JP5418058B2 - Hot metal desulfurization method - Google Patents

Hot metal desulfurization method Download PDF

Info

Publication number
JP5418058B2
JP5418058B2 JP2009189784A JP2009189784A JP5418058B2 JP 5418058 B2 JP5418058 B2 JP 5418058B2 JP 2009189784 A JP2009189784 A JP 2009189784A JP 2009189784 A JP2009189784 A JP 2009189784A JP 5418058 B2 JP5418058 B2 JP 5418058B2
Authority
JP
Japan
Prior art keywords
hot metal
impeller
desulfurization
desulfurizing agent
lime
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009189784A
Other languages
Japanese (ja)
Other versions
JP2011042815A (en
Inventor
直樹 菊池
麻希 岩浅
章敏 松井
智史 大山
芳幸 田中
康夫 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009189784A priority Critical patent/JP5418058B2/en
Publication of JP2011042815A publication Critical patent/JP2011042815A/en
Application granted granted Critical
Publication of JP5418058B2 publication Critical patent/JP5418058B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

本発明は、インペラーを備えた機械攪拌式脱硫装置を用い、インペラーによって攪拌されている溶銑浴面に脱硫剤を添加して溶銑を脱硫する方法に関するものである。   The present invention relates to a method for desulfurizing hot metal by using a mechanical stirring type desulfurization apparatus equipped with an impeller and adding a desulfurizing agent to the hot metal bath surface stirred by the impeller.

近年の低硫鋼生産量の増加に伴い、溶銑段階での効率的な脱硫処理が必須となっている。溶銑の脱硫処理は、従来から、石灰(CaO)などの固体の石灰系脱硫剤を用いる方法が一般的であり、トピードカーや溶銑鍋などの溶銑搬送容器に収容された溶銑にインジェクションランスを用いて石灰系脱硫剤を吹き込み添加するインジェクション脱硫方法や、溶銑搬送容器内の溶銑にインペラー(「攪拌羽根」または「回転翼」などとも呼ぶ)を浸漬させ、回転するインペラーにより溶銑を攪拌しながら石灰系脱硫剤を上置き添加する機械攪拌式脱硫方法が行われてきた。   With the recent increase in low-sulfur steel production, efficient desulfurization treatment at the hot metal stage is essential. Conventionally, hot metal desulfurization treatment is generally performed using a solid lime-based desulfurization agent such as lime (CaO), and an injection lance is used for hot metal contained in a hot metal transfer container such as a topped car or hot metal ladle. An injection desulfurization method in which a lime-based desulfurization agent is blown and added, or an impeller (also called “stirring blade” or “rotary blade”) is immersed in the hot metal in the hot metal transfer container, and the hot metal is stirred by the rotating impeller and the lime type A mechanical stirring desulfurization method in which a desulfurizing agent is added on top has been performed.

ところで、石灰系脱硫剤の主要な構成物である石灰は溶銑に比べて比重が小さく且つ溶銑との濡れ性が悪いため、脱硫剤である石灰が溶銑中に侵入・分散しにくく、反応効率が低いという課題がある。溶銑上で浮遊する石灰は、ほとんど脱硫反応には寄与しない。そこで、インペラーを備えた機械攪拌式脱硫装置で溶銑を脱硫処理するにあたり、溶銑中への石灰の分散を促進させ、脱硫反応効率を向上させる技術が幾つか提案されている。   By the way, lime, which is the main component of the lime-based desulfurizing agent, has a specific gravity smaller than that of hot metal and poor wettability with hot metal, so that lime, which is a desulfurizing agent, does not easily penetrate and disperse in hot metal, and the reaction efficiency is high. There is a problem that it is low. Lime floating on the hot metal hardly contributes to the desulfurization reaction. Therefore, several techniques have been proposed for promoting the dispersion of lime in the hot metal and improving the desulfurization reaction efficiency when the hot metal is desulfurized with a mechanical stirring desulfurization apparatus equipped with an impeller.

例えば、特許文献1には、精錬容器内径(d)の1/10〜1/2に相当する幅のインペラー羽根を有するインペラーを溶銑に浸漬させて回転し、溶銑を撹拌する溶銑の脱硫方法において、攪拌強度を高めるべく、インペラーの回転軸を、精錬容器の中心からの距離(L)がd/20以上で、且つ精錬容器内壁にインペラー羽根が接触しない位置までの領域内で偏心させる脱硫方法が開示されている。特許文献1によれば、溶銑の攪拌が乱れて乱流となり、脱硫効率が向上するとしている。   For example, Patent Document 1 discloses a hot metal desulfurization method in which an impeller having an impeller blade having a width corresponding to 1/10 to 1/2 of the inner diameter (d) of a refining vessel is immersed in hot metal and rotated to stir the hot metal. In order to increase the stirring strength, the desulfurization method in which the rotation shaft of the impeller is decentered in a region where the distance (L) from the center of the refining vessel is d / 20 or more and the impeller blades do not contact the inner wall of the refining vessel. Is disclosed. According to Patent Document 1, stirring of the hot metal is disturbed to form a turbulent flow, and the desulfurization efficiency is improved.

特許文献2には、機械攪拌式脱硫装置を用いた溶銑の脱硫方法において、インペラーによって攪拌されている溶銑の浴面上に、脱硫剤を、上吹きランスを介して搬送用ガスとともに上吹き添加して脱硫処理を行うことが開示されている。特許文献2によれば、反応性に優れる細粒の脱硫剤を搬送用ガスとともに上吹き添加するので、添加時の飛散が少なくなり、脱硫剤の添加歩留まりが向上し、そして、細粒の脱硫剤は、反応界面積が大きく、そのため、脱硫反応が促進され、脱硫率を著しく向上させることができるとしている。   In Patent Document 2, in a hot metal desulfurization method using a mechanical stirring desulfurization apparatus, a desulfurizing agent is added together with a carrier gas through an upper blowing lance onto a hot metal bath surface stirred by an impeller. Thus, it is disclosed to perform a desulfurization treatment. According to Patent Document 2, a fine-grain desulfurization agent having excellent reactivity is added together with a carrier gas, so that scattering during addition is reduced, the addition yield of the desulfurization agent is improved, and fine-grain desulfurization is performed. The agent has a large reaction interface area, so that the desulfurization reaction is promoted and the desulfurization rate can be remarkably improved.

