JP5376168B2 - High purity copper anode for electrolytic copper plating, manufacturing method thereof, and electrolytic copper plating method - Google Patents
High purity copper anode for electrolytic copper plating, manufacturing method thereof, and electrolytic copper plating method Download PDFInfo
- Publication number
- JP5376168B2 JP5376168B2 JP2010077215A JP2010077215A JP5376168B2 JP 5376168 B2 JP5376168 B2 JP 5376168B2 JP 2010077215 A JP2010077215 A JP 2010077215A JP 2010077215 A JP2010077215 A JP 2010077215A JP 5376168 B2 JP5376168 B2 JP 5376168B2
- Authority
- JP
- Japan
- Prior art keywords
- grain boundary
- anode
- purity copper
- electroplating
- high purity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000010949 copper Substances 0.000 title claims abstract description 113
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 111
- 229910052802 copper Inorganic materials 0.000 title claims abstract description 109
- 238000007747 plating Methods 0.000 title claims abstract description 63
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 21
- 238000000034 method Methods 0.000 title claims abstract description 13
- 239000013078 crystal Substances 0.000 claims abstract description 58
- 238000009713 electroplating Methods 0.000 claims description 28
- 238000012545 processing Methods 0.000 claims description 28
- 238000010438 heat treatment Methods 0.000 claims description 21
- 238000001953 recrystallisation Methods 0.000 claims description 14
- 238000005482 strain hardening Methods 0.000 claims description 10
- 238000010894 electron beam technology Methods 0.000 claims description 7
- 238000005096 rolling process Methods 0.000 claims description 4
- 230000007547 defect Effects 0.000 abstract description 19
- 239000002245 particle Substances 0.000 abstract description 8
- 238000004090 dissolution Methods 0.000 description 14
- 238000001887 electron backscatter diffraction Methods 0.000 description 14
- 238000004458 analytical method Methods 0.000 description 10
- 238000005868 electrolysis reaction Methods 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 9
- 238000005259 measurement Methods 0.000 description 8
- PEVJCYPAFCUXEZ-UHFFFAOYSA-J dicopper;phosphonato phosphate Chemical compound [Cu+2].[Cu+2].[O-]P([O-])(=O)OP([O-])([O-])=O PEVJCYPAFCUXEZ-UHFFFAOYSA-J 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000011109 contamination Methods 0.000 description 5
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 4
- 238000003672 processing method Methods 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 238000007405 data analysis Methods 0.000 description 2
- 238000013480 data collection Methods 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- XPPKVPWEQAFLFU-UHFFFAOYSA-N diphosphoric acid Chemical compound OP(O)(=O)OP(O)(O)=O XPPKVPWEQAFLFU-UHFFFAOYSA-N 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052751 metal Chemical class 0.000 description 2
- 239000002184 metal Chemical class 0.000 description 2
- 229940005657 pyrophosphoric acid Drugs 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002524 electron diffraction data Methods 0.000 description 1
- 238000004299 exfoliation Methods 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- RYCLIXPGLDDLTM-UHFFFAOYSA-J tetrapotassium;phosphonato phosphate Chemical compound [K+].[K+].[K+].[K+].[O-]P([O-])(=O)OP([O-])([O-])=O RYCLIXPGLDDLTM-UHFFFAOYSA-J 0.000 description 1
- 238000005491 wire drawing Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D17/00—Constructional parts, or assemblies thereof, of cells for electrolytic coating
- C25D17/10—Electrodes, e.g. composition, counter electrode
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/08—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
Landscapes
- Chemical & Material Sciences (AREA)
- Metallurgy (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electroplating And Plating Baths Therefor (AREA)
- Electroplating Methods And Accessories (AREA)
- Electrolytic Production Of Metals (AREA)
Abstract
Description
この発明は、例えば、ピロリン酸銅浴を用いた電気銅めっきに際し、電気銅めっき浴中のアノード側で発生するスライム等のパーティクルの発生を防止する電気銅めっき用高純度銅アノードとその製造方法、さらに、パーティクルの発生に起因するめっき不良を低減することができる高純度銅アノードを用いた電気銅めっき方法に関する。 The present invention provides, for example, a high-purity copper anode for electrolytic copper plating that prevents generation of particles such as slime generated on the anode side in the electrolytic copper plating bath during electrolytic copper plating using a copper pyrophosphate bath and a method for producing the same Furthermore, the present invention relates to an electrolytic copper plating method using a high-purity copper anode that can reduce plating defects caused by generation of particles.
従来、プリント基板のスルーホールめっきなどで用いられているピロリン酸浴中での電気銅めっきでは、銅めっき用アノード電極として高純度銅が用いられている。
しかし、アノード溶解時に電極表面に銅粉や金属塩を主成分とするスライムが発生し、それらがアノード電極から剥離し、浴中に流出すると、カソード電極表面に付着し突起等のめっき不良が発生しやすいという問題点があった。
Conventionally, high-purity copper is used as an anode electrode for copper plating in electrolytic copper plating in a pyrophosphoric acid bath used for through-hole plating of printed circuit boards.
However, when the anode is melted, slime containing copper powder or metal salt as the main component is generated on the electrode surface, and when it peels off from the anode electrode and flows into the bath, it adheres to the cathode electrode surface and causes plating defects such as protrusions. There was a problem that it was easy to do.
そこで、このような問題点を解決するために、例えば、特許文献1に示されるように、アノードに含有される酸素含有量を規定するとともに、アノード電極の結晶粒度を規定した純銅アノードを用いた電気銅めっきが知られている。
また、例えば、特許文献2に示されるように、高純度銅インゴットを、熱間鍛造−冷間加工ッ歪除去焼鈍することにより、結晶粒を微細化した純銅をアノードとして用いた電気銅めっきも知られている。
Therefore, in order to solve such problems, for example, as shown in Patent Document 1, a pure copper anode in which the oxygen content contained in the anode is defined and the crystal grain size of the anode electrode is defined is used. Electro copper plating is known.
Also, for example, as shown in Patent Document 2, electrolytic copper plating using pure copper with refined crystal grains as an anode by hot forging-cold working strain removal annealing of a high purity copper ingot is also used. Are known.
従来の銅めっきアノードを用いたピロリン酸浴中での電気銅めっきにおいては、銅粉や金属塩を主成分とするスライムの発生防止が十分であるとはいえず、特に、プリント基板のスルーホールめっきなどの精緻なめっきが要求される場合には、スライム等のパーティクル発生に起因するめっき不良の発生が十分満足できる程度に抑制されているとはいえない。
そこで、この発明では、ピロリン酸銅浴を用いた電気銅めっきに際し、電気銅めっき浴中のアノード側で発生するスライム等のパーティクルの発生を防止する電気銅めっき用高純度銅アノードとその製造方法、さらには、パーティクルの発生に起因するめっき不良を低減することができる高純度銅アノードを用いた電気銅めっき方法を提供することを目的とする。
In conventional copper electroplating in a pyrophosphoric acid bath using a copper plating anode, it cannot be said that the generation of slime mainly composed of copper powder and metal salts is sufficient. When precise plating such as plating is required, it cannot be said that the occurrence of defective plating due to generation of particles such as slime is sufficiently suppressed.
