JP2007327120A - Method for refining molten iron - Google Patents

Method for refining molten iron Download PDF

Info

Publication number
JP2007327120A
JP2007327120A JP2006160724A JP2006160724A JP2007327120A JP 2007327120 A JP2007327120 A JP 2007327120A JP 2006160724 A JP2006160724 A JP 2006160724A JP 2006160724 A JP2006160724 A JP 2006160724A JP 2007327120 A JP2007327120 A JP 2007327120A
Authority
JP
Japan
Prior art keywords
stirring blade
desulfurization
refining
molten iron
hot metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006160724A
Other languages
Japanese (ja)
Other versions
JP5130663B2 (en
Inventor
Ikuhiro Sumi
郁宏 鷲見
Yoshie Nakai
由枝 中井
Yuta Hino
雄太 日野
Seiji Nabeshima
誠司 鍋島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006160724A priority Critical patent/JP5130663B2/en
Publication of JP2007327120A publication Critical patent/JP2007327120A/en
Application granted granted Critical
Publication of JP5130663B2 publication Critical patent/JP5130663B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently refine molten iron such as molten pig iron or molten steel by efficiently adding/dispersing flux for refinement such as a desulfuring agent into the molten iron while using a mechanically stirring device having a rotary stirring blade. <P>SOLUTION: When refining the molten iron by using the mechanically stirring device having the stirring blade 4, and stirring and mixing the molten iron 3 and the flux 7 for refinement by rotating the stirring blade, this refining method includes controlling the rotation speed of the stirring blade so that the relationship between the rotation speed and a diameter of the stirring blade can satisfy the expression of F×R>200, wherein (F) represents the rotation speed (rpm) of the stirring blade; and (R) represents the diameter (m) of the stirring blade. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、攪拌羽根を備えた機械式攪拌装置を用い、攪拌羽根を回転して溶融鉄と精錬用フラックスとを攪拌混合させ、溶融鉄を精錬する方法に関するものである。   The present invention relates to a method for refining molten iron by using a mechanical stirrer equipped with a stirring blade and rotating the stirring blade to stir and mix molten iron and a refining flux.

高炉から出銑された溶銑には、通常、鋼の品質に悪影響を及ぼす硫黄(S)が高濃度で含まれており、要求される品質水準に応じて、溶銑での脱硫処理、或いは溶銑での脱硫処理と溶鋼での脱硫処理との組み合わせなど、種々の方法で脱硫処理が行われている。このうち、溶銑の脱硫には、精錬用フラックスとして、安価なCaO(石灰)を主成分とする脱硫剤が広く用いられており、この場合の脱硫反応は、「CaO+S→CaS+O」に示される反応式に基づいて進行する。   The hot metal discharged from the blast furnace usually contains a high concentration of sulfur (S) which adversely affects the quality of the steel, and depending on the required quality level, The desulfurization treatment is performed by various methods such as a combination of the desulfurization treatment and the desulfurization treatment with molten steel. Among these, for desulfurization of hot metal, an inexpensive desulfurization agent mainly composed of CaO (lime) is widely used as a refining flux, and the desulfurization reaction in this case is a reaction represented by “CaO + S → CaS + O”. Proceed based on the formula.

この脱硫処理においては、蛍石(CaF2 )系造滓剤及びアルミナ(Al23 )系造滓剤などがCaOの滓化促進剤として使用されており、例えば、CaO源である生石灰に5質量%程度の蛍石を混合したCaO−CaF2系脱硫剤が広く使用されている。しかしながら、これらの滓化促進剤は、一般に高価であり、こうした滓化促進剤の配合率を増やすことは脱硫剤のコスト増大につながる。更に、滓化促進剤の配合率を高めた場合には、脱硫剤中のCaO濃度が低下し、反応効率の低下が懸念される。また、脱硫の反応効率を向上させるために、生石灰とカルシウムカーバイト系脱硫剤或いはソーダ系脱硫剤とを併用する方法や、生石灰に石灰石(CaCO3)を混合する方法などもあるが、これらは何れも、蛍石(CaF2 )系の滓化促進剤を添加することを前提とした脱硫剤であり、近年のフッ素の環境への影響が懸念されている状況下においては、フッ素系の滓化促進剤を使用しないで効率的に脱硫することが望まれている。 In this desulfurization treatment, a fluorite (CaF 2 ) type fossilizing agent and an alumina (Al 2 O 3 ) type fossilizing agent are used as an accelerator for CaO hatching. For example, quick lime which is a source of CaO is used. CaO—CaF 2 -based desulfurization agents mixed with about 5% by mass of fluorite are widely used. However, these hatching accelerators are generally expensive, and increasing the blending ratio of such hatching accelerators leads to an increase in the cost of the desulfurization agent. Furthermore, when the blending ratio of the hatching accelerator is increased, the CaO concentration in the desulfurizing agent is lowered, and there is a concern that the reaction efficiency is lowered. In addition, in order to improve the reaction efficiency of desulfurization, there are a method in which quick lime and a calcium carbide desulfurizing agent or a soda desulfurizing agent are used in combination, and a method in which limestone (CaCO 3 ) is mixed in quick lime. Both are desulfurization agents based on the premise that a fluorite (CaF 2 ) hatching accelerator is added. Under circumstances where there is a concern about the environmental impact of fluorine in recent years, fluorine-based soot It is desired to efficiently desulfurize without using a crystallization accelerator.

CaOや螢石を用いない脱硫剤の一例として、カルシウムカーバイド系脱硫剤及びソーダ系脱硫剤が実用化されているが、何れも長所と短所がある。カルシウムカーバイド系脱硫剤は、強力な脱硫能力を有しているが、脱硫処理後の脱硫スラグの後処理において、アセチレンガスが発生するなどの安全上の問題点がある。また、高価であり、危険物でもあるため、取り扱いが極めて困難である。ソーダ系脱硫剤は比較的安価であるが、高アルカリ性であるため、処理炉及び処理容器の耐火物への影響が大きい。また、排ガス中にはNaが含まれるため、その除去処理が必要となる。更に、スラグ中のNa2 Oの含有量が高くなるため、セメントなどへの再利用に制約があり、環境への影響からも望ましくない。 As an example of a desulfurization agent that does not use CaO or meteorite, a calcium carbide desulfurization agent and a soda desulfurization agent have been put into practical use, both of which have advantages and disadvantages. Calcium carbide-based desulfurization agents have a strong desulfurization ability, but there are safety problems such as the generation of acetylene gas in the post-treatment of desulfurization slag after the desulfurization treatment. Moreover, since it is expensive and dangerous, it is extremely difficult to handle. A soda-based desulfurization agent is relatively inexpensive, but has a high alkalinity, and thus has a great influence on the refractories of the processing furnace and the processing vessel. Moreover, since Na is contained in exhaust gas, the removal process is required. Furthermore, since the content of Na 2 O in the slag is high, there is a restriction on the reuse to cement and the like, which is undesirable from the influence on the environment.

また、その他の脱硫剤として、金属Mgも良く知られている。金属Mgは、溶銑中の硫黄と容易に反応してMgSを生成するが、金属Mgの沸点が1100℃と低いため、1250〜1500℃の溶銑中では激しく気化し、溶銑を飛散させる危険性があり、また発生したMg蒸気が脱硫反応に十分に寄与しないまま大気中に放散されてしまうため、脱硫効率が悪い。しかも、金属Mg自体が非常に高価であるという問題点もある。   As another desulfurizing agent, metal Mg is also well known. Metal Mg easily reacts with sulfur in the hot metal to produce MgS. However, since the boiling point of metal Mg is as low as 1100 ° C., there is a risk that the hot metal vaporizes and scatters in the hot metal at 1250 to 1500 ° C. In addition, since the generated Mg vapor is diffused into the atmosphere without sufficiently contributing to the desulfurization reaction, the desulfurization efficiency is poor. Moreover, there is a problem that the metal Mg itself is very expensive.

一般に、溶銑の脱硫処理は、脱硫剤を溶銑中に分散させることによって行っている。そのため、脱硫反応の効率を向上させるためには、上記のような脱硫剤の検討も重要であるが、脱硫剤の分散改善による反応界面積の増加がより一層効果的である。脱硫剤を分散させる方法としては、回転する攪拌羽根(「回転翼」或いは「インペラー」とも呼ぶ)により機械的に溶銑を攪拌する機械式攪拌装置を用いた脱硫方法がある。本方法においては、ホッパーなどから脱硫剤を切り出し、溶銑鍋などの処理容器の上部に設置された投入口から脱硫剤を投入し、処理容器内で回転する攪拌羽根により生成された溶銑の渦流によって脱硫剤を溶銑中に分散させている。   Generally, the hot metal desulfurization treatment is performed by dispersing a desulfurizing agent in the hot metal. Therefore, in order to improve the efficiency of the desulfurization reaction, it is important to study the desulfurization agent as described above, but it is more effective to increase the reaction interfacial area by improving the dispersion of the desulfurization agent. As a method for dispersing the desulfurizing agent, there is a desulfurization method using a mechanical stirring device that mechanically stirs the molten iron with a rotating stirring blade (also referred to as “rotary blade” or “impeller”). In this method, the desulfurization agent is cut out from a hopper and the like, and the desulfurization agent is introduced from the inlet installed in the upper part of the processing vessel such as a hot metal ladle, and the hot metal vortex generated by the stirring blade rotating in the processing vessel is used. A desulfurizing agent is dispersed in the hot metal.

このような機械攪拌による分散手法は化学工学の分野では多大な知見があり、高密度の固体または液体、或いは、液と同等の密度を有する固体または液体での液中分散は良く知られているところである。しかしながら、溶銑の脱硫反応などの鉄鋼プロセスにおいては、巻き込み対象物(脱硫剤)が浴(溶鉄)と比較して極めて低密度であり、巻き込みが困難であること、また、浴が高温で取り扱いが特殊であることから、従来の知見をそのまま適用することは困難であり、独自の研究開発が行われている。   Such a dispersion method by mechanical stirring has a great deal of knowledge in the field of chemical engineering, and dispersion in liquid with a high density solid or liquid, or a solid or liquid having a density equivalent to the liquid is well known. By the way. However, in the steel process such as hot metal desulfurization reaction, the object to be entrained (desulfurizing agent) is extremely low density compared to the bath (molten iron), and it is difficult to entrain, and the bath is handled at a high temperature. Because it is special, it is difficult to apply conventional knowledge as it is, and its own research and development is being conducted.

また、実際のプロセスにおいては、低密度粒子を分散させることの困難さに加えて、脱硫剤の添加・分散時、或いは溶銑中で、高温による焼結・凝集が生じる現象もあり、脱硫剤の反応効率は著しく低くなることがある。更なる脱硫効率の向上には、従来使用している粉体状の脱硫剤の粒径を更に細粒化することも考えられるが、脱硫剤の添加の際に、脱硫剤の飛散量が増加し、溶銑表面に達する脱硫剤の量が減少してしまう。また、前述した凝集現象も生じやすくなるため、脱硫反応の大幅な効率向上は期待できない。脱硫効率を高めるためには、凝集をいかに抑制しつつ効率的に脱硫剤を分散させるかが重要となる。   In addition, in the actual process, in addition to the difficulty of dispersing the low density particles, there is also a phenomenon in which sintering and agglomeration occur at a high temperature when adding or dispersing the desulfurizing agent or in the hot metal. The reaction efficiency can be significantly reduced. To further improve the desulfurization efficiency, it is possible to further reduce the particle size of the powdered desulfurization agent used in the past, but when adding the desulfurization agent, the amount of desulfurization agent splashed increases. As a result, the amount of the desulfurizing agent reaching the hot metal surface decreases. In addition, since the agglomeration phenomenon described above is likely to occur, a significant improvement in the desulfurization reaction cannot be expected. In order to increase the desulfurization efficiency, it is important how to efficiently disperse the desulfurizing agent while suppressing aggregation.

脱硫剤の溶銑中への分散を促進させる方法として、特許文献1には、攪拌羽根を用いた溶銑の脱硫処理において、溶銑浴中に整流板を浸漬させ、整流板に衝突する溶銑が形成する下降流によって脱硫剤を溶銑中に巻き込ませる方法が提案されている。また、特許文献2には、攪拌羽根を用いた溶銑の脱硫処理において、処理容器の側壁部に突起状の整流体を設け、整流体に衝突する溶銑の乱流を利用して脱硫剤を溶銑中に巻き込ませる方法が提案されている。   As a method for promoting the dispersion of the desulfurizing agent in the hot metal, Patent Document 1 discloses that in a hot metal desulfurization process using a stirring blade, a hot metal colliding with the current plate is formed by immersing the current plate in the hot metal bath. A method has been proposed in which a desulfurizing agent is entrained in hot metal by a downward flow. Further, in Patent Document 2, in the desulfurization treatment of hot metal using a stirring blade, a protruding rectifier is provided on the side wall portion of the processing vessel, and a desulfurizing agent is added using the turbulent flow of the hot metal that collides with the rectifier. There has been proposed a method of involving the inside.

しかしながら、機械攪拌式脱硫法のような高温且つ強攪拌下において整流板や整流体などの障害物を用いる場合には、非常に強度の強い障害物を用いる必要があり、その作製及びメンテナンスに多額の費用と手間とを必要とするという問題がある。また、障害物を溶銑中へ浸漬することから、脱硫処理可能な溶銑量が減少してしまうという問題もある。
特開昭49−44927号公報 特開昭51−112416号公報
However, when using obstacles such as rectifier plates and rectifiers under high temperature and strong agitation such as mechanical stirring type desulfurization method, it is necessary to use very strong obstacles, and it is expensive to make and maintain them. There is a problem that it requires a lot of cost and labor. In addition, since the obstacle is immersed in the hot metal, there is a problem that the amount of hot metal that can be desulfurized is reduced.
JP 49-44927 A Japanese Patent Laid-Open No. 51-112416

本発明はかかる事情に鑑みてなされたものであって、その目的とするところは、機械攪拌式脱硫法などのように、回転する攪拌羽根を有する機械式攪拌装置を用いて溶銑や溶鋼などの溶融鉄を精錬するに当たり、脱硫剤などの精錬用フラックスを効率良く溶融鉄中へ添加・分散させることができ、これにより、例えば、溶銑の脱硫処理においては、フッ素系の滓化促進剤を使用しなくても高い脱硫効率を確保することが可能になるなど、効率良く精錬を実施することのできる、溶融鉄の精錬方法を提供することである。   The present invention has been made in view of such circumstances, and the object of the present invention is to use a mechanical stirring device having a rotating stirring blade, such as a mechanical stirring type desulfurization method, so as to use hot metal, molten steel, and the like. When refining molten iron, it is possible to efficiently add and disperse refining fluxes such as desulfurizing agents in molten iron. For this reason, for example, in the desulfurization treatment of hot metal, a fluorine-based hatching accelerator is used. The object is to provide a method for refining molten iron that enables efficient refining such that high desulfurization efficiency can be ensured without the need.

上記課題を解決するための第1の発明に係る溶融鉄の精錬方法は、攪拌羽根を備えた機械式攪拌装置を用い、攪拌羽根を回転させて溶融鉄と精錬用フラックスとを攪拌混合して溶融鉄を精錬するに際し、前記攪拌羽根の回転数と攪拌羽根の直径とが下記の(1)式の関係を満たすことを特徴とするものである。
F×R>200 …(1)
但し、(1)式において、Fは、攪拌羽根の回転数(rpm)、Rは、攪拌羽根の直径(m)である。
The method for refining molten iron according to the first invention for solving the above-mentioned problem uses a mechanical stirring device equipped with a stirring blade, rotates the stirring blade and stirs and mixes the molten iron and the refining flux. In refining molten iron, the number of revolutions of the stirring blade and the diameter of the stirring blade satisfy the relationship of the following formula (1).
F × R> 200 (1)
However, in Formula (1), F is the rotation speed (rpm) of a stirring blade, R is the diameter (m) of a stirring blade.

第2の発明に係る溶融鉄の精錬方法は、第1の発明において、前記精錬用フラックスは、CaOを主成分とする精錬用フラックスであることを特徴とするものである。   The method for refining molten iron according to the second invention is characterized in that, in the first invention, the refining flux is a refining flux mainly composed of CaO.

第3の発明に係る溶融鉄の精錬方法は、第2の発明において、前記精錬用フラックスは、フッ素含有量が1質量%以下であることを特徴とするものである。   The method for refining molten iron according to the third invention is characterized in that, in the second invention, the refining flux has a fluorine content of 1% by mass or less.

第4の発明に係る溶融鉄の精錬方法は、第1ないし第3の発明の何れかにおいて、精錬中、攪拌羽根が回転している期間の50%以上の期間で、攪拌羽根の回転数と攪拌羽根の直径とが(1)式の関係を満たすことを特徴とするものである。   According to a fourth aspect of the present invention, there is provided a method for refining molten iron according to any one of the first to third aspects, wherein, during refining, the number of revolutions of the stirring blade is 50% or more of the period during which the stirring blade is rotating. The diameter of the stirring blade satisfies the relationship of the formula (1).

第5の発明に係る溶融鉄の精錬方法は、第1ないし第4の発明の何れかにおいて、精錬開始時の攪拌羽根の回転開始から少なくとも5分間が経過するまでは、攪拌羽根の回転数と攪拌羽根の直径とが(1)式の関係を満たすことを特徴とするものである。   The molten iron refining method according to the fifth invention is the method of refining molten iron according to any one of the first to fourth inventions, wherein at least 5 minutes have elapsed from the start of rotation of the stirring blade at the start of refining. The diameter of the stirring blade satisfies the relationship of the formula (1).

第6の発明に係る溶融鉄の精錬方法は、第1ないし第5の発明の何れかにおいて、前記溶融鉄が溶銑であり、前記精錬が脱硫処理であることを特徴とするものである。   A molten iron refining method according to a sixth invention is characterized in that, in any one of the first to fifth inventions, the molten iron is hot metal, and the refining is desulfurization treatment.

本発明によれば、攪拌羽根を有する機械式攪拌装置を用いて溶融鉄を精錬するに際し、攪拌羽根の回転数と攪拌羽根の直径との積、つまり攪拌羽根の周速度を所定値以上に維持して溶融鉄を攪拌するので、脱硫剤などの精錬用フラックスを効率良く溶融鉄中に巻き込ませることができ、その結果、反応界面積が増大して、少ない精錬用フラックスの使用量であっても、効率良く溶融鉄を精錬することが可能となる。   According to the present invention, when refining molten iron using a mechanical stirring device having a stirring blade, the product of the rotation speed of the stirring blade and the diameter of the stirring blade, that is, the peripheral speed of the stirring blade is maintained at a predetermined value or more. Since the molten iron is stirred, the refining flux such as a desulfurizing agent can be efficiently entrained in the molten iron. As a result, the reaction interfacial area increases, and the amount of refining flux used is small. However, it is possible to refine the molten iron efficiently.

以下、本発明について説明する。   The present invention will be described below.

機械式攪拌装置を用いた溶銑の脱硫工程における脱硫剤の利用効率は、従来、利用効率の高いCaO−CaF2 系脱硫剤を用いた場合であってもせいぜい10%程度で、残りの90%は未反応のままであり、非常に効率が低かった。本発明者等は、この利用効率の低い原因について種々解析を行った結果、以下の問題点があることが判明した。 Conventionally, the utilization efficiency of the desulfurization agent in the hot metal desulfurization process using the mechanical stirrer is at most about 10% even when a high utilization efficiency CaO-CaF 2 desulfurization agent is used, and the remaining 90%. Remained unreacted and was very inefficient. As a result of various analyzes on the cause of the low utilization efficiency, the present inventors have found that there are the following problems.

即ち、機械式攪拌装置を用いた溶銑の脱硫工程では、脱硫剤は、回転羽根によって強力に攪拌された状態の溶銑の上へ、処理容器の上方から連続的或いは断続的に添加される。脱硫反応を促進させるには、反応界面積が高いほど有利であり、そのために、粒状または粉体状の脱硫剤を用いるが、細粒化し過ぎると添加時の飛散量つまりダストが増加し、歩留まりが悪化する。一方、添加時に飛散を考慮し、サイズの大きい脱硫剤を使用すると反応界面積が確保できず、脱硫反応が停滞する。また、脱硫剤として主に使用されるCaO系脱硫剤は溶銑との濡れ性が悪く、溶銑中へ巻き込まれにくい上に、溶銑上へ添加された脱硫剤が、強攪拌されている浴表面または浴中で焼結・凝集し、反応界面積が低下していく。特に、フッ素を含有しないCaO系脱硫剤でこれらの影響が大きい。このため、強攪拌下にある溶銑中へいかに凝集を抑制して脱硫剤を巻き込ませるか、即ち界面積を確保するかが課題となる。   That is, in the hot metal desulfurization process using a mechanical stirring device, the desulfurizing agent is continuously or intermittently added from above the processing vessel onto the hot metal that has been vigorously stirred by the rotating blades. In order to accelerate the desulfurization reaction, the higher the reaction interface area, the more advantageous.For this reason, a granular or powdery desulfurization agent is used. Gets worse. On the other hand, if a desulfurization agent having a large size is used in consideration of scattering at the time of addition, the reaction interface area cannot be ensured, and the desulfurization reaction is stagnated. The CaO-based desulfurizing agent mainly used as a desulfurizing agent has poor wettability with hot metal and is difficult to be caught in the hot metal, and the desulfurizing agent added to the hot metal is strongly stirred. Sintering and agglomeration in the bath, the reaction interface area decreases. In particular, CaO-based desulfurization agents that do not contain fluorine have a great influence on them. For this reason, it becomes a subject how to suppress agglomeration in hot metal under strong stirring and to entrain the desulfurizing agent, that is, to secure an interfacial area.

このようなことから、飛散しにくい粒径の脱硫剤を使用し、脱硫剤の添加量を増加させることにより、反応界面積を確保し、脱硫能力を得ているのが現状である。また、蛍石などのフッ素を含有する滓化促進剤を使用しなかった場合には、低下する脱硫能力を、CaOの添加量を増加させる或いは処理時間を延長させることによって補っているのが現状である。しかし、脱硫剤使用量の増加は、コスト増加及び発生するスラグ量の増加に繋がり、また、処理時間の延長は、生産性の低下を来すことから、好ましくない。   For this reason, the present situation is that a desulfurization agent having a particle size that is difficult to scatter is used, and the addition amount of the desulfurization agent is increased to secure a reaction interface area and obtain desulfurization ability. In addition, when a hatching accelerator containing fluorine, such as fluorite, is not used, the desulfurization ability that is reduced is compensated by increasing the amount of CaO added or extending the treatment time. It is. However, an increase in the amount of desulfurizing agent used leads to an increase in cost and an increase in the amount of generated slag, and an extension of the treatment time is not preferable because it causes a decrease in productivity.

これらを踏まえ、脱硫剤、特にフッ素を含有しないCaO系脱硫剤の利用効率を高めることを目的として、脱硫剤の使用量を増加することなく反応界面積を増加させるために、攪拌羽根の回転挙動と脱硫剤の反応界面積との関係について検討した。   Based on these, in order to increase the utilization of desulfurization agents, especially CaO-based desulfurization agents that do not contain fluorine, in order to increase the reaction interfacial area without increasing the amount of desulfurization agent used, the rotating behavior of the stirring blades The relationship between the desulfurization agent and the reaction interfacial area was investigated.

機械式攪拌装置を用いた溶銑の脱硫処理においては、攪拌羽根の回転数を増加していくと、或る回転数から脱硫剤の溶銑中への巻き込みが発生し、脱硫能力が増大する。従って従来、この境界となる回転数近傍で脱硫処理を実施しているが、回転条件の詳細については未知の部分が多い。   In the hot metal desulfurization treatment using the mechanical stirring device, when the rotation speed of the stirring blade is increased, the desulfurization agent is caught in the hot metal from a certain rotation speed, and the desulfurization capacity is increased. Therefore, conventionally, desulfurization treatment is performed in the vicinity of the rotational speed that becomes the boundary, but there are many unknown portions with respect to details of the rotational conditions.

そこで、攪拌羽根の回転数と脱硫能力との関係について研究を行った。その結果、脱硫能力は、攪拌羽根の回転数に影響されるが、単に攪拌羽根の回転数と相関するわけではなく、攪拌羽根の周速度と相関関係があることが分かった。   Therefore, the relationship between the rotation speed of the stirring blade and the desulfurization capacity was studied. As a result, it was found that the desulfurization capacity is influenced by the rotational speed of the stirring blade, but is not simply correlated with the rotational speed of the stirring blade, but is correlated with the peripheral speed of the stirring blade.

即ち、脱硫剤の浴中への巻き込みを増大させるには、攪拌羽根の周速度を大きくする、つまり、脱硫剤の運動エネルギーを大きくすればよいことが判明した。攪拌羽根の周速度は、攪拌羽根の半径r(m)と回転角速度ω(rad/秒)との積(r×ω)で表されるので、攪拌羽根の回転数F(rpm)を用いると、攪拌羽根の回転数F(rpm)と攪拌羽根の直径R(m)との積(F×R=F×2r:単位=「rpm・m」)が攪拌羽根の周速度のパラメータとなる。しかしながら、積(F×R)がどの程度になると脱硫剤の浴中への巻き込みが起こるかは、溶融金属の精錬などのような低密度粒子の分散に関してはよく分かっておらず、特に、高温下の粒子の凝集が生じる系においては全く情報がない。ましてや、溶銑の精錬プロセスへの適用例は皆無である。   That is, it has been found that in order to increase the entrainment of the desulfurizing agent in the bath, it is only necessary to increase the peripheral speed of the stirring blade, that is, to increase the kinetic energy of the desulfurizing agent. The peripheral speed of the stirring blade is expressed by the product (r × ω) of the radius r (m) of the stirring blade and the rotational angular velocity ω (rad / sec). Therefore, when the rotation speed F (rpm) of the stirring blade is used, The product of the rotation speed F (rpm) of the stirring blade and the diameter R (m) of the stirring blade (F × R = F × 2r: unit = “rpm · m”) is a parameter of the peripheral speed of the stirring blade. However, how much the product (F × R) becomes involved in the bath of the desulfurizing agent is not well understood with respect to dispersion of low density particles such as refining of molten metal. There is no information at all in the system where the aggregation of the underlying particles occurs. Furthermore, there are no examples of application to hot metal refining processes.

そこで、先ず、低密度粒子の浴中分散挙動について、水モデル実験で検証した。直径0.5mのアクリル製円筒容器に約60kgの水を装入し、4枚翼の攪拌羽根による攪拌を行った。低密度粒子としては直径1mm以下の中空プラスチック粒子などを用い、攪拌前に水浴上に添加した。種々の回転速度で攪拌羽根を回転して水を攪拌させ、そのときの低密度粒子の挙動を観察した結果、容器内に形成される渦の下端が攪拌羽根に達した時点で、低密度粒子の水中分散が開始することが確認できた。更に、直径が異なる攪拌羽根を用い、種々の回転数で低密度粒子の巻き込み状況を調査した。その結果、低密度粒子の巻き込み状況(均一分散性)が著しく向上する条件について整理すると、低密度粒子の巻き込み発生は、そのときの攪拌羽根の周速度つまり積(F×R)に相関することを見出した。   Therefore, first, the dispersion behavior of low density particles in the bath was verified by a water model experiment. About 60 kg of water was placed in an acrylic cylindrical container having a diameter of 0.5 m, and stirring was performed with a four-blade stirring blade. As the low density particles, hollow plastic particles having a diameter of 1 mm or less were used and added to the water bath before stirring. As a result of observing the behavior of the low density particles at that time by rotating the stirring blades at various rotational speeds and observing the behavior of the low density particles, the low density particles are reached when the lower end of the vortex formed in the container reaches the stirring blades. It was confirmed that dispersion in water started. Furthermore, using a stirring blade having a different diameter, the state of entrainment of low density particles at various rotational speeds was investigated. As a result, if the conditions under which the entrainment state (uniform dispersibility) of the low-density particles is remarkably improved are summarized, the occurrence of entrainment of the low-density particles correlates with the peripheral speed, that is, the product (F × R) of the stirring blade at that time. I found.

これらの検証結果に基づき、次いで、実機の機械式攪拌装置を用いた溶銑の脱硫処理において、攪拌羽根の回転数及び攪拌羽根の直径を変更して脱硫剤の巻き込みを調査した。脱硫剤としては、フッ素を含有しないCaOを主成分とする脱硫剤を用いた。その結果、積(F×R)の増加に伴って大幅な脱硫効率の向上が認められ、特に積(F×R)が200rpm・m以上の場合に効果が大きく、積(F×R)が250rpm・m以上で更なる効果の増大が確認できた。   Next, based on these verification results, in the hot metal desulfurization process using an actual mechanical stirring device, the rotation speed of the stirring blade and the diameter of the stirring blade were changed to investigate the entrainment of the desulfurizing agent. As the desulfurization agent, a desulfurization agent mainly composed of CaO not containing fluorine was used. As a result, a significant improvement in desulfurization efficiency is recognized as the product (F × R) increases, and the effect is particularly large when the product (F × R) is 200 rpm · m or more. A further increase in the effect was confirmed at 250 rpm · m or more.

これらの結果に基づき、本発明においては、攪拌羽根を備えた機械式攪拌装置を用い、攪拌羽根を回転させて溶銑または溶鋼などの溶融鉄と、脱硫剤または脱燐剤などの精錬用フラックスとを攪拌混合して溶融鉄を精錬するに際し、攪拌羽根の回転数F(rpm)と攪拌羽根の直径R(m)との積(F×R)を200rpm・m以上として精錬する。積(F×R)を200rpm・m以上とするに当たり、攪拌羽根の回転数F及び攪拌羽根の直径Rのどちらか一方を調整しても、また両者を調整しても、どちらでも構わない。   Based on these results, in the present invention, using a mechanical stirring device equipped with a stirring blade, rotating the stirring blade, molten iron such as hot metal or molten steel, and a refining flux such as a desulfurizing agent or a dephosphorizing agent, When the molten iron is refined by stirring and mixing, the product (F × R) of the rotation speed F (rpm) of the stirring blade and the diameter R (m) of the stirring blade is 200 rpm · m or more. In setting the product (F × R) to 200 rpm · m or more, either the rotation speed F of the stirring blade or the diameter R of the stirring blade may be adjusted, or both may be adjusted.

本発明を機械式攪拌装置で行う溶銑の脱硫処理に適用した場合を例として、本発明の具体的な実施方法を、添付図面を参照して以下に説明する。図1は、本発明が適用される機械式攪拌型脱硫装置の1例を示す概略断面図である。尚、脱硫処理を行うための機械式攪拌装置を機械式攪拌型脱硫装置と称している。   A specific implementation method of the present invention will be described below with reference to the accompanying drawings, taking as an example the case where the present invention is applied to a hot metal desulfurization process performed by a mechanical stirring device. FIG. 1 is a schematic sectional view showing an example of a mechanical stirring desulfurization apparatus to which the present invention is applied. In addition, the mechanical stirring apparatus for performing a desulfurization process is called the mechanical stirring type desulfurization apparatus.

図1に示すように、機械式攪拌型脱硫装置は、溶銑鍋2に収容された溶銑3に浸漬・埋没し、旋回して溶銑3を攪拌するための耐火物製の攪拌羽根4を備えており、この攪拌羽根4は、昇降装置(図示せず)によってほぼ鉛直方向に昇降し、且つ、回転装置(図示せず)によって軸4aを回転軸として旋回するようになっている。また、機械式攪拌型脱硫装置には、粒状または粉体状の脱硫剤7及び粒状または粉体状の脱酸源8を、精錬用フラックスとして溶銑鍋2に収容された溶銑3の浴面に上置き添加するための投入口6、並びに、粉体状の脱硫剤7A及び粉体状の脱酸源8Aを精錬用フラックスとして溶銑鍋2に収容された溶銑3に向けて上吹きして添加するための上吹きランス5が設置されている。更に、溶銑鍋2の上方位置には、集塵機(図示せず)に接続する排気ダクト口(図示せず)が備えられ、脱硫処理中に発生するガスやダストが排出されるようになっている。   As shown in FIG. 1, the mechanical stirring desulfurization apparatus includes a refractory stirring blade 4 that is immersed and buried in a hot metal 3 accommodated in a hot metal ladle 2 and swirled to stir the hot metal 3. The agitating blade 4 is moved up and down in a substantially vertical direction by an elevating device (not shown) and swiveled around a shaft 4a by a rotating device (not shown). Further, in the mechanical stirring type desulfurization apparatus, the granular or powdery desulfurizing agent 7 and the granular or powdery deoxidation source 8 are placed on the bath surface of the hot metal 3 accommodated in the hot metal ladle 2 as a refining flux. Add the inlet 6 for adding on top and the powdered desulfurizing agent 7A and the powdered deoxidation source 8A by blowing up toward the hot metal 3 accommodated in the hot metal ladle 2 as a refining flux. An upper blowing lance 5 is installed. Further, an exhaust duct port (not shown) connected to a dust collector (not shown) is provided at an upper position of the hot metal ladle 2 so that gas and dust generated during the desulfurization process are discharged. .

投入口6は、粒状または粉体状の脱硫剤7を収容するホッパー9と、ホッパー9から定量切り出すためのロータリーフィーダー10とからなる供給装置、及び、粒状または粉体状の脱酸源8を収容するホッパー11と、ホッパー11から定量切り出すためのロータリーフィーダー12とからなる供給装置と接続しており、投入口6から、粒状または粉体状の脱硫剤7及び粒状または粉体状の脱酸源8を任意のタイミングで各々独立して調整して供給できる構造になっている。また、上吹きランス5は、粉体状の脱硫剤7Aを収容するホッパー13と、ホッパー13から定量切り出すための切出装置14とからなる供給装置、及び、粉体状の脱酸源8Aを収容するホッパー15と、ホッパー15から定量切り出すための切出装置16とからなる供給装置と接続しており、上吹きランス5から、窒素ガスやArガスなどの搬送用ガスとともに、粉体状の脱硫剤7A及び粉体状の脱酸源8Aを任意のタイミングで各々独立して調整して供給できる構造になっている。尚、上吹きランス5から吹き込むか、投入口6から添加するかは、使用する脱硫剤の大きさなどから、適宜選択すればよい。脱酸源8,8Aは、溶銑3の酸素濃度を低減し、脱硫反応を促進させるためのものであり、必ずしも必要ではないが、脱硫反応を促進させるには、使用することが好ましい。   The input port 6 is provided with a supply device including a hopper 9 containing a granular or powdered desulfurizing agent 7, a rotary feeder 10 for quantitatively cutting out from the hopper 9, and a granular or powdered deoxidation source 8. It is connected to a supply device comprising a hopper 11 to be accommodated and a rotary feeder 12 for quantitatively cutting out from the hopper 11, and a granular or powdery desulfurizing agent 7 and a granular or powdery deoxidation are supplied from an inlet 6. The power source 8 can be adjusted and supplied independently at an arbitrary timing. Further, the top blowing lance 5 includes a supply device including a hopper 13 for storing the powdery desulfurizing agent 7A, a cutting device 14 for quantitatively cutting out from the hopper 13, and a powdery deoxidation source 8A. It is connected to a supply device composed of a hopper 15 to be accommodated and a cutting device 16 for quantitatively cutting out from the hopper 15, and from the top blowing lance 5 together with a carrier gas such as nitrogen gas or Ar gas, The desulfurization agent 7A and the powdery deoxidation source 8A can be independently adjusted and supplied at arbitrary timings. In addition, what is necessary is just to select suitably from the magnitude | size of the desulfurization agent to be used, etc. whether it blows in from the top blowing lance 5 or adds from the insertion port 6. FIG. The deoxidation sources 8 and 8A are for reducing the oxygen concentration of the hot metal 3 and promoting the desulfurization reaction, and are not necessarily required, but are preferably used to promote the desulfurization reaction.

このように構成される機械式攪拌型脱硫装置において、先ず、攪拌羽根4の位置が溶銑鍋2のほぼ中心になるように、溶銑鍋2を搭載した台車1の位置を調整し、次いで、攪拌羽根4を下降させて溶銑3に浸漬させる。攪拌羽根4が溶銑3に浸漬したならば、攪拌羽根4の旋回を開始し、攪拌羽根4の回転数F(rpm)と攪拌羽根4の直径R(m)との積(F×R)が200rpm・m以上となるまで、好ましくは250rpm・m以上となるまで、使用する攪拌羽根4の直径R(m)に応じて攪拌羽根4の回転数Fを昇速する。攪拌羽根4の回転数Fが所定の回転数に達したならば、脱硫剤7または脱硫剤7Aを連続的または断続的に添加する。この場合、脱硫剤7,7Aの添加と並行して、または、脱硫剤7、7Aの添加の前後に、脱硫反応を促進させるために、脱酸源8,8Aを溶銑鍋2に供給することが好ましい。尚、攪拌羽根4の直径Rは、攪拌羽根4の形状に如何に拘わらず攪拌羽根4の上端面における回転直径とする。   In the mechanical stirring-type desulfurization apparatus configured as described above, first, the position of the carriage 1 on which the hot metal ladle 2 is mounted is adjusted so that the position of the stirring blade 4 is substantially the center of the hot metal ladle 2, and then the stirring is performed. The blade 4 is lowered and immersed in the hot metal 3. If the stirring blade 4 is immersed in the hot metal 3, the stirring blade 4 starts to rotate, and the product (F × R) of the rotation speed F (rpm) of the stirring blade 4 and the diameter R (m) of the stirring blade 4 is The rotation speed F of the stirring blade 4 is increased according to the diameter R (m) of the stirring blade 4 to be used until it becomes 200 rpm · m or more, preferably 250 rpm · m or more. When the rotational speed F of the stirring blade 4 reaches a predetermined rotational speed, the desulfurizing agent 7 or the desulfurizing agent 7A is added continuously or intermittently. In this case, in order to accelerate the desulfurization reaction in parallel with the addition of the desulfurizing agent 7, 7A or before and after the addition of the desulfurizing agent 7, 7A, the deoxidation source 8, 8A is supplied to the hot metal ladle 2. Is preferred. The diameter R of the stirring blade 4 is the rotational diameter at the upper end surface of the stirring blade 4 regardless of the shape of the stirring blade 4.

所定量の脱硫剤7,7Aの供給終了後も更に攪拌羽根4により溶銑3を攪拌し、所定時間の攪拌が行われたなら、攪拌羽根4の回転数を減少させて停止させる。攪拌羽根4の旋回が停止したなら、攪拌羽根4を上昇させ、溶銑鍋2の上方に待機させる。生成したスラグが浮上して溶銑表面を覆い、静止した状態で溶銑3の脱硫処理が終了する。脱硫処理後に生成したスラグを溶銑鍋2から排出し、次の精錬工程に溶銑鍋2を搬送する。   Even after the supply of the predetermined amount of the desulfurizing agent 7, 7A is completed, the molten iron 3 is further stirred by the stirring blade 4, and when stirring for a predetermined time is performed, the number of rotations of the stirring blade 4 is decreased and stopped. When the swirling of the stirring blade 4 is stopped, the stirring blade 4 is lifted and waited above the hot metal pan 2. The generated slag floats to cover the hot metal surface, and the desulfurization process of the hot metal 3 is completed in a stationary state. The slag generated after the desulfurization treatment is discharged from the hot metal ladle 2 and conveyed to the next refining process.

このようにして、溶銑3の脱硫処理を実施する。脱硫反応を促進させるために、脱硫処理の全期間に亘って攪拌羽根4の回転数Fと攪拌羽根4の直径Rとの積(F×R)を200rpm・m以上に維持することが好ましいが、脱硫処理の全期間の50%以上の範囲であれば脱硫反応を促進させることができる。特に、脱硫剤7,7Aの溶銑3への巻き込みが行われる処理開始から5分間について本発明を適用することにより、脱硫反応を効率良く促進させることができる。   In this way, the desulfurization treatment of the hot metal 3 is performed. In order to promote the desulfurization reaction, it is preferable to maintain the product (F × R) of the rotation speed F of the stirring blade 4 and the diameter R of the stirring blade 4 over 200 rpm · m over the entire period of the desulfurization treatment. The desulfurization reaction can be promoted within a range of 50% or more of the entire period of the desulfurization treatment. In particular, the desulfurization reaction can be efficiently promoted by applying the present invention for 5 minutes from the start of the treatment in which the desulfurization agent 7 or 7A is entrained in the hot metal 3.

使用する脱硫剤7,7Aとしては、CaO系の脱硫剤のみならず、カルシウムカーバイド系の脱硫剤、ソーダ系の脱硫剤、及び金属Mgなど種々の脱硫剤を用いることができるが、安価であることから、CaO系の脱硫剤を使用することが好ましい。しかも、環境対策や発生するスラグの再利用が容易であることから、蛍石などのフッ素源を併用せずに、CaO系の脱硫剤のみを使用することが好ましい。つまり、フッ素含有量が1質量%以下であるCaO系の脱硫剤とすることが好ましい。CaO系の脱硫剤としては、生石灰(CaO)、ドロマイト(MgCO3 ・CaCO3 )、消石灰(Ca(OH)2)、石灰石(CaCO3 )などを使用することができる。本発明では、脱硫剤7,7Aを強制的に溶銑3に巻き込ませることができるので、フッ素源を使用しなくても、十分に脱硫することができる。 As the desulfurizing agent 7, 7A to be used, various desulfurizing agents such as calcium carbide-based desulfurizing agent, soda-based desulfurizing agent, and metallic Mg can be used, but they are inexpensive. Therefore, it is preferable to use a CaO-based desulfurization agent. Moreover, it is preferable to use only a CaO-based desulfurization agent without using a fluorine source such as fluorite in combination because environmental measures and the reuse of generated slag are easy. That is, a CaO-based desulfurization agent having a fluorine content of 1% by mass or less is preferable. As the CaO-based desulfurization agent, quick lime (CaO), dolomite (MgCO 3 · CaCO 3 ), slaked lime (Ca (OH) 2 ), limestone (CaCO 3 ) and the like can be used. In the present invention, the desulfurizing agent 7, 7A can be forcibly engulfed in the molten iron 3, so that it can be sufficiently desulfurized without using a fluorine source.

また、脱酸源8,8Aとしては、金属Al、または、アルミ源として安価に入手できることからアルミドロス粉末が望ましい。また、アルミニウム融液をガスでアトマイズして得られるアトマイズ粉末や、アルミニウム合金を研磨、切削する際に発生する切削粉など、他のAl源であってもよい。また、フェロシリコンのようなSi合金や、Mg合金などを用いることもできる。これらは、搬送用ガスとともに溶銑3の表面へ上吹き添加する場合には、粉末状が望ましく、そして、上吹き添加する場合には、通常であれば飛散するような微細な粉末でも、問題なく使用することが可能である。   Moreover, as the deoxidation sources 8, 8A, metal Al or aluminum dross powder is desirable because it can be obtained at a low cost as an aluminum source. Further, other Al sources such as atomized powder obtained by atomizing an aluminum melt with gas and cutting powder generated when an aluminum alloy is polished and cut may be used. Moreover, Si alloy like ferrosilicon, Mg alloy, etc. can also be used. These are preferably in the form of a powder when added to the surface of the hot metal 3 together with the carrier gas, and fine powder that normally scatters is fine when added as an upper spray. It is possible to use.

以上説明したように、本発明によれば、脱硫剤7,7Aを効率良く溶銑3に巻き込ませることができるので、脱硫反応の界面積が増大し、少ない脱硫剤7,7Aの使用量であっても、更には、フッ素系の滓化促進剤を使用しなくても、溶銑3を効率良く脱硫処理することが可能となる。   As described above, according to the present invention, since the desulfurizing agent 7 and 7A can be efficiently involved in the hot metal 3, the interface area of the desulfurization reaction is increased, and the amount of the desulfurizing agent 7 and 7A used is small. In addition, the hot metal 3 can be efficiently desulfurized without using a fluorine-based hatching accelerator.

尚、上記説明は溶銑の脱硫処理について行ったが、本発明は溶銑の脱硫処理に限らず、溶銑の脱珪処理、脱燐処理、脱炭処理にも適用できる。要は、機械式攪拌装置を用いて溶融金属を精錬する方法である限り、上記に沿って本発明を実施することができる。   In addition, although the said description was performed about the desulfurization process of hot metal, this invention is applicable not only to the desulfurization process of hot metal, but also to the desiliconization process, dephosphorization process, and decarburization process of hot metal. In short, as long as it is a method of refining molten metal using a mechanical stirring device, the present invention can be carried out according to the above.

図1に示す機械式攪拌型脱硫装置を用い、溶銑鍋内の約150トンの溶銑を脱硫処理した。   About 150 tons of hot metal in the hot metal ladle was desulfurized using the mechanical stirring desulfurization apparatus shown in FIG.

高炉から出銑された溶銑に、高炉鋳床と受銑後の溶銑鍋内との2回の脱珪処理を実施した後に、図1に示す機械式攪拌型脱硫装置に搬送し、脱硫処理を実施した。使用した溶銑の組成は、炭素:4.0〜4.6質量%、珪素:0.05〜0.15質量%、Mn:0.10〜0.15質量%、燐:0.10〜0.13質量%であり、脱硫処理前の硫黄濃度は0.02〜0.04質量%であった。脱硫処理前の溶銑温度は、1320〜1450℃であり、脱硫剤としては、CaOを主成分とする脱硫剤を使用し、脱酸源としては、金属Alを50質量%程度含有するアルミドロスの粉末を用いた。   The hot metal discharged from the blast furnace is subjected to two desiliconization treatments between the blast furnace casting floor and the hot metal ladle after receiving, and then transported to the mechanical stirring type desulfurization apparatus shown in FIG. Carried out. The composition of the hot metal used was carbon: 4.0 to 4.6% by mass, silicon: 0.05 to 0.15% by mass, Mn: 0.10 to 0.15% by mass, phosphorus: 0.10 to 0 The sulfur concentration before the desulfurization treatment was 0.02 to 0.04 mass%. The hot metal temperature before desulfurization treatment is 1320 to 1450 ° C., a desulfurization agent mainly composed of CaO is used as a desulfurization agent, and a deoxidation source is aluminum dross containing about 50% by mass of metal Al. Powder was used.

直径の異なる耐火物製の攪拌羽根を種々用い、溶銑に浸漬させた後、回転させて溶銑に渦を形成させた。その後、脱硫剤を脱硫処理前の硫黄濃度に応じて5〜10kg/t添加し、10分間の脱硫処理を実施した。その際に、攪拌羽根の回転数Fと攪拌羽根の直径Rとの積(F×R)を130〜260rpm・mの範囲で変更した。   Various refractory stirring blades having different diameters were used and immersed in the hot metal, and then rotated to form a vortex in the hot metal. Thereafter, 5 to 10 kg / t of a desulfurizing agent was added according to the sulfur concentration before the desulfurization treatment, and the desulfurization treatment was performed for 10 minutes. At that time, the product (F × R) of the rotation speed F of the stirring blade and the diameter R of the stirring blade was changed in the range of 130 to 260 rpm · m.

脱硫処理の結果、積(F×R)が130、160、190、210、240、260rpm・mにおいて、脱硫率は、それぞれ、8%、9%、11%、15%、16%、21%となり、積(F×R)の増加に伴って脱硫効率が向上することが確認できた。特に、積(F×R)が200rpm・m以上の場合に脱硫効率が高く、積(F×R)が250rpm・m以上の場合に更なる脱硫効率の向上が確認できた。   As a result of the desulfurization treatment, when the product (F × R) is 130, 160, 190, 210, 240, and 260 rpm · m, the desulfurization rates are 8%, 9%, 11%, 15%, 16%, and 21%, respectively. Thus, it was confirmed that the desulfurization efficiency was improved as the product (F × R) increased. In particular, desulfurization efficiency was high when the product (F × R) was 200 rpm · m or more, and further improvement of desulfurization efficiency was confirmed when the product (F × R) was 250 rpm · m or more.

本発明が適用される機械式攪拌型脱硫装置の1例を示す概略断面図である。It is a schematic sectional drawing which shows one example of the mechanical stirring type desulfurization apparatus with which this invention is applied.

符号の説明Explanation of symbols

1 台車
2 溶銑鍋
3 溶銑
4 攪拌羽根
5 上吹きランス
6 投入口
7 脱硫剤
8 脱酸源
9 ホッパー
10 ロータリーフィーダー
11 ホッパー
12 ロータリーフィーダー
13 ホッパー
14 切出装置
15 ホッパー
16 切出装置
DESCRIPTION OF SYMBOLS 1 Bogie 2 Hot metal ladle 3 Hot metal 4 Stir blade 5 Top blowing lance 6 Input port 7 Desulfurization agent 8 Deoxidation source 9 Hopper 10 Rotary feeder 11 Hopper 12 Rotary feeder 13 Hopper 14 Cutting device 15 Hopper 16 Cutting device

Claims (6)

攪拌羽根を備えた機械式攪拌装置を用い、攪拌羽根を回転させて溶融鉄と精錬用フラックスとを攪拌混合して溶融鉄を精錬するに際し、前記攪拌羽根の回転数と攪拌羽根の直径とが下記の(1)式の関係を満たすことを特徴とする、溶融鉄の精錬方法。
F×R>200 …(1)
但し、(1)式において、Fは、攪拌羽根の回転数(rpm)、Rは、攪拌羽根の直径(m)である。
When refining molten iron by stirring and mixing the molten iron and the refining flux using a mechanical stirring device equipped with a stirring blade, the rotation speed of the stirring blade and the diameter of the stirring blade are A method for refining molten iron, characterized by satisfying the relationship of the following formula (1).
F × R> 200 (1)
However, in Formula (1), F is the rotation speed (rpm) of a stirring blade, R is the diameter (m) of a stirring blade.
前記精錬用フラックスは、CaOを主成分とする精錬用フラックスであることを特徴とする、請求項1に記載の溶融鉄の精錬方法。   The method for refining molten iron according to claim 1, wherein the refining flux is a refining flux mainly composed of CaO. 前記精錬用フラックスは、フッ素含有量が1質量%以下であることを特徴とする、請求項2に記載の溶融鉄の精錬方法。   The method for refining molten iron according to claim 2, wherein the refining flux has a fluorine content of 1% by mass or less. 精錬中、攪拌羽根が回転している期間の50%以上の期間で、攪拌羽根の回転数と攪拌羽根の直径とが(1)式の関係を満たすことを特徴とする、請求項1ないし請求項3の何れか1つに記載の溶融鉄の精錬方法。   2. The refining, wherein the number of rotations of the stirring blade and the diameter of the stirring blade satisfy the relationship of the formula (1) for a period of 50% or more of the period during which the stirring blade is rotating. Item 4. The method for refining molten iron according to any one of Items 3. 精錬開始時の攪拌羽根の回転開始から少なくとも5分間が経過するまでは、攪拌羽根の回転数と攪拌羽根の直径とが(1)式の関係を満たすことを特徴とする、請求項1ないし請求項4の何れか1つに記載の溶融鉄の精錬方法。   The rotation speed of the stirring blade and the diameter of the stirring blade satisfy the relationship of the expression (1) until at least 5 minutes have elapsed from the start of rotation of the stirring blade at the start of refining. Item 5. The method for refining molten iron according to any one of Items 4 to 5. 前記溶融鉄が溶銑であり、前記精錬が脱硫処理であることを特徴とする、請求項1ないし請求項5の何れか1つに記載の溶融鉄の精錬方法。   The method for refining molten iron according to any one of claims 1 to 5, wherein the molten iron is hot metal, and the refining is a desulfurization treatment.
JP2006160724A 2006-06-09 2006-06-09 Method for refining molten iron Active JP5130663B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006160724A JP5130663B2 (en) 2006-06-09 2006-06-09 Method for refining molten iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006160724A JP5130663B2 (en) 2006-06-09 2006-06-09 Method for refining molten iron

Publications (2)

Publication Number Publication Date
JP2007327120A true JP2007327120A (en) 2007-12-20
JP5130663B2 JP5130663B2 (en) 2013-01-30

Family

ID=38927776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006160724A Active JP5130663B2 (en) 2006-06-09 2006-06-09 Method for refining molten iron

Country Status (1)

Country Link
JP (1) JP5130663B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009191288A (en) * 2008-02-12 2009-08-27 Jfe Steel Corp Apparatus and method for supplying desulfurizing agent into molten iron
JP2010132989A (en) * 2008-12-05 2010-06-17 Sumitomo Metal Ind Ltd Method for desulfurizing molten pig iron
WO2010119987A1 (en) * 2009-04-17 2010-10-21 新日本製鐵株式会社 Powder transport method
JP2017115174A (en) * 2015-12-21 2017-06-29 株式会社神戸製鋼所 Desulfurization method for molten iron
KR20180016593A (en) * 2015-07-24 2018-02-14 제이에프이 스틸 가부시키가이샤 Desulfurizing agent, method for desulfurizing molten iron and method for producing molten iron

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61166908A (en) * 1985-01-17 1986-07-28 Nippon Steel Corp Method for desulfurizing molten pig iron
JP2000001711A (en) * 1998-06-17 2000-01-07 Kawasaki Heavy Ind Ltd Desulfurization of molten iron and desulfurizing device
JP2001049319A (en) * 1999-08-11 2001-02-20 Kawasaki Steel Corp Method for desulfurizing molten iron
JP2001220620A (en) * 2000-02-08 2001-08-14 Kawasaki Steel Corp Method for stirring molten metal by impeller
JP2005248282A (en) * 2004-03-05 2005-09-15 Sumitomo Metal Ind Ltd Method for pretreating molten iron

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61166908A (en) * 1985-01-17 1986-07-28 Nippon Steel Corp Method for desulfurizing molten pig iron
JP2000001711A (en) * 1998-06-17 2000-01-07 Kawasaki Heavy Ind Ltd Desulfurization of molten iron and desulfurizing device
JP2001049319A (en) * 1999-08-11 2001-02-20 Kawasaki Steel Corp Method for desulfurizing molten iron
JP2001220620A (en) * 2000-02-08 2001-08-14 Kawasaki Steel Corp Method for stirring molten metal by impeller
JP2005248282A (en) * 2004-03-05 2005-09-15 Sumitomo Metal Ind Ltd Method for pretreating molten iron

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009191288A (en) * 2008-02-12 2009-08-27 Jfe Steel Corp Apparatus and method for supplying desulfurizing agent into molten iron
JP2010132989A (en) * 2008-12-05 2010-06-17 Sumitomo Metal Ind Ltd Method for desulfurizing molten pig iron
WO2010119987A1 (en) * 2009-04-17 2010-10-21 新日本製鐵株式会社 Powder transport method
CN102395690A (en) * 2009-04-17 2012-03-28 新日本制铁株式会社 Powder transport method
KR20180016593A (en) * 2015-07-24 2018-02-14 제이에프이 스틸 가부시키가이샤 Desulfurizing agent, method for desulfurizing molten iron and method for producing molten iron
KR102142198B1 (en) * 2015-07-24 2020-08-06 제이에프이 스틸 가부시키가이샤 Desulfurizing agent, method for desulfurizing molten iron and method for producing molten iron
JP2017115174A (en) * 2015-12-21 2017-06-29 株式会社神戸製鋼所 Desulfurization method for molten iron

Also Published As

Publication number Publication date
JP5130663B2 (en) 2013-01-30

Similar Documents

Publication Publication Date Title
JP4845078B2 (en) Hot metal desulfurization method
JP5130663B2 (en) Method for refining molten iron
JP2009079261A (en) Method for desulfurizing molten pig iron
JP5045031B2 (en) Hot metal desulfurization agent and desulfurization treatment method
JP4998676B2 (en) Method of stirring molten metal using impeller
JP4635672B2 (en) Method for refining molten metal
JP5177170B2 (en) Hot metal desulfurization method
JP5195737B2 (en) Hot metal desulfurization method
JP4715369B2 (en) Hot metal desulfurization treatment method
JP2007247045A (en) Method for desulfurizing molten iron
JP5074063B2 (en) Desulfurization agent and method for desulfurization of molten iron
JP4453532B2 (en) Hot metal desulfurization method
JP4998677B2 (en) Reuse method of desulfurization slag
JP3978355B2 (en) Hot metal desulfurization agent and desulfurization method
JP5066923B2 (en) Hot metal desulfurization treatment method
JP2015218390A (en) Desulfurization method of molten pig iron using combination of mechanical stirring and gas stirring
JP2008095136A (en) Metal band coated desulfurization wire, and method for desulfurizing molten iron
JP4341132B2 (en) Stirring and mixing of molten metal and additives with impeller
JP4984928B2 (en) Hot metal desulfurization method
JP5446300B2 (en) Hot metal desulfurization treatment method
JP2010116612A (en) Method for desulfurizing molten iron
JP2009299126A (en) Method for desulfurizing molten metal
JP2014177674A (en) Agitator for refinery and method of refining molten iron
JP6238019B2 (en) Hot metal desulfurization method with less recuperation
JP5418248B2 (en) Hot metal desulfurization method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120314

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120806

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121022

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5130663

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250