また、特許文献3には、インペラーによる回転攪拌中の溶銑へ成分調整剤を添加するにあたり、溶銑を機械的に攪拌して溶銑の流れを形成するとともに、この流れの中に障害物を設け、該障害物の後方に惹起される乱流中へ成分調整剤を添加する方法が提案されている。特許文献3によれば、障害物の後方には乱流が形成され、この部分に投入された合金類或いは処理剤は溶銑と直ちに混合するとしている。   In addition, in Patent Document 3, when adding a component adjusting agent to hot metal during rotary stirring by an impeller, the hot metal is mechanically stirred to form a hot metal flow, and an obstacle is provided in this flow. A method has been proposed in which a component modifier is added to the turbulent flow induced behind the obstacle. According to Patent Document 3, a turbulent flow is formed behind the obstacle, and the alloys or processing agent introduced into this portion are immediately mixed with the molten iron.

特開2001−262212号公報JP 2001-262212 A 特開2005−179690号公報JP 2005-179690 A 特開昭61−223115号公報Japanese Patent Laid-Open No. 61-223115

しかしながら、上記従来技術には以下の問題点がある。   However, the above prior art has the following problems.

特許文献1や特許文献3に開示されるように、インペラーを用いた攪拌では、精錬容器内に発生する回転定常流を乱すことによって攪拌が向上するが、インペラーの回転軸を容器径の1/20以上偏心させる特許文献1においては、電動機トルクの負荷の問題や設備の振動といった制約があり、現実的な条件とはいいがたい。また、インペラーを偏心させた場合は回転流が乱れ、この回転流の乱れに応じて脱硫剤の最適添加位置が定まると考えられるが、特許文献1は脱硫剤の最適添加位置を提示していない。また、特許文献3では、旋回する溶銑の多大な力が障害物に負荷され、障害物の寿命は極めて短く、場合によっては数回の脱硫処理で障害物そのものが消失してしまうという問題がある。つまり、障害物に関わるコストが嵩み、却って脱硫処理コストを増大させる恐れがある。   As disclosed in Patent Document 1 and Patent Document 3, in the stirring using the impeller, the stirring is improved by disturbing the steady rotating flow generated in the refining vessel. In Patent Document 1 in which the eccentricity is 20 or more, there are restrictions such as a problem of the load of the motor torque and vibration of the equipment, and it is difficult to say that it is a realistic condition. Further, when the impeller is eccentric, the rotational flow is disturbed, and it is considered that the optimum addition position of the desulfurizing agent is determined according to the disturbance of the rotational flow. However, Patent Document 1 does not present the optimum addition position of the desulfurizing agent. . Moreover, in patent document 3, the great force of the hot metal which turns is loaded on an obstruction, the lifetime of an obstruction is very short, and there exists a problem that an obstruction itself will lose | disappear by several desulfurization processes depending on the case. . In other words, the cost associated with the obstacle increases, and there is a risk that the desulfurization processing cost will increase.

特許文献2では、搬送用ガスとともに脱硫剤を上吹き添加しているが、溶銑の攪拌状況と脱硫剤添加位置との関係が明確でなく、インペラーを偏心させて強制的に回転流に乱れを生じさせた場合の最適添加位置は、特許文献2からは類推できない。   In Patent Document 2, the desulfurizing agent is added by blowing up together with the carrier gas. However, the relationship between the hot metal stirring state and the desulfurizing agent addition position is not clear, and the impeller is decentered to forcibly disturb the rotating flow. The optimum addition position when it is generated cannot be inferred from Patent Document 2.

本発明はこのような事情に鑑みてなされたもので、その目的とするところは、インペラーを備えた機械攪拌式脱硫装置を用い、インペラーを精錬容器の中心に対して偏心させ、溶銑の回転流に強制的な乱れを発生させながら溶銑を脱硫処理するにあたり、溶銑の回転流に十分な強制的乱れを確保しつつ、偏心に起因する電動機トルクの負荷を最小限に抑制するべくインペラーの偏心量を最適化すると同時に、溶銑回転流の乱れに応じて脱硫剤の添加位置を最適化し、かくして、添加した脱硫剤を溶銑中に効率良く分散させ、従来に比べて高い脱硫率で脱硫処理することのできる、溶銑の脱硫方法を提供することである。   The present invention has been made in view of such circumstances, and the object thereof is to use a mechanical stirring type desulfurization apparatus equipped with an impeller, eccentric the impeller with respect to the center of the refining vessel, and When desulfurizing the hot metal while generating forced turbulence, the amount of eccentricity of the impeller to minimize the motor torque load caused by eccentricity while ensuring sufficient forced turbulence in the hot metal rotating flow At the same time, the position of addition of the desulfurizing agent is optimized according to the disturbance of the hot metal rotating flow, and thus the added desulfurizing agent is efficiently dispersed in the hot metal and desulfurized at a higher desulfurization rate than before. It is to provide a hot metal desulfurization method.

上記課題を解決するための本発明に係る溶銑の脱硫方法は、ほぼ円形平断面の鍋型精錬容器に収容された溶銑にインペラーを浸漬させ、該インペラーの回転軸をほぼ鉛直として溶銑中で回転させ、溶銑に添加された脱硫剤と溶銑とを攪拌して溶銑を脱硫する、溶銑の脱硫方法において、前記回転軸を、前記精錬容器の内径をDとしたとき精錬容器の中心に対して半径方向にD/20未満の範囲で偏心させるとともに、粉状の脱硫剤を、インペラーの偏心方向とは反対側のインペラー羽根外周部を中心とし、半径をD/4とする円形の範囲内に、上置き添加または搬送用ガスとともに上吹き添加することを特徴とするものである。   In order to solve the above problems, the hot metal desulfurization method according to the present invention involves immersing an impeller in hot metal contained in a pan-type smelting vessel having a substantially circular flat cross section, and rotating the impeller in a hot metal with the rotation axis thereof being substantially vertical. In the hot metal desulfurization method in which the hot metal is desulfurized by stirring the desulfurizing agent and hot metal added to the hot metal, the rotary shaft has a radius with respect to the center of the refining vessel when the inner diameter of the refining vessel is D In the direction of less than D / 20 in the direction, and the powdered desulfurizing agent is centered on the outer periphery of the impeller blade opposite to the eccentric direction of the impeller, and within a circular range having a radius of D / 4, It is characterized in that the top addition or the top blowing addition is performed together with the carrier gas.

本発明によれば、インペラーの偏心量を精錬容器の内径の1/20未満とするので、電動機トルクの負荷を大幅に増加させることなく、溶銑の回転流に強制的な乱れを生じさせることが可能となり、また、この強制的な乱れに応じた最適な位置で粉状の脱硫剤を添加するので、溶銑回転流の強制的な乱れと最適添加位置との相乗効果により、添加した脱硫剤を溶銑中に効率良く分散させることが達成され、従来に比べて高い脱硫率で脱硫処理することが実現される。その結果、脱硫剤原単位の削減、これに伴う発生スラグ量の削減などが実現され、工業上有益な効果がもたらされる。   According to the present invention, since the amount of eccentricity of the impeller is less than 1/20 of the inner diameter of the smelting vessel, it is possible to cause forced turbulence in the rotating flow of the hot metal without significantly increasing the load of the motor torque. In addition, since the powdered desulfurizing agent is added at the optimum position according to this forced disturbance, the added desulfurizing agent is added by the synergistic effect of the forced disturbance of the hot metal rotating flow and the optimal addition position. Efficient dispersion in the hot metal is achieved, and desulfurization treatment is realized at a higher desulfurization rate than conventional. As a result, a reduction in the desulfurization agent basic unit and a reduction in the amount of generated slag associated therewith are realized, and an industrially beneficial effect is brought about.

本発明で使用した機械攪拌式脱硫装置の概略図である。It is the schematic of the mechanical stirring desulfurization apparatus used by this invention. 回転数とトルクとの関係を、偏心量がゼロ及び0.045×精錬容器内径の2水準で比較して示す図である。It is a figure which compares and shows the relationship between a rotation speed and a torque in two levels of the amount of eccentricity zero and 0.045x refinement | purification inner diameter. トルクと脱硫率との関係を、偏心量がゼロ及び0.045×精錬容器内径の2水準で比較して示す図である。It is a figure which compares and shows the relationship between a torque and a desulfurization rate in two levels of the amount of eccentricity zero and 0.045 * refinement | purification inner diameter. 脱硫挙動を調査するための脱硫試験における6箇所の脱硫剤の添加位置を示す溶銑鍋の概略平面図である。It is a schematic plan view of the hot metal ladle which shows the addition position of six desulfurization agents in the desulfurization test for investigating desulfurization behavior. 脱硫剤の添加位置別の脱硫率を比較して示す図である。It is a figure which compares and shows the desulfurization rate according to the addition position of a desulfurization agent.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明者らは、インペラーを有する実機の機械攪拌式脱硫装置を用い、現実的なインペラーの偏心条件を明確化するために、溶銑の脱硫処理時、インペラーの偏心量を変更して脱硫試験を実施した。図1に、脱硫試験で使用した機械攪拌式脱硫装置の概略図を示す。   In order to clarify the actual eccentric condition of the impeller, the present inventors changed the eccentric amount of the impeller and conducted a desulfurization test in order to clarify the actual eccentric condition of the impeller, using an actual mechanical stirring type desulfurization apparatus having an impeller. Carried out. FIG. 1 shows a schematic diagram of a mechanical stirring desulfurization apparatus used in the desulfurization test.

図1において、高炉から出銑された溶銑3を収容する、平断面をほぼ円形とする鍋型精錬容器としての溶銑鍋2が、台車1に搭載されて機械攪拌式脱硫装置に搬入されている。機械攪拌式脱硫装置は、溶銑鍋2に収容された溶銑3に浸漬・埋没し、旋回して溶銑3を攪拌するための耐火物製のインペラー4を備えており、このインペラー4は、昇降装置(図示せず)によってほぼ鉛直方向に昇降し、且つ、電動機を駆動源とする回転装置(図示せず)によって軸4aを回転軸として旋回するようになっている。尚、インペラー4としては、インペラー羽根を2枚以上有していればよく、インペラー4の外径d、つまりインペラー羽根の幅dは、溶銑鍋2の内径をDとすると、D/5〜D/2であればよい。   In FIG. 1, a hot metal ladle 2 as a pan-type smelting vessel having a substantially circular cross section for containing hot metal 3 discharged from a blast furnace is mounted on a carriage 1 and carried into a mechanical stirring desulfurization apparatus. . The mechanical stirring type desulfurization apparatus is equipped with a refractory impeller 4 that is immersed and buried in a hot metal 3 accommodated in a hot metal ladle 2 and swirls to stir the hot metal 3. The impeller 4 is an elevator device. (Not shown) is moved up and down in a substantially vertical direction, and is rotated about a shaft 4a as a rotation axis by a rotating device (not shown) using an electric motor as a drive source. The impeller 4 only needs to have two or more impeller blades. The outer diameter d of the impeller 4, that is, the width d of the impeller blades is D / 5 to D, where the inner diameter of the hot metal ladle 2 is D. / 2 is sufficient.

また、機械攪拌式脱硫装置には、石灰系脱硫剤7を溶銑鍋2に収容された溶銑3に向けて上吹きして添加するための上吹きランス5が設置されている。上吹きランス5は、粉体状の石灰系脱硫剤7を収容するディスペンサー8とディスペンサー8から定量切り出すための切り出し装置9とからなる供給装置と接続しており、上吹きランス5から、粉体状の石灰系脱硫剤7を搬送用ガスとともに任意のタイミングで供給できる構造になっている。搬送用ガスとしては、還元性のガス、不活性ガスまたは非酸化性のガスを使用する。尚、この機械攪拌式脱硫装置では、石灰系脱硫剤7を上吹きランス5から上吹き添加しているが、本発明は、上吹きランス5からの上吹き添加に限るものではなく、石灰系脱硫剤7を投入シュートから溶銑3に上置き添加して行う場合にも、適用することができる。   The mechanical stirring type desulfurization apparatus is provided with an upper blowing lance 5 for adding the lime-based desulfurizing agent 7 by blowing it upward toward the hot metal 3 accommodated in the hot metal pan 2. The top blowing lance 5 is connected to a supply device comprising a dispenser 8 containing the powdered lime-based desulfurizing agent 7 and a cutting device 9 for quantitatively cutting out from the dispenser 8. The lime-based desulfurizing agent 7 can be supplied at any timing together with the carrier gas. As the carrier gas, a reducing gas, an inert gas or a non-oxidizing gas is used. In this mechanical stirring type desulfurization apparatus, the lime-based desulfurization agent 7 is added by top blowing from the top blowing lance 5, but the present invention is not limited to the top blowing addition from the top blowing lance 5. The present invention can also be applied to the case where the desulfurizing agent 7 is added over the molten iron 3 from the charging chute.

溶銑鍋2の上方には、溶銑鍋2を覆う集塵フード6が備えられ、集塵フード6に取り付けられた排気ダクト(図示せず)を介して脱硫処理中の排ガスやダストが集塵機(図示せず)に吸引されるようになっている。この場合、インペラー4の軸4a及び上吹きランス5は、集塵フード6を貫通し且つ上下移動が可能なように構成されている。   Above the hot metal ladle 2, a dust collecting hood 6 is provided to cover the hot metal ladle 2, and exhaust gas and dust during the desulfurization treatment are collected through an exhaust duct (not shown) attached to the dust collecting hood 6 (see FIG. (Not shown). In this case, the shaft 4a and the upper blowing lance 5 of the impeller 4 are configured so as to penetrate the dust collection hood 6 and move up and down.

このように構成される機械攪拌式脱硫装置における溶銑3の脱硫処理は、次のようにして行われる。即ち、インペラー4の浸漬位置が溶銑鍋2の所定位置になるように、溶銑鍋2を搭載した台車1の位置を調整し、インペラー4を下降させて溶銑3に浸漬させる。インペラー4が溶銑3に浸漬したならば、電動機を駆動させてインペラー4の旋回を開始し、所定の回転数まで昇速する。インペラー4の回転数が所定の回転数に達したならば、切り出し装置9を起動させて、ディスペンサー8に収容された石灰系脱硫剤7を、上吹きランス5を介して溶銑3の浴面に向けて搬送用ガスとともに吹き付けて添加し、脱硫処理する。所定量の石灰系脱硫剤7を添加完了し、そして、所定時間の攪拌が行われたなら、インペラー4の回転を停止させ、インペラー4を上昇させて脱硫処理を終了する。   The desulfurization treatment of the hot metal 3 in the mechanical stirring desulfurization apparatus configured as described above is performed as follows. That is, the position of the carriage 1 on which the hot metal ladle 2 is mounted is adjusted so that the immersion position of the impeller 4 becomes a predetermined position of the hot metal ladle 2, and the impeller 4 is lowered and immersed in the hot metal 3. If the impeller 4 is immersed in the hot metal 3, the electric motor is driven to start the turning of the impeller 4, and the speed is increased to a predetermined number of revolutions. When the rotational speed of the impeller 4 reaches a predetermined rotational speed, the cutting device 9 is activated and the lime-based desulfurizing agent 7 accommodated in the dispenser 8 is applied to the bath surface of the hot metal 3 via the top blowing lance 5. Add it by spraying it with the carrier gas and desulfurize it. When the addition of a predetermined amount of the lime-based desulfurizing agent 7 is completed and stirring is performed for a predetermined time, the rotation of the impeller 4 is stopped, the impeller 4 is raised, and the desulfurization process is finished.

脱硫試験では、溶銑鍋2の内径Dに対し、インペラー4の軸4aの溶銑鍋2の中心に対する半径方向の偏心量ΔRを0.01×D〜0.20×Dの範囲内で変化させて攪拌し、そのときの前記電動機のトルク及び溶銑3の脱硫挙動などを調査した。石灰系脱硫剤7としては、平均粒径が100μmのCaO−20質量%Al23を使用した。表1に、脱硫処理条件を示す。 In the desulfurization test, the radial eccentricity ΔR of the shaft 4a of the impeller 4 with respect to the center of the hot metal ladle 2 is changed within the range of 0.01 × D to 0.20 × D with respect to the inner diameter D of the hot metal ladle 2. After stirring, the torque of the electric motor and the desulfurization behavior of the hot metal 3 were investigated. As the lime-based desulfurizing agent 7, CaO-20 mass% Al 2 O 3 having an average particle diameter of 100 μm was used. Table 1 shows the desulfurization treatment conditions.

Figure 0005418058
Figure 0005418058

インペラー4の偏心量ΔRが0.03×D以上の条件では、インペラー4を溶銑鍋2のほぼ中心位置に配置した従来の場合(「中心位置攪拌」と記す)に比較して、同一回転数におけるトルクが上昇しており、溶銑3の回転流に乱れが発生することが確認できた。   Under the condition that the eccentric amount ΔR of the impeller 4 is 0.03 × D or more, compared with the conventional case where the impeller 4 is disposed substantially at the center position of the hot metal ladle 2 (denoted as “center position stirring”), the same rotation speed It was confirmed that the torque in the hot metal 3 increased and the turbulent flow of the hot metal 3 was disturbed.

しかしながら、偏心量ΔRが0.05×D以上の範囲では、設備の安全性を保つ基準であるトルク値よりも更に25%以上高くなること、つまり、基準条件である中心位置攪拌の120rpm時のトルクを基準値(=1.0)としたとき、それよりも1.25倍以上のトルクとなることが分かった。また、偏心量ΔRを0.05×D以上とした状態で、インペラー4の回転数を、トルクが中心位置攪拌と同等になるように低下させた場合でも、数チャージに1回の割合で設備の振動が激しくなり、やむなく攪拌を停止する状態であった。観察の結果、これは、偏心によって発生する溶銑3の回転流が楕円形になり、流れのむらが設備と共振することに起因すると考えられた。   However, when the eccentricity ΔR is in the range of 0.05 × D or more, it is 25% or more higher than the torque value that is the standard for maintaining the safety of the equipment, that is, at the time of 120 rpm of the center position stirring that is the standard condition It was found that when the torque was set to the reference value (= 1.0), the torque was 1.25 times or more than that. Even when the rotational speed of the impeller 4 is reduced so that the torque is equivalent to the central position stirring with the eccentricity ΔR being 0.05 × D or more, the equipment is installed at a rate of once per several charges. As a result, the vibration was severe and the stirring was unavoidably stopped. As a result of observation, it was considered that this was caused by the rotating flow of the hot metal 3 generated by the eccentricity having an elliptical shape and the unevenness of the flow resonating with the equipment.

これらの結果から、長期的な操業を考えた場合、偏心量ΔRが0.05×D以上では安定的な操業が困難であることが判明し、偏心量ΔRは0.05×D未満とする必要があることが分かった。そこで、偏心量ΔRを0.045×Dの条件として、トルクと回転数、トルクと脱硫挙動との関係を詳細に調査した。   From these results, it is found that when long-term operation is considered, stable operation is difficult when the amount of eccentricity ΔR is 0.05 × D or more, and the amount of eccentricity ΔR is less than 0.05 × D. I found it necessary. Therefore, the relationship between the torque and the rotational speed, and the torque and the desulfurization behavior was investigated in detail with the eccentricity ΔR as a condition of 0.045 × D.

図2に、偏心量ΔRをゼロ(中心位置攪拌)及び0.045×Dとした条件下での、回転数とトルクとの関係を示す。図2に示すように、偏心攪拌では中心位置攪拌に比較して同一回転数でのトルクが高く、回転数依存性も異なる。また、図3に、偏心量ΔRをゼロ(中心位置攪拌)及び0.045×Dとした条件下での、トルクと脱硫率との関係を示す。ここで脱硫率とは、処理前溶銑中硫黄濃度と処理後溶銑中硫黄濃度との差の処理前溶銑中硫黄濃度に対する百分率である。図3に示すように、偏心攪拌では中心位置攪拌に比較して同一トルクでの脱硫率が高いことが分かった。   FIG. 2 shows the relationship between the rotational speed and torque under the condition that the amount of eccentricity ΔR is zero (center position agitation) and 0.045 × D. As shown in FIG. 2, in the eccentric stirring, the torque at the same rotational speed is higher than in the central position stirring, and the rotational speed dependency is also different. FIG. 3 shows the relationship between torque and desulfurization rate under the condition that the amount of eccentricity ΔR is zero (center position agitation) and 0.045 × D. Here, the desulfurization rate is a percentage of the difference between the sulfur concentration in the hot metal before treatment and the sulfur concentration in the hot metal after treatment to the sulfur concentration in the hot metal before treatment. As shown in FIG. 3, it was found that the desulfurization rate at the same torque is higher in the eccentric stirring than in the center position stirring.

即ち、偏心攪拌では、インペラー4による溶銑3の定常回転流が乱されることから、石灰系脱硫剤7の溶銑中への巻き込みが促進され、脱硫反応に有利であることが分かった。   That is, in the eccentric stirring, the steady rotating flow of the hot metal 3 by the impeller 4 is disturbed, so that the entrainment of the lime-based desulfurizing agent 7 into the hot metal is promoted, which is advantageous for the desulfurization reaction.

但し、偏心攪拌では回転する渦が溶銑鍋2の中央に存在しないことから、石灰系脱硫剤7の添加位置の最適化が必要である。そこで、偏心量ΔRを0.045×Dとした条件下で、上吹きランス5の設置位置を図4に示す6箇所の位置に変更し、脱硫剤の添加位置を変更したときの脱硫挙動を調査した。この場合、上吹きランス5を使用せずに、図4に示す6箇所の位置に投入シュートを配置し、投入シュートから石灰系脱硫剤7を上置き添加する脱硫試験も実施した。石灰系脱硫剤7の原単位は全ての試験で8kg/tとした。   However, since the rotating vortex does not exist at the center of the hot metal ladle 2 in the eccentric stirring, the addition position of the lime-based desulfurizing agent 7 needs to be optimized. Therefore, under the condition that the eccentricity ΔR is 0.045 × D, the installation position of the top blowing lance 5 is changed to the six positions shown in FIG. 4 and the desulfurization behavior when the addition position of the desulfurizing agent is changed. investigated. In this case, a desulfurization test was also conducted in which the top chute lance 5 was not used and the input chute was arranged at six positions shown in FIG. 4 and the lime-based desulfurizing agent 7 was added from the input chute. The basic unit of the lime-based desulfurizing agent 7 was 8 kg / t in all tests.

図4に示す1aの位置は、インペラー4を偏心させた側のインペラー羽根外周部と溶銑鍋内壁との中間位置、1bの位置は、インペラー4を偏心させた側のインペラー羽根外周部の位置、2aの位置は、インペラー4を偏心させた側とは反対側の溶銑鍋2の中心位置と溶銑鍋内壁との中間位置、2bの位置は、インペラー4を偏心させた側とは反対側のインペラー羽根外周部の位置、3aの位置は、インペラー4を偏心させた方向と直交する側の溶銑鍋中央と溶銑鍋内壁との中間位置、3bの位置は、インペラー4を偏心させた方向と直交する側のインペラー羽根外周部の位置である。   The position of 1a shown in FIG. 4 is an intermediate position between the outer periphery of the impeller blade on the side where the impeller 4 is eccentric and the inner wall of the hot metal ladle, and the position of 1b is the position of the outer periphery of the impeller blade on the side where the impeller 4 is eccentric, The position 2a is an intermediate position between the center position of the hot metal ladle 2 opposite to the side where the impeller 4 is eccentric and the inner wall of the hot metal ladle, and the position 2b is an impeller opposite the side where the impeller 4 is eccentric. The position of the blade outer peripheral portion, the position of 3a is an intermediate position between the center of the hot metal ladle and the inner wall of the hot metal ladle on the side orthogonal to the direction in which the impeller 4 is eccentric, and the position of 3b is orthogonal to the direction in which the impeller 4 is eccentric. It is the position of the impeller blade outer peripheral portion on the side.

各試験における脱硫率を図5に示す。図5からも明らかなように上置き添加に比較して上吹き添加の方が脱硫率は高くなるが、添加位置によっても脱硫率が変わることが分かった。また、脱硫率からみた脱硫剤の最適添加位置は、高い脱硫率が得られることから、インペラー4の偏心方向とは反対側のインペラー羽根外周部付近であることが分かった。但し、使用中のインペラー4の溶損などによる形状変化も発生することから、或る程度の範囲を考慮する必要があり、更に詳細に検討した結果、インペラー4の偏心方向とは反対側のインペラー羽根外周部を中心とし、半径をD/4とする円形の範囲内に添加すれば、高い脱硫率が得られることを確認した。   The desulfurization rate in each test is shown in FIG. As apparent from FIG. 5, the desulfurization rate is higher in the case of top blowing addition than in the case of top addition, but it has been found that the desulfurization rate varies depending on the addition position. Further, it was found that the optimum addition position of the desulfurizing agent from the viewpoint of the desulfurization rate is near the outer periphery of the impeller blade on the side opposite to the eccentric direction of the impeller 4. However, since a shape change due to melting of the impeller 4 in use also occurs, it is necessary to consider a certain range. As a result of further detailed investigation, the impeller on the side opposite to the eccentric direction of the impeller 4 It was confirmed that a high desulfurization rate could be obtained if it was added within a circular range centered on the outer periphery of the blade and having a radius of D / 4.

本発明は上記試験結果に基づきなされたもので、ほぼ円形平断面の鍋型精錬容器に収容された溶銑にインペラーを浸漬させ、該インペラーの回転軸をほぼ鉛直として溶銑中で回転させ、溶銑に添加された脱硫剤と溶銑とを攪拌して溶銑を脱硫する、溶銑の脱硫方法において、前記回転軸を、前記精錬容器の内径をDとしたとき精錬容器の中心に対して半径方向にD/20未満の範囲で偏心させるとともに、粉状の脱硫剤を、インペラーの偏心方向とは反対側のインペラー羽根外周部を中心とし、半径をD/4とする円形の範囲内に、上置き添加または搬送用ガスとともに上吹き添加することを特徴とする。   The present invention was made on the basis of the above test results, and the impeller was immersed in hot metal contained in a pan-type smelting vessel having a substantially circular flat cross section, and the impeller was rotated in the hot metal so that the rotation axis thereof was substantially vertical. In the hot metal desulfurization method in which the hot metal is desulfurized by stirring the added desulfurizing agent and hot metal, the rotary shaft is set to D / D in the radial direction with respect to the center of the refining vessel, where D is the inner diameter of the refining vessel. Eccentricity within a range of less than 20 and addition of powdery desulfurization agent in a circular range centering on the outer periphery of the impeller blades opposite to the eccentric direction of the impeller and having a radius of D / 4, or It is characterized by adding top blowing together with the carrier gas.

上吹きランス5から石灰系脱硫剤7を吹き込む際の搬送用ガスとしては、還元性のガス、不活性ガスまたは非酸化性のガスを使用する。還元性のガスとしては炭化水素ガスなどが挙げられ、不活性ガスとしてはアルゴンガスなどが挙げられ、また、非酸化性ガスとしては窒素ガスなどが挙げられる。   A reducing gas, an inert gas, or a non-oxidizing gas is used as a carrier gas when the lime-based desulfurizing agent 7 is blown from the top blowing lance 5. Examples of the reducing gas include hydrocarbon gas, examples of the inert gas include argon gas, and examples of the non-oxidizing gas include nitrogen gas.

石灰系脱硫剤7としては、石灰(CaO)を主成分とするもの、換言すれば、CaOを50質量%以上含有するものであればどのような物質であっても使用可能であり、具体的には、生石灰や石灰石などを単独で使用しても、これらにAl23やCaF2などを滓化促進剤として混合したもの、更には、ドロマイト(CaO−MgO)なども石灰系脱硫剤7として使用可能である。 As the lime-based desulfurizing agent 7, any substance can be used as long as it contains lime (CaO) as a main component, in other words, contains 50% by mass or more of CaO. For example, quick lime or limestone may be used alone or mixed with Al 2 O 3 or CaF 2 as a hatching accelerator, and dolomite (CaO-MgO) may also be used as a lime-based desulfurizing agent. 7 can be used.

以上説明したように、本発明によれば、インペラー4の偏心量ΔRを溶銑鍋2などの鍋型精錬容器の内径(D)の1/20未満とするので、電動機トルクの負荷を大幅に増加させることなく、溶銑3の回転流に強制的な乱れを生じさせることが可能となり、また、この強制的な乱れに応じた最適な位置で粉状の石灰系脱硫剤7を添加するので、溶銑回転流の強制的な乱れと最適添加位置との相乗効果により、添加した石灰系脱硫剤7を溶銑中に効率良く分散させることが達成され、従来に比べて高い脱硫率で脱硫処理することが実現される。   As described above, according to the present invention, the eccentric amount ΔR of the impeller 4 is set to be less than 1/20 of the inner diameter (D) of the pan-type refining vessel such as the hot metal ladle 2, so that the load of the motor torque is greatly increased. Therefore, forced turbulence can be generated in the rotating flow of the hot metal 3, and the powdery lime-based desulfurization agent 7 is added at an optimum position corresponding to the forced turbulence. Due to the synergistic effect of the forced disturbance of the rotating flow and the optimum addition position, it is possible to efficiently disperse the added lime-based desulfurization agent 7 in the hot metal, and desulfurization treatment can be performed at a higher desulfurization rate than before. Realized.

図1に示す機械攪拌式脱硫装置を用い、石灰系脱硫剤として、平均粒径が100μmのCaO−20質量%Al23を使用し、水準1〜4の各水準別に長期間にわたって脱硫処理(30チャージ)する試験操業を行った。各水準の操業条件を表2に示す。 Using the mechanical stirring type desulfurization apparatus shown in FIG. 1, CaO-20 mass% Al 2 O 3 having an average particle diameter of 100 μm is used as a lime-based desulfurization agent, and desulfurization treatment is performed for a long period of time for each of the levels 1 to 4. A test operation (30 charges) was performed. Table 2 shows the operating conditions at each level.

Figure 0005418058
Figure 0005418058

水準1は、インペラーを溶銑鍋のほぼ中心位置に配置し、溶銑鍋の中心と溶銑鍋側壁との中間位置に、投入シュートを介して石灰系脱硫剤を上置き添加した操業方法であり、本発明と比較するための従来例である。   Level 1 is an operation method in which an impeller is arranged at substantially the center position of the hot metal ladle, and a lime-based desulfurizing agent is added to the middle position between the hot metal ladle and the hot metal ladle side wall through a charging chute. It is the prior art example for comparing with invention.

水準2は、インペラーを偏心量ΔR=0.045×Dとして偏心させ、インペラーの偏心側とは反対側の溶銑鍋の中心位置と溶銑鍋内壁との中間位置に、投入シュートを介して石灰系脱硫剤を上置き添加した操業方法であり、本発明例である。水準3は、インペラーを偏心量ΔR=0.045×Dとして偏心させ、インペラーの偏心側とは反対側のインペラー羽根外周部の位置に、投入シュートを介して石灰系脱硫剤を上置き添加した操業方法であり、本発明例である。   Level 2 is that the impeller is decentered as an eccentric amount ΔR = 0.045 × D, and the lime system is placed through a charging chute at an intermediate position between the center position of the hot metal ladle opposite to the eccentric side of the impeller and the inner wall of the hot metal ladle. This is an operation method in which a desulfurizing agent is added on top, and is an example of the present invention. In level 3, the impeller is decentered as an eccentric amount ΔR = 0.045 × D, and a lime-based desulfurizing agent is added to the position of the outer periphery of the impeller blade on the side opposite to the eccentric side of the impeller via a charging chute. This is an operation method and is an example of the present invention.

また、水準4は、インペラーを偏心量ΔR=0.045×Dとして偏心させ、インペラーの偏心側とは反対側のインペラー羽根外周部の位置に、上吹きランスを介して石灰系脱硫剤を窒素ガスとともに上吹き添加した操業方法であり、本発明例である。各水準における脱硫処理前後の溶銑中硫黄濃度の平均値及び脱硫剤原単位を表3に示す。   In level 4, the impeller is decentered as an eccentric amount ΔR = 0.045 × D, and the lime-based desulfurizing agent is introduced into the nitrogen at the position of the outer periphery of the impeller blade opposite to the eccentric side of the impeller through the top blowing lance. This is an operation method in which top blowing is added together with gas, and is an example of the present invention. Table 3 shows the average value of sulfur concentration in the hot metal before and after the desulfurization treatment and the desulfurizing agent basic unit at each level.

Figure 0005418058
Figure 0005418058

水準2では、水準1に比較して、脱硫剤の原単位が同一であるにもかかわらず、処理後の溶銑中硫黄濃度は大幅に低下した。また、脱硫剤添加位置を最も好ましい位置とした水準3では、少ない脱硫剤原単位で水準2と同等の低硫化が達成された。また更に、水準4では、上吹きランスを用いて脱硫剤を上吹き添加したことにより、水準3よりも更に少ない脱硫剤原単位での低硫化が実現された。   In level 2, compared with level 1, although the basic unit of the desulfurizing agent was the same, the sulfur concentration in the hot metal after the treatment was greatly reduced. Further, at level 3 where the desulfurizing agent addition position was the most preferable position, low sulfurization equivalent to level 2 was achieved with a small amount of desulfurizing agent basic unit. Furthermore, at level 4, by adding the desulfurization agent by top blowing using the top blowing lance, low sulfidation with a lower desulfurization agent basic unit than level 3 was realized.

1 台車
2 溶銑鍋
3 溶銑
4 インペラー
5 上吹きランス
6 集塵フード
7 石灰系脱硫剤
8 ディスペンサー
9 切り出し装置
1 cart 2 hot metal ladle 3 hot metal 4 impeller 5 top blowing lance 6 dust collecting hood 7 lime-based desulfurizing agent 8 dispenser 9 cutting device

Claims (1)

ほぼ円形平断面の鍋型精錬容器に収容された溶銑にインペラーを浸漬させ、該インペラーの回転軸をほぼ鉛直として溶銑中で回転させ、溶銑に添加された脱硫剤と溶銑とを攪拌して溶銑を脱硫する、溶銑の脱硫方法において、前記回転軸を、前記精錬容器の内径をDとしたとき精錬容器の中心に対して半径方向に0.03×D以上0.05×D未満の範囲で偏心させるとともに、粉状の脱硫剤を、インペラーの偏心方向とは反対側のインペラー羽根外周部を中心とし、半径をD/4とする円形の範囲内の、攪拌されている溶銑の浴面に、上置き添加または搬送用ガスとともに上吹き添加することを特徴とする、溶銑の脱硫方法。 The impeller is immersed in the hot metal contained in a pan-type smelting vessel having a substantially circular flat cross section, and the impeller is rotated in the hot metal with the rotation axis of the impeller almost vertical, and the desulfurizing agent and hot metal added to the hot metal are stirred to form the hot metal. In the hot metal desulfurization method, when the inner diameter of the refining vessel is D, the rotational axis is in the range of 0.03 × D or more and less than 0.05 × D in the radial direction with respect to the center of the refining vessel. While decentering, the powdered desulfurizing agent is applied to the agitated hot metal bath surface in a circular range having a radius of D / 4 centered on the outer periphery of the impeller blade opposite to the direction of eccentricity of the impeller. The hot metal desulfurization method, wherein the addition is carried out or the top blowing is added together with the conveying gas.
JP2009189784A 2009-08-19 2009-08-19 Hot metal desulfurization method Active JP5418058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009189784A JP5418058B2 (en) 2009-08-19 2009-08-19 Hot metal desulfurization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009189784A JP5418058B2 (en) 2009-08-19 2009-08-19 Hot metal desulfurization method

Publications (2)

Publication Number Publication Date
JP2011042815A JP2011042815A (en) 2011-03-03
JP5418058B2 true JP5418058B2 (en) 2014-02-19

Family

ID=43830444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009189784A Active JP5418058B2 (en) 2009-08-19 2009-08-19 Hot metal desulfurization method

Country Status (1)

Country Link
JP (1) JP5418058B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014013707A1 (en) * 2012-07-20 2014-01-23 Jfeスチール株式会社 Molten iron preliminary treatment method and stirrer for molten iron preliminary treatment
JP6119954B2 (en) * 2012-08-30 2017-04-26 Jfeスチール株式会社 Hot metal desulfurization treatment method
JP6489109B2 (en) * 2015-12-21 2019-03-27 Jfeスチール株式会社 Molten metal stirring method, stirring device, desulfurization method and desulfurization device
CN111944941A (en) * 2020-07-10 2020-11-17 湖南华菱涟源钢铁有限公司 KR desulfurization method and KR desulfurization equipment
CN113033961B (en) * 2021-03-01 2022-07-19 浙江浙能技术研究院有限公司 Economic evaluation method of desulfurization synergist

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001262212A (en) * 2000-03-23 2001-09-26 Kawasaki Steel Corp Method for desulfurizing molten iron and desulfurizing device
JP4845078B2 (en) * 2003-12-16 2011-12-28 Jfeスチール株式会社 Hot metal desulfurization method
JP4961787B2 (en) * 2006-03-20 2012-06-27 Jfeスチール株式会社 Hot metal desulfurization method
JP5252670B2 (en) * 2007-11-07 2013-07-31 日新製鋼株式会社 Molten metal stirring impeller and molten metal stirring apparatus including the impeller

Also Published As

Publication number Publication date
JP2011042815A (en) 2011-03-03

Similar Documents

Publication Publication Date Title
JP5195833B2 (en) Hot metal desulfurization method
JP5862738B2 (en) Refining vessel for hot metal desulfurization treatment
JP5418058B2 (en) Hot metal desulfurization method
JP4998676B2 (en) Method of stirring molten metal using impeller
JP5195737B2 (en) Hot metal desulfurization method
JP4715369B2 (en) Hot metal desulfurization treatment method
JP2007247045A (en) Method for desulfurizing molten iron
JP2015218390A (en) Desulfurization method of molten pig iron using combination of mechanical stirring and gas stirring
JP6119954B2 (en) Hot metal desulfurization treatment method
JP5401938B2 (en) Hot metal desulfurization method
JP5358987B2 (en) Impeller of mechanical stirring desulfurization equipment
JP5458499B2 (en) Hot metal desulfurization treatment method
JP5446300B2 (en) Hot metal desulfurization treatment method
JP5505580B1 (en) Hot metal pretreatment method and stirring body for hot metal pretreatment
JP5906664B2 (en) Hot metal desulfurization method
JP6238019B2 (en) Hot metal desulfurization method with less recuperation
JP2014177674A (en) Agitator for refinery and method of refining molten iron
JP5418248B2 (en) Hot metal desulfurization method
JP3589075B2 (en) Ladle for molten metal and method for refining molten metal
JP6954246B2 (en) Desulfurization method of hot metal
JP5609081B2 (en) Hot metal desulfurization method
JP2003147423A (en) Method and apparatus for refining molten metal in vessel
JP5617195B2 (en) Hot metal desulfurization method
JP5949637B2 (en) Method for preventing hot metal after desulphurization
JP6052436B2 (en) Method for preventing hot metal after desulphurization

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131104

R150 Certificate of patent or registration of utility model

Ref document number: 5418058

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250