Accordingly, in the present invention, a high-purity copper anode for electrolytic copper plating that prevents the generation of particles such as slime generated on the anode side in the electrolytic copper plating bath and the manufacturing method thereof in electrolytic copper plating using a copper pyrophosphate bath Furthermore, an object of the present invention is to provide an electrolytic copper plating method using a high-purity copper anode that can reduce plating defects caused by generation of particles.
本発明者等は、ピロリン酸銅浴を用いた電気銅めっき時における、高純度銅アノードの結晶粒界の形態とアノードスライムの発生、めっき欠陥の関連性について鋭意研究を行った結果、以下の知見を得た。
従来のピロリン酸銅浴を用いた高純度銅アノードを用いた電気銅めっきにおいては、電解の進行とともに銅が溶解してゆくが、アノードにおける銅の溶解は不均一に進行し、特に、結晶粒界の選択的・優先的な溶解進行により、部分的な結晶粒の脱落等が発生し、これがスライム発生の一要因であることを見出した。
The inventors of the present invention conducted extensive research on the relationship between the form of grain boundaries of high-purity copper anode, the generation of anode slime, and plating defects during electrolytic copper plating using a copper pyrophosphate bath. Obtained knowledge.
In conventional copper electroplating using a high purity copper anode using a copper pyrophosphate bath, copper dissolves with the progress of electrolysis, but the dissolution of copper at the anode proceeds non-uniformly. As a result of selective and preferential dissolution of the boundary, it has been found that partial drop of crystal grains occurs, which is a factor in slime generation.
そこで、本発明者等は、電気銅めっき用の高純度銅アノードにおいて、アノード表面からの溶解が均一に進行するように、該高純度銅アノード表面の結晶粒の粒界のうち、所謂、特殊粒界の形成割合を高め、特殊粒界の単位粒界長さLσNが、全結晶粒の単位粒界長さLNに対して特定の値以上になるよう(LσN/LN≧0.35)規制したところ、アノード表面からの銅の溶解を均一に進行させることができ、その結果として、アノードスライム等のパーティクルの発生が低減され、また、これに起因するめっき不良を大幅に低減し得ることを見出したのである。
ここで、特殊粒界とは、「Trans.Met.Soc.AIME,185,501(1949)」に基づき定義されるΣ値で3≦Σ≦29に属する対応粒界であって、かつ、「Acta.Metallurgica.Vol.14,p.1479,(1966)」で述べられている当該対応粒界における固有対応部位格子方位欠陥Dqが、Dq≦15°/Σ1/2を満たす結晶粒界であるとして定義される。
Therefore, the present inventors, in a high-purity copper anode for electrolytic copper plating, so-called so-called special out of the grain boundaries of the crystal grains on the surface of the high-purity copper anode so that dissolution from the anode surface proceeds uniformly. The grain boundary formation rate is increased so that the unit grain boundary length Lσ N of the special grain boundary is equal to or greater than a specific value with respect to the unit grain boundary length L N of all crystal grains (Lσ N / L N ≧ 0). .35) When regulated, copper can be uniformly dissolved from the anode surface. As a result, generation of particles such as anode slime is reduced, and plating defects caused by this are greatly reduced. I found out that I could do it.
Here, the special grain boundary is a corresponding grain boundary belonging to 3 ≦ Σ ≦ 29 with a Σ value defined based on “Trans.Met.Soc.AIME, 185,501 (1949)”, and “ Acta.Metallurica.Vol.14, p.1479, (1966) ”, the corresponding corresponding portion lattice orientation defect Dq in the corresponding grain boundary is a grain boundary satisfying Dq ≦ 15 ° / Σ1 / 2. Is defined as being.
また、本発明者等は、電気銅めっき用の高純度銅アノードの製造に際し、所定の冷間加工、熱間加工を施して加工歪みを与えた後、所定の温度範囲(250〜900℃)で再結晶化熱処理を行うことによって、銅アノードの表面に存在する結晶粒界のうちの、所謂、特殊粒界の形成割合の高い(LσN/LN≧0.35)電気銅めっき用の高純度銅アノードを製造し得ることを見出したのである。 In addition, the present inventors applied a predetermined cold working and hot working to produce a processing strain in producing a high purity copper anode for electrolytic copper plating, and then given a predetermined temperature range (250 to 900 ° C.). By performing the recrystallization heat treatment at, a so-called special grain boundary formation ratio (Lσ N / L N ≧ 0.35) among the grain boundaries existing on the surface of the copper anode is high. It has been found that high purity copper anodes can be produced.
さらに、本発明者等は、特殊粒界の形成割合の高い(Lσ/L≧0.35)高純度銅アノードを使用し、例えば、プリント基板のスルーホールめっきを行った場合には、スルーホール内面には汚染、突起等のめっき欠陥のない精緻なめっき層を形成し得ることを見出したのである。 Furthermore, the present inventors use a high-purity copper anode with a high special grain boundary formation ratio (Lσ / L ≧ 0.35). For example, when through-hole plating is performed on a printed circuit board, It has been found that a precise plating layer free from contamination and protrusion defects such as protrusions can be formed on the inner surface.
この発明は、上記知見に基づいてなされたものであって、
「(1) 電気めっき用高純度銅アノードにおいて、
(a)走査型電子顕微鏡を用いて、アノード表面の個々の結晶粒に電子線を照射し、隣接する結晶粒相互の配向方位差が15ー以上の結晶粒の界面を結晶粒界とし、測定範囲における結晶粒界の全粒界長さLを測定し、これを単位面積1mm2当たりに換算した単位全粒界長さLNを求め
(b)また、同じく走査型電子顕微鏡を用いて、アノード表面の個々の結晶粒に電子線を照射し、相互に隣接する結晶粒の界面が特殊粒界を構成する結晶粒界の位置を決定するとともに、特殊粒界の全特殊粒界長さLσを測定し、これを単位面積1mm2当たりに換算して単位全特殊粒界長さLσNを求めた場合、
(c)上記測定した結晶粒界の単位全粒界長さLNと、同じく上記測定した特殊粒界の単位全特殊粒界長さLσNとの特殊粒界長比率LσN/LNが、
LσN/LN≧0.35
の関係を満足する結晶粒界組織を有することを特徴とする電気めっき用高純度銅アノード。
(2) 平均結晶粒径が3〜1000μmである前記(1)に記載の電気めっき用高純度銅アノード。
(3) 電気めっき用高純度銅に加工を施して加工歪みを与えた後、250〜900℃で再結晶化熱処理を行うことにより、特殊粒界長比率LσN/LNを0.35以上とすることを特徴とする前記(1)または(2)に記載の電気めっき用高純度銅アノードの製造方法。
(4) 加工は、冷間加工または熱間加工の内の少なくとも何れかにより行う前記(3)に記載の電気めっき用高純度銅アノードの製造方法。
(5) 冷間加工と再結晶化熱処理、あるいは、熱間加工と再結晶化熱処理、またはこれらを組み合わせた処理を、特殊粒界長比率LσN/LNが0.35以上となるまで繰り返し行う前記(3)または(4)に記載の電気めっき用高純度銅アノードの製造方法。
(6) 350〜900℃の温度範囲で圧下率5〜80%の熱間加工を施し、その後、3〜300秒間、上記加工歪みを与えずに静的に保持し、再結晶化熱処理を行う前記(3)に記載の電気めっき用高純度銅アノードの製造方法。
(7) 圧下率5〜80%の冷間加工を施し、その後、250〜900℃の温度範囲に加熱し、5分〜5時間、上記加工歪みを与えずに静的に保持し、再結晶化熱処理を行う前記(3)に記載の電気めっき用高純度銅アノードの製造方法。
(8) 前記(1)または(2)に記載の電気めっき用高純度銅アノードを用いた電気銅めっき方法。」
を特徴とするものである。
This invention has been made based on the above findings,
“(1) In high purity copper anode for electroplating,
(A) Using a scanning electron microscope, each crystal grain on the anode surface is irradiated with an electron beam, and the interface between crystal grains having an orientation difference between adjacent crystal grains of 15- or more is used as a grain boundary. The total grain boundary length L of the crystal grain boundary in the range was measured, and the unit total grain boundary length L N was calculated by converting this per unit area 1 mm 2 (b). Similarly, using a scanning electron microscope, The individual crystal grains on the anode surface are irradiated with an electron beam to determine the position of the crystal grain boundary where the interface between adjacent crystal grains constitutes the special grain boundary, and the total special grain boundary length Lσ of the special grain boundary. When this is converted per unit area 1 mm 2 and the unit total special grain boundary length Lσ N is obtained,
(C) The special grain boundary length ratio Lσ N / L N between the measured unit grain boundary length L N of the crystal grain boundary and the unit total special grain boundary length Lσ N of the measured special grain boundary is ,
Lσ N / L N ≧ 0.35
A high purity copper anode for electroplating, characterized by having a grain boundary structure satisfying the relationship:
(2) The high purity copper anode for electroplating according to the above (1), wherein the average crystal grain size is 3 to 1000 μm.
(3) After processing high-purity copper for electroplating to give processing strain, a recrystallization heat treatment is performed at 250 to 900 ° C., so that the special grain boundary length ratio Lσ N / L N is 0.35 or more. The method for producing a high purity copper anode for electroplating according to the above (1) or (2).
(4) The method for producing a high-purity copper anode for electroplating according to (3), wherein the processing is performed by at least one of cold processing and hot processing.
(5) Repeat cold working and recrystallization heat treatment, or hot working and recrystallization heat treatment, or a combination of these until the special grain boundary length ratio Lσ N / L N is 0.35 or more. The manufacturing method of the high purity copper anode for electroplating as described in said (3) or (4) performed.
(6) Hot working is performed at a reduction rate of 5 to 80% in a temperature range of 350 to 900 ° C., and then statically held for 3 to 300 seconds without applying the above-described distortion, and a recrystallization heat treatment is performed. The manufacturing method of the high purity copper anode for electroplating as described in said (3).
(7) Apply cold working at a rolling reduction of 5 to 80%, then heat to a temperature range of 250 to 900 ° C., hold statically for 5 minutes to 5 hours without applying the above processing strain, and recrystallize The manufacturing method of the high-purity copper anode for electroplating as described in said (3) which performs a heat treatment.
(8) An electrolytic copper plating method using the high-purity copper anode for electroplating according to (1) or (2). "
It is characterized by.
つぎに、この発明について詳細に説明する。 Next, the present invention will be described in detail.
まず、本発明者等は、電気銅めっきにおける高純度銅アノード表面の溶解進行状況について調査したところ、以下の知見を得た。
図1(a)〜(d)の模式図に示すように、電解が開始された初期状態(a)では、アノード表面に大きな変化は生じないが、電解開始後、一定の時間経過した(b)では、アノード表面の結晶粒は、粒内に比べ化学的に不安定な粒界から選択的な溶解が開始し、さらに電解が進行した時点(c)では、粒界が選択的に溶解される結果、形状因子による電流密度の不均一化が生じ、そのため、さらに加速度的に粒界が選択溶解を起こすようになり、さらに電解が進行した時点(d)では、粒界の溶解が進むため、未溶解の結晶粒が剥離・剥落を生じるようになり、アノードスライムの発生原因となり、また、これがめっき不良発生原因ともなる。また、未溶解の結晶粒が剥離・剥落したアノード部分には新生面が生成し、電圧変動が発生するようになり、安定した電解操業を行うことが次第に困難となる。
First, the present inventors investigated the progress of dissolution on the surface of a high purity copper anode in electrolytic copper plating, and obtained the following knowledge.
As shown in the schematic diagrams of FIGS. 1A to 1D, in the initial state (a) in which electrolysis is started, a large change does not occur on the anode surface, but a certain period of time has elapsed after the start of electrolysis (b ), Selective dissolution of the crystal grains on the anode surface starts from the grain boundaries that are chemically unstable compared to the inside of the grains, and at the time point (c) when electrolysis proceeds, the grain boundaries are selectively dissolved. As a result, the current density becomes non-uniform due to the shape factor. Therefore, the grain boundary is selectively dissolved at an accelerated rate, and the dissolution of the grain boundary proceeds at the point (d) when the electrolysis proceeds. The undissolved crystal grains are peeled off and peeled off, which causes generation of anode slime, which also causes defective plating. In addition, a new surface is generated in the anode portion where undissolved crystal grains are peeled off and peeled off, voltage fluctuations are generated, and it becomes increasingly difficult to perform stable electrolytic operation.
本発明者等は、上記知見をもとに、電気銅めっき用の高純度銅アノードとして、電解時間の経過とともに、粒界からの選択的溶解(不均一溶解)を生じないようなアノードについてさらに研究したところ、高純度銅アノードにおける前記定義したところの特殊粒界(Σ値で3≦Σ≦29に属する対応粒界であって、かつ、当該対応粒界における固有対応部位格子方位欠陥Dqが、Dq≦15°/Σ1/2を満たす結晶粒界)のいずれも単位面積中の全特殊粒界長さLσNと、高純度銅アノードにおける結晶粒界の全結晶粒界長さLNとの特殊粒界長比率LσN/LNが、LσN/LN≧0.35の関係を満足する結晶粒界組織を有する場合には、結晶構造的に安定、かつ、化学的にも安定である特殊粒界の割合が増加するため、粒界の前記選択的溶解が生じにくくなり、その結果として、未溶解の結晶粒の剥離・剥落が抑制されるようになり、アノードスライムの発生が低減され、同時に、スライム起因のめっき欠陥の発生も低減されるようになることを見出して本発明に至ったのである。
ここで、単位全結晶粒界長さLNは、走査型電子顕微鏡を用いてアノード表面の個々の結晶粒に電子線を照射し、得られた後方散乱電子回折パターンから求めた結晶の配向データを基に隣接する結晶粒相互の配向方位差が15°以上の結晶粒の界面を結晶粒界として、測定範囲における結晶粒界の全粒界長さLを測定し、これを測定面積で除算し、単位面積1mm2当たりの単位粒界長さに換算することによって求めることができる。
特殊粒界長比率LσN/LNが、LσN/LN<0.35では、電解時の結晶粒界の選択溶解を抑えることができず、アノードスライムの発生低減、スライム起因のめっき欠陥の発生低減を図ることができないので、特殊粒界長比率LσN/LNを、LσN/LN≧0.35と定めた。
Based on the above knowledge, the present inventors have further developed a high-purity copper anode for electrolytic copper plating that does not cause selective dissolution (non-uniform dissolution) from grain boundaries with the passage of electrolysis time. As a result of the research, the special grain boundary as defined above in the high-purity copper anode (corresponding grain boundary belonging to 3 ≦ Σ ≦ 29 in Σ value, and the inherent corresponding site lattice orientation defect Dq in the corresponding grain boundary is , Dq ≦ 15 ° / Σ1 / 2 ), the total special grain boundary length Lσ N in the unit area, and the total grain boundary length L N of the crystal grain boundary in the high purity copper anode. The special grain boundary length ratio Lσ N / L N has a grain boundary structure satisfying the relationship of Lσ N / L N ≧ 0.35, the crystal structure is stable and chemically Since the proportion of special grain boundaries that are stable increases, As a result, selective dissolution is less likely to occur, and as a result, peeling and exfoliation of undissolved crystal grains are suppressed, generation of anode slime is reduced, and at the same time, generation of plating defects due to slime is also reduced. As a result, the present invention was found.
Here, the unit total crystal grain boundary length L N is the crystal orientation data obtained from the backscattered electron diffraction pattern obtained by irradiating each crystal grain on the anode surface with an electron beam using a scanning electron microscope. Measure the total grain boundary length L of the grain boundary in the measurement range by dividing the boundary between adjacent crystal grains with an orientation difference of 15 ° or more based on the crystal grain boundary, and divide this by the measurement area and it can be obtained by converting the unit grain boundary length per unit area 1 mm 2.
When the special grain boundary length ratio Lσ N / L N is Lσ N / L N <0.35, the selective dissolution of the crystal grain boundary during electrolysis cannot be suppressed, the generation of anode slime is reduced, and the plating defects caused by slime Therefore, the special grain boundary length ratio Lσ N / L N was determined to be Lσ N / L N ≧ 0.35.
本発明の高純度銅アノードとは、JIS・H2123の表2に規定されるCu有量が99.96質量%以上のCuであり、高純度銅1種では、Cu99.99質量%以上であり、Pの許容上限は0.0003質量%、Oの許容上限は0.001質量%であり、また、Pb、Zn、Bi、Cd、Hg、S、Se、Teの含有量も所定の許容上限値以下でなければならない。高純度銅2種では、Cu99.96質量%以上であり、Oの含有量は0.001質量%以下に抑えられる。
また、本発明の高純度銅アノードの平均結晶粒径(双晶も結晶粒としてカウント)は、3〜1000μmであることが望ましく、平均結晶粒径がこの範囲から外れるとアノードスライムがより多く発生する。
The high purity copper anode of the present invention is Cu having a Cu content of 99.96% by mass or more as defined in Table 2 of JIS / H2123, and in one type of high purity copper, Cu is 99.99% by mass or more. The allowable upper limit of P is 0.0003 mass%, the allowable upper limit of O is 0.001 mass%, and the content of Pb, Zn, Bi, Cd, Hg, S, Se, Te is also a predetermined allowable upper limit. Must be less than or equal to the value. In two types of high-purity copper, Cu is 99.96% by mass or more, and the content of O is suppressed to 0.001% by mass or less.
In addition, the average crystal grain size of the high-purity copper anode of the present invention (twins are also counted as crystal grains) is desirably 3 to 1000 μm, and when the average crystal grain size is out of this range, more anode slime is generated. To do.
特殊粒界の単位全特殊粒界長さLσと、結晶粒界の全結晶粒界長さLNとの特殊粒界長比率LσN/LNが、LσN/LN≧0.35の関係を満足する結晶粒界組織を有する高純度銅アノードは、電気めっき用高純度銅の製造に際し、加工(冷間加工及び/又は熱間加工)を施して加工歪みを与えた後、350〜900℃で再結晶化熱処理を行うことにより、製造することができる。
具体的な製造例としては、例えば、
(イ)400〜900℃の温度範囲で、電気めっき用高純度銅に圧下率5〜80%の熱間加工を施した後、3〜300秒間、上記加工歪みを与えずに静的に保持し、再結晶化熱処理を行うことによって、LσN/LN≧0.35の関係を満足する結晶粒界組織を有する電気めっき用の高純度銅アノードの製造方法、
また、他の製造例としては、
(ロ)圧下率5〜80%の冷間加工を施した後、350〜900℃の温度範囲に加熱し、5分〜5時間、上記加工歪みを与えずに静的に保持し、再結晶化熱処理を行うことによって、LσN/LN≧0.35の関係を満足する結晶粒界組織を有する電気めっき用の高純度銅アノードの製造方法、
を挙げることができる。
上記(イ)、(ロ)の特定の圧下率の熱間加工、冷間加工により歪みを与えた後、所定の温度範囲で、歪みを付与せず静的に保持した状態で再結晶させることによって、特殊粒界の形成が促進され、単位全特殊粒界長さLσNの比率を高め、特殊粒界長比率LσN/LNの値を0.35以上とすることができる。
また、上記の熱間加工、冷間加工および熱処理を、何度か繰り返し行うことによりLσN/LN≧0.35となる結晶粒界組織を得ることも何ら差し支えない。
The special grain boundary length ratio Lσ N / L N between the unit total special grain boundary length Lσ of the special grain boundary and the total grain boundary length L N of the crystal grain boundary is Lσ N / L N ≧ 0.35 A high-purity copper anode having a grain boundary structure satisfying the relationship is subjected to processing (cold processing and / or hot processing) during the production of high-purity copper for electroplating, and after processing strain is applied, 350 to It can be manufactured by performing recrystallization heat treatment at 900 ° C.
As a specific manufacturing example, for example,
(A) After high-temperature processing of high-purity copper for electroplating in a temperature range of 400 to 900 ° C. with a reduction rate of 5 to 80%, it is held statically for 3 to 300 seconds without giving the above processing strain. And a method for producing a high purity copper anode for electroplating having a grain boundary structure satisfying the relationship of Lσ N / L N ≧ 0.35 by performing recrystallization heat treatment,
As other production examples,
(B) After cold working at a rolling reduction of 5 to 80%, the steel is heated to a temperature range of 350 to 900 ° C. and statically held for 5 minutes to 5 hours without applying the above-described distortion, and recrystallized. A method for producing a high-purity copper anode for electroplating having a grain boundary structure satisfying a relationship of Lσ N / L N ≧ 0.35 by performing a chemical heat treatment,
Can be mentioned.
After straining by hot working or cold working at a specific reduction ratio of (A) and (B) above, recrystallization is performed in a predetermined temperature range without static strain being held statically. Thus, the formation of the special grain boundary is promoted, the ratio of the unit total special grain boundary length Lσ N can be increased, and the value of the special grain boundary length ratio Lσ N / L N can be set to 0.35 or more.
In addition, it is possible to obtain a grain boundary structure satisfying Lσ N / L N ≧ 0.35 by repeatedly performing the above hot working, cold working and heat treatment.
特殊粒界の単位全特殊粒界長さLσNと、結晶粒界の全結晶粒界長さLNとの特殊粒界長比率LσN/LNが、LσN/LN≧0.35の関係を満足する結晶粒界組織を有する高純度銅アノードを電気めっき用のアノードとして用いて電気銅めっきを行うことにより、アノードスライムの発生低減を図ることができ、さらに、例えば、プリント基板のスルーホール内面に銅めっきした場合には、スルーホールに汚染、突起等のめっき欠陥のない精緻なめっき層を形成することが可能となる。 The special grain boundary length ratio Lσ N / L N between the unit total special grain boundary length Lσ N of the special grain boundary and the total grain boundary length L N of the crystal grain boundary is Lσ N / L N ≧ 0.35 By performing electrolytic copper plating using a high-purity copper anode having a grain boundary structure that satisfies the above relationship as an anode for electroplating, generation of anode slime can be reduced. When copper is plated on the inner surface of the through hole, it is possible to form a precise plating layer free from contamination and plating defects such as protrusions in the through hole.
高純度銅アノードの結晶粒界の特定と単位全粒界長さLNの測定は、走査型電子顕微鏡を用いてアノード表面の個々の結晶粒に電子線を照射し、得られた後方散乱電子回折パターンから求めた結晶の配向データを基に隣接する結晶粒相互の配向方位差が15°以上の結晶粒の界面を結晶粒界として、測定範囲における結晶粒界の全粒界長さLを測定、これを測定面積で除算し、単位面積1mm2当たりの単位粒界長さに換算することにより行い、また、特殊粒界の特定と単位全特殊粒界長さLσNの測定は、同じく電界放出型走査電子顕微鏡を用いて、アノード表面の個々の結晶粒に電子線を照射し、相互に隣接する結晶粒の界面が特殊粒界を構成する粒界の位置を決定するとともに、特殊粒界の全特殊粒界長さLσを測定、これを測定面積で除算し、単位面積1mm2当たりの単位粒界長さに換算することにより行う。
具体的には、電界放出型走査電子顕微鏡を用いたEBSD測定装置(HITACHI社製 S4300−SE,EDAX/TSL社製 OIM Data Collection)と、解析ソフト(EDAX/TSL社製 OIM Data Analysis ver.5.2)によって、結晶粒界、特殊粒界を特定し、その長さを算出することにより行うことができる。
また、高純度銅アノードの平均結晶粒径(双晶も結晶粒としてカウントする)の測定は、上記EBSD測定装置と解析ソフトによって得られた結果から結晶粒界を決定し、観察エリア内の結晶粒子数を算出し、エリア面積を結晶粒子数で割って結晶粒子面積を算出し、それを円換算することにより平均結晶粒径(直径)を求めることができる。
The grain boundary of high purity copper anode is specified and the total grain boundary length L N is measured by irradiating each crystal grain on the anode surface with an electron beam using a scanning electron microscope, and the backscattered electrons obtained. Based on the crystal orientation data obtained from the diffraction pattern, the interface between adjacent crystal grains having an orientation difference between adjacent crystal grains of 15 ° or more is defined as the crystal grain boundary, and the total grain boundary length L of the grain boundary in the measurement range Measurement, this is divided by the measurement area and converted to the unit grain boundary length per 1 mm 2 of unit area. The specification of the special grain boundary and the measurement of the unit total special grain boundary length Lσ N are the same. Using a field emission scanning electron microscope, the individual crystal grains on the anode surface are irradiated with an electron beam to determine the position of the grain boundary where the interface between adjacent crystal grains constitutes the special grain boundary. Measure the total special grain boundary length Lσ of the boundary, and measure this with the measurement area Dividing and converting to a unit grain boundary length per 1 mm 2 unit area.
Specifically, an EBSD measuring apparatus using a field emission scanning electron microscope (S4300-SE manufactured by HITACHI, OIM Data Collection manufactured by EDAX / TSL) and analysis software (OIM Data Analysis ver. 5 manufactured by EDAX / TSL). .2), the crystal grain boundary and the special grain boundary are specified, and the length can be calculated.
In addition, the average crystal grain size of the high purity copper anode (twins are also counted as crystal grains) is determined by determining the grain boundaries from the results obtained by the above EBSD measuring device and analysis software. The average crystal grain size (diameter) can be obtained by calculating the number of particles, dividing the area by the number of crystal grains, calculating the crystal grain area, and converting it into a circle.
この発明の電気銅めっき用の高純度銅アノード、その製造方法および電気銅めっき方法によれば、例えば、電気銅めっきにより、プリント基板のスルーホール内面に精緻なめっき層を形成する場合にも、アノードスライムの発生を抑制するとともに、スルーホール内面におけるスライムに起因する汚染、突起等のめっき欠陥の発生防止を図ることができる According to the high-purity copper anode for electrolytic copper plating of the present invention, its manufacturing method and electrolytic copper plating method, for example, even when a precise plating layer is formed on the inner surface of the through hole of a printed circuit board by electrolytic copper plating, While suppressing the generation of anode slime, it is possible to prevent the occurrence of plating defects such as contamination and protrusions due to slime on the inner surface of the through hole.
つぎに、この発明について、実施例により具体的に説明する。 Next, the present invention will be specifically described with reference to examples.
純度99.9質量%以上のタフピッチ純銅(TPC)、純度99.99質量%以上の高純度銅(4N OFC)、純度99.999質量%以上の高純度銅(5N OFC)、純度99.9999質量%以上の超高純度銅(6N OFC)の再結晶材あるいは鋳造材に、表1に示す条件で熱間加工(温度、加工法、加工率)および/または冷間加工(加工法、加工率)、熱処理(温度、時間)を施し、あるいは、これらを繰り返し行い、熱処理後に水冷し、表3に示す所定サイズの本発明の高純度銅アノード(本発明アノードという)1〜20を製造した。
本表1における冷間伸線加工とは、断面形状φ60mmのワイヤー状サンプルを引き抜き加工によりφ30mmの断面形状にするプロセス、ボール成型加工とは、長さ47mmに切断した断面積φ30mmの円筒状サンプルを型鍛造により、直径約40mmの球体に成型するプロセスである。
なお、表1中の実施例としては、熱間加工−熱処理,冷間加工−熱処理あるいはこれらを所要回数繰り返し行う場合に、同一条件での繰り返しのみを挙げているが、必ずしも同一条件で繰り返す必要はなく、特許請求の範囲の各請求項で規定された条件の範囲内であれば、異なる条件(加工温度、加工法,加工率,保持温度,保持時間)での繰り返しを行うことは勿論可能である。
Tough pitch pure copper (TPC) having a purity of 99.9% by mass or more, high purity copper (4N OFC) having a purity of 99.99% by mass or more, high purity copper (5N OFC) having a purity of 99.999% by mass or more, purity 99.9999 Hot processing (temperature, processing method, processing rate) and / or cold processing (processing method, processing) on recrystallized or cast material of ultra high purity copper (6N OFC) of mass% or more under the conditions shown in Table 1 Rate), heat treatment (temperature, time), or these were repeated, and after the heat treatment, water-cooled to produce high-purity copper anodes (referred to as the present invention anodes) 1-20 of the present invention having predetermined sizes shown in Table 3. .
The cold wire drawing in Table 1 is the process of drawing a wire sample with a cross-sectional diameter of φ60 mm into a cross-sectional shape of φ30 mm, and the ball molding is a cylindrical sample with a cross-sectional area of φ30 mm cut to a length of 47 mm This is a process of forming a sphere with a diameter of about 40 mm by die forging.
In addition, as an Example in Table 1, when performing hot processing-heat treatment, cold processing-heat treatment, or repeating these as many times as necessary, only repetition under the same conditions is given, but it is not always necessary to repeat under the same conditions. Of course, it is possible to repeat the process under different conditions (processing temperature, processing method, processing rate, holding temperature, holding time) as long as they are within the conditions specified in each claim. It is.
上記で製造した本発明アノードについて、前記EBSD測定装置(HITACHI社製 S4300−SE,EDAX/TSL社製 OIM Data Collection)と、解析ソフト(EDAX/TSL社製 OIM Data Analysis ver.5.2)によって、結晶粒界、特殊粒界を特定し、単位全粒界長さLNおよび単位全特殊粒界長さLσNを求めた。
表3に、LN,LσN及び特殊粒界長比率LσN/LNを示す。
上記EBSD測定装置と解析ソフトによって得た結果から求めた平均結晶粒径の値も表3に示す。
また、図2〜図7に、それぞれ、本発明アノード3,5,8,10,13,20のEBSD解析結果を示す。
About the anode of the present invention manufactured above, the EBSD measuring device (HITACHI S4300-SE, EDAX / TSL OIM Data Collection) and analysis software (EDAX / TSL OIM Data Analysis ver. 5.2) are used. The crystal grain boundaries and special grain boundaries were specified, and the unit total grain boundary length L N and the unit total special grain boundary length Lσ N were determined.
Table 3 shows L N , Lσ N and special grain boundary length ratio Lσ N / L N.
Table 3 also shows the average crystal grain size values obtained from the results obtained by the EBSD measuring apparatus and analysis software.
2 to 7 show the EBSD analysis results of the anodes 3, 5, 8, 10, 13, and 20 of the present invention, respectively.
比較のため、上記で作製した高純度銅アノード素材に対して、表2に示す条件(少なくとも一つの条件は本発明範囲外の条件である)で、熱間加工(温度、加工法、加工率)、冷間加工(加工法、加工率)、再結晶化熱処理(温度、時間)を行い、表4に示す比較例の高純度銅アノード(比較例アノードという)1〜5を製造した。
また、上記で製造した比較例アノードについても、本発明と同様にして、単位全粒界長さLN、単位全特殊粒界長さLσN、特殊粒界長比率LσN/LNおよび平均結晶粒径を求めた。
この値を表4に示す。
また、図8、図9には、それぞれ、比較例アノード1, 4のEBSD解析結果を示す。
For comparison, hot processing (temperature, processing method, processing rate) was performed on the high-purity copper anode material produced above under the conditions shown in Table 2 (at least one condition is outside the scope of the present invention). ), Cold working (working method, working rate), and recrystallization heat treatment (temperature, time) were carried out to produce high purity copper anodes (referred to as comparative example anodes) 1-5 of comparative examples shown in Table 4.
For the comparative anode produced above, the unit total grain boundary length L N , the unit total special grain boundary length Lσ N , the special grain boundary length ratio Lσ N / L N and the average were also obtained in the same manner as in the present invention. The crystal grain size was determined.
This value is shown in Table 4.
8 and 9 show the EBSD analysis results of Comparative Example Anodes 1 and 4, respectively.
上記の本発明アノード1〜20、比較例アノード1〜5(いずれも、アノード表面積は400cm2)を用い、プリント基板をカソードとして、5枚のプリント基板のスルーホールに対して、ピロリン酸銅浴を用いた電気銅めっきを行った。
めっき液: ピロリン酸銅80g/L、ピロリン酸カリウム400g/L、pH8.5(pHはアンモニアで調整)
めっき条件:液温 50℃、
カソード電流密度 3 A/dm2、
めっき時間 20 分/枚、
The present invention anodes 1 to 20 and comparative anodes 1 to 5 (both anode surface areas are 400 cm 2 ), using a printed circuit board as a cathode, a copper pyrophosphate bath for the through holes of 5 printed circuit boards The copper electroplating using was performed.
Plating solution: Copper pyrophosphate 80 g / L, potassium pyrophosphate 400 g / L, pH 8.5 (pH adjusted with ammonia)
Plating conditions: liquid temperature 50 ° C,
Cathode current density 3 A / dm 2 ,
Plating time 20 minutes / sheet,
上記の本発明アノード1〜20、比較例アノード1〜5について、電気銅めっき開始から5枚目のプリント基板の電気銅めっき完了までに発生したアノードスライム発生量を測定した。
また、めっき後のプリント基板のスルーホール内面を、光学顕微鏡で観察し、スルーホール内面に形成されている高さ3μm以上の突起を欠陥とみなして、突起欠陥数をカウントした。
これらの測定結果を表5、表6に示す。
With respect to the present invention anodes 1 to 20 and comparative example anodes 1 to 5, the amount of anode slime generated from the start of electrolytic copper plating to the completion of electrolytic copper plating on the fifth printed circuit board was measured.
Further, the inner surface of the through-hole of the printed board after plating was observed with an optical microscope, and a protrusion having a height of 3 μm or more formed on the inner surface of the through-hole was regarded as a defect, and the number of protrusion defects was counted.
The measurement results are shown in Tables 5 and 6.
表5、表6に示される結果から、本発明の電気銅めっき用の高純度銅アノード、電気銅めっき用の高純度銅アノードの製造方法および電気銅めっき方法によれば、例えば、プリント基板のスルーホール内面に銅めっき層を形成する場合にも、アノードスライムの発生を抑制するとともに、スルーホール内面における汚染、突起等のめっき欠陥の発生防止を図ることができる。
しかるに、特殊粒界長比率LσN/LNが0.35未満である比較例アノードでは、アノードスライム発生量が多いばかりか、スライム起因のめっき欠陥が多発していることが分かる。
From the results shown in Tables 5 and 6, according to the high purity copper anode for electrolytic copper plating, the method for producing a high purity copper anode for electrolytic copper plating, and the electrolytic copper plating method of the present invention, Even when a copper plating layer is formed on the inner surface of the through hole, generation of anode slime can be suppressed, and the occurrence of plating defects such as contamination and protrusions on the inner surface of the through hole can be prevented.
However, it can be seen that in the comparative example anode in which the special grain boundary length ratio Lσ N / L N is less than 0.35, not only the amount of anode slime generated is large, but also plating defects due to slime frequently occur.
以上のとおり、この発明は、電気銅めっきに際して、アノードスライムの発生を抑制でき、被めっき材表面におけるめっき欠陥の発生を防止し得るという優れた効果を有し、特に、プリント基板のスルーホール内面への銅めっき層形成に適用された場合には、プリント基板のスルーホール内面における汚染、突起等の欠陥の発生を防止することができるため、工業的な有用性が極めて高い。 As described above, the present invention has an excellent effect of suppressing the generation of anode slime during electrolytic copper plating and preventing the occurrence of plating defects on the surface of the material to be plated. When applied to the formation of a copper plating layer on the surface, since it is possible to prevent the occurrence of defects such as contamination and protrusions on the inner surface of the through hole of the printed circuit board, the industrial utility is extremely high.
Claims (8)
(a)走査型電子顕微鏡を用いて、アノード表面の個々の結晶粒に電子線を照射し、隣接する結晶粒相互の配向方位差が15°以上の結晶粒の界面を結晶粒界とし、測定範囲における結晶粒界の全粒界長さLを測定し、これを単位面積1mm2当たりに換算した単位全粒界長さLNを求め
(b)また、同じく走査型電子顕微鏡を用いて、アノード表面の個々の結晶粒に電子線を照射し、相互に隣接する結晶粒の界面が特殊粒界を構成する結晶粒界の位置を決定するとともに、特殊粒界の全特殊粒界長さLσを測定し、これを単位面積1mm2当たりに換算して単位全特殊粒界長さLσNを求めた場合、
(c)上記測定した結晶粒界の単位全粒界長さLNと、同じく上記測定した特殊粒界の単位全特殊粒界長さLσNとの特殊粒界長比率LσN/LNが、
LσN/LN≧0.35
の関係を満足する結晶粒界組織を有することを特徴とする電気めっき用高純度銅アノード。 In high purity copper anode for electroplating,
(A) Using a scanning electron microscope, each crystal grain on the anode surface is irradiated with an electron beam, and the interface between crystal grains having an orientation difference between adjacent crystal grains of 15 ° or more is used as a grain boundary. The total grain boundary length L of the crystal grain boundary in the range was measured, and the unit total grain boundary length L N was calculated by converting this per unit area 1 mm 2 (b). Similarly, using a scanning electron microscope, The individual crystal grains on the anode surface are irradiated with an electron beam to determine the position of the crystal grain boundary where the interface between adjacent crystal grains constitutes the special grain boundary, and the total special grain boundary length Lσ of the special grain boundary. When this is converted per unit area of 1 mm 2 and the unit total special grain boundary length Lσ N is obtained,
(C) The special grain boundary length ratio Lσ N / L N between the unit grain boundary length L N of the crystal grain boundary measured and the unit total special grain boundary length Lσ N of the special grain boundary similarly measured is ,
Lσ N / L N ≧ 0.35
A high purity copper anode for electroplating, characterized by having a grain boundary structure satisfying the relationship:
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010077215A JP5376168B2 (en) | 2010-03-30 | 2010-03-30 | High purity copper anode for electrolytic copper plating, manufacturing method thereof, and electrolytic copper plating method |
MYPI2012700718A MY166615A (en) | 2010-03-30 | 2011-03-25 | Highly pure copper anode for electrolytic copper plating, method for manufacturing same, and electrolytic copper plating method |
KR1020127021980A KR20130018655A (en) | 2010-03-30 | 2011-03-25 | High-purity copper anode for copper electroplating, method for producing same, and copper electroplating method |
CN201180018264.4A CN102844472B (en) | 2010-03-30 | 2011-03-25 | Electrolytic copper plating high-purity copper anode, its manufacture method and plating method of electrocytic copper |
PCT/JP2011/057450 WO2011122493A1 (en) | 2010-03-30 | 2011-03-25 | High-purity copper anode for copper electroplating, method for producing same, and copper electroplating method |
US13/637,842 US20130075272A1 (en) | 2010-03-30 | 2011-03-25 | Highly pure copper anode for electrolytic copper plating, method for manufacturing same, and electrolytic copper plating method |
TW100110780A TWI534303B (en) | 2010-03-30 | 2011-03-29 | Highly pure copper anode for electroplating, method for producing the same, and method for copper electroplating |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010077215A JP5376168B2 (en) | 2010-03-30 | 2010-03-30 | High purity copper anode for electrolytic copper plating, manufacturing method thereof, and electrolytic copper plating method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011208224A JP2011208224A (en) | 2011-10-20 |
JP5376168B2 true JP5376168B2 (en) | 2013-12-25 |
Family
ID=44712199
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010077215A Active JP5376168B2 (en) | 2010-03-30 | 2010-03-30 | High purity copper anode for electrolytic copper plating, manufacturing method thereof, and electrolytic copper plating method |
Country Status (7)
Country | Link |
---|---|
US (1) | US20130075272A1 (en) |
JP (1) | JP5376168B2 (en) |
KR (1) | KR20130018655A (en) |
CN (1) | CN102844472B (en) |
MY (1) | MY166615A (en) |
TW (1) | TWI534303B (en) |
WO (1) | WO2011122493A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5752736B2 (en) * | 2013-04-08 | 2015-07-22 | 三菱マテリアル株式会社 | Sputtering target |
JP5783293B1 (en) * | 2014-04-22 | 2015-09-24 | 三菱マテリアル株式会社 | Material for cylindrical sputtering target |
EP3506332B1 (en) * | 2017-12-29 | 2020-12-23 | Jeol Ltd. | Scanning electron microscope and analysis method |
TWI749818B (en) * | 2020-10-22 | 2021-12-11 | 元智大學 | Method for microstructure modification of conducting lines |
DE112022004206T5 (en) * | 2021-09-02 | 2024-07-25 | Mitsubishi Materials Corporation | Connection material with plating layer and copper sheet for the connection material |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3403918B2 (en) * | 1997-06-02 | 2003-05-06 | 株式会社ジャパンエナジー | High purity copper sputtering target and thin film |
JP3859384B2 (en) * | 1999-03-08 | 2006-12-20 | 日鉱金属株式会社 | Rolled copper foil for flexible printed circuit board having excellent flexibility and manufacturing method thereof |
JP2001240949A (en) * | 2000-02-29 | 2001-09-04 | Mitsubishi Materials Corp | Method of manufacturing for worked billet of high- purity copper having fine crystal grain |
JP4123330B2 (en) * | 2001-03-13 | 2008-07-23 | 三菱マテリアル株式会社 | Phosphorus copper anode for electroplating |
KR100877923B1 (en) * | 2001-06-07 | 2009-01-12 | 롬 앤드 하스 일렉트로닉 머트어리얼즈, 엘.엘.씨 | Electrolytic copper plating method |
JP4076751B2 (en) * | 2001-10-22 | 2008-04-16 | 日鉱金属株式会社 | Electro-copper plating method, phosphor-containing copper anode for electrolytic copper plating, and semiconductor wafer plated with these and having less particle adhesion |
JP4011336B2 (en) * | 2001-12-07 | 2007-11-21 | 日鉱金属株式会社 | Electro-copper plating method, pure copper anode for electro-copper plating, and semiconductor wafer plated with these with less particle adhesion |
JP4064121B2 (en) * | 2002-02-13 | 2008-03-19 | 日鉱金属株式会社 | Electro-copper plating method using phosphorous copper anode |
US20030188975A1 (en) * | 2002-04-05 | 2003-10-09 | Nielsen Thomas D. | Copper anode for semiconductor interconnects |
CN103726097B (en) * | 2007-11-01 | 2016-08-17 | Jx日矿日石金属株式会社 | Copper anode or the method for phosphorous copper anode, on the semiconductor wafer electro-coppering and particle adhere to few semiconductor wafer |
JP4607165B2 (en) * | 2007-11-20 | 2011-01-05 | Jx日鉱日石金属株式会社 | Electro copper plating method |
US9260790B2 (en) * | 2007-12-18 | 2016-02-16 | Integran Technologies Inc. | Method for preparing polycrystalline structures having improved mechanical and physical properties |
-
2010
- 2010-03-30 JP JP2010077215A patent/JP5376168B2/en active Active
-
2011
- 2011-03-25 MY MYPI2012700718A patent/MY166615A/en unknown
- 2011-03-25 KR KR1020127021980A patent/KR20130018655A/en not_active Application Discontinuation
- 2011-03-25 US US13/637,842 patent/US20130075272A1/en not_active Abandoned
- 2011-03-25 WO PCT/JP2011/057450 patent/WO2011122493A1/en active Application Filing
- 2011-03-25 CN CN201180018264.4A patent/CN102844472B/en active Active
- 2011-03-29 TW TW100110780A patent/TWI534303B/en active
Also Published As
Publication number | Publication date |
---|---|
TW201202487A (en) | 2012-01-16 |
KR20130018655A (en) | 2013-02-25 |
MY166615A (en) | 2018-07-17 |
US20130075272A1 (en) | 2013-03-28 |
CN102844472A (en) | 2012-12-26 |
WO2011122493A1 (en) | 2011-10-06 |
TWI534303B (en) | 2016-05-21 |
JP2011208224A (en) | 2011-10-20 |
CN102844472B (en) | 2015-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100815141B1 (en) | Phosphorized copper anode for electroplating | |
JP5499933B2 (en) | Phosphorous copper anode for electrolytic copper plating, method for producing the same, and electrolytic copper plating method | |
JP5376168B2 (en) | High purity copper anode for electrolytic copper plating, manufacturing method thereof, and electrolytic copper plating method | |
JP4076751B2 (en) | Electro-copper plating method, phosphor-containing copper anode for electrolytic copper plating, and semiconductor wafer plated with these and having less particle adhesion | |
JP2009097040A (en) | Tin plated copper or copper alloy strip having tin plating excellent in wear resistance | |
JP5668915B2 (en) | Method for producing phosphorus-containing copper anode material for plating, in which phosphorus component is uniformly dispersed and having a fine uniform crystal structure, and phosphorus-containing copper anode material for plating | |
JPH0649958B2 (en) | Method for manufacturing electrolytic copper foil | |
JP6066007B1 (en) | Method for producing purified copper and method for producing electric wire | |
JPH07138687A (en) | Aluminum alloy base material for planographic printing plate | |
JP4607165B2 (en) | Electro copper plating method | |
JPH0867932A (en) | Copper anode for high-current density plating | |
JP4064121B2 (en) | Electro-copper plating method using phosphorous copper anode | |
JP5234844B2 (en) | Electro-copper plating method, phosphor-containing copper anode for electrolytic copper plating, and semiconductor wafer plated with these and having less particle adhesion | |
JP5626582B2 (en) | Phosphorus copper anode for electrolytic copper plating and electrolytic copper plating method using the same | |
JP6960363B2 (en) | Co-anode, electric Co-plating method using Co-anode and evaluation method of Co-anode | |
JP2017203210A (en) | Refined copper and process for producing electric wire | |
JP4582627B2 (en) | Aluminum alloy foil for electrolytic capacitor cathode | |
JP2016164290A (en) | Copper anode or phosphorous-containing copper anode used for copper electroplating for semiconductor wafer and method for producing the copper anode or phosphorous-containing copper anode | |
JP5179549B2 (en) | Electro copper plating method | |
JP2006002225A (en) | Aluminum foil for electrolytic capacitor, and electrolytic capacitor | |
KR20140030012A (en) | Method of producing anode material for electroplating and anode for electroplating | |
JP2012012650A (en) | Aluminum foil for electrolytic capacitor, and method for producing the same | |
JP2007246971A (en) | Aluminum alloy for foil for anode of electrolytic capacitor | |
JP2005336585A (en) | Copper alloy foil and its production method | |
JP2009249640A (en) | Anode material for solder plating |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120927 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130828 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130910 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5376168 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |