing the high strength characteristics of Cu-Ni-Al based copper alloys ( For example, Patent Documents 1 to 9).
電子機器の小型化・高密度化に伴い、それに用いる導電部品にも小型化のニーズが高まっている。寸法精度の高い小型銅合金部品は、エッチング工程を経て作成されることが多い。なかでもエッチング加工した部品を樹脂でモールドして使用する場合が多くある。その際、エッチング後の表面プロファイルにおいて局所的に深く掘られて凹凸が大きくなっている部分があると、樹脂とエッチング面との間に空気が入り込んでボイドが形成され、樹脂の密着性が著しく低下する。樹脂密着性が低下すると、部品の不良率増大を招く要因となる。従って、樹脂モールドして使用されるようなエッチング部品に適用するためには、できるだけ凹凸の少ない(表面平滑性の良好な)エッチング面が得られる素材であることが重要となる。Cu−Ni−Al系銅合金の板材は優れた高強度特性を呈することから高強度導電ばね部材の素地として有用である。しかし、精密な樹脂モールド導電部品に対応できるような優れたエッチング性を有するCu−Ni−Al系銅合金板材は開発されていないのが現状である。 With the downsizing and high density of electronic equipment, there is an increasing need for downsizing of conductive parts used in the electronic equipment. Small copper alloy parts with high dimensional accuracy are often produced through an etching process. In particular, the etched parts are often molded with resin. At that time, if there is a part where the surface profile after etching is deeply digged locally and the irregularities are large, air enters between the resin and the etched surface, forming a void, and the resin adhesion is remarkably high. descend. When the resin adhesiveness is lowered, it becomes a factor that causes an increase in the defect rate of parts. Therefore, in order to apply to an etching part that is used as a resin mold, it is important that the material can obtain an etched surface with as few asperities (good surface smoothness). A plate material of Cu-Ni-Al-based copper alloy is useful as a substrate for a high-strength conductive spring member because it exhibits excellent high-strength characteristics. However, the present situation is that a Cu—Ni—Al-based copper alloy sheet material having excellent etching properties that can be applied to precise resin mold conductive parts has not been developed.
また、Cu−Ni−Al系銅合金はNi含有量が高いため、銅合金のなかでも銅の色味が薄い金属外観を呈する。特に、Cu−Ni−Al系銅合金の強度向上に有効なNiの含有量を増やしていくと、次第に白色の金属外観を呈するようになる。Cu−Ni−Al系銅合金も、他の一般的な銅合金と同様、高湿環境に曝されると変色することがあるが、白色調の表面外観を重視する用途では美麗な白色調が損なわれないよう、耐変色性に優れることも重要となる。 In addition, since the Cu-Ni-Al-based copper alloy has a high Ni content, the copper appearance has a light copper appearance among the copper alloys. In particular, when the Ni content effective for improving the strength of the Cu—Ni—Al based copper alloy is increased, a white metal appearance gradually appears. Cu-Ni-Al-based copper alloys, like other general copper alloys, may change color when exposed to high-humidity environments, but they have a beautiful white tone for applications that emphasize white tone surface appearance. It is also important to have excellent resistance to discoloration so as not to be damaged.
本発明は、エッチング性が顕著に改善され、かつ耐変色性にも優れるCu−Ni−Al系銅合金板材を提供することを目的とする。 An object of this invention is to provide the Cu-Ni-Al type copper alloy board | plate material which etchability is notably improved and is excellent also in discoloration resistance.
発明者らの研究によれば、以下のことがわかった。
(a)Cu−Ni−Al系銅合金板材においてエッチング面の表面平滑性を高めるためには、EBSD(電子線後方散乱回折法)により求まるKAM値が大きい組織状態とすること、および粗大なNi−Al系析出物粒子の存在量を低減することが極めて有効である。
(b)KAM値を高めるには、時効処理前に行われる溶体化処理において、高温域で急速加熱を行って再結晶粒の成長を極力抑えた組織状態としておき、その後、冷間圧延で十分に歪を導入することが効果的である。また、最終的に行う仕上熱処理において、昇温速度が過度にならないように加熱条件をコントロールすることでコットレル雰囲気の形成が促進され、その格子歪によってKAM値が上昇する。
(c)粗大なNi−Al系析出物粒子の存在量を低減するためには、溶体化処理において一般的なCu−Ni−Al系銅合金の溶体化処理温度(800〜900℃程度)よりも高温に加熱することが効果的である。ただし、その際、結晶粒の粗大化が起こると上述のKAM値向上が望めない。この点に関しては、上工程において、鋳片加熱を従来より高めの温度で行い、かつ熱間圧延を従来より高めの温度域で十分に行って鋳造時に生じた粗大Ni−Al系析出物を十分に分解しておくことにより、溶体化処理の高温保持時間を短縮化することが可能となり、結晶粒の粗大化は回避される。
(d)強度を向上させ、かつ白色調の金属外観を得るためには10質量%以上のNi含有量を確保することが効果的である。その場合、Al含有量を所定以下に制限すること、およびAl含有量に応じてNi含有量を所定以下にコントロールすることによって、優れた耐変色性を実現できる。
本発明は、このように「KAM値の上昇」と「粗大Ni−Al系析出物粒子の低減」を同時に実現できる製造技術、および「高強度」、「白色調」、「耐変色性」を同時に満たす組成範囲を見いだしたことによって完成したものである。
According to the inventors' research, the following was found.
(A) In order to increase the surface smoothness of the etched surface in a Cu—Ni—Al based copper alloy sheet, a texture state with a large KAM value obtained by EBSD (electron beam backscatter diffraction method) and coarse Ni -It is extremely effective to reduce the abundance of Al-based precipitate particles.
(B) In order to increase the KAM value, in the solution treatment performed before the aging treatment, a rapid heating is performed in a high temperature region to keep the recrystallized grain growth as much as possible, and then cold rolling is sufficient. It is effective to introduce strain into the. Further, in the final heat treatment to be performed finally, the formation of the Cottrell atmosphere is promoted by controlling the heating conditions so that the rate of temperature rise is not excessive, and the KAM value is increased by the lattice strain.
(C) In order to reduce the abundance of coarse Ni—Al-based precipitate particles, the solution treatment temperature (about 800 to 900 ° C.) of a general Cu—Ni—Al-based copper alloy in solution treatment is used. It is also effective to heat to a high temperature. However, if the crystal grains become coarse at that time, the above-mentioned improvement in KAM value cannot be expected. In this regard, in the upper process, the slab is heated at a higher temperature than before, and hot rolling is sufficiently performed in a higher temperature range than before to sufficiently remove coarse Ni-Al-based precipitates produced during casting. By decomposing into the above, it becomes possible to shorten the high temperature holding time of the solution treatment, and avoid the coarsening of the crystal grains.
(D) In order to improve the strength and obtain a white metallic appearance, it is effective to secure a Ni content of 10% by mass or more. In that case, excellent discoloration resistance can be realized by limiting the Al content to a predetermined value or less and controlling the Ni content to a predetermined value or less according to the Al content.
In the present invention, the manufacturing technology capable of simultaneously realizing “increase in KAM value” and “reduction of coarse Ni—Al-based precipitate particles”, and “high strength”, “white tone”, and “discoloration resistance” are provided. It was completed by finding a composition range that satisfies the requirements at the same time.
本明細書では以下の発明を開示する。
[1]質量%で、Ni:10.0〜30.0%、Al:7.50%以下かつ下記(1)式を満たす含有量、Mg:0〜0.30%、Cr:0〜0.20%、Co:0〜0.30%、P:0〜0.10%、B:0〜0.05%、Mn:0〜0.20%、Sn:0〜0.40%、Ti:0〜0.50%、Zr:0〜0.20%、Si:0〜0.50%、Fe:0〜0.30%、Zn:0〜1.00%、残部Cuおよび不可避的不純物からなる化学組成を有し、板面(圧延面)に平行な観察面において、長径5.0μm以上の粗大Ni−Al系析出物粒子の個数密度が5.0×103個/mm2以下であり、かつEBSD(電子線後方散乱回折法)により、結晶方位差15°以上の境界を結晶粒界とみなした場合の結晶粒内における、ステップサイズ0.5μmで測定したKAM値が1.50〜5.00°である銅合金板材。
Ni/Al≦15.00 …(1)
ここで、(1)式の元素記号の箇所には質量%で表される当該元素の含有量値が代入される。
[2]下記(A)に定義する板厚方向の平均結晶粒径が10.0μm以下である、上記[1]に記載の銅合金板材。
(A)圧延方向に垂直な断面(C断面)を観察したSEM画像上に、板厚方向の直線を無作為に引き、その直線によって切断される結晶粒の平均切断長を板厚方向の平均結晶粒径とする。ただし、直線によって切断される結晶粒の総数が100個以上となるように、1つまたは複数の観察視野中に、同一結晶粒を重複して切断しない複数の直線を無作為に設定する。
[3]板面(圧延面)の圧延直角方向の最大高さ粗さRzが1.2μm以下である上記[1]または[2]に記載の銅合金板材。
[4]導電率が3.0〜20.0%IACSである上記[1]〜[3]のいずれかに記載の銅合金板材。
[5]圧延方向の引張強さが800MPa以上である上記[1]〜[4]のいずれかに記載の銅合金板材。
[6]板厚が0.015〜0.50mmである上記[1]〜[5]のいずれかに記載の銅合金板材。
[7]上記[1]〜[6]のいずれかに記載の銅合金板材を材料に用いた導電ばね部材。
[8]前記の化学組成を有する鋳片を1000〜1150℃で2時間以上加熱保持する工程(鋳片加熱工程)、
950℃以上の温度域での圧延率:65%以上、最終パスの圧延温度:800℃以上の条件で熱間圧延を行う工程(熱間圧延工程)、
冷間圧延を行う工程(冷間圧延工程)、
材料の最高到達温度T1:950℃を超え1100℃以下、900℃からT1までの平均昇温速度:50℃/s以上、900℃以上T1以下の温度域での保持時間:30〜360秒の条件で溶体化処理を行う工程(溶体化処理工程)、
400〜650℃、0.1〜48時間の時効処理を行う工程(時効処理工程)、
圧延率30〜99%の冷間圧延を行う工程(仕上冷間圧延工程)、
材料の最高到達温度T2:400〜700℃、T2までの最大昇温速度:200℃/s以下、400〜700℃での保持時間:10〜300秒の条件で熱処理を行う工程(仕上熱処理工程)、
を上記の順に有する銅合金板材の製造方法。
[9]前記冷間圧延工程において、圧延率80〜98%の冷間圧延を行う、上記[8]に記載の銅合金板材の製造方法。
[10]前記仕上冷間圧延工程において、当該冷間圧延後の板厚を0.015〜0.50mmとする、上記[8]または[9]に記載の銅合金板材の製造方法。
The present invention discloses the following invention.
