JP5458499B2 - Hot metal desulfurization treatment method - Google Patents

Hot metal desulfurization treatment method Download PDF

Info

Publication number
JP5458499B2
JP5458499B2 JP2008031198A JP2008031198A JP5458499B2 JP 5458499 B2 JP5458499 B2 JP 5458499B2 JP 2008031198 A JP2008031198 A JP 2008031198A JP 2008031198 A JP2008031198 A JP 2008031198A JP 5458499 B2 JP5458499 B2 JP 5458499B2
Authority
JP
Japan
Prior art keywords
desulfurization
hot metal
cao
added
agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008031198A
Other languages
Japanese (ja)
Other versions
JP2009191300A (en
Inventor
智史 大山
祥規 井上
芳幸 田中
智生 井澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008031198A priority Critical patent/JP5458499B2/en
Publication of JP2009191300A publication Critical patent/JP2009191300A/en
Application granted granted Critical
Publication of JP5458499B2 publication Critical patent/JP5458499B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、機械攪拌式脱硫装置を用いて溶銑を脱硫処理する方法に関し、詳しくは、脱硫剤の凝集を防止して、高い脱硫反応効率で脱硫することのできる脱硫処理方法に関するものである。   The present invention relates to a method for desulfurizing hot metal using a mechanical stirring type desulfurization apparatus, and more particularly to a desulfurization method capable of preventing aggregation of a desulfurizing agent and desulfurizing with high desulfurization reaction efficiency.

高炉で溶製される溶銑から鋼を製造するにあたり、高炉から出銑された溶銑には、鋼の品質に悪影響を及ぼす硫黄(S)が0.04〜0.05質量%程度の高濃度で含まれており、しかも、次工程の転炉精錬工程では、酸化精錬による不純物の除去を目的としていることから、主として還元反応により除去される硫黄の除去は期待できず、そこで、他の含有成分などの影響から脱硫しやすい溶銑の段階において、要求される品質に応じて、種々の方法によって溶銑の予備脱硫処理が行われている。   When manufacturing steel from hot metal melted in a blast furnace, the hot metal discharged from the blast furnace has a high concentration of sulfur (S), which has an adverse effect on the quality of the steel, of about 0.04 to 0.05 mass%. In addition, in the converter refining process of the next process, the purpose is to remove impurities by oxidation refining, so removal of sulfur mainly removed by reduction reaction cannot be expected. In the hot metal stage where it is easy to desulfurize due to the influences of the above, the hot metal is preliminarily desulfurized by various methods according to the required quality.

この予備脱硫処理は、Arガスなどの不活性ガスを溶銑中へ吹き込んで溶銑を攪拌しながら脱硫剤を搬送用ガスとともに溶銑中に吹込み添加する方法や、溶銑中に浸漬させたインペラー(「回転羽根」または「回転翼」とも呼ぶ)を回転させて溶銑を攪拌しながら脱硫剤を上置き添加して行う方法が一般的であり、特に、安価なCaO系脱硫剤を使用した場合でも高い脱硫率が得られることから、近年は機械攪拌方式による脱硫方法が主流になっている。この場合、CaO系脱硫剤としては、生石灰単独、或いは、生石灰に蛍石(CaF2)またはアルミナ(Al23)を加えたものが使用されている。このCaO系脱硫剤による脱硫反応は、「CaO+S→CaS+O」に示される反応式に基づいて進行する。尚、機械攪拌方式による脱硫装置を機械攪拌式脱硫装置と呼んでいる。 This preliminary desulfurization treatment may be carried out by blowing an inert gas such as Ar gas into the hot metal and stirring the hot metal to add the desulfurization agent into the hot metal with the carrier gas, or by impellers immersed in the hot metal (" The method is generally carried out by adding a desulfurization agent while stirring the hot metal by rotating the rotary blade or the “rotary blade”, and is particularly high even when an inexpensive CaO-based desulfurization agent is used. Since a desulfurization rate can be obtained, a desulfurization method using a mechanical stirring method has become the mainstream in recent years. In this case, as the CaO-based desulfurization agent, quick lime alone or a mixture obtained by adding fluorite (CaF 2 ) or alumina (Al 2 O 3 ) to quick lime is used. The desulfurization reaction by the CaO-based desulfurization agent proceeds based on the reaction formula shown by “CaO + S → CaS + O”. Incidentally, a desulfurization apparatus using a mechanical stirring method is called a mechanical stirring desulfurization apparatus.

しかしながら、機械攪拌式脱硫装置における脱硫処理で使用されるCaO系脱硫剤は、集塵機に吸引されたり、周囲に飛散したりすることを防止するために、0.5〜2mm程度の粒子状として使用される。また、CaOの融点は2000℃を超える高温であることから溶銑中では溶融せず、溶銑中硫黄との反応は、粒子状CaO系脱硫剤の表面のみで起こり、CaO系脱硫剤の内部は脱硫反応に寄与しない。また更に、CaO系脱硫剤は、溶銑との濡れ性が悪く、溶銑中へ巻き込まれにくい上に、溶銑浴上へ添加されたCaO系脱硫剤が、強攪拌されている溶銑の浴表面または浴中で凝集してしまい、反応界面積はより一層低下する。   However, the CaO-based desulfurization agent used in the desulfurization process in the mechanical stirring desulfurization apparatus is used as particles of about 0.5 to 2 mm in order to prevent it from being sucked into the dust collector or scattered around. Is done. In addition, since the melting point of CaO is a high temperature exceeding 2000 ° C., it does not melt in the hot metal, and the reaction with sulfur in the hot metal occurs only on the surface of the particulate CaO-based desulfurizing agent, and the inside of the CaO-based desulfurizing agent is desulfurized. Does not contribute to the reaction. Furthermore, the CaO-based desulfurizing agent has poor wettability with hot metal and is difficult to get caught in the hot metal, and the CaO-based desulfurizing agent added onto the hot metal bath is strongly stirred or the bath surface or bath of hot metal. It aggregates in the inside, and the reaction interface area further decreases.

このために、CaO系脱硫剤の脱硫反応効率は、7%程度と低いのが現状である。ここで、脱硫反応効率とは、脱硫剤として添加したCaOの質量に対する脱硫反応に寄与したCaOの質量の比率であり、従って、添加されるCaO系脱硫剤中のCaOの90%以上は脱硫反応に寄与しないことを示している。   For this reason, the desulfurization reaction efficiency of the CaO-based desulfurization agent is currently as low as about 7%. Here, the desulfurization reaction efficiency is a ratio of the mass of CaO that contributed to the desulfurization reaction to the mass of CaO added as a desulfurization agent. Therefore, 90% or more of CaO in the added CaO-based desulfurization agent is desulfurization reaction. It does not contribute to.

そこで、CaO系脱硫剤の脱硫反応効率を高める技術が多数提案されている。例えば、特許文献1には、インペラーを低速回転させながら上方から溶銑面に近づけ、インペラーが溶銑中に浸漬したときからインペラーの回転速度を上げて溶銑上のスラグを処理容器の外周寄りに振り分け、その状態で容器中央部付近に露出する溶銑面上にCaO系脱硫剤を投入し、投入したCaO系脱硫剤と溶銑とを、全体が溶銑中に漬かった位置で高速回転させるインペラーによって撹拌する脱硫方法が提案されている。特許文献1によれば、CaO系脱硫剤は露出した溶銑浴面上に添加されるので、CaO系脱硫剤の全量が直ちに溶銑と接触し反応するので、短時間で十分に脱硫できるとしている。   Therefore, many techniques for increasing the desulfurization reaction efficiency of CaO-based desulfurization agents have been proposed. For example, in Patent Document 1, the impeller approaches the hot metal surface from above while rotating at a low speed, and when the impeller is immersed in the hot metal, the rotational speed of the impeller is increased and the slag on the hot metal is distributed closer to the outer periphery of the processing vessel, In this state, a CaO-based desulfurizing agent is put on the hot metal surface exposed near the center of the container, and the added CaO-based desulfurizing agent and hot metal are stirred by an impeller that rotates at a high speed at a position where the whole is immersed in the hot metal. A method has been proposed. According to Patent Document 1, since the CaO-based desulfurizing agent is added onto the exposed hot metal bath surface, the entire amount of the CaO-based desulfurizing agent immediately comes into contact with the hot metal and reacts, so that it can be sufficiently desulfurized in a short time.

特許文献2には、粉状のCaO系脱硫剤を、インペラー軸の側壁に設けた吹込み孔から溶銑中に略水平方向に向けて吹き込んで脱硫する方法が提案されている。特許文献2によれば、略水平方向に向けて吹き込むことにより、インペラーの下方に形成されるガス溜りに捕捉されるCaO系脱硫剤は大幅に減少し、CaO系脱硫剤の凝集が抑制されて、溶銑中に効率的に分散されるとしている。   Patent Document 2 proposes a method for desulfurizing a powdered CaO-based desulfurizing agent by blowing it in a substantially horizontal direction into a hot metal from a blowing hole provided in a side wall of an impeller shaft. According to Patent Document 2, by blowing in a substantially horizontal direction, the CaO-based desulfurizing agent trapped in the gas reservoir formed below the impeller is greatly reduced, and aggregation of the CaO-based desulfurizing agent is suppressed. It is said that it is efficiently dispersed in the hot metal.

また、特許文献3には、機械攪拌式脱硫装置を用いて溶銑を脱硫処理するに際し、インペラーによって攪拌されている溶銑に、鉄系シース材でCaO系脱硫剤を被覆した鉄被覆脱硫用ワイヤーを供給して脱硫処理する方法が提案されている。特許文献3によれば、超微粒のCaO系脱硫剤であっても添加時の飛散が無く、脱硫剤の添加歩留まりが向上し、そして、添加された脱硫剤は溶銑と強攪拌されるので、脱硫反応界面積が増加して脱硫反応が促進され、脱硫反応効率を向上させることができるとしている。
特開2000−1710号公報 特開2006−28615号公報 特開2007−247045号公報
Further, in Patent Document 3, when hot metal is desulfurized using a mechanical stirring desulfurization apparatus, an iron-coated desulfurization wire in which a CaO-based desulfurization agent is coated with an iron-based sheath material on the hot metal stirred by an impeller. A method of supplying and desulfurizing has been proposed. According to Patent Document 3, even when an ultrafine CaO-based desulfurization agent is added, there is no scattering at the time of addition, the addition yield of the desulfurization agent is improved, and the added desulfurization agent is vigorously stirred with hot metal, The desulfurization reaction interfacial area is increased to promote the desulfurization reaction, and the desulfurization reaction efficiency can be improved.
JP 2000-1710 A JP 2006-28615 A JP 2007-247045 A

上記特許文献1〜3によって、溶銑の脱硫処理は迅速化された。しかしながら、上記特許文献1〜3には以下の問題点がある。即ち、上記特許文献1〜3の方法を採用しても、溶銑上へのCaO系脱硫剤の添加後、2分間程度経過すると、脱硫反応効率は低下してしまい、改善効果は持続しないという点である。   According to the above Patent Documents 1 to 3, the hot metal desulfurization treatment has been speeded up. However, Patent Documents 1 to 3 have the following problems. That is, even if the methods of Patent Documents 1 to 3 are adopted, the desulfurization reaction efficiency is lowered after about 2 minutes after the addition of the CaO-based desulfurization agent on the hot metal, and the improvement effect is not sustained. It is.

また、本発明者等の試験結果によれば、1回あたりのCaO系脱硫剤の投入量が多くなると、投入したCaO系脱硫剤のうちで凝集するものの比率が高くなることが確認されており、この現象に則して上記特許文献1〜3を検証すると、上記特許文献1〜3の方法では、必要とするCaO系脱硫剤の全量を、一括投入するまたは連続して投入しており、凝集するCaO系脱硫剤が多くなり、反応界面積が減少して脱硫反応効率の低下を招く虞が極めて高いという点である。   In addition, according to the test results of the present inventors, it has been confirmed that when the amount of CaO-based desulfurizing agent added per time increases, the proportion of the aggregated CaO-based desulfurizing agent increases. In addition, when the above Patent Documents 1 to 3 are verified in accordance with this phenomenon, in the method of the above Patent Documents 1 to 3, the entire amount of the required CaO-based desulfurizing agent is charged all at once or continuously, The agglomeration of CaO-based desulfurizing agent increases, and the reaction interface area is reduced, and there is a high possibility that the desulfurization reaction efficiency is lowered.

また更に、特許文献2では、インペラーに吹込み孔を設置する必要があり、特許文献3では、鉄被覆脱硫用ワイヤーを供給するための装置が必要であり、両者ともに従来の機械攪拌式脱硫装置に新たな装置を追加しなければならず、新たな設備改造費用が必要であるという問題点もある。   Furthermore, in Patent Document 2, it is necessary to install a blow hole in the impeller, and in Patent Document 3, an apparatus for supplying iron-coated desulfurization wire is required, both of which are conventional mechanical stirring desulfurization apparatuses. In addition, there is a problem that a new device must be added to the equipment, and a new equipment modification cost is required.

本発明は上記事情に鑑みてなされたもので、その目的とするところは、機械攪拌式脱硫装置を用いて溶銑を脱硫処理するに際し、新たな設備改造費用を必要とせずに、従来に比べて脱硫反応効率を高めることができ、溶銑を効率良く脱硫処理する方法を提供することである。   The present invention has been made in view of the above circumstances, and its object is to desulfurize hot metal using a mechanical stirring type desulfurization apparatus, without requiring a new equipment remodeling cost, compared with the conventional case. A desulfurization reaction efficiency can be increased, and a method for efficiently desulfurizing hot metal is provided.

本発明者等は、上記課題を解決するべく鋭意検討・研究を実施した。その結果、インペラーで攪拌されている溶銑上にCaO系脱硫剤を添加して2分間程度経過すると、CaO系脱硫剤の脱硫反応効率は、添加当初は高いものの、一定値に収束することが分かった。また、脱硫処理に必要な量のCaO系脱硫剤を一括投入すると、凝集するCaO系脱硫剤の比率が高くなって、脱硫反応効率を高める上で不利であり、分割添加する必要のあることが分かった。また更に、分割添加する場合にも、添加する間隔を2分間以内にすると凝集する比率が高くなることも分かった。   The present inventors have conducted intensive studies and studies to solve the above problems. As a result, it was found that when about 2 minutes have passed after adding the CaO-based desulfurizing agent on the hot metal stirred by the impeller, the desulfurization reaction efficiency of the CaO-based desulfurizing agent is high at the beginning of addition, but converges to a constant value. It was. Moreover, if the amount of CaO-based desulfurizing agent necessary for the desulfurization treatment is added all at once, the ratio of the CaO-based desulfurizing agent to be agglomerated increases, which is disadvantageous in increasing the desulfurization reaction efficiency, and it may be necessary to add in portions. I understood. Furthermore, it was also found that, even in the case of divided addition, if the addition interval is within 2 minutes, the rate of aggregation increases.

本発明は、上記検討結果に基づいてなされたものであり、第1の発明に係る溶銑の脱硫処理方法は、CaO系脱硫剤を使用して機械攪拌式脱硫装置で溶銑を脱硫処理するに際し、インペラーによって攪拌されている溶銑に、CaO系脱硫剤を、3段階以上に分割し且つ3分間以上の間隔を隔てて、上置き添加することを特徴とするものである。   The present invention has been made based on the above examination results, and the hot metal desulfurization treatment method according to the first aspect of the present invention uses a CaO-based desulfurizing agent to desulfurize hot metal with a mechanical stirring desulfurization apparatus. The hot metal being stirred by the impeller is characterized in that the CaO-based desulfurizing agent is added to the hot metal in three stages or more and separated by an interval of 3 minutes or more.

第2の発明に係る溶銑の脱硫処理方法は、第1の発明において、CaO系脱硫剤の各段階での添加量を、直前の段階での添加量に対して同等かまたは同等未満とし、全体的には脱硫処理時間の経過に伴って少なくなるように設定することを特徴とするものである。   The hot metal desulfurization treatment method according to the second invention is the first invention, wherein the addition amount of the CaO-based desulfurization agent at each stage is equal to or less than the addition amount at the immediately preceding stage. Specifically, it is set so as to decrease as the desulfurization treatment time elapses.

本発明によれば、脱硫処理に必要な量のCaO系脱硫剤を、3段階以上に分割し且つ3分間以上の間隔を隔てて添加するので、脱硫剤添加直後の脱硫反応効率の高い時期を従来に比較して3倍以上の長時間にわたって得ることができるとともに、各段階における添加量が少ないことからCaO系脱硫剤の凝集が抑制され、添加されたCaO系脱硫剤は、凝集することなく迅速に溶銑中に巻き込まれて溶銑と反応するので、脱硫反応界面積が増加して脱硫反応が促進され、その結果、脱硫反応効率が従来に比較して向上し、効率良く脱硫処理することが達成される。   According to the present invention, the amount of CaO-based desulfurization agent necessary for the desulfurization treatment is added in three or more stages and added at intervals of 3 minutes or more. It can be obtained over 3 times longer than before, and since the addition amount in each stage is small, aggregation of the CaO-based desulfurization agent is suppressed, and the added CaO-based desulfurization agent does not aggregate Since it is quickly involved in the hot metal and reacts with the hot metal, the desulfurization reaction interfacial area increases and the desulfurization reaction is promoted. As a result, the desulfurization reaction efficiency is improved compared to the conventional method, and the desulfurization treatment can be performed efficiently. Achieved.

以下、添付図面を参照して本発明を具体的に説明する。図1は、本発明による脱硫処理を実施する際に使用した機械攪拌式脱硫装置の概略側断面図であり、図1では、溶銑を収容する処理容器として取鍋型の溶銑鍋を使用した例を示している。処理容器の形状については、インペラーによる溶銑の旋回・攪拌が得られやすいことから、水平断面形状が円形であることが好ましく、従って、処理容器としては、取鍋型の溶銑鍋や転炉装入鍋などが好適である。以下、処理容器として溶銑鍋を使用した例で説明する。   Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a schematic cross-sectional side view of a mechanical stirring type desulfurization apparatus used when carrying out a desulfurization treatment according to the present invention. In FIG. 1, an example in which a ladle type hot metal ladle is used as a treatment container for containing hot metal. Is shown. As for the shape of the processing vessel, it is preferable that the horizontal cross-sectional shape is circular because the hot metal can be swirled and stirred by the impeller. Therefore, as the processing vessel, a ladle type hot metal ladle or a converter is charged. A pan or the like is preferred. Hereinafter, an example in which a hot metal ladle is used as the processing container will be described.

高炉から出銑された溶銑3を台車1に搭載された溶銑鍋2で受銑するか、或いは、トーピードカーで受銑した溶銑3を、トーピードカーから溶銑鍋2に移し、高炉から出銑された溶銑3を機械攪拌式脱硫装置に搬送する。尚、本発明において脱硫処理の対象となる溶銑3は、どのような成分であっても構わず、例えば、予め脱珪処理や脱燐処理が施されていてもよい。脱珪処理とは、脱燐処理を効率良く行うために脱燐処理に先立ち、溶銑3に酸素ガスや鉄鉱石などの酸素源を添加して、主に溶銑中の珪素(Si)を除去する処理であり、脱燐処理とは、溶銑3に酸素ガスや鉄鉱石などの酸素源を添加するとともに、生成するP25を吸収するための脱燐用フラックスとしての生石灰(CaO)を添加して、主に溶銑中の燐(P)を除去する処理である。脱硫処理前に脱珪処理や脱燐処理を施した場合には、脱硫処理前に、脱珪処理や脱燐処理で生成したスラグを溶銑鍋2から除去する。 The hot metal 3 discharged from the blast furnace is received by the hot metal ladle 2 mounted on the carriage 1, or the hot metal 3 received by the torpedo car is transferred from the torpedo car to the hot metal hot pot 2 and the hot metal discharged from the blast furnace. 3 is conveyed to a mechanical stirring desulfurization apparatus. In the present invention, the hot metal 3 to be subjected to desulfurization treatment may be any component, and for example, desiliconization treatment or dephosphorization treatment may be performed in advance. In the desiliconization process, in order to efficiently perform the dephosphorization process, an oxygen source such as oxygen gas or iron ore is added to the hot metal 3 prior to the dephosphorization process to mainly remove silicon (Si) in the hot metal. Dephosphorization treatment is to add oxygen source such as oxygen gas or iron ore to hot metal 3 and to add quick lime (CaO) as dephosphorization flux to absorb the generated P 2 O 5 Thus, it is a process for mainly removing phosphorus (P) in the hot metal. When the desiliconization process or the dephosphorization process is performed before the desulfurization process, the slag generated by the desiliconization process or the dephosphorization process is removed from the hot metal ladle 2 before the desulfurization process.

図1に示すように、機械攪拌式脱硫装置は、溶銑鍋2に収容された溶銑3に浸漬・埋没し、旋回して溶銑3を攪拌するための耐火物製のインペラー4を備えており、このインペラー4は、昇降装置(図示せず)によってほぼ鉛直方向に昇降し、且つ、回転装置(図示せず)によって軸4aを回転軸として旋回するようになっている。また、機械攪拌式脱硫装置には、CaO系脱硫剤6を収容するホッパー(図示せず)、及び、金属Alやアルミドロス粉末などの脱硫助剤を収容するホッパー(図示せず)が備えられており、これらのCaO系脱硫剤6及び脱硫助剤は、シュート5を介して任意のタイミングで各々独立して溶銑鍋2の内部に供給できるようになっている。また更に、溶銑鍋2の上方位置には、集塵機(図示せず)に接続する排気ダクト(図示せず)が備えられ、脱硫処理中に発生するガスやダストが排出されるようになっている。   As shown in FIG. 1, the mechanical stirring type desulfurization apparatus includes a refractory impeller 4 for immersing and burying in a hot metal 3 accommodated in a hot metal ladle 2 and turning to stir the hot metal 3. The impeller 4 is moved up and down in a substantially vertical direction by an elevating device (not shown), and is turned around a shaft 4a as a rotation axis by a rotating device (not shown). Further, the mechanical stirring type desulfurization apparatus includes a hopper (not shown) for containing the CaO-based desulfurization agent 6 and a hopper (not shown) for containing a desulfurization aid such as metal Al or aluminum dross powder. The CaO-based desulfurization agent 6 and the desulfurization aid can be independently supplied to the inside of the hot metal ladle 2 at arbitrary timing via the chute 5. Furthermore, an exhaust duct (not shown) connected to a dust collector (not shown) is provided at an upper position of the hot metal ladle 2, and gas and dust generated during the desulfurization process are discharged. .

ここで、脱硫助剤とは、溶銑中或いはスラグ中の酸素と優先的に反応して、溶銑及びスラグの酸素ポテンシャルを低減させ、CaO系脱硫剤6による脱硫反応を促進させるためのもので、脱硫助剤としては、主として金属Alやアルミドロス粉末が使用され、この他に、アルミニウム融液をガスでアトマイズして得られるアトマイズ粉末や、アルミニウム合金を研磨、切削する際に発生する切削粉などの他のAl源や、フェロシリコンのようなSi合金や、Mg合金なども用いることができる。脱硫助剤は、必要とする全量を脱硫処理開始時に投入してもよく、また、脱硫処理中、連続的にまたは断続的に投入してもよい。また更に、脱硫助剤とCaO系脱硫剤6とを別々に供給する必要はなく、予め混合して同時に添加してもよい。   Here, the desulfurization aid is for preferentially reacting with oxygen in the hot metal or slag to reduce the oxygen potential of the hot metal and slag, and to promote the desulfurization reaction by the CaO-based desulfurization agent 6, As desulfurization aid, metal Al or aluminum dross powder is mainly used. Besides this, atomized powder obtained by atomizing aluminum melt with gas, cutting powder generated when grinding and cutting aluminum alloy, etc. Other Al sources, Si alloys such as ferrosilicon, and Mg alloys can also be used. The desulfurization aid may be added in the required amount at the start of the desulfurization treatment, or may be added continuously or intermittently during the desulfurization treatment. Furthermore, it is not necessary to supply the desulfurization aid and the CaO-based desulfurization agent 6 separately, and they may be mixed and added at the same time.

CaO系脱硫剤6としては、生石灰単独、或いは、生石灰に蛍石(CaF2)またはアルミナ(Al23)を加えたものを使用し、そのサイズは、脱硫反応効率を高めるために、最大径を2mm程度以下の粒子状とする。CaO系脱硫剤6は、脱硫反応界面積を高めるためには微粉であることが好ましく、従って、シュート5を介した添加時の飛散が問題とならない範囲内で、そのサイズを決定すればよい。通常、1mm以下或いは0.5mm以下程度とする。 As the CaO-based desulfurizing agent 6, quick lime alone or quick lime added with fluorite (CaF 2 ) or alumina (Al 2 O 3 ) is used, and its size is maximized in order to increase the desulfurization reaction efficiency. The diameter of the particles is about 2 mm or less. The CaO-based desulfurizing agent 6 is preferably a fine powder in order to increase the desulfurization reaction interfacial area. Therefore, the size of the CaO-based desulfurizing agent 6 may be determined within a range in which scattering during addition via the chute 5 does not become a problem. Usually, it is about 1 mm or less or 0.5 mm or less.

本発明においては、CaO系脱硫剤6を一括投入せず、3段階以上に分割して添加する。従って、脱硫処理前に分割添加する回数と、各添加時期の添加量とを設定しておく。この場合、各添加時期の間隔を3分間以上とするので、脱硫処理時間に応じて添加回数を設定する。通常、溶銑3の脱硫処理時間は15〜20分間程度であるので、添加回数は3〜5回程度となる。尚、添加回数が2回では、1回あたりの添加量が多くなり、添加したCaO系脱硫剤6が凝集しやすくなるので、3段階以上に分割して添加する。   In the present invention, the CaO-based desulfurizing agent 6 is not added all at once, but is added in three or more stages. Therefore, the number of divided additions and the addition amount at each addition time are set before the desulfurization treatment. In this case, since the interval of each addition time is 3 minutes or more, the number of additions is set according to the desulfurization treatment time. Usually, since the desulfurization time of the hot metal 3 is about 15 to 20 minutes, the number of additions is about 3 to 5 times. In addition, since the addition amount per time will increase and the added CaO type | system | group desulfurization agent 6 will aggregate easily when the frequency | count of addition is 2 times, it divides | segments and adds in 3 steps or more.

インペラー4の位置が溶銑鍋2のほぼ中心になるように、溶銑鍋2を搭載した台車1の位置を調整し、次いで、インペラー4を下降させて溶銑3に浸漬させる。インペラー4が溶銑3に浸漬したならば、インペラー4の旋回を開始し、所定の回転数まで昇速する。インペラー4の回転数が所定の回転数に達したならば、シュート5を介して所定量のCaO系脱硫剤6を溶銑3に上置き添加し、第1段階目のCaO系脱硫剤6の添加を実施する。   The position of the carriage 1 on which the hot metal ladle 2 is mounted is adjusted so that the position of the impeller 4 is substantially at the center of the hot metal ladle 2, and then the impeller 4 is lowered and immersed in the hot metal 3. If the impeller 4 is immersed in the hot metal 3, the impeller 4 starts to turn and the speed is increased to a predetermined rotational speed. When the rotational speed of the impeller 4 reaches a predetermined rotational speed, a predetermined amount of CaO-based desulfurizing agent 6 is added to the hot metal 3 through the chute 5 and the first stage CaO-based desulfurizing agent 6 is added. To implement.

第1段階目のCaO系脱硫剤6の添加完了後、3分間以上経過した時点で、シュート5を介して所定量のCaO系脱硫剤6を溶銑3に上置き添加し、第2段階目のCaO系脱硫剤6の添加を実施する。第3段階目以降も、同様に、3分間以上の間隔を隔ててシュート5を介して所定量のCaO系脱硫剤6を添加する。そして、最終段階の添加完了後も更にインペラー4による攪拌を3分間以上継続し、最終段階時に添加したCaO系脱硫剤6による脱硫を十分に進行させる。   After the addition of the first stage CaO-based desulfurizing agent 6 has been completed, when a period of 3 minutes or more has elapsed, a predetermined amount of CaO-based desulfurizing agent 6 is added over the hot metal 3 via the chute 5, and the second stage Addition of CaO-based desulfurization agent 6 is performed. Similarly, after the third stage, a predetermined amount of the CaO-based desulfurization agent 6 is added through the chute 5 at intervals of 3 minutes or more. And after completion of addition in the final stage, stirring by the impeller 4 is further continued for 3 minutes or more, and desulfurization by the CaO-based desulfurizing agent 6 added in the final stage is sufficiently advanced.

CaO系脱硫剤6の各段階での添加量は、基本的には、脱硫処理開始時を多くし、脱硫処理の経過に伴って少なくなるように設定することが好ましい。但し、直前の添加時期での添加量と同等の場合があっても構わない。脱硫処理開始時での添加量を多くし、脱硫処理の経過に伴って少なくなるように設定する理由は、脱硫反応効率が低下するといえども脱硫処理の初期に添加したCaO系脱硫剤6による脱硫反応は脱硫処理中継続して起こっており、脱硫処理時間を短くする上で必要であるからである。インペラー4は、途中で回転数の変更があっても構わないが、CaO系脱硫剤6の添加時期であっても、また添加時期でなくでも、脱硫処理中は連続して回転させる。   It is preferable that the amount of CaO-based desulfurization agent 6 added at each stage is basically set so as to increase at the start of the desulfurization process and decrease with the progress of the desulfurization process. However, there may be a case where the amount is the same as the amount added immediately before. The reason for setting the addition amount at the start of the desulfurization process to be reduced with the progress of the desulfurization process is that the desulfurization by the CaO-based desulfurization agent 6 added at the initial stage of the desulfurization process even though the desulfurization reaction efficiency is reduced. This is because the reaction continues during the desulfurization process and is necessary to shorten the desulfurization process time. The impeller 4 may be changed during the rotation, but is continuously rotated during the desulfurization process even when the CaO-based desulfurization agent 6 is added or not.

そして、所定量のCaO系脱硫剤6の投入が完了し、且つ、所定時間のインペラー4による攪拌が完了したなら、インペラー4の回転数を減少させて停止させる。インペラー4の回転が停止したなら、インペラー4を上昇させ、溶銑鍋2の上方に待機させる。生成したスラグ(図示せず)が浮上して溶銑表面を覆い、静止した状態で溶銑3の脱硫処理が終了する。脱硫処理終了後、生成したスラグを溶銑鍋2から排出し、次の精錬工程に溶銑鍋2を搬送する。   When the predetermined amount of CaO-based desulfurization agent 6 is completely charged and stirring by the impeller 4 for a predetermined time is completed, the rotation speed of the impeller 4 is decreased and stopped. If the rotation of the impeller 4 is stopped, the impeller 4 is raised and waited above the hot metal ladle 2. The generated slag (not shown) floats to cover the hot metal surface, and the desulfurization process of the hot metal 3 is completed in a stationary state. After the desulfurization treatment is completed, the generated slag is discharged from the hot metal ladle 2 and conveyed to the next refining process.

このようにして溶銑3に対して脱硫処理を施すことで、CaO系脱硫剤添加直後の脱硫反応効率の高い時期を従来に比較して3倍以上の長時間にわたって得ることができるとともに、各段階における添加量が少ないことからCaO系脱硫剤6の凝集が抑制され、添加されたCaO系脱硫剤6は、凝集することなく迅速に溶銑中に巻き込まれて溶銑3と反応するので、脱硫反応界面積が増加して脱硫反応が促進され、脱硫反応効率を向上させることができる。   By performing the desulfurization treatment on the hot metal 3 in this way, a period of high desulfurization reaction efficiency immediately after the addition of the CaO-based desulfurizing agent can be obtained over a period of three times longer than before, and each stage Since the addition amount of CaO-based desulfurization agent 6 is small, aggregation of the CaO-based desulfurization agent 6 is suppressed, and the added CaO-based desulfurization agent 6 is quickly involved in the hot metal without agglomeration and reacts with the hot metal 3. The area is increased, the desulfurization reaction is promoted, and the desulfurization reaction efficiency can be improved.

高炉から出銑された溶銑をトーピードカーで受銑し、この溶銑に、先ず、酸素ガスを主体とする酸素源並びに生石灰を供給して脱燐処理を施し、脱燐処理で生成したスラグを除去した後、溶銑をトーピードカーから溶銑鍋に移し、溶銑鍋に収容された溶銑を図1に示す機械攪拌式脱硫装置に搬送して脱硫処理を施した。脱硫処理時の溶銑の処理量は1チャージあたり180〜220トン、脱硫処理前の溶銑温度は1250〜1350℃、脱硫処理前の溶銑中硫黄濃度は0.015〜0.030質量%であった。   The hot metal discharged from the blast furnace was received by a torpedo car. First, an oxygen source mainly composed of oxygen gas and quick lime were supplied to this hot metal to remove the slag produced by the dephosphorization treatment. Thereafter, the hot metal was transferred from the torpedo car to the hot metal ladle, and the hot metal contained in the hot metal pan was conveyed to the mechanical stirring type desulfurization apparatus shown in FIG. The amount of hot metal during the desulfurization treatment was 180 to 220 tons per charge, the hot metal temperature before the desulfurization treatment was 1250 to 1350 ° C., and the sulfur concentration in the hot metal before the desulfurization treatment was 0.015 to 0.030 mass%. .

CaO系脱硫剤としては、粒径が1.0mm以下であり、CaF2を含有するCaO系脱硫剤を使用し、また、脱硫助剤としてはアルミドロス粉末を使用した。これらのCaO系脱硫剤及び脱硫助剤を予め混合し、混合して作成した脱硫用フラックスを使用した。脱硫用フラックスの組成は、およそCaOが90質量%、CaF2が7質量%、アルミドロスが3質量%であった。この脱硫用フラックスを1チャージあたり500kg添加して脱硫処理した。 As the CaO-based desulfurizing agent, a CaO-based desulfurizing agent having a particle size of 1.0 mm or less and containing CaF 2 was used, and as the desulfurization aid, aluminum dross powder was used. These CaO-based desulfurization agents and desulfurization aids were mixed in advance, and a desulfurization flux prepared by mixing was used. The composition of the desulfurization flux was approximately 90 mass% for CaO, 7 mass% for CaF 2 , and 3 mass% for aluminum dross. This desulfurization flux was added in an amount of 500 kg per charge for desulfurization treatment.

本発明の実施例(本発明例)では、500kgの脱硫用フラックスを3分割して添加することとし、且つ、各添加時期での脱硫用フラックスの添加量の比率を、第1段階:第2段階:第3段階=4:4:2とした。インペラーの回転数は80〜120rpmとし、脱硫処理時間は約15分間とした。   In the example of the present invention (example of the present invention), 500 kg of desulfurization flux is added in three parts, and the ratio of the addition amount of desulfurization flux at each addition time is defined as the first stage: the second. Stage: Third stage = 4: 4: 2. The rotational speed of the impeller was 80 to 120 rpm, and the desulfurization treatment time was about 15 minutes.

また、比較のために、同一組成、同一質量の脱硫用フラックスを、脱硫処理開始時に一括上置きのみで添加する脱硫処理(従来例)も実施し、そのときの脱硫反応効率を調査し、上記の本発明例と比較した。   In addition, for comparison, a desulfurization treatment (conventional example) in which a desulfurization flux having the same composition and the same mass is added only at once at the start of the desulfurization treatment was also conducted, and the desulfurization reaction efficiency at that time was investigated, This was compared with the present invention example.

その結果、脱硫反応効率は従来例では平均値で6.8%であったが、本発明例では平均値で7.9%に向上することが分かった。つまり、脱硫反応効率は従来例に比較して17%向上し、その向上する分、脱硫用フラックスの使用量を削減できることが確認できた。   As a result, it was found that the desulfurization reaction efficiency was 6.8% on average in the conventional example, but improved to 7.9% on average in the inventive example. That is, it was confirmed that the desulfurization reaction efficiency was improved by 17% as compared with the conventional example, and the amount of desulfurization flux used could be reduced by the improvement.

本発明で使用した機械攪拌式脱硫装置の概略側断面図である。It is a schematic sectional side view of the mechanical stirring type desulfurization apparatus used by this invention.

符号の説明Explanation of symbols

1 台車
2 溶銑鍋
3 溶銑
4 インペラー
5 シュート
6 CaO系脱硫剤
1 cart 2 hot metal ladle 3 hot metal 4 impeller 5 chute 6 CaO-based desulfurization agent

Claims (2)

生石灰単独、或いは、生石灰に蛍石またはアルミナを加えたもののうちの何れか1種であるCaO系脱硫剤を使用して機械攪拌式脱硫装置で溶銑を脱硫処理するに際し、インペラーによって攪拌されている溶銑に、前記CaO系脱硫剤を、3段階以上に分割し且つ3分間以上の間隔を隔てて上置き添加し、添加したCaO系脱硫剤の凝集を抑制して溶銑を脱硫処理することを特徴とする、溶銑の脱硫処理方法。 When hot metal is desulfurized with a mechanical stirring type desulfurization device using CaO-based desulfurization agent which is one of quick lime alone or limestone added with fluorite or alumina, it is stirred by an impeller. the molten iron, characterized in that the CaO-based desulfurizing agent, the upper place was added at an interval of more divided and 3 minutes in three or more stages, to desulfurized molten iron to suppress aggregation of the added CaO-based desulfurizing agent And a desulfurization treatment method for hot metal. CaO系脱硫剤の各段階での添加量を、直前の段階での添加量に対して同等かまたは同等未満とし、全体的には脱硫処理時間の経過に伴って少なくなるように設定することを特徴とする、請求項1に記載の溶銑の脱硫処理方法。   The amount of CaO-based desulfurization agent added in each stage is set to be equal to or less than the amount added in the immediately preceding stage, and is generally set to decrease as the desulfurization treatment time elapses. The hot metal desulfurization method according to claim 1, wherein
JP2008031198A 2008-02-13 2008-02-13 Hot metal desulfurization treatment method Active JP5458499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008031198A JP5458499B2 (en) 2008-02-13 2008-02-13 Hot metal desulfurization treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008031198A JP5458499B2 (en) 2008-02-13 2008-02-13 Hot metal desulfurization treatment method

Publications (2)

Publication Number Publication Date
JP2009191300A JP2009191300A (en) 2009-08-27
JP5458499B2 true JP5458499B2 (en) 2014-04-02

Family

ID=41073588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008031198A Active JP5458499B2 (en) 2008-02-13 2008-02-13 Hot metal desulfurization treatment method

Country Status (1)

Country Link
JP (1) JP5458499B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2722405B1 (en) 2011-08-12 2018-10-10 JFE Steel Corporation Molten steel desulfurization method, molten steel secondary refining method, and molten steel manufacturing method
JP5177263B2 (en) 2011-08-12 2013-04-03 Jfeスチール株式会社 Hot metal desulfurization method
JP2016186124A (en) * 2015-03-27 2016-10-27 株式会社神戸製鋼所 Desulfurization method of molten iron

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5271323A (en) * 1975-12-11 1977-06-14 Kubota Ltd Reforming of molten pig iron
JPS5835566B2 (en) * 1979-12-06 1983-08-03 新日本製鐵株式会社 How to process hot metal
JP2776188B2 (en) * 1993-03-22 1998-07-16 住友金属工業株式会社 Hot metal pretreatment method
JPH0827508A (en) * 1994-07-15 1996-01-30 Sumitomo Metal Ind Ltd Pretreatment of molten iron

Also Published As

Publication number Publication date
JP2009191300A (en) 2009-08-27

Similar Documents

Publication Publication Date Title
JP5195833B2 (en) Hot metal desulfurization method
JP2009079261A (en) Method for desulfurizing molten pig iron
JP5045031B2 (en) Hot metal desulfurization agent and desulfurization treatment method
JP4715369B2 (en) Hot metal desulfurization treatment method
JP5074064B2 (en) Method for producing desulfurizing agent
JP2005179690A (en) Method for desulfurizing molten pig iron
JP5458499B2 (en) Hot metal desulfurization treatment method
JP4961787B2 (en) Hot metal desulfurization method
JP5418058B2 (en) Hot metal desulfurization method
JP5177170B2 (en) Hot metal desulfurization method
JP5341235B2 (en) Desulfurization agent and method for desulfurization of molten iron
JP5130663B2 (en) Method for refining molten iron
JP5074063B2 (en) Desulfurization agent and method for desulfurization of molten iron
JP5446300B2 (en) Hot metal desulfurization treatment method
JP5066923B2 (en) Hot metal desulfurization treatment method
JP4998677B2 (en) Reuse method of desulfurization slag
JP5358987B2 (en) Impeller of mechanical stirring desulfurization equipment
JP2010116612A (en) Method for desulfurizing molten iron
JP6238019B2 (en) Hot metal desulfurization method with less recuperation
JP4984928B2 (en) Hot metal desulfurization method
JP5418248B2 (en) Hot metal desulfurization method
JP2019189893A (en) Method for desulfurizing molten iron
JP5668641B2 (en) Hot metal desulfurization method
JP5481899B2 (en) Hot metal desulfurization agent and desulfurization treatment method
JP2006336036A (en) Method for desulfurizing molten iron

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101119

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130704

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131023

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20131113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131230

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5458499

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250