JP2011162809A - Method for desulfurizing molten iron - Google Patents

Method for desulfurizing molten iron Download PDF

Info

Publication number
JP2011162809A
JP2011162809A JP2010023861A JP2010023861A JP2011162809A JP 2011162809 A JP2011162809 A JP 2011162809A JP 2010023861 A JP2010023861 A JP 2010023861A JP 2010023861 A JP2010023861 A JP 2010023861A JP 2011162809 A JP2011162809 A JP 2011162809A
Authority
JP
Japan
Prior art keywords
hot metal
lime
desulfurization
yield
projection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010023861A
Other languages
Japanese (ja)
Inventor
Masaki Koizumi
正樹 小泉
Maki Iwaasa
麻希 岩浅
Kenji Shiotsuki
健司 塩月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010023861A priority Critical patent/JP2011162809A/en
Publication of JP2011162809A publication Critical patent/JP2011162809A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technique enabling to apply a treatment for optimizing an injecting condition of a lime-based desulfurizing agent, based on the result in which the injecting yield during the desulfurizing treatment, is assumed in on-line. <P>SOLUTION: In a method for desulfurizing molten iron, in which the desulfurizing treatment of the molten iron is performed by stirring the molten iron and the lime based desulfurizing agent with an impeller 4 dipped into the molten iron while placing the lime based desulfurizing agent on the molten iron 3 held in a vessel 2 and further, by injecting the lime based desulfurizing agent 7 through a top-blowing lance 5 which is separated and arranged a tip on the molten iron bath surface from the upper part of the vessel; the exhaust gas temperature is measured on the way of a duct 15 for introducing the dust generated from the molten iron bath surface during desulfurizing treatment together with the exhaust gas into a dust-collecting facility 12, and the injecting yield of the injected lime based desulfurizing agent, is successively assumed based on the exhaust gas temperature and the molten iron temperature, and the condition of the desulfurizing treatment is adjusted so as to improve the injected yield. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、機械攪拌装置を備えた容器を用いて溶銑の脱硫を効率的に行なうことができる脱硫処理方法に関するものである。   The present invention relates to a desulfurization treatment method capable of efficiently performing desulfurization of hot metal using a container equipped with a mechanical stirring device.

高炉から出銑された溶銑には、通常、鋼の品質に悪影響を及ぼす硫黄(S)が高濃度で含まれているので、要求される鋼の品質に応じて溶銑から溶鋼に到る過程で脱硫処理が行なわれる。脱硫処理は様々な技術が実用化されており、それらの脱硫処理は溶銑脱硫と溶鋼脱硫に大別される。
溶銑脱硫では、安価な石灰(CaO)を主成分とする脱硫剤(以下、石灰系脱硫剤という)が広く使用されている。石灰系脱硫剤を溶銑に添加すると、反応式CaO+S→CaS+Oで表わされる反応が生起され、溶銑の脱硫が進行する。そして脱硫反応を促進するために、機械攪拌を行なう技術が実用化されている。
The hot metal discharged from the blast furnace usually contains a high concentration of sulfur (S), which adversely affects the quality of the steel, so in the process from hot metal to molten steel depending on the required quality of the steel. A desulfurization process is performed. Various technologies have been put to practical use for desulfurization treatment, and these desulfurization treatments are roughly classified into hot metal desulfurization and molten steel desulfurization.
In hot metal desulfurization, inexpensive desulfurization agents mainly composed of lime (CaO) (hereinafter referred to as lime-based desulfurization agents) are widely used. When a lime-based desulfurizing agent is added to the hot metal, a reaction represented by the reaction formula CaO + S → CaS + O occurs, and desulfurization of the hot metal proceeds. In order to promote the desulfurization reaction, a technique of performing mechanical stirring has been put into practical use.

従来の一般的な機械攪拌による脱硫処理では、石灰系脱硫剤を溶銑に添加する際に、石灰系脱硫剤を自由落下で浴面に投入(以下、上置きという)して、溶銑中に浸漬した攪拌羽根(以下、インペラという)を用いて攪拌する。この技術では、インペラで攪拌することによって溶銑中に巻き込まれる過程で石灰系脱硫剤が凝集するので、石灰系脱硫剤と溶銑との接触面積(以下、反応界面積という)が減少するという問題がある。反応界面積が減少すれば、脱硫反応の進行が妨げられる。   In conventional desulfurization by mechanical stirring, when adding a lime-based desulfurizing agent to the hot metal, the lime-based desulfurizing agent is dropped freely on the bath surface (hereinafter referred to as “placement”) and immersed in the hot metal. Stirring is performed using a stirring blade (hereinafter referred to as impeller). In this technique, the lime-based desulfurizing agent agglomerates in the process of being caught in the hot metal by stirring with an impeller, so that the contact area between the lime-based desulfurizing agent and the hot metal (hereinafter referred to as reaction interface area) is reduced. is there. If the reaction interfacial area decreases, the progress of the desulfurization reaction is hindered.

そこで反応界面積を拡大して脱硫処理の効率を高めるために、石灰系脱硫剤の凝集を抑制する技術が検討されている。
たとえば特許文献1には、上吹きランスを介して搬送用ガスとともに石灰系脱硫剤を溶銑の浴面に吹き付ける技術が開示されている。この技術は、上吹きランスから石灰系脱硫剤を高速で吹き付けて溶銑中に侵入させるものである。高速の吹き付け(以下、投射という)を行なうことによって、石灰系脱硫剤の粒子が分散して溶銑中に浸入するので、石灰系脱硫剤の凝集が抑制され、反応界面積が拡大される。しかし石灰系脱硫剤の投射量や投射位置,搬送用ガスの流速等の投射条件によって、石灰系脱硫剤が分散する領域が過剰に広がる、あるいは縮まるという問題がある。
Therefore, in order to increase the reaction interface area and increase the efficiency of the desulfurization treatment, a technique for suppressing the aggregation of the lime-based desulfurization agent has been studied.
For example, Patent Document 1 discloses a technique in which a lime-based desulfurizing agent is sprayed onto a hot metal bath surface through a top blowing lance together with a carrier gas. In this technique, a lime-based desulfurizing agent is sprayed at a high speed from an upper blowing lance to enter the hot metal. By performing high-speed spraying (hereinafter referred to as projection), the particles of the lime-based desulfurizing agent are dispersed and enter the hot metal, so that the aggregation of the lime-based desulfurizing agent is suppressed and the reaction interface area is expanded. However, there is a problem that the region where the lime-based desulfurizing agent is dispersed excessively expands or shrinks depending on the projection conditions such as the projection amount and position of the lime-based desulfurizing agent and the flow velocity of the carrier gas.

投射された石灰系脱硫剤が分散する領域が過剰に広がると、周辺に飛散する石灰系脱硫剤が増加し、投射された石灰系脱硫剤の歩留り(以下、投射歩留りという)の低下、ひいては脱硫処理の効率低下を招く。また、投射された石灰系脱硫剤が分散する領域が過剰に縮まると、石灰系脱硫剤が溶銑中で凝集し、投射歩留りの低下、ひいては脱硫処理の効率低下を招く。   When the area where the projected lime-based desulfurizing agent is dispersed excessively increases, the amount of lime-based desulfurizing agent scattered around the area increases, resulting in a decrease in the yield of the projected lime-based desulfurizing agent (hereinafter referred to as “projected yield”), and desulfurization. The processing efficiency is reduced. Moreover, when the area | region which the projected lime type | system | group desulfurization agent disperse | distributes excessively shrinks, a lime type | system | group desulfurization agent will aggregate in a hot metal, and will cause the fall of a projection yield and by extension the efficiency reduction of a desulfurization process.

特許文献2には、機械攪拌を行ないつつ石灰系脱硫剤を投射する溶銑の脱硫処理における投射歩留りを向上するための適正な投射条件が開示されている。この技術はスタティックな投射条件を最適化するものであるから、事前に知り得るパラメータに基づいて最適条件を脱硫処理に先立って決定する必要がある。ところが、前工程から持ち込まれるスラグ量や、インペラの溶損による攪拌動力の変化等の事前に想定できないダイナミックに変動するパラメータに起因する投射歩留りの推移には対応できない。その結果、投射歩留りのバラツキを抑制できないという問題がある。   Patent Document 2 discloses an appropriate projection condition for improving the projection yield in the desulfurization treatment of hot metal in which a lime-based desulfurization agent is projected while performing mechanical stirring. Since this technique optimizes the static projection conditions, it is necessary to determine the optimal conditions prior to the desulfurization process based on parameters that can be known in advance. However, it is impossible to cope with the transition of the projection yield caused by dynamically varying parameters that cannot be assumed in advance, such as the amount of slag brought in from the previous process, and the change in stirring power due to impeller melt damage. As a result, there is a problem that variations in projection yield cannot be suppressed.

また、従来の技術で投射歩留りを評価するためには、脱硫処理前後の溶銑とスラグのS濃度を分析し、質量バランスを調査しなければならないので、投射歩留りの算定に長時間を要する。そのため、脱硫処理中にリアルタイムで投射歩留りを把握し、歩留り向上のための処置を施すことができない。   In addition, in order to evaluate the projection yield with the conventional technique, it is necessary to analyze the molten iron and slag S concentration before and after the desulfurization treatment and investigate the mass balance, and thus it takes a long time to calculate the projection yield. For this reason, it is impossible to grasp the projection yield in real time during the desulfurization process and take measures for improving the yield.

特開2005-179690号公報JP 2005-179690 A 特開2007-247045号公報JP 2007-247045

本発明は、脱硫処理中に投射歩留りをオンラインで推定し、その結果に基づいて石灰系脱硫剤の投射条件を最適化するための処置を施すことを可能とする技術を提供することを目的とする。   It is an object of the present invention to provide a technique that makes it possible to estimate a projection yield online during a desulfurization process and to perform a treatment for optimizing the projection condition of the lime-based desulfurization agent based on the result. To do.

発明者らは、石灰系脱硫剤を溶銑に投射すると、脱硫処理によって発生する排ガスの温度が変化することに着目した。そして排ガスの温度と石灰系脱硫剤の投射歩留りの関係を詳細に調査した。一方で、溶銑の温度と排ガスの温度に相関があることは従来から知られている。そこで脱硫処理の前に個別に測定した溶銑の温度と、脱硫処理中に連続的に測定した排ガスの温度を用いて、投射歩留りを推定できることを見出した。   The inventors focused on the fact that when the lime-based desulfurizing agent is projected onto the hot metal, the temperature of the exhaust gas generated by the desulfurization process changes. The relationship between the exhaust gas temperature and the lime-based desulfurization agent projection yield was investigated in detail. On the other hand, it is conventionally known that there is a correlation between the temperature of the hot metal and the temperature of the exhaust gas. Thus, it has been found that the projection yield can be estimated by using the temperature of the hot metal individually measured before the desulfurization treatment and the temperature of the exhaust gas continuously measured during the desulfurization treatment.

本発明は、このような知見に基づいてなされたものである。
すなわち本発明は、容器内に保持した溶銑に石灰系脱硫剤を上置きして、溶銑中に浸漬したインペラによって溶銑と石灰系脱硫剤を攪拌する一方、容器の上方から先端を溶銑浴面上に離隔して配置した上吹きランスを介して石灰系脱硫剤を投射して溶銑の脱硫処理を行なう溶銑脱硫処理方法において、脱硫処理中に溶銑の浴面から発生するダストを排ガスとともに集塵設備に導くダクトの途中で排ガスの温度を測定し、投射された石灰系脱硫剤の投射歩留りを排ガスの温度と溶銑の温度に基づいて連続的に推定し、投射歩留りを向上させるように脱硫処理の条件を調整する溶銑の脱硫処理方法である。
The present invention has been made based on such knowledge.
That is, the present invention places a lime-based desulfurizing agent on hot metal held in a container, and stirs the hot metal and the lime-based desulfurizing agent with an impeller immersed in the hot metal, while the tip from above the container is on the hot metal bath surface. In a hot metal desulfurization treatment method in which hot metal desulfurization treatment is performed by projecting a lime-based desulfurization agent through an upper blowing lance that is spaced apart, the dust generated from the bath surface of the hot metal during the desulfurization treatment is collected together with exhaust gas. The temperature of the exhaust gas is measured in the middle of the duct leading to, and the projected yield of the projected lime-based desulfurization agent is continuously estimated based on the temperature of the exhaust gas and the temperature of the hot metal, and the desulfurization treatment is performed to improve the projected yield. This is a hot metal desulfurization method for adjusting the conditions.

本発明の脱硫処理方法においては、投射歩留り(%)を、排ガスの温度TG(℃),溶銑の温度TM(℃)、および予め設定した定数A、B、Cを用いた下記の(1)式によって推定することが好ましい。
投射歩留り(%)=A×TG+B×TM+C ・・・(1)
ここに、定数A、B、Cは、個々の脱硫処理設備において予め実験によって得られた投射歩留りと排ガス温度、溶銑温度との関係を各脱硫装置毎に重回帰して得られる定数である。
In the desulfurization treatment method of the present invention, the projection yield (%) is the following (using exhaust gas temperature T G (° C.), hot metal temperature T M (° C.), and preset constants A, B and C ( It is preferable to estimate by equation (1).
Projection yield (%) = A × T G + B × T M + C (1)
Here, the constants A, B, and C are constants obtained by performing multiple regressions for each desulfurization apparatus on the relationship between the projection yield, the exhaust gas temperature, and the hot metal temperature obtained in advance in each desulfurization treatment facility.

なお、石灰系脱硫剤の投射歩留りを向上するために、容器内に保持した溶銑の脱硫処理中に調整し得るパラメータは、搬送ガスの流速,石灰系脱硫剤の投射速度,インペラの回転数,上吹きランスの容器半径方向の位置,上吹きランスの高さ等である。上記の(1)式に基づいて投射歩留りを算出し、その算出値の推移を監視して、必要に応じてこれらのパラメータの1つあるいは2つ以上を調整することによって、投射歩留りの向上を図る。   In order to improve the projection yield of the lime-based desulfurizing agent, the parameters that can be adjusted during the desulfurization treatment of the hot metal held in the container are the flow rate of the carrier gas, the projection speed of the lime-based desulfurizing agent, the rotational speed of the impeller, The position of the upper blowing lance in the radial direction of the container, the height of the upper blowing lance, etc. By calculating the projection yield based on the above equation (1), monitoring the transition of the calculated value and adjusting one or more of these parameters as necessary, the projection yield can be improved. Plan.

本発明によれば、脱硫処理中に投射歩留りをオンラインで推定し、その結果に基づいて石灰系脱硫剤の投射条件を最適化するための処置を施すことが可能となる。つまり脱硫処理中に投射歩留りの推定が可能となったので、脱硫処理中に投射歩留りを向上するための処置を施すことができる。また、投射歩留りから溶銑の脱硫の進行状況の推定も可能であるから、脱硫処理後のS含有量の目標値に応じて石灰系脱硫剤の投射量を増減できる。そのため石灰系脱硫剤の過剰な使用を抑制できる。   According to the present invention, it is possible to estimate the projection yield online during the desulfurization process, and to take measures for optimizing the projection conditions of the lime-based desulfurization agent based on the result. That is, since the projection yield can be estimated during the desulfurization process, a measure for improving the projection yield can be performed during the desulfurization process. Moreover, since the progress of desulfurization of hot metal can be estimated from the projection yield, the projection amount of the lime-based desulfurizing agent can be increased or decreased according to the target value of the S content after the desulfurization treatment. Therefore, excessive use of the lime-based desulfurizing agent can be suppressed.

本発明の脱硫処理方法を適用する装置の例を模式的に示す配置図である。1 is a layout diagram schematically showing an example of an apparatus to which a desulfurization treatment method of the present invention is applied. 投射歩留りの実績値と算出値との関係を示すグラフである。It is a graph which shows the relationship between the performance value of a projection yield, and a calculated value. 投射比率と投射歩留りの実績値との関係を示すグラフである。It is a graph which shows the relationship between a projection ratio and the actual value of a projection yield. 排ガスの温度と投射歩留りの算出値の推移を示すグラフである。It is a graph which shows transition of the calculated value of the temperature of an exhaust gas, and a projection yield. 排ガスの温度と投射歩留りの算出値の推移の他の例を示すグラフである。It is a graph which shows the other example of transition of the calculated value of the temperature of an exhaust gas, and a projection yield.

図1は、本発明の脱硫処理方法を適用する装置の例を模式的に示す配置図であり、溶銑3を収容する容器2として取鍋型の溶銑鍋を使用する例を示す。容器2の形状については、機械攪拌装置を備えた容器で脱硫処理を行なうので、図1に示すような取鍋型の容器2が適している。ただし本発明はトーピードカーに適用することも可能である。
高炉から出銑された溶銑3を台車1に搭載された溶銑鍋またはトーピードカーで受銑し、さらに機械攪拌装置へ搬送する。トーピードカーで受銑した場合は、脱硫処理に先立って取鍋型の容器に移し替えることが好ましい。また、本発明に係る脱硫処理の対象となる溶銑3の成分は特に限定しない。たとえば予め脱珪処理や脱燐処理を施した溶銑にも、本発明の脱硫処理方法を適用できる。
FIG. 1 is an arrangement diagram schematically showing an example of an apparatus to which the desulfurization treatment method of the present invention is applied, and shows an example in which a ladle type hot metal ladle is used as a container 2 for containing hot metal 3. About the shape of the container 2, since a desulfurization process is performed with the container provided with the mechanical stirring apparatus, the ladle-type container 2 as shown in FIG. 1 is suitable. However, the present invention can also be applied to a torpedo car.
The hot metal 3 discharged from the blast furnace is received by a hot metal ladle or torpedo car mounted on the carriage 1 and further conveyed to a mechanical stirring device. When it is received by a torpedo car, it is preferably transferred to a ladle type container prior to the desulfurization treatment. Moreover, the component of the hot metal 3 used as the object of the desulfurization process which concerns on this invention is not specifically limited. For example, the desulfurization treatment method of the present invention can also be applied to hot metal previously subjected to desiliconization treatment or dephosphorization treatment.

以下では、容器2として溶銑鍋を使用する例について説明する。
機械攪拌装置は、溶銑鍋2に収容された溶銑3に浸漬し溶銑3を攪拌するための耐火物製のインペラ4を備えている。インペラ4は、昇降装置(図示せず)によって鉛直方向に昇降し、かつ回転装置(図示せず)によって軸4aを回転軸として回転するようになっている。また、溶銑鍋2に収容された溶銑3に石灰系脱硫剤7を投射するための上吹きランス5が設置されている。さらに、溶銑鍋2に収容された溶銑3の浴面に石灰系脱硫剤7を上置きするするための投入口6も備えている。つまり、石灰系脱硫剤7の投射と上置きが共に可能である。
Below, the example which uses a hot metal ladle as the container 2 is demonstrated.
The mechanical stirrer includes a refractory impeller 4 for immersing in the hot metal 3 accommodated in the hot metal ladle 2 and stirring the hot metal 3. The impeller 4 is moved up and down in the vertical direction by a lifting device (not shown) and rotated around a shaft 4a by a rotating device (not shown). Further, an upper blowing lance 5 for projecting the lime-based desulfurizing agent 7 onto the hot metal 3 accommodated in the hot metal pan 2 is installed. Further, a charging port 6 for placing the lime-based desulfurizing agent 7 on the bath surface of the hot metal 3 accommodated in the hot metal ladle 2 is also provided. That is, it is possible to project and place the lime-based desulfurizing agent 7 together.

溶銑鍋2の上方には排ガスを集塵設備12に導くダクト15が設置され、脱硫処理中に発生するダストを排ガスとともに集塵設備12へ送給する。
上吹きランス5は、粉体状の石灰系脱硫剤7を収容するホッパー8と、そのホッパー8から所定量の石灰系脱硫剤7を切り出すための切出し装置9とからなる供給装置に接続されており、上吹きランス5から搬送用ガスとともに粉体状の石灰系脱硫剤7を必要に応じて適宜投射できる構造になっている。また、上吹きランス5から搬送用ガスのみを供給することも可能である。
A duct 15 that guides the exhaust gas to the dust collection facility 12 is installed above the hot metal ladle 2 to supply dust generated during the desulfurization process to the dust collection facility 12 together with the exhaust gas.
The top blowing lance 5 is connected to a supply device comprising a hopper 8 for storing the powdery lime-based desulfurizing agent 7 and a cutting device 9 for cutting out a predetermined amount of the lime-based desulfurizing agent 7 from the hopper 8. In addition, a powdery lime-based desulfurizing agent 7 can be appropriately projected from the top blowing lance 5 together with the conveying gas as needed. It is also possible to supply only the transport gas from the top blowing lance 5.

投入口6は、粉体状の石灰系脱硫剤7を収容するホッパー10と、そのホッパー10から所定量の石灰系脱硫剤7を切り出すためのロータリーフィーダー11とからなる供給装置に接続されており、投入口6から粉体状,粒状ないしは塊状の石灰系脱硫剤7を必要に応じて、適宜、上置きできる構造になっている。
溶銑3の温度TM(℃)は、台車1が機械攪拌装置に到着する前に、任意の位置で測定される。溶銑3の温度を測定した後、インペラ4の位置が溶銑鍋2の中心にほぼ一致するように台車1の位置を調整する。次いで、インペラ4を下降させて溶銑3に浸漬させ、引き続きインペラ4の回転を開始する。インペラ4の回転が所定の回転数に到達すると、切出し装置9を起動して、ホッパー8に収容された石灰系脱硫剤7を搬送用ガスとともに上吹きランス5から溶銑3に投射する。
The inlet 6 is connected to a supply device comprising a hopper 10 for storing a powdery lime-based desulfurizing agent 7 and a rotary feeder 11 for cutting out a predetermined amount of the lime-based desulfurizing agent 7 from the hopper 10. The powdery, granular or massive lime-based desulfurization agent 7 can be appropriately placed from the inlet 6 as needed.
The temperature T M (° C.) of the hot metal 3 is measured at an arbitrary position before the carriage 1 arrives at the mechanical stirring device. After measuring the temperature of the hot metal 3, the position of the carriage 1 is adjusted so that the position of the impeller 4 substantially coincides with the center of the hot metal pan 2. Next, the impeller 4 is lowered and immersed in the hot metal 3, and then the impeller 4 starts to rotate. When the rotation of the impeller 4 reaches a predetermined number of revolutions, the cutting device 9 is activated to project the lime-based desulfurizing agent 7 accommodated in the hopper 8 from the top blowing lance 5 onto the hot metal 3 together with the carrier gas.

なお、インペラ4の浸漬前または浸漬後に、投射に先立ってホッパー10から所定量の上置き用の石灰系脱硫剤7を溶銑3の浴面上に投入しても良い。
石灰系脱硫剤7を投射する間は、熱電対13にて排ガスの温度TG(℃)を連続的に測定し、データロガー14からコンピュータ(図示せず)へ伝送する。コンピュータは、排ガスの温度TG(℃)と溶銑3の温度TM(℃)に基づいて石灰系脱硫剤7の投射歩留りを下記の(1)式から算出し、さらにその算出値を画面に表示する。
投射歩留り(%)=A×TG+B×TM+C ・・・(1)
ここで、定数A、B、Cは、個々の脱硫処理設備において予め実験によって得られた投射歩留りと排ガス温度、溶銑温度との関係を各脱硫装置毎に重回帰して得られる定数である。
Note that a predetermined amount of the lime-based desulfurizing agent 7 may be put on the bath surface of the molten iron 3 from the hopper 10 before or after the impeller 4 is immersed.
While the lime-based desulfurizing agent 7 is projected, the temperature T G (° C.) of the exhaust gas is continuously measured by the thermocouple 13 and transmitted from the data logger 14 to a computer (not shown). The computer calculates the projection yield of the lime-based desulfurizing agent 7 from the following equation (1) based on the temperature T G (° C.) of the exhaust gas and the temperature T M (° C.) of the hot metal 3 and displays the calculated value on the screen. indicate.
Projection yield (%) = A × T G + B × T M + C (1)
Here, the constants A, B, and C are constants obtained by performing multiple regression for each desulfurization apparatus on the relationship between the projection yield, the exhaust gas temperature, and the hot metal temperature obtained in advance in each desulfurization treatment facility.

脱硫処理の作業者は、画面に表示される投射歩留りの算出値の推移を監視し、算出値が予め設定されたしきい値を下回ったときに、投射歩留りを向上するための処置を施す。その処置として調整すべきパラメータは、(a)搬送ガスの流速,(b)石灰系脱硫剤の投射速度,(c)インペラの回転数,(d)上吹きランスの容器半径方向の位置,(e)上吹きランスの高さ等である。   The worker of the desulfurization process monitors the transition of the calculated value of the projected yield displayed on the screen, and takes measures to improve the projected yield when the calculated value falls below a preset threshold value. The parameters to be adjusted for the treatment are (a) carrier gas flow velocity, (b) lime-based desulfurization agent projection speed, (c) impeller rotation speed, (d) top blowing lance position in the container radial direction, ( e) The height of the top lance.

このようにして脱硫処理中に処理条件を調整することによって、投射歩留りを向上することができる。
また、石灰系脱硫剤7を投射するにあたって、投射歩留りの算出値から脱硫に必要な石灰系脱硫剤7が溶銑3中に存在すると判断できる量を投射する。したがって石灰系脱硫剤7の投射量の最適化を達成できる。
Thus, by adjusting the treatment conditions during the desulfurization treatment, the projection yield can be improved.
Further, when projecting the lime-based desulfurizing agent 7, an amount that can be determined that the lime-based desulfurizing agent 7 necessary for desulfurization is present in the molten iron 3 from the calculated value of the projection yield is projected. Therefore, optimization of the projection amount of the lime-based desulfurizing agent 7 can be achieved.

石灰系脱硫剤7の投射が終了し、かつ所定時間の攪拌が行なわれた後、インペラ4の回転数を次第に減少させる。インペラ4の回転が停止すると、インペラ4を上昇させ、溶銑鍋2の上方に待機させる。そして脱硫処理によって生成したスラグが浮上して、溶銑3の浴面を覆い、かつ静止した状態で脱硫処理が終了する。脱硫処理が終了した後、スラグを溶銑鍋2から排出して、精錬工程へ溶銑鍋2を搬送する。   After the projection of the lime-based desulfurizing agent 7 is completed and stirring is performed for a predetermined time, the rotational speed of the impeller 4 is gradually reduced. When the rotation of the impeller 4 is stopped, the impeller 4 is raised and waited above the hot metal ladle 2. And the slag produced | generated by the desulfurization process floats up, the bath surface of the hot metal 3 is covered, and a desulfurization process is complete | finished in the still state. After the desulfurization treatment is completed, the slag is discharged from the hot metal ladle 2 and conveyed to the refining process.

以上に説明したように、本発明によれば、石灰系脱硫剤7の投射歩留りを算出することによって、脱硫処理中に投射歩留りを向上するための処置を施すことができる。また、投射歩留りから石灰系脱硫剤7の必要量を推定できるので、投射量の最適化を達成できる。   As described above, according to the present invention, by calculating the projected yield of the lime-based desulfurizing agent 7, it is possible to take a measure for improving the projected yield during the desulfurization process. Moreover, since the required amount of the lime-based desulfurizing agent 7 can be estimated from the projection yield, the projection amount can be optimized.

図1に示す装置を用いて予備実験を行ない、石灰系脱硫剤の投射歩留りと、排ガスの温度,溶銑の温度の関係を重回帰し、(1)式の定数A,B,Cを求めた。その結果、A=−0.271,B=0.221,C=−153.973という値を得た。
次いで、図1に示す装置を用いて溶銑の脱硫処理を行なった。その脱硫処理前後の溶銑とスラグのS濃度を分析し、質量バランスから投射歩留りの実績値を求めた。一方で、脱硫処理中に排ガスの温度と溶銑の温度を測定し、(1)式から投射歩留りを算出した。投射歩留まりの実績値と算出値との関係を図2に示す。図2に示す通り、投射歩留まりの実績値と算出値は一次関数で近似できる関係にある。つまり、排ガスの温度と溶銑の温度から投射歩留りを精度良く推定できる。
Preliminary experiments were performed using the apparatus shown in FIG. 1, and the constants A, B, and C of equation (1) were determined by multiple regression of the relationship between the projection yield of lime-based desulfurization agent, the temperature of exhaust gas, and the temperature of hot metal. . As a result, A = −0.271, B = 0.221, and C = −153.973 were obtained.
Subsequently, the hot metal desulfurization process was performed using the apparatus shown in FIG. The hot metal before and after the desulfurization treatment and the S concentration of slag were analyzed, and the actual value of the projection yield was obtained from the mass balance. On the other hand, during the desulfurization treatment, the temperature of the exhaust gas and the temperature of the hot metal were measured, and the projection yield was calculated from equation (1). The relationship between the actual value of the projection yield and the calculated value is shown in FIG. As shown in FIG. 2, the actual value of the projection yield and the calculated value are in a relationship that can be approximated by a linear function. That is, the projection yield can be accurately estimated from the exhaust gas temperature and the hot metal temperature.

図3は、投射比率と投射歩留りの実績値との関係を示すグラフである。投射比率は、石灰系脱硫剤の全添加量(すなわち投射される石灰系脱硫剤と上置きされる石灰系脱硫剤の合計)に占める投射される石灰系脱硫剤の比率を示す。図3から明らかなように、投射比率が増加すると投射歩留りが低下する傾向が認められる。しかし搬送用ガスの流量を減少することによって、投射歩留りを向上することが可能である。   FIG. 3 is a graph showing the relationship between the projection ratio and the actual value of the projection yield. The projection ratio indicates the ratio of the projected lime-based desulfurizing agent to the total amount of addition of the lime-based desulfurizing agent (that is, the total of the projected lime-based desulfurizing agent and the lime-based desulfurizing agent placed on top). As is apparent from FIG. 3, the projection yield tends to decrease as the projection ratio increases. However, it is possible to improve the projection yield by reducing the flow rate of the carrier gas.

図4は、脱硫処理においてインペラの回転開始から回転終了に到る間の、排ガスの温度と(1)式による投射歩留りの算出値の推移を示すグラフである。図4から明らかなように、石灰系脱硫剤の投射を開始すると、排ガスの温度が上昇する。また、排ガスの温度が高いほど、投射歩留りの算出値は低下する。この間に算出された投射歩留りの平均値は63.2%であった。一方、Sの質量バランスから求めた投射歩留りの実績値は61.8%であった。つまり、(1)式を用いて投射歩留りを精度良く推定できた。   FIG. 4 is a graph showing the transition of the exhaust gas temperature and the calculated value of the projection yield according to equation (1) during the desulfurization process from the start of rotation of the impeller to the end of rotation. As apparent from FIG. 4, when the projection of the lime-based desulfurizing agent is started, the temperature of the exhaust gas rises. Further, the higher the exhaust gas temperature, the lower the calculated value of the projection yield. The average projection yield calculated during this period was 63.2%. On the other hand, the actual value of the projection yield obtained from the mass balance of S was 61.8%. In other words, the projection yield could be estimated with high accuracy using equation (1).

図5は、脱硫処理においてインペラの回転開始から回転終了に到る間の、排ガスの温度と(1)式による投射歩留りの算出値の推移の他の例を示すグラフである。この例では、石灰系脱硫剤の投射を開始した後、排ガスの温度が上昇し、それに伴って投射歩留りが低下して、しきい値(すなわち60%)を下回ったときに搬送用ガスの流速を変更(17Nm3/min→10Nm3/min)した。その結果、搬送用ガスの流速を減少した後の投射歩留りの算出値は75%程度まで上昇した。インペラの回転開始から回転終了に到る間に算出された投射歩留りの平均値は71.2%であった。一方、Sの質量バランスから求めた投射歩留りの実績値は72.1%であった。つまり、脱硫処理中に脱硫条件を変更した場合にも、(1)式を用いて投射歩留りを精度良く推定できた。 FIG. 5 is a graph showing another example of the transition of the exhaust gas temperature and the calculated value of the projection yield according to the equation (1) during the desulfurization process from the start of rotation of the impeller to the end of rotation. In this example, after the start of lime-based desulfurization agent projection, the flow rate of the carrier gas when the temperature of the exhaust gas rises and the projection yield decreases and falls below the threshold (ie 60%). It was changed (17Nm 3 / min → 10Nm 3 / min). As a result, the calculation value of the projection yield after decreasing the flow velocity of the carrier gas increased to about 75%. The average value of the projection yield calculated during the period from the start of rotation of the impeller to the end of rotation was 71.2%. On the other hand, the actual value of the projection yield obtained from the mass balance of S was 72.1%. In other words, even when the desulfurization conditions were changed during the desulfurization treatment, the projection yield could be accurately estimated using the equation (1).

脱硫処理中に投射歩留りをオンラインで推定し、その結果に基づいて石灰系脱硫剤の投射条件を最適化するための処置を施すことができ、産業上格段の効果を奏する。   Projection yield can be estimated online during the desulfurization treatment, and a process for optimizing the projection conditions of the lime-based desulfurization agent can be performed based on the result, which has a remarkable industrial effect.

1 台車
2 溶銑鍋
3 溶銑
4 インペラ
4a 軸
5 上吹きランス
6 投入口
7 石灰系脱硫剤
8 ホッパー
9 切出し装置
10 ホッパー
11 ロータリーフィーダー
12 集塵設備
13 熱電対
14 デターロガー
15 ダクト
1 cart 2 hot metal pan 3 hot metal 4 impeller
4a Shaft 5 Top blowing lance 6 Input port 7 Lime-based desulfurization agent 8 Hopper 9 Cutting device
10 Hopper
11 Rotary feeder
12 Dust collection equipment
13 Thermocouple
14 Deterlogger
15 Duct

Claims (2)

容器内に保持した溶銑に石灰系脱硫剤を上置きして、前記溶銑中に浸漬したインペラによって前記溶銑と前記石灰系脱硫剤を攪拌する一方、前記容器の上方から先端を溶銑浴面上に離隔して配置した上吹きランスを介して石灰系脱硫剤を投射して前記溶銑の脱硫処理を行なう溶銑脱硫処理方法において、前記脱硫処理中に前記溶銑の浴面から発生するダストを排ガスとともに集塵設備に導くダクトの途中で前記排ガスの温度を測定し、前記投射された石灰系脱硫剤の投射歩留りを前記排ガスの温度と前記溶銑の温度に基づいて連続的に推定し、前記投射歩留りを向上させるように前記脱硫処理の条件を調整することを特徴とする溶銑の脱硫処理方法。   A lime-based desulfurizing agent is placed on the hot metal held in the container, and the hot metal and the lime-based desulfurizing agent are stirred by an impeller immersed in the hot metal, while the tip from above the container is placed on the hot metal bath surface. In the hot metal desulfurization treatment method of performing desulfurization treatment of the hot metal by projecting a lime-based desulfurization agent through an upper blowing lance that is spaced apart, dust generated from the bath surface of the hot metal during the desulfurization treatment is collected together with exhaust gas. The temperature of the exhaust gas is measured in the middle of a duct leading to a dust facility, and the projection yield of the projected lime-based desulfurizing agent is continuously estimated based on the temperature of the exhaust gas and the temperature of the hot metal, and the projection yield is calculated. A desulfurization treatment method for hot metal, wherein the desulfurization treatment conditions are adjusted so as to improve. 前記投射歩留り(%)を、前記排ガスの温度TG(℃)、前記溶銑の温度TM(℃)、および予め設定した定数A、B、Cを用いた下記の(1)式によって推定することを特徴とする請求項1に記載の溶銑の脱硫処理方法。
投射歩留り(%)=A×TG+B×TM+C ・・・(1)
ここに、定数A、B、Cは、個々の脱硫処理設備において予め実験によって得られた投射歩留りと排ガス温度、溶銑温度との関係を各脱硫装置毎に重回帰して得られる定数である。
The projection yield (%) is estimated by the following equation (1) using the exhaust gas temperature T G (° C.), the hot metal temperature T M (° C.), and preset constants A, B, and C. The hot metal desulfurization treatment method according to claim 1.
Projection yield (%) = A × T G + B × T M + C (1)
Here, the constants A, B, and C are constants obtained by performing multiple regressions for each desulfurization apparatus on the relationship between the projection yield, the exhaust gas temperature, and the hot metal temperature obtained in advance in each desulfurization treatment facility.
JP2010023861A 2010-02-05 2010-02-05 Method for desulfurizing molten iron Pending JP2011162809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010023861A JP2011162809A (en) 2010-02-05 2010-02-05 Method for desulfurizing molten iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010023861A JP2011162809A (en) 2010-02-05 2010-02-05 Method for desulfurizing molten iron

Publications (1)

Publication Number Publication Date
JP2011162809A true JP2011162809A (en) 2011-08-25

Family

ID=44593852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010023861A Pending JP2011162809A (en) 2010-02-05 2010-02-05 Method for desulfurizing molten iron

Country Status (1)

Country Link
JP (1) JP2011162809A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7401752B2 (en) 2020-01-14 2023-12-20 日本製鉄株式会社 Model construction device, prediction device, model construction method, prediction method, and computer program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7401752B2 (en) 2020-01-14 2023-12-20 日本製鉄株式会社 Model construction device, prediction device, model construction method, prediction method, and computer program

Similar Documents

Publication Publication Date Title
JP5195833B2 (en) Hot metal desulfurization method
JP5194678B2 (en) Hot metal desulfurization method
JP4998676B2 (en) Method of stirring molten metal using impeller
JP6061053B2 (en) Hot metal desulfurization method and desulfurization agent
WO2014112521A1 (en) Molten iron pre-treatment method
JP5418058B2 (en) Hot metal desulfurization method
JP2011162809A (en) Method for desulfurizing molten iron
JP2007247045A (en) Method for desulfurizing molten iron
JP2007327120A (en) Method for refining molten iron
JP5401938B2 (en) Hot metal desulfurization method
JP2015218390A (en) Desulfurization method of molten pig iron using combination of mechanical stirring and gas stirring
JP3213241U (en) Out-of-furnace molten steel dephosphorization system
KR101423604B1 (en) Molten steel processing apparatus and the method thereof
JP4998677B2 (en) Reuse method of desulfurization slag
JP2014177674A (en) Agitator for refinery and method of refining molten iron
JP5446300B2 (en) Hot metal desulfurization treatment method
JP6238019B2 (en) Hot metal desulfurization method with less recuperation
JP3835358B2 (en) Method for refining molten metal
JP2018172719A (en) Desulfurization method of molten pig iron
TWI840756B (en) Converter operating method and molten steel manufacturing method
JP5418248B2 (en) Hot metal desulfurization method
JP2004035934A (en) Method for desulfurizing molten iron
JP7180430B2 (en) Hot metal pretreatment method
JP6466826B2 (en) Hot metal desulfurization method
JP6565690B2 (en) Pretreatment method of hot metal in chaos car

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120727

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131204