[1] Content by mass, Ni: 10.0 to 30.0%, Al: 7.50% or less and satisfying the following formula (1), Mg: 0 to 0.30%, Cr: 0 to 0 .20%, Co: 0 to 0.30%, P: 0 to 0.10%, B: 0 to 0.05%, Mn: 0 to 0.20%, Sn: 0 to 0.40%, Ti : 0 to 0.50%, Zr: 0 to 0.20%, Si: 0 to 0.50%, Fe: 0 to 0.30%, Zn: 0 to 1.00%, remaining Cu and inevitable impurities The number density of coarse Ni—Al-based precipitate particles having a major axis of 5.0 μm or more is 5.0 × 10 3 particles / mm 2 or less on the observation surface parallel to the plate surface (rolled surface). And KAM measured at a step size of 0.5 μm in the crystal grain when a boundary having a crystal orientation difference of 15 ° or more is regarded as a crystal grain boundary by EBSD (electron beam backscatter diffraction method). Copper alloy sheet but is 1.50 to 5.00 °.
Ni / Al ≦ 15.00 (1)
Here, the content value of the element represented by mass% is substituted for the element symbol in the formula (1).
[2] The copper alloy sheet according to [1], wherein the average crystal grain size in the sheet thickness direction defined in (A) below is 10.0 μm or less.
(A) On a SEM image in which a cross section perpendicular to the rolling direction (C cross section) is observed, a straight line in the plate thickness direction is randomly drawn, and an average cut length of crystal grains cut by the straight line is an average in the plate thickness direction. The crystal grain size is used. However, a plurality of straight lines that do not cut the same crystal grain repeatedly are randomly set in one or a plurality of observation fields so that the total number of crystal grains cut by the straight line is 100 or more.
[3] The copper alloy sheet according to the above [1] or [2], wherein the maximum height roughness Rz in the direction perpendicular to the rolling direction of the sheet surface (rolled surface) is 1.2 μm or less.
[4] The copper alloy sheet according to any one of [1] to [3], wherein the conductivity is 3.0 to 20.0% IACS.
[5] The copper alloy sheet according to any one of [1] to [4], wherein the tensile strength in the rolling direction is 800 MPa or more.
[6] The copper alloy sheet material according to any one of [1] to [5], wherein the sheet thickness is 0.015 to 0.50 mm.
[7] A conductive spring member using as a material the copper alloy sheet according to any one of [1] to [6].
[8] A step of heating and holding the slab having the above chemical composition at 1000 to 1150 ° C for 2 hours or more (slab heating step),
Rolling rate in a temperature range of 950 ° C. or higher: 65% or higher, rolling temperature in final pass: 800 ° C. or higher (hot rolling step)
Cold rolling process (cold rolling process),
Maximum material temperature T 1 : Over 950 ° C., 1100 ° C. or less, Average heating rate from 900 ° C. to T 1 : 50 ° C./s or more, Holding time in temperature range of 900 ° C. or more and T 1 or less: 30 to A step of performing a solution treatment under a condition of 360 seconds (solution treatment step),
A step of aging treatment at 400 to 650 ° C. for 0.1 to 48 hours (aging treatment step);
A step of performing cold rolling at a rolling rate of 30 to 99% (finish cold rolling step),
Maximum heat treatment temperature T 2 : 400 to 700 ° C., Maximum heating rate up to T 2 : 200 ° C./s or less, Holding time at 400 to 700 ° C .: 10 to 300 seconds (finishing) Heat treatment process),
The manufacturing method of the copper alloy board | plate material which has these in said order.
[9] The method for producing a copper alloy sheet according to [8], wherein cold rolling is performed at a rolling rate of 80 to 98% in the cold rolling step.
[10] The method for producing a copper alloy sheet according to the above [8] or [9], wherein in the finish cold rolling step, the sheet thickness after the cold rolling is set to 0.015 to 0.50 mm.
上記合金元素のうち、Mg、Cr、Co、P、B、Mn、Sn、Ti、Zr、Si、Fe、Zn任意添加元素である。Ni−Al系析出物粒子の長径は、観察画像平面上でその粒子を取り囲む最小円の直径として定まる。粗大Ni−Al系析出物粒子個数密度は以下のようにして求めることができる。 Among the above alloy elements, Mg, Cr, Co, P, B, Mn, Sn, Ti, Zr, Si, Fe, and Zn are optional additive elements. The major axis of the Ni—Al-based precipitate particles is determined as the diameter of the smallest circle surrounding the particles on the observation image plane. The number density of coarse Ni—Al-based precipitate particles can be determined as follows.
〔粗大Ni−Al系析出物粒子個数密度の求め方〕
板面(圧延面)を電解研磨してCu素地のみを溶解させて、Ni−Al系析出物粒子を露出させた観察面を調製し、その観察面をSEMにより観察し、SEM画像上に観測される長径5.0μm以上のNi−Al系析出物粒子の総個数を観察総面積(mm2)で除した値を、粗大Ni−Al系析出物粒子個数密度(個/mm2)とする。観察総面積は、無作為に設定した重複しない複数の観察視野により合計0.1mm2以上とする。観察視野から一部がはみ出しているNi−Al系析出物粒子は、観察視野内に現れている部分の長径が5.0μm以上であればカウント対象とする。粒子がNi−Al系析出物であるかどうかは、粒子中央部に照準を合わせて電子ビームを照射し、SEMに付属のEDX(エネルギー分散型X線分析)装置にてCu、Ni、Alの3元素で定量分析を行うことにより確認する。これら3元素に占める質量%で、Ni:15.0%以上、Al:7.5%以上の測定値となる粒子を「Ni−Al系析出物」と同定する。
[How to determine the number density of coarse Ni-Al-based precipitate particles]
The surface of the plate (rolled surface) is electropolished to dissolve only the Cu substrate to prepare an observation surface that exposes the Ni—Al-based precipitate particles. The observation surface is observed with an SEM and observed on the SEM image. A value obtained by dividing the total number of Ni—Al-based precipitate particles having a major axis of 5.0 μm or more by the observed total area (mm 2 ) is the coarse Ni—Al-based precipitate particle number density (pieces / mm 2 ). . The total observation area is set to a total of 0.1 mm 2 or more by a plurality of non-overlapping observation fields set at random. Ni—Al-based precipitate particles partially protruding from the observation field are counted if the major axis of the part appearing in the observation field is 5.0 μm or more. Whether the particles are Ni-Al-based precipitates is determined by irradiating an electron beam while aiming at the center of the particles, and using an EDX (energy dispersive X-ray analysis) apparatus attached to the SEM, Cu, Ni, and Al. Confirm by quantitative analysis with 3 elements. Particles having measured values of Ni: 15.0% or more and Al: 7.5% or more in mass% of these three elements are identified as “Ni—Al-based precipitates”.
KAM(Kernel Average Misorientation)値は以下のようにして求めることができる。 A KAM (Kernel Average Misoration) value can be obtained as follows.
〔KAM値の求め方〕
板面(圧延面)をバフ研磨およびイオンミリングにより調製した観察面(圧延面からの除去深さが板厚の1/10)をFE−SEM(電界放出形走査電子顕微鏡)により観察し、50μm×50μmの測定領域について、EBSD(電子線後方散乱回折法)により測定ピッチ0.5μmにて方位差15°以上の境界を結晶粒界とみなした場合の結晶粒内におけるKAM値を測定する。この測定を無作為に選んだ重複しない5箇所の測定領域について行い、各測定領域で得られたKAM値の平均値を、当該板材についてのKAM値として採用する。
[How to find KAM value]
The observation surface (removal depth from the rolling surface is 1/10 of the plate thickness) prepared by buffing and ion milling of the plate surface (rolled surface) was observed with an FE-SEM (field emission scanning electron microscope), and 50 μm. For a measurement region of × 50 μm, the KAM value in the crystal grain is measured by EBSD (Electron Beam Back Scattering Diffraction Method) when the boundary with an orientation difference of 15 ° or more is regarded as the crystal grain boundary at a measurement pitch of 0.5 μm. This measurement is performed on five randomly selected non-overlapping measurement regions, and the average value of the KAM values obtained in each measurement region is adopted as the KAM value for the plate material.
上記各測定領域で定まるKAM値は、0.5μmピッチで配置された電子線照射スポットについて、隣接するスポット間の結晶方位差(以下これを「隣接スポット方位差」という。)をすべて測定し、15°未満である隣接スポット方位差の測定値のみを抽出して、それらの平均値を求めたものに相当する。すなわち、KAM値は結晶粒内の格子歪の量を表す指標であり、この値が大きいほど結晶格子の歪が大きい材料であると評価することができる。 The KAM value determined in each of the above measurement areas is a measurement of all crystal orientation differences between adjacent spots (hereinafter referred to as “adjacent spot orientation differences”) for electron beam irradiation spots arranged at a pitch of 0.5 μm. This is equivalent to extracting only the measured value of the adjacent spot orientation difference of less than 15 ° and obtaining the average value thereof. That is, the KAM value is an index representing the amount of lattice strain in the crystal grains, and it can be evaluated that the larger the value, the larger the strain of the crystal lattice.
ある板厚t0(mm)からある板厚t1(mm)までの圧延率は、下記(2)式により求まる。
圧延率(%)=(t0−t1)/t0×100 …(2)
The rolling rate from a certain sheet thickness t 0 (mm) to a certain sheet thickness t 1 (mm) is obtained by the following equation (2).
Rolling ratio (%) = (t 0 −t 1 ) / t 0 × 100 (2)
本発明によれば、Cu−Ni−Al系銅合金の板材において、エッチング加工面の表面平滑性および耐変色性に優れるものが実現できた。この板材は高強度を有し、かつ精密部品にエッチング加工した際の樹脂密着性に優れるので、高強度導電ばね部品や、精密な樹脂モールド導電部品の素材として極めて有用である。また、白色調の外観を望む部品用途に有用である。 According to the present invention, a Cu-Ni-Al-based copper alloy plate material excellent in surface smoothness and discoloration resistance of an etched surface can be realized. Since this plate material has high strength and excellent resin adhesion when etched into a precision part, it is extremely useful as a material for high-strength conductive spring parts and precision resin-molded conductive parts. Moreover, it is useful for the component use which desires the external appearance of white tone.
〔化学組成〕
本発明では、Cu−Ni−Al系銅合金を採用する。以下、合金成分に関する「%」は、特に断らない限り「質量%」を意味する。
[Chemical composition]
In the present invention, a Cu—Ni—Al based copper alloy is employed. Hereinafter, “%” regarding alloy components means “% by mass” unless otherwise specified.
Niは、CuとともにCu−Ni−Al系銅合金のマトリックス(金属素地)を構成する主要な元素である。また、合金中のNiの一部はAlと結合して第2相(Ni−Al系析出相)の粒子を形成し、強度向上に寄与する。Ni含有量の増大に伴って、他の一般的な銅合金と比べ白色の金属外観を呈するようになる。ただし、他の銅合金と同様、高湿環境に曝されると金属表面に薄い酸化皮膜が形成され、外観として判る程度に変色することがある。その場合、美麗な白色外観が損なわれる。発明者らの検討によれば、Ni含有量を10.0%以上とした上でAl含有量を後述のように確保することによって、耐変色性を高く維持することができる。したがって、本発明では10.0%以上のCu−Ni−Al系銅合金を対象とする。15.0%以上のNi含有量とすることがより効果的である。一方、Ni含有量が多くなると熱間加工性が悪くなる。Ni含有量は30.0%以下に制限される。 Ni is a main element constituting a matrix (metal substrate) of Cu—Ni—Al based copper alloy together with Cu. Further, a part of Ni in the alloy is bonded to Al to form particles of the second phase (Ni—Al-based precipitation phase), which contributes to improving the strength. As the Ni content increases, a white metal appearance is exhibited as compared with other general copper alloys. However, as with other copper alloys, when exposed to a high humidity environment, a thin oxide film is formed on the metal surface, and it may be discolored to the extent that it can be seen as the appearance. In that case, the beautiful white appearance is impaired. According to the study by the inventors, the discoloration resistance can be maintained high by securing the Al content as described below after setting the Ni content to 10.0% or more. Therefore, in the present invention, a Cu-Ni-Al-based copper alloy of 10.0% or more is targeted. It is more effective to set the Ni content to 15.0% or more. On the other hand, when the Ni content increases, the hot workability deteriorates. The Ni content is limited to 30.0% or less.
Alは、Ni−Al系析出物を形成する元素である。Al含有量が少なすぎると強度向上が不十分となる。また、Ni含有量の増加に伴ってAl含有量も増加させることによって、耐変色性を改善することができる。種々検討の結果、下記(1)式を満たすようにAlを含有させる必要がある。
Ni/Al≦15.00 …(1)
ここで、(1)式の元素記号の箇所には質量%で表される当該元素の含有量値が代入される。
一方、Al含有量が過大になると熱間加工性が悪くなる。Al含有量は7.50%以下に制限される。
Al is an element that forms Ni—Al-based precipitates. If the Al content is too small, the strength improvement will be insufficient. Further, the discoloration resistance can be improved by increasing the Al content as the Ni content increases. As a result of various studies, it is necessary to contain Al so as to satisfy the following formula (1).
Ni / Al ≦ 15.00 (1)
Here, the content value of the element represented by mass% is substituted for the element symbol in the formula (1).
On the other hand, when the Al content is excessive, hot workability is deteriorated. The Al content is limited to 7.50% or less.
その他の元素として、必要に応じてMg、Cr、Co、P、B、Mn、Sn、Ti、Zr、Si、Fe、Zn等を含有させることができる。これらの元素の含有量範囲は、Mg:0〜0.30%、Cr:0〜0.20%、Co:0〜0.30%、P:0〜0.10%、B:0〜0.05%、Mn:0〜0.20%、Sn:0〜0.40%、Ti:0〜0.50%、Zr:0〜0.20%、Si:0〜0.50%、Fe:0〜0.30%、Zn:0〜1.00%とすることが好ましい。 As other elements, Mg, Cr, Co, P, B, Mn, Sn, Ti, Zr, Si, Fe, Zn, and the like can be contained as necessary. The content ranges of these elements are Mg: 0 to 0.30%, Cr: 0 to 0.20%, Co: 0 to 0.30%, P: 0 to 0.10%, B: 0 to 0. 0.05%, Mn: 0 to 0.20%, Sn: 0 to 0.40%, Ti: 0 to 0.50%, Zr: 0 to 0.20%, Si: 0 to 0.50%, Fe : 0 to 0.30%, Zn: 0 to 1.00% are preferable.
Mg、Cr、Co、P、B、Mn、Sn、Ti、Zr、Si、Fe、Znの1種または2種以上を含有させる場合は、それらの合計含有量を0.01%以上とすることがより効果的である。ただし、多量に含有させると、熱間または冷間加工性に悪影響を与え、かつコスト的にも不利となる。これら任意添加元素の総量は1.0%以下とすることがより望ましく、0.50%以下としてもよい。また、Cu−Ni−Al系銅合金でSnを多量に添加すると、溶製時に重力偏析を生じやすくなる。縦型連続鋳造機を用いた連続鋳造あるいは半連続鋳造を行う場合は、Sn含有量を0〜0.20%以の範囲とすることがより好ましい。 When including one or more of Mg, Cr, Co, P, B, Mn, Sn, Ti, Zr, Si, Fe, and Zn, the total content thereof should be 0.01% or more. Is more effective. However, if it is contained in a large amount, it adversely affects hot or cold workability and is disadvantageous in terms of cost. The total amount of these optional added elements is more preferably 1.0% or less, and may be 0.50% or less. Moreover, when a large amount of Sn is added in a Cu—Ni—Al based copper alloy, gravity segregation is likely to occur during melting. When performing continuous casting or semi-continuous casting using a vertical continuous casting machine, it is more preferable that the Sn content is in the range of 0 to 0.20% or less.
〔粗大Ni−Al系析出物粒子個数密度〕
Cu−Ni−Al系銅合金では、Ni−Al系析出物を微細析出させることを利用して高強度化を図る。通常、高強度化に寄与する微細なNi−Al系析出物粒子を時効析出させる前には、既に存在している粗大なNi−Al系析出物を固溶させる処理(溶体化処理)が行われる。Cu−Ni−Al系銅合金の場合、特許文献1〜9の実施例に見られるように850℃から900℃程度で溶体化処理を行うことが一般的である。微細Ni−Al系析出物を時効析出させて高強度化を図る上では、この程度の温度での溶体化で十分な効果が得られている。しかしながら、高精細エッチングに対応できる優れたエッチング性を付与するためには、粗大なNi−Al系析出物粒子の存在量を厳しく制限する必要があることがわかった。詳細な検討の結果、板面(圧延面)に平行な観察面において、長径5.0μm以上の粗大Ni−Al系析出物粒子の個数密度は5.0×103個/mm2以下(当該粗大Ni−Al系析出物粒子が存在しない場合も含む)に制限される。粗大Ni−Al系析出物粒子個数密度が上記のように低減された組織状態は、例えば後述の製造工程に従い溶体化を入念に行うことによって実現することができる。
[Number density of coarse Ni-Al-based precipitate particles]
In the Cu-Ni-Al-based copper alloy, high strength is achieved by utilizing fine precipitation of Ni-Al-based precipitates. Usually, before fine Ni—Al-based precipitate particles contributing to high strength are aged, a treatment (solution treatment) for dissolving the existing coarse Ni—Al-based precipitates is performed. Is called. In the case of a Cu—Ni—Al-based copper alloy, it is common to perform solution treatment at about 850 ° C. to 900 ° C. as seen in Examples of Patent Documents 1-9. In order to increase the strength by precipitating fine Ni—Al-based precipitates, a sufficient effect can be obtained by solution treatment at such a temperature. However, it has been found that it is necessary to strictly limit the amount of coarse Ni—Al-based precipitate particles in order to provide excellent etching properties that can cope with high-definition etching. As a result of detailed examination, the number density of coarse Ni—Al-based precipitate particles having a major axis of 5.0 μm or more on the observation surface parallel to the plate surface (rolling surface) is 5.0 × 10 3 particles / mm 2 or less (in this case (Including the case where coarse Ni—Al-based precipitate particles are not present). The structure state in which the number density of coarse Ni—Al-based precipitate particles is reduced as described above can be realized, for example, by careful solution treatment according to the manufacturing process described later.
〔KAM値〕
発明者らは、銅合金板材のKAM値が、エッチング面の表面平滑性に影響を及ぼすことを発見した。そのメカニズムについては現時点で未解明であるが、以下のように推察している。すなわち、KAM値は結晶粒内の転位密度と相関のあるパラメータである。KAM値が大きい場合には結晶粒内の平均的な転位密度が高く、しかも、転位密度の場所的なバラツキが小さいと考えられる。エッチングに関しては、転位密度の高いところが優先的にエッチング(腐食)されると考えられる。KAM値が高い材料では、材料内の全体が均一的に転位密度の高い状態となっているので、エッチングによる腐食が迅速に進行し、かつ局所的な腐食の進行が生じにくい。そのような腐食の進行形態が、凹凸の少ないエッチング面の形成に有利に作用するのではないかと推察される。
[KAM value]
The inventors have discovered that the KAM value of a copper alloy sheet affects the surface smoothness of the etched surface. The mechanism is still unclear, but is presumed as follows. That is, the KAM value is a parameter correlated with the dislocation density in the crystal grains. When the KAM value is large, the average dislocation density in the crystal grains is high, and the local variation in the dislocation density is considered to be small. With regard to etching, it is considered that a place with a high dislocation density is preferentially etched (corroded). In a material having a high KAM value, since the entire material is uniformly in a high dislocation density, corrosion due to etching proceeds rapidly and local corrosion does not easily occur. It is speculated that such a progressing form of corrosion may have an advantageous effect on the formation of an etched surface with less unevenness.
詳細な検討の結果、Cu−Ni−Al系銅合金の場合、EBSD(電子線後方散乱回折法)により、結晶方位差15°以上の境界を結晶粒界とみなした場合の結晶粒内における、ステップサイズ0.5μmで測定したKAM値(上述)が1.50°以上であるときに、エッチング面の表面平滑性が顕著に改善されることがわかった。1.90°以上のKAM値に調整することがより好ましい。ただし、KAM値が十分に高くても、粗大Ni−Al系析出物粒子個数密度が前述のように低減されていなければ、優れたエッチング性改善効果を安定して得ることは難しい。KAM値の上限については特に規定しないが、例えば5.00°以下のKAM値に調整すればよい。4.00°以下の範囲内で調整してもよい。KAM値の高い組織状態は、例えば後述の製造工程に従い、溶体化処理条件、仕上冷間圧延条件、仕上熱処理条件を工夫することによって実現することができる。 As a result of detailed examination, in the case of a Cu—Ni—Al-based copper alloy, by EBSD (electron beam backscattering diffraction method), in a crystal grain when a boundary having a crystal orientation difference of 15 ° or more is regarded as a crystal grain boundary, It was found that when the KAM value (described above) measured at a step size of 0.5 μm is 1.50 ° or more, the surface smoothness of the etched surface is remarkably improved. It is more preferable to adjust the KAM value to 1.90 ° or more. However, even if the KAM value is sufficiently high, it is difficult to stably obtain an excellent etching improvement effect unless the number density of coarse Ni—Al-based precipitate particles is reduced as described above. The upper limit of the KAM value is not particularly defined, but may be adjusted to a KAM value of, for example, 5.00 ° or less. You may adjust within the range of 4.00 degrees or less. A structure state having a high KAM value can be realized by devising solution treatment conditions, finish cold rolling conditions, and finish heat treatment conditions, for example, according to the manufacturing process described later.
〔平均結晶粒径〕
圧延方向に垂直な断面(C断面)における板厚方向の平均結晶粒径が小さいことも、凹凸の少ないエッチング面の形成に有利となる。検討の結果、上述(A)で定義されるC断面の平均結晶粒径が10.0μm以下であることが好ましく、5.0μm以下であることがより好ましい。この平均結晶粒径は過度に微細化する必要はなく、例えば0.50μm以上の範囲で調整すればよい。当該平均結晶粒径は、主として溶体化処理条件によってコントロールすることができる。
[Average crystal grain size]
The fact that the average crystal grain size in the plate thickness direction in the cross section perpendicular to the rolling direction (C cross section) is also small is advantageous for forming an etched surface with few irregularities. As a result of the examination, the average crystal grain size of the C cross section defined in (A) above is preferably 10.0 μm or less, and more preferably 5.0 μm or less. The average crystal grain size does not need to be excessively refined, and may be adjusted within a range of, for example, 0.50 μm or more. The average crystal grain size can be controlled mainly by the solution treatment conditions.
〔表面粗さ〕
板面(圧延面)の圧延直角方向の最大高さ粗さRzが1.2μm以下である板材であることが好ましい。このような表面粗さに調整してあると、表面平滑性に優れたエッチング面を大量生産ラインにおいて安定して実現するうえで、有利となる。
〔Surface roughness〕
The plate surface (rolled surface) is preferably a plate material having a maximum height roughness Rz in the direction perpendicular to the rolling of 1.2 μm or less. Adjustment to such a surface roughness is advantageous in stably realizing an etched surface having excellent surface smoothness in a mass production line.
〔導電性〕
通電部品や放熱部品に用いる場合、電気伝導性や熱伝導性の面からは、導電性は高い方が有利となる。一方、最近では導電部材を組み立てる際、はんだ付けに代わり、レーザー溶接を適用したいというニーズも増えてきた。溶接の場合、導電率が低いほど熱伝導性が低いので熱が逃げにくく、溶接施工が容易になる。溶接ニーズに応えるためには、導電率が20%IACS以下であることが有利となる。Cu−Ni−Al系銅合金が適用される導電ばね部材の用途では、溶接性を考慮すると、導電率が3.0〜20.0%IACSに調整されていることが好ましい。15.0%IACS以下の範囲内で調整してもよい。
〔Conductivity〕
When used for current-carrying parts and heat-dissipating parts, higher conductivity is advantageous in terms of electrical conductivity and thermal conductivity. On the other hand, recently, when assembling conductive members, there is an increasing need to apply laser welding instead of soldering. In the case of welding, the lower the electrical conductivity, the lower the thermal conductivity, so that heat is less likely to escape and welding is easier. In order to meet the welding needs, it is advantageous that the electrical conductivity is 20% IACS or less. In the use of the conductive spring member to which the Cu—Ni—Al based copper alloy is applied, it is preferable that the conductivity is adjusted to 3.0 to 20.0% IACS in consideration of weldability. You may adjust within the range below 15.0% IACS.
〔強度〕
導電ばね部材への適用を考慮すると、圧延方向の引張強さが800MPa以上であることが望ましい。1000MPaより高い引張強さであることがより好ましく、1100MPa以上の引張強さに調整することもできる。過剰な高強度化は、冷間圧延工程での負荷の増大を伴い、生産性低下を招く。圧延方向の引張強さが1400MPa以下となる範囲で強度レベルを調整することが好ましい。
〔Strength〕
Considering application to the conductive spring member, it is desirable that the tensile strength in the rolling direction is 800 MPa or more. It is more preferable that the tensile strength is higher than 1000 MPa, and the tensile strength can be adjusted to 1100 MPa or more. An excessive increase in strength is accompanied by an increase in the load in the cold rolling process, resulting in a decrease in productivity. It is preferable to adjust the strength level in a range where the tensile strength in the rolling direction is 1400 MPa or less.
〔製造方法〕
以上説明した銅合金板材は、例えば以下のような製造工程により作ることができる。
溶解・鋳造→熱間圧延→冷間圧延→(中間焼鈍→冷間圧延)→溶体化処理→時効処理→仕上冷間圧延→仕上熱処理
なお、上記工程中には記載していないが、熱間圧延後には必要に応じて面削が行われ、各熱処理後には必要に応じて酸洗、研磨、あるいは更に脱脂が行われる。以下、各工程について説明する。
〔Production method〕
The copper alloy sheet material described above can be produced by the following manufacturing process, for example.
Melting / Casting → Hot Rolling → Cold Rolling → (Intermediate Annealing → Cold Rolling) → Solution Treatment → Aging Treatment → Finish Cold Rolling → Finish Heat Treatment Although not described in the above process, After rolling, chamfering is performed as necessary, and after each heat treatment, pickling, polishing, or further degreasing is performed as necessary. Hereinafter, each step will be described.
〔溶解・鋳造〕
連続鋳造、半連続鋳造等により鋳片を製造すればよい。Sn含有量を上述のように制限すると重力偏析のリスクが回避され、他の一般的な銅合金と同様、縦型連続鋳造機を用いた鋳造が可能である。Siなどの酸化を防止するために、不活性ガス雰囲気または真空溶解炉で行うのがよい。
[Melting / Casting]
The slab may be manufactured by continuous casting, semi-continuous casting, or the like. If the Sn content is limited as described above, the risk of gravity segregation is avoided, and casting using a vertical continuous casting machine is possible as with other general copper alloys. In order to prevent oxidation of Si or the like, it is preferable to carry out in an inert gas atmosphere or a vacuum melting furnace.
〔鋳片加熱〕
鋳片を1000〜1150℃で2時間以上加熱保持する。この加熱は熱間圧延時の鋳片加熱工程を利用して実施することができる。一般的にCu−Ni−Al系銅合金の鋳片加熱は950℃以下の温度で行われており、諸特性が良好な高強度材を得る上で、それより高温で加熱する必要性は生じていなかった。しかし、本発明ではエッチング性を改善するために粗大Ni−Al系析出物粒子の存在量を厳しく制限する必要がある。粗大Ni−Al系析出物粒子の存在量を低減する手法として、まず鋳片の段階で上記の高温域に加熱し、鋳造組織中に存在するNi−Al系析出物をできるだけ固溶させておくことが有効となる。1150℃を超えると鋳造組織中の融点が低い部分が脆弱となり、熱間圧延で割れが生じる恐れがある。上記温度範囲での加熱時間が2時間を下回るとNi−Al系析出物の固溶化が不十分となる場合がある。経済性を考慮し、上記温度域での加熱時間は5時間以下の範囲で設定することが望ましい。
[Casting heating]
The slab is heated and held at 1000 to 1150 ° C. for 2 hours or more. This heating can be carried out using a slab heating process during hot rolling. In general, slab heating of Cu-Ni-Al-based copper alloy is performed at a temperature of 950 ° C or lower, and in order to obtain a high-strength material having favorable characteristics, it is necessary to heat at a higher temperature. It wasn't. However, in the present invention, it is necessary to strictly limit the abundance of coarse Ni—Al-based precipitate particles in order to improve etching properties. As a technique for reducing the abundance of coarse Ni—Al-based precipitate particles, first, the above-described high temperature region is heated at the stage of the slab, and Ni—Al-based precipitates present in the cast structure are dissolved as much as possible. Is effective. When the temperature exceeds 1150 ° C., the portion having a low melting point in the cast structure becomes brittle, and cracking may occur in hot rolling. If the heating time in the above temperature range is less than 2 hours, the Ni—Al-based precipitate may not be sufficiently dissolved. In consideration of economy, it is desirable to set the heating time in the above temperature range within a range of 5 hours or less.
〔熱間圧延〕
熱間圧延では、Cu−Ni−Al系銅合金の一般的な熱間圧延温度よりも高めの温度で十分な圧延率を稼ぐことが重要である。具体的には、950℃以上の温度域での圧延率を65%以上とし、最終パスの圧延温度を800℃以上とする。各圧延パスの温度は、その圧延パスでワークロールから出た直後の材料の表面温度によって表すことができる。「950℃以上の温度域での圧延率」は、熱間圧延前の板厚をt0(mm)とし、圧延温度が950℃以上である最後の圧延パスによって得られた板厚をt1(mm)として、これらを下記(2)式に代入することによって定まる。
圧延率(%)=(t0−t1)/t0×100 …(2)
(Hot rolling)
In hot rolling, it is important to obtain a sufficient rolling rate at a temperature higher than the general hot rolling temperature of a Cu—Ni—Al based copper alloy. Specifically, the rolling rate in a temperature range of 950 ° C. or higher is set to 65% or higher, and the rolling temperature in the final pass is set to 800 ° C. or higher. The temperature of each rolling pass can be represented by the surface temperature of the material immediately after exiting the work roll in that rolling pass. "Rolling ratio at 950 ° C. or higher temperature range" is the thickness before hot rolling and t 0 (mm), the thickness of the rolling temperature resulting from the last rolling pass is 950 ° C. or higher t 1 (Mm) is determined by substituting these into the following equation (2).
Rolling ratio (%) = (t 0 −t 1 ) / t 0 × 100 (2)
上記の条件に従い高温で十分な圧延率を稼ぐことにより、鋳造組織に起因する粗大Ni−Al系析出物の分解が促進され、溶体化処理工程において高温での保持時間を短縮させることができる。トータルの熱間圧延率は例えば70〜97%とすればよい。熱間圧延終了後には、水冷などにより急冷することが好ましい。 By obtaining a sufficient rolling ratio at a high temperature according to the above conditions, the decomposition of coarse Ni—Al-based precipitates resulting from the cast structure is promoted, and the holding time at a high temperature can be shortened in the solution treatment step. The total hot rolling rate may be, for example, 70 to 97%. After the hot rolling is finished, it is preferable to quench by water cooling or the like.
〔冷間圧延〕
溶体化処理の前に、冷間圧延を施し、板厚を調整しておく。必要に応じて「中間焼鈍→冷間圧延」の工程を1回または複数回加えてもよい。溶体化処理前に行う冷間圧延での圧延率(中間焼鈍を行う場合は最後の中間焼鈍後の冷間圧延での圧延率)は例えば80〜98%とすることができる。
(Cold rolling)
Before the solution treatment, cold rolling is performed to adjust the plate thickness. If necessary, the step of “intermediate annealing → cold rolling” may be added once or a plurality of times. The rolling rate in cold rolling performed before the solution treatment (when performing intermediate annealing, the rolling rate in cold rolling after the last intermediate annealing) can be set to 80 to 98%, for example.
〔溶体化処理〕
溶体化処理はNi−Al系析出物を十分に固溶させること(溶体化)が主目的であるが、本発明では高いKAM値を実現するために結晶粒の粗大化を抑止しながら溶体化を行うことが極めて重要である。Ni−Al系析出物の固溶化に関しては、エッチング性を改善するために、一般的なCu−Ni−Al系銅合金の溶体化処理温度(800〜900℃程度)よりも高温に加熱する。具体的には、材料の最高到達温度T1を950℃より高く1100℃以下の範囲とし、900℃以上T1以下の温度域での保持時間(材料温度がその温度域にある時間)を30秒以上確保する必要がある。ただし、後述のように、この保持時間は360秒以下に制限される。
[Solution treatment]
The main purpose of the solution treatment is to sufficiently dissolve the Ni—Al-based precipitate (solution solution). In the present invention, however, the solution treatment is performed while suppressing the coarsening of the crystal grains in order to achieve a high KAM value. Is extremely important. Regarding the solid solution of the Ni—Al based precipitate, in order to improve the etching property, it is heated to a temperature higher than the solution treatment temperature (about 800 to 900 ° C.) of a general Cu—Ni—Al based copper alloy. Specifically, the maximum temperature T 1 of the material is set in a range higher than 950 ° C. and not higher than 1100 ° C., and the holding time in the temperature range of 900 ° C. or higher and T 1 or lower (the time during which the material temperature is in that temperature range) is 30 It is necessary to secure at least 2 seconds. However, as will be described later, this holding time is limited to 360 seconds or less.
一方、KAM値の向上に関しては、溶体化処理時の結晶粒粗大化を抑制することが非常に有効であることがわかった。発明者らの調査によれば、溶体化処理によって形成される再結晶粒をできるだけ微細化しておき、その後、冷間圧延で加工歪を付与した場合に、高いKAM値が得られることが確認された。Cu−Ni−Al系銅合金では、結晶粒界の面積が多い再結晶組織の状態で冷間圧延を施したときに、格子歪(転位)の蓄積効果が特に顕著に現れるものと推察される。 On the other hand, with regard to the improvement of the KAM value, it has been found that it is very effective to suppress the coarsening of crystal grains during the solution treatment. According to the inventors' investigation, it has been confirmed that a high KAM value can be obtained when recrystallized grains formed by solution treatment are made as fine as possible and then processed strain is applied by cold rolling. It was. In Cu-Ni-Al-based copper alloys, it is surmised that the effect of accumulating lattice strain (dislocations) is particularly prominent when cold rolling is performed in a recrystallized structure with a large grain boundary area. .
上述のように溶体化処理を高めの温度で行う必要から、結晶粒の粗大化防止には工夫が必要となる。その1つが、「高温保持時間の短縮化」である。具体的には、900℃以上T1以下の高温域での保持時間を360秒以下に制限すればよい。鋳片加熱および熱間圧延の工程で上述のようにNi−Al系析出物の固溶化を促進させているので、溶体化処理工程ではこのような短時間の加熱でも十分な溶体化を実現できるのである。さらにもう1つの工夫として、高温域での昇温速度を大きくすることが極めて有効である。具体的には、900℃からT1までの平均昇温速度を50℃/s以上に制御する。急速昇温により急激に再結晶を起こさせると、多くのサイトで再結晶粒が同時多発的に発生し、粗大再結晶に成長しにくいものと推察される。高温域での昇温速度を高めるためには炉温を材料の最高到達温度T1より高く設定することやファンの回転数を上げて炉内の対流を促進することが有効である。あまり炉温を上げすぎるとT1が安定せず結晶粒径や特性のばらつきが生じる恐れがあり、ファンの回転数には設備上の制限もある。900℃からT1までの平均昇温速度は100℃/s以下の範囲で設定することが現実的である。なお、実操業において、平均昇温速度は、板厚と炉内温度に応じて予め求めてある「在炉時間と材料温度の関係」に基づいて制御することができる。冷却速度は、一般的な連続焼鈍ラインで実現できる程度の急冷とすればよい。例えば、900℃から300℃までの平均冷却速度を100℃/s以上とすることが望ましい。 As described above, since it is necessary to perform the solution treatment at a higher temperature, it is necessary to devise measures for preventing the coarsening of crystal grains. One of them is “reduction of high temperature holding time”. Specifically, the holding time in a high temperature range of 900 ° C. or higher and T 1 or lower may be limited to 360 seconds or shorter. As described above, since the solid solution of the Ni—Al-based precipitate is promoted in the slab heating and hot rolling processes, sufficient solution can be realized even in such a short heating time in the solution treatment process. It is. Furthermore, as another contrivance, it is extremely effective to increase the rate of temperature rise in the high temperature range. Specifically, the average temperature rising rate from 900 ° C. to T 1 is controlled to 50 ° C./s or more. When rapid recrystallization is caused by rapid temperature rise, it is assumed that recrystallized grains are generated at many sites simultaneously and are difficult to grow into coarse recrystallization. In order to increase the rate of temperature increase in the high temperature range, it is effective to set the furnace temperature higher than the maximum material temperature T 1 or to increase the rotational speed of the fan to promote convection in the furnace. If the furnace temperature is raised too much, T 1 may not be stabilized, and there may be a variation in crystal grain size and characteristics, and the rotational speed of the fan is limited in terms of equipment. It is realistic to set the average rate of temperature increase from 900 ° C. to T 1 within a range of 100 ° C./s or less. In actual operation, the average rate of temperature rise can be controlled based on the “relationship between the in-furnace time and the material temperature” obtained in advance according to the plate thickness and the furnace temperature. The cooling rate may be a rapid cooling that can be realized by a general continuous annealing line. For example, the average cooling rate from 900 ° C. to 300 ° C. is desirably 100 ° C./s or more.
〔時効処理〕
次いで時効処理を行い、強度に寄与する微細な析出物粒子を析出させる。時効処理条件は、目標とする強度および導電性に応じて、400〜650℃、0.1〜48時間の範囲で設定することができる。
[Aging treatment]
Next, an aging treatment is performed to precipitate fine precipitate particles that contribute to the strength. The aging treatment conditions can be set in the range of 400 to 650 ° C. and 0.1 to 48 hours according to the target strength and conductivity.
〔仕上冷間圧延〕
時効処理後に行う最終的な冷間圧延を本明細書では「仕上冷間圧延」と呼んでいる。仕上冷間圧延は強度、KAM値、および表面平滑性の向上に有効である。この工程に供する板材は、溶体化処理で結晶粒の粗大化を回避して得られた結晶粒界の多いマトリックス中に、時効処理で微細に析出させたNi−Al系析出物粒子が分布している組織状態を有する。このような組織状態の板材に対して、最終的な冷間圧延を施すと、結晶格子の歪が蓄積されやすい。多量に蓄積された歪は、後述の仕上熱処理を適正に行うことによって、最終的な板材においても高い格子歪として維持されると推察され、結果的にKAM値の高い板材を得ることができる。このような仕上冷間圧延の作用を十分に発揮させるために、仕上冷間圧延率は30%以上とすることが効果的であり40%以上とすることがより効果的である。仕上冷間圧延率は99%以下の範囲で設定すればよい。最終的な板厚は、例えば0.015〜0.50mm程度の範囲で設定することができる。
[Finish cold rolling]
The final cold rolling performed after the aging treatment is referred to as “finish cold rolling” in the present specification. Finish cold rolling is effective in improving strength, KAM value, and surface smoothness. In the plate material used in this process, Ni-Al-based precipitate particles finely precipitated by aging treatment are distributed in a matrix having many grain boundaries obtained by avoiding coarsening of crystal grains by solution treatment. Have an organizational state. When final cold rolling is performed on a plate material having such a structure, crystal lattice distortion is likely to accumulate. A large amount of accumulated strain is presumed to be maintained as a high lattice strain even in the final plate material by appropriately performing the finishing heat treatment described later, and as a result, a plate material having a high KAM value can be obtained. In order to sufficiently exhibit the effect of such finish cold rolling, it is effective to set the finish cold rolling rate to 30% or more, and more effectively to 40% or more. The finish cold rolling rate may be set within a range of 99% or less. The final plate thickness can be set, for example, in a range of about 0.015 to 0.50 mm.
仕上冷間圧延後には必要に応じてテンションレベラーによる形状矯正を行うことができる。テンションレベラーでの伸び率は例えば0.1〜1.5%の範囲とすればよい。 After finishing cold rolling, shape correction with a tension leveler can be performed as necessary. The elongation at the tension leveler may be in the range of 0.1 to 1.5%, for example.
〔仕上熱処理〕
仕上冷間圧により圧延歪が付与された板材に対して、最終的な熱処理を施し、KAM値の上昇を図る。この熱処理を本明細書では「仕上熱処理」と呼んでいる。仕上熱処理では材料の最高到達温度T2を400〜700℃とし、400〜700℃での保持時間(材料温度がその温度域にある時間)を10〜300秒する。この温度域での保持により転位の再配列が起こり、溶質原子がコットレル雰囲気を形成して、結晶格子にひずみ場を形成する。この格子歪がKAM値の向上させる要因になると考えられる。ただし、そのKAM値上昇作用を得るためには昇温速度が大きくなりすぎないように制御することが重要である。昇温速度が過剰に大きくなると、昇温過程で転位の消滅が起こりやすくなり、KAM値が低下することがわかった。発明者らの検討によれば、T2までの最大昇温速度を200℃/s以下とする必要があり、160℃/s以下とすることがより好ましい。最大昇温速度は、横軸に時間、縦軸に材料温度をとったグラフにおける温度T2までの昇温曲線の最大勾配に相当する。
[Finish heat treatment]
A final heat treatment is applied to the plate material to which the rolling strain is imparted by the finish cold pressure to increase the KAM value. This heat treatment is called “finish heat treatment” in the present specification. In the finish heat treatment, the maximum temperature T 2 of the material is set to 400 to 700 ° C., and the holding time at 400 to 700 ° C. (the time during which the material temperature is in the temperature range) is set to 10 to 300 seconds. By maintaining in this temperature range, rearrangement of dislocations occurs, and solute atoms form a Cottrell atmosphere and form a strain field in the crystal lattice. This lattice distortion is considered to be a factor for improving the KAM value. However, in order to obtain the effect of increasing the KAM value, it is important to control so that the temperature rising rate does not become too large. It has been found that when the rate of temperature increase is excessively high, dislocations disappear easily during the temperature increase process, and the KAM value decreases. According to the study by the inventors, the maximum temperature increase rate up to T 2 needs to be 200 ° C./s or less, and more preferably 160 ° C./s or less. The maximum rate of temperature rise corresponds to the maximum slope of the temperature rise curve up to temperature T 2 in the graph with time on the horizontal axis and material temperature on the vertical axis.
板の形状(平坦性)を重視する場合は、この仕上熱処理を張力付与下で行うことが効果的である。その場合、少なくとも材料温度が最高到達温度T2にあるときに、板の圧延方向に40〜60N/mm2の張力が付与されるようにすればよい。 When emphasizing the shape (flatness) of the plate, it is effective to perform this finishing heat treatment under tension. In that case, at least when the material temperature is at the maximum temperature T 2 , a tension of 40 to 60 N / mm 2 may be applied in the rolling direction of the plate.
表1に示す化学組成の銅合金を溶製し、縦型半連続鋳造機を用いて鋳造した。得られた鋳片を表2A、表2Bに示す温度、時間で加熱保持したのち抽出して、厚さ5〜15mmまで熱間圧延を施し、水冷した。トータルの熱間圧延率は90〜95%であり、950℃以上の温度域での圧延率、最終パスの圧延温度および熱間圧延後の仕上板厚は表2A、表2B中に示してある。熱間圧延で割れが生じた一部の例では、その時点で製造を中止した。熱間圧延後、表層の酸化層を機械研磨により除去(面削)し、表2A、表2Bに示す圧延率で冷間圧延を施して溶体化処理に供するための中間製品板材とした。各中間製品板材に溶体化処理、時効処理、仕上冷間圧延、および仕上熱処理を施し、表2A、表2Bに示す板厚の板材製品(供試材)を得た。 A copper alloy having the chemical composition shown in Table 1 was melted and cast using a vertical semi-continuous casting machine. The obtained slab was heated and held at the temperatures and times shown in Tables 2A and 2B, extracted, hot-rolled to a thickness of 5 to 15 mm, and cooled with water. The total hot rolling rate is 90 to 95%. The rolling rate in the temperature range of 950 ° C. or higher, the rolling temperature of the final pass, and the finished sheet thickness after hot rolling are shown in Tables 2A and 2B. . In some cases where cracking occurred during hot rolling, production was stopped at that point. After the hot rolling, the surface oxide layer was removed (faced) by mechanical polishing, and cold rolling was performed at the rolling rates shown in Tables 2A and 2B to obtain an intermediate product plate material for solution treatment. Each intermediate product plate was subjected to solution treatment, aging treatment, finish cold rolling, and finish heat treatment to obtain plate products (test materials) having thicknesses shown in Tables 2A and 2B.
溶体化処理は連続式の焼鈍炉を用いて表2A、表2Bに示す条件で行った。炉内の複数箇所に設置した放射温度計で通板中の材料の表面温度をモニターし、測温データに基づいて炉温および通板速度が安定している状態(定常状態)での時間−温度曲線を作成し、900℃からT1までの平均昇温速度を求めた。仕上冷間圧延は表2A、表2Bに示す圧延率で行った。
時効処理は500℃で12時間保持する条件で行った。
仕上熱処理はカテナリー炉を連続通板したのち空冷する方法にて、圧延方向に50N/mm2の張力が付与されるようにして、表2A、表2Bに示す条件で行った。炉内の複数箇所に設置した放射温度計で通板中の材料の表面温度をモニターし、測温データに基づいて炉温および通板速度が安定している状態(定常状態)での時間−温度曲線を作成し、その曲線の勾配から温度T2までの最大昇温速度を求めた。
The solution treatment was performed using a continuous annealing furnace under the conditions shown in Tables 2A and 2B. The surface temperature of the material in the plate is monitored by radiation thermometers installed at multiple locations in the furnace, and the time when the furnace temperature and plate speed are stable (steady state) based on the temperature measurement data- A temperature curve was prepared, and an average temperature increase rate from 900 ° C. to T 1 was determined. Finish cold rolling was performed at the rolling rates shown in Tables 2A and 2B.
The aging treatment was performed under the condition of holding at 500 ° C. for 12 hours.
The finish heat treatment was carried out under the conditions shown in Table 2A and Table 2B by applying a tension of 50 N / mm 2 in the rolling direction by a method of air cooling after continuously passing through a catenary furnace. The surface temperature of the material in the plate is monitored by radiation thermometers installed at multiple locations in the furnace, and the time when the furnace temperature and plate speed are stable (steady state) based on the temperature measurement data- A temperature curve was created, and the maximum rate of temperature increase up to temperature T 2 was determined from the slope of the curve.
表2A、表2Bにおいて、溶体化処理の「温度」は上述の最高到達温度T1、「時間」は材料温度が900℃以上T1以下の範囲にある時間、「≧900℃昇温速度」は900℃からT1までの平均昇温速度をそれぞれ表示した。また、仕上熱処理の「温度」は上述の最高到達温度T2、「時間」は材料温度が400〜700℃の範囲にある時間、「最大昇温速度」はT2までの最大昇温速度をそれぞれ表示した。ただし、仕上熱処理で最高到達温度T2が400℃未満であった例については「時間」の欄に最高到達温度T2での保持時間を示した。 In Tables 2A and 2B, the “temperature” of the solution treatment is the above-mentioned maximum attained temperature T 1 , “time” is the time during which the material temperature is in the range of 900 ° C. to T 1 , and “≧ 900 ° C. heating rate” Represents the average rate of temperature rise from 900 ° C. to T 1 , respectively. In addition, the “temperature” of the finish heat treatment is the maximum temperature T 2 described above, the “time” is the time during which the material temperature is in the range of 400 to 700 ° C., and the “maximum heating rate” is the maximum heating rate up to T 2. Displayed respectively. However, in the case where the maximum temperature T 2 was less than 400 ° C. in the finish heat treatment, the holding time at the maximum temperature T 2 was shown in the “time” column.
各供試材について以下の調査を行った。 The following investigation was conducted for each specimen.
(粗大Ni−Al系析出物粒子の個数密度)
前掲の「粗大Ni−Al系析出物粒子個数密度の求め方」に従い、板面(圧延面)を電解研磨した観察面をSEMにより観察し、長径5.0μm以上のNi−Al系析出物粒子の個数密度を求めた。観察面調製のための電解研磨液として蒸留水、リン酸、エタノール、2−プロパノールを10:5:5:1で混合した液を使用した。電解研磨は、BUEHLER社製の電解研磨装置(ELECTROPOLISHER POWER SUPPLUY、ELECTROPOLISHER CELL MODULE)を用いて、電圧15V、時間20秒の条件で行った。
(Number density of coarse Ni-Al precipitate particles)
In accordance with the above-mentioned “How to obtain the number density of coarse Ni—Al-based precipitate particles”, an observation surface obtained by electropolishing the plate surface (rolled surface) is observed with an SEM, and Ni—Al-based precipitate particles having a major axis of 5.0 μm or more are observed. The number density of was determined. A solution prepared by mixing distilled water, phosphoric acid, ethanol, and 2-propanol in a ratio of 10: 5: 5: 1 was used as an electropolishing liquid for preparing the observation surface. The electrolytic polishing was performed under the conditions of a voltage of 15 V and a time of 20 seconds using an electrolytic polishing apparatus (ELECTROPOLISHER POWER SUPPLUY, ELECTROPOLISHER CELL MODULE) manufactured by BUEHLER.
(KAM値)
前掲の「KAM値の求め方」に従い、圧延面からの除去深さが板厚の1/10である観察面について、EBSD分析システムを備えるFE−SEM(日本電子株式会社製;JSM−7001)を用いて測定した。電子線照射の加速電圧は15kV、照射電流は5×10-8Aとした。EBSD解析ソフトウエアはTSLソリューションズ社製;OIM Analysisを使用した。
(KAM value)
FE-SEM (manufactured by JEOL Ltd .; JSM-7001) equipped with an EBSD analysis system for the observation surface whose removal depth from the rolled surface is 1/10 of the plate thickness in accordance with the above-mentioned “How to obtain KAM value” It measured using. The acceleration voltage of electron beam irradiation was 15 kV, and the irradiation current was 5 × 10 −8 A. EBSD analysis software was manufactured by TSL Solutions; OIM Analysis was used.
(板厚方向の平均結晶粒径)
圧延方向に垂直な断面(C断面)をエッチングして結晶粒界を現出させた観察面をSEMで観察し、前記(A)に定義される板厚方向の平均結晶粒径を求めた。
(Average crystal grain size in the plate thickness direction)
The observation plane on which the cross section perpendicular to the rolling direction (C cross section) was etched to reveal the crystal grain boundary was observed with SEM, and the average crystal grain size in the plate thickness direction defined in (A) was determined.
(板面の表面粗さ)
板面(圧延面)について、レーザー式表面粗さ計にて圧延直角方向の表面粗さを測定し、JIS B0601:2013に従う最大高さ粗さRzを求めた。
(Surface roughness of the plate surface)
For the plate surface (rolled surface), the surface roughness in the direction perpendicular to the rolling direction was measured with a laser surface roughness meter, and the maximum height roughness Rz according to JIS B0601: 2013 was determined.
(導電率)
JIS H0505に従って各供試材の導電率を測定した。リードフレーム用途を考慮して、3.0〜20.0%IACS以上のものを合格(導電性;適正)と判定した。
(conductivity)
The electrical conductivity of each test material was measured according to JIS H0505. Considering the use of lead frames, those with 3.0 to 20.0% IACS or higher were determined to be acceptable (conductivity; proper).
(引張強さ)
各供試材から圧延方向(LD)の引張試験片(JIS 5号)を採取し、試験数n=3でJIS Z2241に準拠した引張試験行い、引張強さを測定した。n=3の平均値を当該供試材の成績値とした。導電ばね部材用途を考慮し、引張強さが800Pa以上のものを合格(高強度特性;良好)と判定した。
(Tensile strength)
A tensile test piece (JIS No. 5) in the rolling direction (LD) was taken from each test material, and a tensile test according to JIS Z2241 was performed with the number of tests n = 3, and the tensile strength was measured. The average value of n = 3 was defined as the result value of the test material. Considering the use of the conductive spring member, a material having a tensile strength of 800 Pa or more was determined to be acceptable (high strength characteristics; good).
(エッチング面の表面粗さ)
エッチング液として、塩化第二鉄42ボーメを用意した。供試材の片側表面を板厚が半減するまでエッチングした。得られたエッチング面について、レーザー式表面粗さ計にて圧延直角方向の表面粗さを測定し、JIS B0601:2013に従う最大高さ粗さRzを求めた。このエッチング試験によるRzが2.5μm以下であれば、従来のCu−Ni−Al系銅合金板材と比べ、エッチング面の表面平滑性は大きく改善されていると評価でき、高精細なエッチングに極めて有用である。したがって、ここでは上記Rzが2.5μm以下のものを合格(エッチング性;良好)と判定した。なお、上記Rzは2.1μm以下(エッチング性;優秀)であることがより好ましい。
(Surface roughness of etched surface)
As an etchant, ferric chloride 42 baume was prepared. The surface of one side of the test material was etched until the plate thickness was halved. About the obtained etching surface, the surface roughness of the rolling orthogonal direction was measured with the laser type surface roughness meter, and the maximum height roughness Rz according to JIS B0601: 2013 was determined. If Rz by this etching test is 2.5 μm or less, it can be evaluated that the surface smoothness of the etched surface is greatly improved as compared with the conventional Cu—Ni—Al based copper alloy sheet, which is extremely suitable for high-definition etching. Useful. Therefore, here, those having the Rz of 2.5 μm or less were determined to be acceptable (etching property: good). The Rz is more preferably 2.1 μm or less (etching property: excellent).
(耐変色性)
供試材から幅10mm×長さ65mmのサンプルを採取し、板面(圧延面)を番手1200(JIS R6010:2000に規定される粒度P1200)の研磨紙による乾式研磨仕上として、耐候性試験片を作製した。耐候性試験は、試験片を温度50℃、相対湿度95%の雰囲気中に24時間暴露する方法で行った。耐候性試験の前および後の試験片表面について、それぞれL*a*b*を測定し、JIS Z8730:2009に規定されるL*a*b*表示色による色差ΔE* abを求めた。この色差ΔE* abが5.0未満であるものは導電ばね部材として良好な耐変色性を有すると判断できる。したがって、色差ΔE* abが5.0未満であるものを合格(耐変色性;良好)と判定した。なお、参考のため、無酸素銅(C1020)、70−30黄銅(C2600)、ネーバル黄銅(C4622)の各板材についても同条件で耐候性試験を実施した。その結果、色差ΔE* abは、無酸素銅が11.0、70−30黄銅が10.5、ネーバル黄銅が10.7であった。
これらの結果を表3A、表3Bに示す。
(Discoloration resistance)
A sample having a width of 10 mm and a length of 65 mm was taken from the test material, and the plate surface (rolled surface) was dry-polished with abrasive paper having a count of 1200 (grain size P1200 defined in JIS R6010: 2000) as a weathering test piece Was made. The weather resistance test was performed by exposing the test piece to an atmosphere of a temperature of 50 ° C. and a relative humidity of 95% for 24 hours. L * a * b * was measured on the surface of the test piece before and after the weather resistance test, and a color difference ΔE * ab depending on L * a * b * display color defined in JIS Z8730: 2009 was determined. Those having a color difference ΔE * ab of less than 5.0 can be judged to have good discoloration resistance as a conductive spring member. Therefore, it was determined that the color difference ΔE * ab was less than 5.0 as acceptable (discoloration resistance: good). For reference, the weather resistance test was also performed under the same conditions for oxygen-free copper (C1020), 70-30 brass (C2600), and naval brass (C4622). As a result, the color difference ΔE * ab was 11.0 for oxygen-free copper, 10.5 for 70-30 brass, and 10.7 for naval brass.
These results are shown in Tables 3A and 3B.
化学組成および製造条件を上述の規定に従って厳密にコントロールすることによって得られた本発明例の板材はいずれも、粗大Ni−Al系析出物粒子の個数密度が低く、かつKAM値が高い組織状態を有し、エッチング面の表面平滑性に優れていた。また、圧延直角方向の表面粗さ、導電率、引張強さ、耐変色性の良好であった。 Each of the plate materials of the present invention obtained by strictly controlling the chemical composition and production conditions in accordance with the above-mentioned regulations has a structure state in which the number density of coarse Ni—Al based precipitate particles is low and the KAM value is high. And the surface smoothness of the etched surface was excellent. Further, the surface roughness in the direction perpendicular to the rolling, electrical conductivity, tensile strength, and discoloration resistance were good.
これに対し、比較例No.31は鋳片加熱温度が低く、熱間圧延において950℃以上の温度域での圧延率が低いので粗大Ni−Al系析出物粒子が多くなり、エッチング性は改善されていない。No.32は溶体化処理温度が高いのでKAM値が低く、また板厚方向の結晶粒径も大きくなり、エッチング性は改善されていない。No.33は溶体化処理温度が低いので粗大Ni−Al系析出物粒子が多くなり、エッチング性は改善されていない。No.34は鋳片加熱温度が高いので熱間圧延で割れが生じ、その後の工程を中止した。No.35は鋳片加熱時間が短いので粗大Ni−Al系析出物粒子が多くなり、エッチング性は改善されていない。No.36は熱延最終パス温度が低いので粗大Ni−Al系析出物粒子が多くなった。また溶体化処理における高温域の昇温速度が遅いので仕上冷間圧延前の結晶粒が大きくなり、KAM値の上昇が不十分となった。そのため、エッチング性は改善されていない。No.37はNi含有量が過剰であるため熱間圧延で割れが生じ、その後の工程を中止した。No.38はNi含有量が低いので導電率が20.0%IACSを超え、また耐変色性にも劣った。No.39はAl含有量が過剰であるため熱間圧延で割れが生じ、その後の工程を中止した。No.40はNi/Al比が高い引張強さが低く、耐変色性にも劣った。No.41はSn含有量が過剰であることに起因して縦型の連続鋳造で重力偏析が生じたので熱間圧延で割れが発生し、その後の工程を中止した。No.42は溶体化処理時間が長いので仕上冷間圧延前の結晶粒が大きくなり、KAM値の上昇が不十分となった。そのため、エッチング性は改善されていない。No.43は溶体化処理時間が短いので粗大Ni−Al系析出物粒子が多くなり、エッチング性は改善されていない。No.44は仕上冷間圧延率が低いのでKAM値の上昇が不十分であり、エッチング性は改善されていない。また、圧延直角方向の表面粗さも悪かった。No.45は熱間圧延で高温域での圧延率が低く、仕上熱処理温度が高いので粗大Ni−Al系析出物粒子が多くなり、KAM値の上昇も不十分であった。そのため、エッチング性は改善されていない。No.46は仕上熱処理温度が低いのでKAM値の上昇が不十分であり、エッチング性は改善されていない。No.47は仕上熱処理時間が長いのでKAM値の上昇が不十分であり、エッチング性は改善されていない。No.48は仕上熱処理時間が短いのでKAM値の上昇が不十分であり、エッチング性は改善されていない。No.49は仕上熱処理での最大昇温速度が大きいのでKAM値の上昇が不十分であり、エッチング性は改善されていない。 On the other hand, Comparative Example No. 31 has a low slab heating temperature and a low rolling rate in a temperature range of 950 ° C. or higher in hot rolling, so that coarse Ni—Al-based precipitate particles increase and the etching property is improved. It has not been. Since No. 32 has a high solution treatment temperature, the KAM value is low, the crystal grain size in the plate thickness direction is large, and the etching property is not improved. Since No. 33 has a low solution treatment temperature, coarse Ni—Al-based precipitate particles increase, and the etching property is not improved. Since No. 34 had a high slab heating temperature, cracking occurred during hot rolling, and the subsequent steps were stopped. In No. 35, since the slab heating time is short, coarse Ni—Al-based precipitate particles increase, and the etching property is not improved. In No. 36, since the hot rolling final pass temperature was low, coarse Ni—Al-based precipitate particles increased. Moreover, since the temperature increase rate in the high temperature region in the solution treatment was slow, the crystal grains before finish cold rolling became large, and the KAM value was insufficiently increased. Therefore, the etching property is not improved. In No. 37, since the Ni content was excessive, cracking occurred during hot rolling, and the subsequent steps were stopped. No. 38 had a low Ni content, so its conductivity exceeded 20.0% IACS, and it was also inferior in discoloration resistance. In No. 39, since the Al content was excessive, cracking occurred during hot rolling, and the subsequent steps were stopped. No. 40 has a high Ni / Al ratio, low tensile strength, and inferior discoloration resistance. In No. 41, gravity segregation occurred in the vertical continuous casting due to excessive Sn content, so cracking occurred during hot rolling, and the subsequent steps were stopped. In No. 42, since the solution treatment time was long, the crystal grains before finish cold rolling became large, and the KAM value was insufficiently increased. Therefore, the etching property is not improved. In No. 43, since the solution treatment time is short, coarse Ni—Al-based precipitate particles increase, and the etching property is not improved. No. 44 has a low finish cold rolling rate, so the KAM value is not sufficiently increased, and the etching property is not improved. Also, the surface roughness in the direction perpendicular to the rolling was poor. No. 45 was hot-rolled and had a low rolling ratio in a high temperature range and a high finishing heat treatment temperature, so that coarse Ni—Al-based precipitate particles increased and the KAM value was not sufficiently increased. Therefore, the etching property is not improved. In No. 46, the finish heat treatment temperature is low, so the KAM value is not sufficiently increased, and the etching property is not improved. No. 47 has a long finish heat treatment time, so the KAM value is not sufficiently increased, and the etching property is not improved. In No. 48, the finishing heat treatment time is short, so the KAM value is not sufficiently increased, and the etching property is not improved. No. 49 has a large maximum heating rate in the finish heat treatment, so that the KAM value is not sufficiently increased, and the etching property is not improved.
Claims (10)
Ni/Al≦15.0 …(1)
ここで、(1)式の元素記号の箇所には質量%で表される当該元素の含有量値が代入される。 Content by mass: Ni: 10.0 to 30.0%, Al: 7.50% or less and satisfying the following formula (1), Mg: 0 to 0.30%, Cr: 0 to 0.20% , Co: 0 to 0.30%, P: 0 to 0.10%, B: 0 to 0.05%, Mn: 0 to 0.20%, Sn: 0 to 0.40%, Ti: 0 Chemistry consisting of 0.50%, Zr: 0-0.20%, Si: 0-0.50%, Fe: 0-0.30%, Zn: 0-1.00%, the balance Cu and inevitable impurities The number density of coarse Ni—Al-based precipitate particles having a major axis of 5.0 μm or more is 5.0 × 10 3 particles / mm 2 or less on an observation surface having a composition and parallel to the plate surface (rolling surface). The KAM value measured with a step size of 0.5 μm in the crystal grain when a boundary with a crystal orientation difference of 15 ° or more is regarded as a grain boundary by EBSD (electron beam backscatter diffraction method) is 1. A copper alloy sheet material of 50 to 5.00 °.
Ni / Al ≦ 15.0 (1)
Here, the content value of the element represented by mass% is substituted for the element symbol in the formula (1).
(A)圧延方向に垂直な断面(C断面)を観察したSEM(走査電子顕微鏡)画像上に、板厚方向の直線を無作為に引き、その直線によって切断される結晶粒の平均切断長を板厚方向の平均結晶粒径とする。ただし、直線によって切断される結晶粒の総数が100個以上となるように、1つまたは複数の観察視野中に、同一結晶粒を重複して切断しない複数の直線を無作為に設定する。 The copper alloy plate material according to claim 1, wherein an average crystal grain size in the plate thickness direction defined in (A) below is 10.0 µm or less.
(A) On a SEM (scanning electron microscope) image in which a cross section perpendicular to the rolling direction (C cross section) is observed, a straight line in the plate thickness direction is randomly drawn, and an average cut length of crystal grains cut by the straight line is obtained. The average crystal grain size in the plate thickness direction is used. However, a plurality of straight lines that do not cut the same crystal grain repeatedly are randomly set in one or a plurality of observation fields so that the total number of crystal grains cut by the straight line is 100 or more.
950℃以上の温度域での圧延率:65%以上、最終パスの圧延温度:800℃以上の条件で熱間圧延を行う工程(熱間圧延工程)、
冷間圧延を行う工程(冷間圧延工程)、
材料の最高到達温度T1:950℃を超え1100℃以下、900℃からT1までの平均昇温速度:50℃/s以上、900℃以上T1以下の温度域での保持時間:30〜360秒の条件で溶体化処理を行う工程(溶体化処理工程)、
400〜650℃、0.1〜48時間の時効処理を行う工程(時効処理工程)、
圧延率30〜99%の冷間圧延を行う工程(仕上冷間圧延工程)、
材料の最高到達温度T2:400〜700℃、T2までの最大昇温速度:200℃/s以下、400〜700℃での保持時間:10〜300秒の条件で熱処理を行う工程(仕上熱処理工程)、
を上記の順に有する銅合金板材の製造方法。
Ni/Al≦15.00 …(1)
ここで、(1)式の元素記号の箇所には質量%で表される当該元素の含有量値が代入される。 Content by mass: Ni: 10.0 to 30.0%, Al: 7.50% or less and satisfying the following formula (1), Mg: 0 to 0.30%, Cr: 0 to 0.20% , Co: 0 to 0.30%, P: 0 to 0.10%, B: 0 to 0.05%, Mn: 0 to 0.20%, Sn: 0 to 0.40%, Ti: 0 Chemistry consisting of 0.50%, Zr: 0-0.20%, Si: 0-0.50%, Fe: 0-0.30%, Zn: 0-1.00%, the balance Cu and inevitable impurities A step of heating and holding the slab having a composition at 1000 to 1150 ° C. for 2 hours or more (slab heating step),
Rolling rate in a temperature range of 950 ° C. or higher: 65% or higher, rolling temperature in final pass: 800 ° C. or higher (hot rolling step)
Cold rolling process (cold rolling process),
Maximum material temperature T 1 : Over 950 ° C., 1100 ° C. or less, Average heating rate from 900 ° C. to T 1 : 50 ° C./s or more, Holding time in temperature range of 900 ° C. or more and T 1 or less: 30 to A step of performing a solution treatment under a condition of 360 seconds (solution treatment step),
A step of aging treatment at 400 to 650 ° C. for 0.1 to 48 hours (aging treatment step);
A step of performing cold rolling at a rolling rate of 30 to 99% (finish cold rolling step),
Maximum heat treatment temperature T 2 : 400 to 700 ° C., Maximum heating rate up to T 2 : 200 ° C./s or less, Holding time at 400 to 700 ° C .: 10 to 300 seconds (finishing) Heat treatment process),
The manufacturing method of the copper alloy board | plate material which has these in said order.
Ni / Al ≦ 15.00 (1)
Here, the content value of the element represented by mass% is substituted for the element symbol in the formula (1).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017117209A JP6869119B2 (en) | 2017-06-14 | 2017-06-14 | Cu-Ni-Al-based copper alloy plate material, manufacturing method, and conductive spring member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017117209A JP6869119B2 (en) | 2017-06-14 | 2017-06-14 | Cu-Ni-Al-based copper alloy plate material, manufacturing method, and conductive spring member |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019002042A true JP2019002042A (en) | 2019-01-10 |
JP6869119B2 JP6869119B2 (en) | 2021-05-12 |
Family
ID=65004608
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017117209A Active JP6869119B2 (en) | 2017-06-14 | 2017-06-14 | Cu-Ni-Al-based copper alloy plate material, manufacturing method, and conductive spring member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6869119B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020066371A1 (en) * | 2018-09-27 | 2020-04-02 | Dowaメタルテック株式会社 | Cu-ni-al-based copper alloy sheet, method for producing same, and conductive spring member |
KR20220055204A (en) | 2020-10-26 | 2022-05-03 | 한국조선해양 주식회사 | Composition for Ni-Al-Bronze alloy |
EP4006187A1 (en) * | 2020-11-27 | 2022-06-01 | Wieland-Werke AG | Copper-nickel cast alloy |
KR20230044493A (en) | 2020-07-29 | 2023-04-04 | 도와 메탈테크 가부시키가이샤 | Cu-Ni-Al-based copper alloy plate, manufacturing method thereof, and conductive spring member |
JP7534883B2 (en) | 2020-07-29 | 2024-08-15 | Dowaメタルテック株式会社 | Cu-Ni-Al copper alloy sheet material, its manufacturing method and conductive spring member |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59159958A (en) * | 1983-02-18 | 1984-09-10 | オリン・コ−ポレ−シヨン | Deposit hardenable copper alloy and treatment |
JPH06128708A (en) * | 1992-10-19 | 1994-05-10 | Dowa Mining Co Ltd | Production of high strength copper-base alloy |
WO2012081573A1 (en) * | 2010-12-13 | 2012-06-21 | 国立大学法人東北大学 | Copper alloy and method for producing copper alloy |
JP2017057476A (en) * | 2015-09-18 | 2017-03-23 | Dowaメタルテック株式会社 | Copper alloy sheet material and manufacturing method therefor |
-
2017
- 2017-06-14 JP JP2017117209A patent/JP6869119B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59159958A (en) * | 1983-02-18 | 1984-09-10 | オリン・コ−ポレ−シヨン | Deposit hardenable copper alloy and treatment |
JPH06128708A (en) * | 1992-10-19 | 1994-05-10 | Dowa Mining Co Ltd | Production of high strength copper-base alloy |
WO2012081573A1 (en) * | 2010-12-13 | 2012-06-21 | 国立大学法人東北大学 | Copper alloy and method for producing copper alloy |
JP2017057476A (en) * | 2015-09-18 | 2017-03-23 | Dowaメタルテック株式会社 | Copper alloy sheet material and manufacturing method therefor |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020066371A1 (en) * | 2018-09-27 | 2020-04-02 | Dowaメタルテック株式会社 | Cu-ni-al-based copper alloy sheet, method for producing same, and conductive spring member |
US11946129B2 (en) | 2018-09-27 | 2024-04-02 | Dowa Metaltech Co., Ltd. | Cu—Ni—Al based copper alloy sheet material, method for producing same, and conductive spring member |
KR20230044493A (en) | 2020-07-29 | 2023-04-04 | 도와 메탈테크 가부시키가이샤 | Cu-Ni-Al-based copper alloy plate, manufacturing method thereof, and conductive spring member |
JP7534883B2 (en) | 2020-07-29 | 2024-08-15 | Dowaメタルテック株式会社 | Cu-Ni-Al copper alloy sheet material, its manufacturing method and conductive spring member |
KR20220055204A (en) | 2020-10-26 | 2022-05-03 | 한국조선해양 주식회사 | Composition for Ni-Al-Bronze alloy |
EP4006187A1 (en) * | 2020-11-27 | 2022-06-01 | Wieland-Werke AG | Copper-nickel cast alloy |
Also Published As
Publication number | Publication date |
---|---|
JP6869119B2 (en) | 2021-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6154565B1 (en) | Cu-Ni-Si-based copper alloy sheet and manufacturing method | |
JP5158911B2 (en) | Copper alloy sheet and manufacturing method thereof | |
JP6869119B2 (en) | Cu-Ni-Al-based copper alloy plate material, manufacturing method, and conductive spring member | |
JP4934759B2 (en) | Copper alloy sheet, connector using the same, and method for producing copper alloy sheet | |
WO2014126047A1 (en) | HIGH-STRENGTH Cu-Ni-Co-Si BASE COPPER ALLOY SHEET, PROCESS FOR PRODUCING SAME, AND CURRENT-CARRYING COMPONENT | |
TWI752208B (en) | Cu-co-si copper alloy plate material and manufacturing method, and parts using the plate material | |
TWI422692B (en) | Cu-Co-Si based copper alloy for electronic materials and method for producing the same | |
JP5503791B2 (en) | Copper alloy sheet and manufacturing method thereof | |
JP6696769B2 (en) | Copper alloy plate and connector | |
JP2008248333A (en) | Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL, AND MANUFACTURING METHOD THEREFOR | |
TWI429768B (en) | Cu-Co-Si based copper alloy for electronic materials and method for producing the same | |
JP2012172168A (en) | Cu-Zr-BASED COPPER ALLOY PLATE, AND METHOD FOR PRODUCING THE SAME | |
JP2017179553A (en) | Cu-Zr-BASED COPPER ALLOY SHEET GOOD IN PRESS PUNCHING PROPERTY AND MANUFACTURING METHOD | |
JP2013104082A (en) | Cu-Co-Si-BASED ALLOY AND METHOD FOR PRODUCING THE SAME | |
JP6684395B1 (en) | Copper alloy plate material, method of manufacturing copper alloy plate material, and connector using copper alloy plate material | |
JP2016176106A (en) | ELECTRONIC COMPONENT Cu-Ni-Co-Si ALLOY | |
JP6246174B2 (en) | Cu-Co-Ni-Si alloy for electronic parts | |
JP2012197503A (en) | Cu-Ni-Si-BASED ALLOY AND MANUFACTURING METHOD THEREFOR | |
CN116397130A (en) | Cu- [ Ni, co ] -Si-based copper alloy sheet, method for producing same, energizing member, and heat dissipating member | |
TWI391952B (en) | Cu-Ni-Si-Co based copper alloy for electronic materials and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200413 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20201116 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201215 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210121 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210406 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210413 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6869119 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |