JP2018172719A - Desulfurization method of molten pig iron - Google Patents

Desulfurization method of molten pig iron Download PDF

Info

Publication number
JP2018172719A
JP2018172719A JP2017070540A JP2017070540A JP2018172719A JP 2018172719 A JP2018172719 A JP 2018172719A JP 2017070540 A JP2017070540 A JP 2017070540A JP 2017070540 A JP2017070540 A JP 2017070540A JP 2018172719 A JP2018172719 A JP 2018172719A
Authority
JP
Japan
Prior art keywords
desulfurization
hot metal
amount
metal
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017070540A
Other languages
Japanese (ja)
Inventor
大和 三代
Yamato Mishiro
大和 三代
憲司 中谷
Kenji Nakatani
憲司 中谷
陽平 金子
Yohei Kaneko
陽平 金子
上原 博英
Hirohide Uehara
博英 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2017070540A priority Critical patent/JP2018172719A/en
Publication of JP2018172719A publication Critical patent/JP2018172719A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a desulfurization method of molten pig iron, which can suppress slag generation and desulfurization cost without using a fluorine source.SOLUTION: In the desulfurization method of molten pig iron, desulfurizing agents 5a and 5b containing lime and Al-based deoxidizing agents 6a and 6b having metal Al in the amount of 10 mass% or more and the balance of mainly AlOare added to perform desulfurization of a hot metal 2 including molten pig iron tapped from a blast furnace and subjected to a dephosphorization treatment. In accordance with the phosphorus concentration in the hot metal 2 before the desulfurization treatment, adjustment is made so that the amount of the Al-based deoxidizing agents to be added is increased as the phosphorus concentration decreases.SELECTED DRAWING: Figure 1

Description

本発明は、溶銑の脱硫方法に関する。   The present invention relates to a hot metal desulfurization method.

近年、高級鋼製造に対する要請が増大するにつれて、製鉄所の製鋼工程では、硫黄濃度が低い低硫鋼を安価に製造する方法が強く望まれている。低硫鋼を安価に効率よく製造する方法として、溶鉄の炭素濃度が高い溶銑段階において、溶銑中の硫黄を除去する脱硫処理が行われている。このような脱硫処理の方法としては、脱硫剤としてCaOやCaC、ソーダ灰等を用いた方法が古くから用いられている。また、近年では、安価であることから、CaO系脱硫剤が広く使われている。 In recent years, as the demand for high-grade steel production increases, a method for producing low-sulfur steel with low sulfur concentration at low cost is strongly desired in the steelmaking process of steelworks. As a method for efficiently producing low-sulfur steel at a low cost, desulfurization treatment for removing sulfur in the hot metal is performed in the hot metal stage where the carbon concentration of the molten iron is high. As a method for such desulfurization treatment, a method using CaO, CaC 2 , soda ash or the like as a desulfurization agent has been used for a long time. In recent years, CaO-based desulfurization agents are widely used because they are inexpensive.

また、溶銑段階の処理(溶銑予備処理)としては、溶銑中の燐をスラグ中に除去する脱燐処理も行われる。溶銑の脱燐処理では、CaO系の媒溶剤と酸素源とが溶銑に供給されることで脱燐が進行する。この際、脱燐反応を進行させるため、大量の酸素源を溶銑に供給する必要があるため、脱燐反応が進行するに伴って、溶銑及びスラグの酸素ポテンシャルが上昇する傾向となる。また、混銑車や溶銑鍋といった搬送容器で行われる脱燐処理では、酸化鉄等の固体の酸素源が主要な酸素源として使用されるため、脱燐の進行に伴って溶銑温度が低下する傾向となる。   In addition, as the hot metal stage treatment (hot metal preliminary treatment), dephosphorization treatment for removing phosphorus in the hot metal into the slag is also performed. In hot metal dephosphorization, dephosphorization proceeds by supplying a CaO-based solvent and an oxygen source to the hot metal. At this time, since a large amount of oxygen source needs to be supplied to the hot metal in order to advance the dephosphorylation reaction, the oxygen potential of the hot metal and slag tends to increase as the dephosphorization reaction proceeds. In addition, in the dephosphorization process performed in a transport container such as a kneading car or a hot metal ladle, a solid oxygen source such as iron oxide is used as a main oxygen source, so the hot metal temperature tends to decrease as the dephosphorization progresses. It becomes.

このため、脱燐処理の後に溶銑の脱硫処理を行う場合、CaO系脱硫剤の滓化を促進させて脱硫反応効率を向上するため、従来は蛍石(CaF)が使用されていた。しかし、近年では、鉄鋼スラグの利用促進を図るため、フッ素源を極力使用しない操業が指向されており、脱硫剤の脱硫効率が低下して脱硫剤の使用量が増大することが問題となっている。
これに対して、CaO系脱硫剤に金属Alを含有するAlドロス粉などのAl系脱酸剤を混合させることで脱硫剤の効率を向上させる試みが行われている。
For this reason, when the hot metal desulfurization treatment is performed after the dephosphorization treatment, fluorite (CaF 2 ) has been conventionally used in order to promote the hatching of the CaO-based desulfurization agent and improve the desulfurization reaction efficiency. However, in recent years, in order to promote the use of steel slag, operations that do not use the fluorine source as much as possible have been directed, and the problem is that the desulfurization efficiency of the desulfurization agent decreases and the amount of use of the desulfurization agent increases. Yes.
In contrast, attempts have been made to improve the efficiency of the desulfurizing agent by mixing an Al-based deoxidizing agent such as Al dross powder containing metal Al with the CaO-based desulfurizing agent.

例えば、特許文献1では、CaOを主成分とし、これにAlドロス(アルミニウム灰)を5〜20質量%を含有し、更にこれに蛍石および炭素分を配合した脱硫剤が提案されている。
また、特許文献2には、CaO及びSiOのCaO/SiO比が1.5〜3.5、且つAlはCaO及びSiOの合計質量の3質量%〜15質量%である、CaO、SiO及びAlを含む脱硫剤が提案されている。特許文献2においては、SiOはCaOの滓化促進剤であり、金属Alは溶銑の酸素ポテンシャルを低下させるための溶銑の脱酸剤として機能している。
さらに、特許文献3には、金属Al含有量が10質量%以上のAl系脱酸剤の配合比率がAl換算で7質量%以上のCaO−Alドロス系脱硫剤を提案している。金属Alは、溶銑の酸素ポテンシャルを低下させることのみならず、金属Alの酸化反応による発熱やAlによって生石灰中のCaOの滓化にも効果を与えているとされている。
For example, Patent Document 1 proposes a desulfurization agent containing CaO as a main component, containing 5 to 20% by mass of Al dross (aluminum ash), and further blended with fluorite and carbon.
Further, Patent Document 2, CaO / SiO 2 ratio of CaO and SiO 2 is 1.5 to 3.5, and Al is 3% to 15 weight% of the total weight of the CaO and SiO 2, CaO, A desulfurization agent containing SiO 2 and Al has been proposed. In Patent Document 2, SiO 2 is a hatching accelerator for CaO, and metal Al functions as a hot metal deoxidizer for reducing the oxygen potential of hot metal.
Furthermore, Patent Document 3 proposes a CaO-Al dross-based desulfurizing agent in which the blending ratio of an Al-based deoxidizer having a metal Al content of 10% by mass or more is 7% by mass or more in terms of Al 2 O 3 . . It is said that metal Al not only lowers the oxygen potential of hot metal, but also has an effect on the heat generation due to the oxidation reaction of metal Al and the hatching of CaO in quicklime by Al 2 O 3 .

特開平3−274217号公報Japanese Patent Laid-Open No. 3-274217 特開2000−313911号公報JP 2000-313911 A 特開2010−229439号公報JP 2010-229439 A

しかしながら、特許文献1で示される方法では、蛍石を使用しており生成スラグにフッ素(F)が含まれるため、スラグ処理に膨大な費用がかかって実用的ではない。
また、特許文献2の脱硫剤は、SiOを滓化促進剤として使用しており、CaOの滓化は促進されるが、SiOは脱硫反応を阻害する成分となるため、脱硫反応が遅延する恐れがある。また、CaO/SiO比が1.5〜3.5となるように相当量のSiOを加えるため、脱硫剤の使用量が増加し、発生する脱硫スラグが増加する恐れもある。また、設備上の制約から異なる精錬剤を3種類以上使用することのできない小型の設備には、適用することができない。
However, in the method disclosed in Patent Document 1, fluorite is used and fluorine (F) is contained in the generated slag. Therefore, the slag treatment is very expensive and not practical.
Further, the desulfurization agent of Patent Document 2 uses SiO 2 as a hatching accelerator, and the hatching of CaO is promoted. However, since SiO 2 becomes a component that inhibits the desulfurization reaction, the desulfurization reaction is delayed. There is a fear. In addition, since a considerable amount of SiO 2 is added so that the CaO / SiO 2 ratio is 1.5 to 3.5, the amount of desulfurization agent used increases, and the generated desulfurization slag may increase. Moreover, it cannot be applied to a small-sized facility that cannot use three or more kinds of different refining agents due to facility restrictions.

さらに、特許文献3の脱硫剤では、金属Al及びAlによって石灰の滓化が促進されるものの、Al系脱酸剤の過剰な添加はコストの上昇を招く。Alの使用量が過剰となると、生成される酸化物の液相量が過剰となるため石灰粒子の凝集を招き、反応界面が減少することにより、逆に脱硫反応が遅くなる恐れがある。また、Al系脱酸剤の過剰な添加により、発生する脱硫スラグが増加する恐れがある。さらに、脱Siや脱Pを目的として気体酸素あるいは酸化鉄等の固体酸素を吹き込んだ溶銑に対しては、特許文献3に従ってAl系脱酸剤を添加しても、金属Alの量が脱酸に必要な量に対して少なく、十分な脱酸効果が得られないことがあった。
そこで、本発明は、上記の課題に着目してなされたものであり、蛍石などのフッ素源を使用することなく、スラグの発生量及び脱硫コストを抑制することができる溶銑の脱硫方法を提供することを目的としている。
Furthermore, in the desulfurization agent of Patent Document 3, although the hatching of lime is promoted by the metal Al and Al 2 O 3 , excessive addition of the Al-based deoxidizer causes an increase in cost. If the amount of Al 2 O 3 used is excessive, the amount of liquid phase of the generated oxide will be excessive, leading to agglomeration of lime particles and reducing the reaction interface, which may adversely delay the desulfurization reaction. is there. Moreover, there exists a possibility that the desulfurization slag to generate | occur | produce may increase by the excessive addition of Al type deoxidizer. Further, for hot metal in which solid oxygen such as gaseous oxygen or iron oxide is blown for the purpose of de-Si or de-P, even if an Al-based deoxidizer is added according to Patent Document 3, the amount of metal Al is deoxidized. In some cases, the deoxidation effect could not be obtained due to the small amount necessary for the amount of the catalyst.
Therefore, the present invention has been made paying attention to the above-mentioned problems, and provides a hot metal desulfurization method capable of suppressing the amount of slag generated and the desulfurization cost without using a fluorine source such as fluorite. The purpose is to do.

本発明の一態様によれば、高炉から出銑され、脱燐処理が施された溶銑を含む溶銑に、生石灰を含む脱硫剤と、金属Alの含有量が10質量%以上で残部が主にAlであるAl系脱酸剤とを添加して脱硫処理を行う、溶銑の脱硫方法であって、上記脱硫処理前の上記溶銑の燐濃度に応じて、上記燐濃度が低くなるにしたがって上記Al系脱酸剤の添加量を増大させるように調整することを特徴とする溶銑の脱硫方法が提供される。 According to one aspect of the present invention, the hot metal containing hot metal discharged from a blast furnace and subjected to dephosphorization treatment is mainly composed of a desulfurization agent containing quicklime and a content of metal Al of 10% by mass or more. A hot metal desulfurization method for performing desulfurization treatment by adding an Al-based deoxidizer which is Al 2 O 3 , wherein the phosphorus concentration is lowered according to the phosphorus concentration of the hot metal before the desulfurization treatment. Accordingly, there is provided a hot metal desulfurization method characterized by adjusting the amount of the Al-based deoxidizer to be increased.

本発明の一態様によれば、蛍石などのフッ素源を使用することなく、スラグの発生量及び脱硫コストを抑制することができる溶銑の脱硫方法が提供される。   According to one embodiment of the present invention, there is provided a hot metal desulfurization method capable of suppressing the generation amount of slag and the desulfurization cost without using a fluorine source such as fluorite.

溶銑脱硫装置を示す模式図である。It is a schematic diagram which shows a hot metal desulfurization apparatus. 溶銑中の燐濃度と金属Al原単位との関係を示すグラフである。It is a graph which shows the relationship between the phosphorus density | concentration in hot metal, and a metallic Al basic unit. 金属Alの過剰添加量と脱硫効率との関係を示すグラフである。It is a graph which shows the relationship between the excessive addition amount of metal Al, and desulfurization efficiency. (4)式〜(6)式における条件を示すグラフである。It is a graph which shows the conditions in a formula (4)-a formula (6).

以下の詳細な説明では、本発明の完全な理解を提供するように、本発明の実施形態を例示して多くの特定の細部について説明する。しかしながら、かかる特定の細部の説明がなくても1つ以上の実施態様が実施できることは明らかであろう。また、図面は、簡潔にするために、周知の構造及び装置が略図で示されている。   In the following detailed description, numerous specific details are set forth, illustrating embodiments of the present invention, in order to provide a thorough understanding of the present invention. However, it will be apparent that one or more embodiments may be practiced without such specific details. In the drawings, well-known structures and devices are schematically shown for simplicity.

以下に、本発明者らが本発明をするにいたった経緯について説明する。本発明者らは、蛍石などのフッ素源を含有しないCaO系脱硫剤を用いて、脱燐処理後の溶銑を含む溶銑を効率的に脱硫処理する手段を種々検討した。
溶銑の脱燐処理では、目的とする溶鋼の製造上必要となる溶銑の組成、処理前の溶銑の温度や珪素含有量などの溶銑条件、及び前後のプロセスでの所要時間とのバランスによって許容される処理時間などの諸条件によって、処理後の溶銑の脱燐の程度は大きく異なる。このため脱燐処理の後に脱硫処理を行う場合、脱燐の程度によって溶銑及び脱硫処理時に混入する脱燐処理後スラグの酸化の程度が異なることから、脱硫効率が変動する。また、脱燐処理後には発生したスラグを、脱硫処理には極力持ち込まないような操業が行われているものの、脱燐処理から脱硫処理へのスラグの持ち込み量を減少させようとすると鉄歩留りの低下を招いてしまう。このため、鉄歩留りの低下が問題とならない程度の、脱燐処理後のスラグの持ち込みをある程度は許容せざるを得ない。
Hereinafter, the background of the inventors of the present invention will be described. The present inventors have studied various means for efficiently desulfurizing hot metal including hot metal after dephosphorization using a CaO-based desulfurization agent that does not contain a fluorine source such as fluorite.
In the hot metal dephosphorization process, it is allowed by the balance between the hot metal composition required for the production of the target hot metal, the hot metal temperature such as the hot metal temperature and silicon content before the treatment, and the time required in the preceding and subsequent processes. The degree of dephosphorization of the hot metal after the treatment varies greatly depending on various conditions such as the treatment time. Therefore, when the desulfurization treatment is performed after the dephosphorization treatment, the degree of oxidation of the slag after the dephosphorization treatment mixed in the hot metal and the desulfurization treatment varies depending on the degree of dephosphorization, and thus the desulfurization efficiency varies. In addition, although slag generated after dephosphorization treatment is operated so as not to bring it into desulfurization treatment as much as possible, iron yield can be reduced by reducing the amount of slag brought from dephosphorization treatment to desulfurization treatment. It will cause a decline. For this reason, the introduction of slag after the dephosphorization treatment must be allowed to some extent to the extent that a decrease in iron yield does not become a problem.

また、蛍石などのフッ素源を使用せずに脱硫効率を向上させるためには、金属Alを含むAl系脱酸剤を用いる必要がある。しかし、上述のように溶銑及びスラグの酸化度の違いから脱硫効率にバラつきが生じるため、金属Alによる脱酸効果を十分に得ようとすると、金属Alを含むAl系脱酸剤を過剰に添加する必要があった。一方、Al系脱酸剤を過剰に添加すると、含有されているAlや金属Alが酸化して生成するAlによって生成される酸化物の液相量が過剰となり、粉状のCaO系脱硫剤の凝集が進んで反応界面積が減少し、脱硫促進に逆効果となる場合もある。これらのように、Al系脱酸剤の過不足によって脱硫効率にバラつきが生じると、結果として脱硫不足を招くことがあり、脱硫処理時間の延長やCaO系脱硫剤の追加を余儀なくされるが、このような対応による生産性の低下を避けるため、CaO系脱硫剤の使用量の増大を招いていた。 Moreover, in order to improve the desulfurization efficiency without using a fluorine source such as fluorite, it is necessary to use an Al-based deoxidizer containing metal Al. However, since the desulfurization efficiency varies due to the difference in the degree of oxidation of the hot metal and slag as described above, an excessive amount of Al-based deoxidizer containing metal Al is added to obtain a sufficient deoxidation effect by metal Al. There was a need to do. On the other hand, if an excessive amount of Al-based deoxidizer is added, the amount of liquid phase of oxide produced by Al 2 O 3 produced by oxidation of contained Al 2 O 3 or metal Al becomes excessive, and powdery In some cases, the CaO-based desulfurization agent is agglomerated and the reaction interfacial area is decreased, which may have an adverse effect on promoting desulfurization. As described above, when the desulfurization efficiency varies due to excess or deficiency of the Al-based deoxidizer, it may result in insufficient desulfurization, and it is necessary to extend the desulfurization treatment time or add a CaO-based desulfurizer, In order to avoid a decrease in productivity due to such measures, an increase in the amount of CaO-based desulfurizing agent used was caused.

<脱硫処理条件の影響に関する調査>
このような問題に対して、本発明者らは、図1に示す溶銑量300t規模の実機の溶銑脱硫設備1において、溶銑脱燐処理後の溶銑を含む溶銑2を、種々の石灰系脱硫剤及びAl系脱酸剤の添加条件で脱硫処理した。そして、脱硫処理の結果から、脱硫効率に及ぼす、溶銑2の燐濃度などの溶銑条件及び金属Al添加量などの脱硫処理条件の影響を調査した。
<Investigation on the influence of desulfurization treatment conditions>
In order to solve such a problem, the present inventors, in the hot metal desulfurization equipment 1 having a hot metal amount of 300 t shown in FIG. And desulfurization treatment was performed under the addition conditions of an Al-based deoxidizer. Then, from the results of the desulfurization treatment, the influence of the hot metal conditions such as the phosphorus concentration of the hot metal 2 and the desulfurization treatment conditions such as the amount of added metal Al on the desulfurization efficiency was investigated.

(脱硫処理装置)
溶銑脱硫装置1は、処理容器である溶銑鍋3に収容された溶銑2を脱硫処理する、機械攪拌式の脱硫装置である。なお、溶銑鍋3は、図1の左右方向に移動可能な台車4に搭載される。溶銑脱硫装置1は、図1に示すように、攪拌羽根10と、4個のホッパー11a〜11dと、2個のロータリーフィーダ12a,12bと、2個の切り出し装置13a,13bと、投入シュート14と、上吹きランス15とを備える。
(Desulfurization processing equipment)
The hot metal desulfurization apparatus 1 is a mechanical stirring type desulfurization apparatus that desulfurizes the hot metal 2 accommodated in the hot metal ladle 3 as a processing container. The hot metal ladle 3 is mounted on a cart 4 that can move in the left-right direction in FIG. As shown in FIG. 1, the hot metal desulfurization apparatus 1 includes a stirring blade 10, four hoppers 11 a to 11 d, two rotary feeders 12 a and 12 b, two cutting devices 13 a and 13 b, and an input chute 14. And an upper blowing lance 15.

攪拌羽根10は、鉛直方向(図1の上下方向)に延在する軸部10aと、軸部10aの先端に設けられ、軸部10aを中心として略放射状に突出した形状の耐火物製の羽根部10bとを有する。また、攪拌羽根10は、鉛直方向の上端側が不図示の昇降装置及び回転装置に接続され、鉛直方向に昇降自在、且つ軸部10aを回転軸として回転可能に構成される。   The stirring blade 10 is provided with a shaft portion 10a extending in the vertical direction (vertical direction in FIG. 1), and a blade made of a refractory material provided at the tip of the shaft portion 10a and projecting substantially radially about the shaft portion 10a. Part 10b. Further, the stirring blade 10 is configured such that the upper end side in the vertical direction is connected to a lifting device and a rotating device (not shown), is movable up and down in the vertical direction, and is rotatable about the shaft portion 10a.

4個のホッパー11a〜11dは、脱硫剤や脱酸剤といった精錬剤を貯蔵する容器である。ホッパー11aには粉体状の脱硫剤5a、ホッパー11bには粒状または粉体状のAl系脱酸剤6a、ホッパー11cには粉体状の脱硫剤5b、ホッパー11dには粉体状のAl系脱酸剤6bがそれぞれ貯蔵される。脱硫剤5a,5bは、主にCaOからなる石灰系の脱硫剤であり、例えば生石灰を粉砕して得られる粉体(生石灰粉)である。また、脱硫剤5a,5bは、蛍石などのフッ素源を含有せず、例えば直径が1mm以下の粉体状のものである。Al系脱酸剤6a,6bは、例えば金属Alを10質量%以上50質量%以下、金属AlとAlとを合計で80質量%以上含有するAlドロス(アルミニウム灰、アルミニウムドロス)である。また、Al系脱酸剤6aは、蛍石などのフッ素源を含有せず、例えば直径が5mm以下の粉粒状あるいは直径が1mm以下の粉体状のものである。さらに、Al系脱酸剤6bは、蛍石などのフッ素源を含有せず、例えば直径が1mm以下の粉体状のものである。 The four hoppers 11a to 11d are containers for storing a refining agent such as a desulfurizing agent or a deoxidizing agent. The hopper 11a has a powdered desulfurizing agent 5a, the hopper 11b has a granular or powdery Al-based deoxidizing agent 6a, the hopper 11c has a powdery desulfurizing agent 5b, and the hopper 11d has a powdered Al The system deoxidizer 6b is stored. The desulfurization agents 5a and 5b are lime-based desulfurization agents mainly made of CaO, and are, for example, powder (quick lime powder) obtained by pulverizing quick lime. Further, the desulfurizing agents 5a and 5b do not contain a fluorine source such as fluorite, and are, for example, in the form of a powder having a diameter of 1 mm or less. The Al-based deoxidizers 6a and 6b are, for example, Al dross (aluminum ash, aluminum dross) containing 10% by mass or more and 50% by mass or less of metal Al and 80% by mass or more of metal Al and Al 2 O 3 in total. is there. Further, the Al-based deoxidizer 6a does not contain a fluorine source such as fluorite, and is, for example, a powder having a diameter of 5 mm or less or a powder having a diameter of 1 mm or less. Furthermore, the Al-based deoxidizer 6b does not contain a fluorine source such as fluorite and is, for example, in the form of a powder having a diameter of 1 mm or less.

2個のロータリーフィーダ12a,12bは、ホッパー11a,11bにそれぞれ設けられる切り出し装置である。2個のロータリーフィーダ12a,12bは、ホッパー11a,11bから、脱硫剤5a及びAl系脱酸剤6aを所定の速度でそれぞれ切り出し、投入シュート14へと供給する。
2個の切り出し装置13a,13bは、ホッパー11c,11dにそれぞれ設けられる。2個の切り出し装置13a,13bは、ホッパー11c,11dから、脱硫剤5b及びAl系脱酸剤6bを所定の速度でそれぞれ切り出す。2個の切り出し装置13a,13bからそれぞれ切り出された脱硫剤5b及びAl系脱酸剤6bは、窒素ガスやArガス等の搬送用ガスとともに、上吹きランス15へと供給される。
The two rotary feeders 12a and 12b are cutting devices provided in the hoppers 11a and 11b, respectively. The two rotary feeders 12a and 12b cut out the desulfurizing agent 5a and the Al-based deoxidizing agent 6a from the hoppers 11a and 11b, respectively, and supply them to the charging chute 14.
The two cutting devices 13a and 13b are provided in the hoppers 11c and 11d, respectively. The two cutting devices 13a and 13b cut the desulfurizing agent 5b and the Al-based deoxidizing agent 6b from the hoppers 11c and 11d at a predetermined speed, respectively. The desulfurizing agent 5b and the Al-based deoxidizing agent 6b cut out from the two cutting devices 13a and 13b are supplied to the top blowing lance 15 together with a carrier gas such as nitrogen gas or Ar gas.

投入シュート14は、先端が処理位置に配された溶銑鍋3の上方に配され、2個のロータリーフィーダ12a,12bから供給される脱硫剤5a及びAl系脱酸剤6aを投入シュート14に沿って落下させて、溶銑鍋3内の溶銑2の浴面上に投入する。
上吹きランス15は、例えば鉛直方向に延在するランスであり、処理位置に配された溶銑鍋3の上方に配される。上吹きランス15は、2個の切り出し装置13a,13bから切り出された脱硫剤5b及びAl系脱酸剤6bを、搬送用ガスとともに下端に形成されたノズルから噴射して溶銑2の浴面上に吹き付ける。
The charging chute 14 is arranged above the hot metal ladle 3 whose tip is disposed at the processing position, and along with the charging chute 14 the desulfurizing agent 5a and the Al-based deoxidizing agent 6a supplied from the two rotary feeders 12a and 12b. And drop it onto the bath surface of the hot metal 2 in the hot metal pan 3.
The top blowing lance 15 is a lance extending in the vertical direction, for example, and is disposed above the hot metal ladle 3 disposed at the processing position. The top blowing lance 15 sprays the desulfurizing agent 5b and the Al-based deoxidizing agent 6b cut out from the two cutting devices 13a and 13b from the nozzle formed at the lower end together with the conveying gas on the bath surface of the hot metal 2 Spray on.

なお、溶銑脱硫装置1は、2個のロータリーフィーダ12a,12b及び2個の切り出し装置13a,13bが、それぞれ任意のタイミングで、脱硫剤5a,5b及びAl系脱酸剤6a,6bを切り出すことができるように構成される。また、脱硫剤またはAl系脱酸剤を、投入シュート14あるいは上吹きランス15のどちらから添加するかは、反応効率や添加に要する時間を考慮して適宜選択することができる。
また、溶銑脱硫装置1の上方位置には、不図示の集塵機に接続する不図示の排気ダクト口が備えられ、脱硫処理中に発生するガスやダストが排出されるようになっている。
In the hot metal desulfurization apparatus 1, the two rotary feeders 12a and 12b and the two cutting apparatuses 13a and 13b cut out the desulfurizing agents 5a and 5b and the Al-based deoxidizing agents 6a and 6b at arbitrary timings, respectively. It is configured to be able to. Further, whether the desulfurizing agent or the Al-based deoxidizing agent is added from the charging chute 14 or the top blowing lance 15 can be appropriately selected in consideration of the reaction efficiency and the time required for the addition.
Further, an exhaust duct port (not shown) connected to a dust collector (not shown) is provided above the hot metal desulfurization apparatus 1 so that gas and dust generated during the desulfurization process are discharged.

(脱硫方法)
本発明者らは、このような溶銑脱硫装置1を用いて、以下の方法で脱硫処理を行った。
脱硫処理される溶銑2は、脱燐処理が施された溶銑を含むものである。溶銑の脱燐処理では、混銑車に収容された高炉から出銑された溶銑に、焼結鉱粉などの酸化鉄分を含む酸化剤の粉体と、生石灰などの石灰系の媒溶剤の粉体とを吹き込むことで処理を行った。脱燐処理では、溶銑中の燐や珪素が、所定の濃度となるまで除去されるか、または、処理前の溶銑条件や脱燐剤の供給量、処理時間などの処理条件に応じた濃度まで除去される。次いで、脱燐処理が施された溶銑を、1つまたは複数の混銑車から溶銑鍋3に移注した。この際、移注に用いられる混銑車のうち少なくとも1つは、脱燐処理が施された溶銑を収容していればよく、複数の混銑車が用いられる場合には、脱燐処理が施されていない溶銑を収容する混銑車があってもよい。さらに、溶銑鍋3に収容された溶銑2の試料を採取し、燐濃度及び硫黄濃度の分析を行った。混銑車から溶銑鍋3に流出したスラグは比較的高濃度で酸化鉄を含み、このスラグを出来るだけ除去することが望ましいため、その後、スラグの除去(「除滓」ともいう。)を行った。除滓は、溶銑鍋3を溶銑2が流出しない程度に傾けつつ、先端をスラグに浸漬させた除滓板でスラグを掻き寄せて溶銑鍋の上縁から排出することで行った。なお、スラグ残留量を低減しようとするほど溶銑の歩留りの低下を招くため、ある程度溶銑面が露出する程度で除滓を完了させた。
(Desulfurization method)
The present inventors performed a desulfurization process by the following method using such hot metal desulfurization apparatus 1.
The hot metal 2 to be desulfurized includes hot metal that has been subjected to dephosphorization. In hot metal dephosphorization, hot metal discharged from a blast furnace housed in a kneading car, oxidizer powder containing iron oxide such as sintered ore powder, and lime-based solvent solvent powder such as quick lime And processing was performed. In the dephosphorization process, phosphorus or silicon in the hot metal is removed until a predetermined concentration is reached, or until the concentration according to the hot metal conditions before the process, the supply amount of the dephosphorization agent, the processing conditions such as the processing time, etc. Removed. Next, the hot metal that had been subjected to the dephosphorization treatment was transferred from one or more kneading wheels to the hot metal ladle 3. At this time, it is sufficient that at least one of the kneading vehicles used for the transfer contains the molten iron subjected to the dephosphorization treatment. When a plurality of kneading vehicles are used, the dephosphorization treatment is performed. There may be chaotic cars that contain hot metal that is not. Further, a sample of hot metal 2 accommodated in the hot metal ladle 3 was collected and analyzed for phosphorus concentration and sulfur concentration. Since the slag flowing out from the kneading car into the hot metal ladle 3 contains iron oxide at a relatively high concentration and it is desirable to remove this slag as much as possible, the slag was then removed (also referred to as “removal”). . The stripping was performed by tilting the hot metal ladle 3 to such an extent that the hot metal 2 did not flow out and scraping the slag with a stripping plate having its tip immersed in the slag and discharging it from the upper edge of the hot metal pan. In addition, since the yield of hot metal was reduced as the amount of residual slag was reduced, the removal was completed to the extent that the hot metal surface was exposed to some extent.

本調査では、このようにして溶銑鍋3に収容された溶銑2に対して、脱硫処理を施した。まず、他の溶銑の脱硫処理で発生した脱硫処理後のスラグを予め用意し、重機を用いて溶銑鍋3に収容された溶銑2の浴面上に上置き添加した。このスラグは、脱硫剤として再使用するためのものであり、溶銑1tあたりの重量で約6kg/t添加した。
次いで、溶銑鍋3を台車4に搭載させ、攪拌羽根10の位置が溶銑鍋3の略中心となるように台車4の位置を調整した。
さらに、攪拌羽根10を低速で回転させながら下降させて溶銑2に所定の深さで浸漬させた。
その後、予め設定された脱硫処理に必要な脱硫剤の量に対して、少なくともその一部を脱硫剤5aとして添加し、攪拌羽根10の回転速度を120rpm程度の所定の回転数まで上昇させた。
In this investigation, desulfurization treatment was performed on the hot metal 2 accommodated in the hot metal ladle 3 in this way. First, the slag after the desulfurization process generated by the desulfurization process of the other hot metal was prepared in advance and added on the bath surface of the hot metal 2 accommodated in the hot metal ladle 3 using a heavy machine. This slag was intended to be reused as a desulfurizing agent, and was added at about 6 kg / t by weight per 1 ton of hot metal.
Next, the hot metal ladle 3 was mounted on the cart 4, and the position of the cart 4 was adjusted so that the position of the stirring blade 10 was approximately the center of the hot metal pan 3.
Furthermore, the stirring blade 10 was lowered while rotating at a low speed and immersed in the hot metal 2 at a predetermined depth.
Thereafter, at least a part of the desulfurization agent necessary for the desulfurization treatment set in advance was added as the desulfurization agent 5a, and the rotation speed of the stirring blade 10 was increased to a predetermined rotation speed of about 120 rpm.

次いで、攪拌羽根10の回転数が所定の回転数に達したならば、所定時間継続して攪拌を行うことで脱硫処理を行った。この間、必要に応じて設定された脱硫剤の添加量の残部分を、脱硫剤5aから連続的または断続的に投入シュート14を介して添加する。
また、初期または処理中の脱硫剤5aの添加と並行するタイミング、または脱硫剤5aの添加が行われる前もしくは後のタイミングに、脱硫反応を促進させるために、Al系脱酸剤6aを投入シュート14から添加した。Al系脱酸剤6aには、金属Alの含有量が12質量%のものを用いた。
Next, when the rotation speed of the stirring blade 10 reached a predetermined rotation speed, desulfurization treatment was performed by continuously stirring for a predetermined time. During this time, the remaining portion of the desulfurizing agent addition amount set as necessary is added from the desulfurizing agent 5a continuously or intermittently through the charging chute 14.
In addition, in order to promote the desulfurization reaction at the timing when the desulfurization agent 5a is initially added or in parallel with the addition of the desulfurization agent 5a, or before or after the desulfurization agent 5a is added, the Al-based deoxidizer 6a is added to the chute. 14 was added. As the Al-based deoxidizer 6a, a metal Al content of 12% by mass was used.

設定された量の脱硫剤5aの供給が終了した後、更に攪拌羽根10により溶銑2を攪拌した。そして、処理開始から12分〜15分の間、攪拌が行われると、脱硫処理を終了して、攪拌羽根10の回転速度を下げ、停止させた。
さらに、攪拌羽根10の回転が停止したならば、攪拌羽根10を上昇させ、溶銑鍋3の上方に待機させた。
After the supply of the set amount of the desulfurizing agent 5a was completed, the hot metal 2 was further stirred by the stirring blade 10. And when stirring was performed for 12 to 15 minutes from the start of a process, the desulfurization process was complete | finished and the rotational speed of the stirring blade 10 was lowered | hung and stopped.
Further, when the rotation of the stirring blade 10 was stopped, the stirring blade 10 was raised and placed on standby above the hot metal ladle 3.

なお、本調査では、溶銑2の成分とAl系脱酸剤6aが脱硫効率へ与える影響を調査するため、脱硫剤5aに対するAl系脱酸剤6aの質量比率を20質量%〜35質量%の範囲で変えた条件で脱硫処理を行った。また、脱硫剤5aの添加量(原単位)は、脱硫処理前の溶銑2の硫黄濃度と、脱硫処理後の目標とする溶銑2の硫黄濃度とに応じて、調整を行った。そして、脱硫処理後の溶銑2の試料を採取し、溶銑2の硫黄濃度を測定し、脱硫効率について検証をした。   In this investigation, in order to investigate the influence of the hot metal 2 component and the Al-based deoxidizer 6a on the desulfurization efficiency, the mass ratio of the Al-based deoxidizer 6a to the desulfurizer 5a is 20% by mass to 35% by mass. The desulfurization treatment was performed under the conditions changed in the range. Moreover, the addition amount (basic unit) of the desulfurization agent 5a was adjusted according to the sulfur concentration of the hot metal 2 before the desulfurization treatment and the target sulfur concentration of the hot metal 2 after the desulfurization treatment. And the sample of the hot metal 2 after a desulfurization process was extract | collected, the sulfur concentration of the hot metal 2 was measured, and the desulfurization efficiency was verified.

ここで、脱硫効率ηは、下記(1)式で定義することとし、脱硫処理前後での溶銑2の硫黄濃度の比の自然対数を、脱硫剤(脱硫剤5a及び脱硫剤5bの合計)の溶銑1tあたりの添加量である脱硫剤原単位(kg/t)で除した値である。なお、(1)式において、[S]は脱硫処理前の硫黄濃度(質量%)、[S]は脱硫処理後の硫黄濃度(質量%)、WCaOは脱硫処理で使用した脱硫剤(脱硫剤5a及び脱硫剤5bの合計)の脱硫剤原単位(kg/t)である。
η=ln([S]/[S])/WCaO ・・・(1)
Here, the desulfurization efficiency η is defined by the following formula (1), and the natural logarithm of the ratio of the sulfur concentration of the hot metal 2 before and after the desulfurization treatment is defined as the sum of the desulfurization agent (desulfurization agent 5a and desulfurization agent 5b). It is the value divided by the desulfurizing agent basic unit (kg / t), which is the amount added per 1 ton of hot metal. In the formula (1), [S] i is the sulfur concentration (mass%) before the desulfurization treatment, [S] f is the sulfur concentration (mass%) after the desulfurization treatment, and W CaO is the desulfurization agent used in the desulfurization treatment. This is the desulfurization agent basic unit (kg / t) of (desulfurization agent 5a and desulfurization agent 5b).
η = ln ([S] i / [S] f ) / W CaO (1)

本調査の結果を図2に示す。図2において、横軸は脱硫処理前の溶銑2の燐濃度、縦軸はAl系脱酸剤に含まれる金属Alの溶銑1tあたりの添加量である金属Al原単位(kg/t)を示す。また、図2において、丸のプロットは脱硫効率ηが0.4以上と高かった結果、四角のプロットは脱硫効率ηが0.4未満と低かった結果をそれぞれ示す。なお、脱硫効率ηが0.4未満となる場合、目的の硫黄濃度まで脱硫ができず、脱硫不良となるリスクが高くなる。   The results of this survey are shown in FIG. In FIG. 2, the horizontal axis represents the phosphorus concentration of the hot metal 2 before the desulfurization treatment, and the vertical axis represents the metal Al basic unit (kg / t), which is the added amount per 1 ton of metal Al contained in the Al-based deoxidizer. . In FIG. 2, the circle plots show the results of the desulfurization efficiency η being as high as 0.4 or more, and the square plots show the results of the desulfurization efficiency η being as low as less than 0.4. When the desulfurization efficiency η is less than 0.4, desulfurization cannot be performed up to the target sulfur concentration, and the risk of desulfurization failure increases.

図2に示すように、脱硫効率ηが0.4未満となった脱硫処理は、図2のグラフの破線の下側に高い頻度で分布することが確認できた。これは、溶銑の脱燐条件に対して金属Alの添加量が少なくなることで、脱酸効果が十分得られず、脱硫効率が低くなったものと考えられる。また、金属Alの添加量が少ないことで脱硫効率ηが0.4未満とならないようにするための金属Al原単位の下限値は、図2のグラフの破線から下記(2)式で示される。(2)式において、YAlは金属Al原単位(kg/t)、Xは脱硫処理前の溶銑2の燐濃度(質量%)である。
Al=0.28−X/0.75 ・・・(2)
As shown in FIG. 2, it was confirmed that the desulfurization treatment in which the desulfurization efficiency η was less than 0.4 was distributed with high frequency below the broken line in the graph of FIG. This is presumably because the deoxidation effect was not sufficiently obtained and the desulfurization efficiency was lowered by reducing the amount of metal Al added to the dephosphorization conditions of the hot metal. Further, the lower limit value of the metal Al basic unit for preventing the desulfurization efficiency η from being less than 0.4 due to the small amount of metal Al added is represented by the following formula (2) from the broken line in the graph of FIG. . (2) In the formula, Y Al metal Al per unit (kg / t), X P is a phosphorus concentration of the molten iron 2 before desulfurization treatment (mass%).
Y Al = 0.28−X P /0.75 (2)

図2から分かるように、(2)式よりも下側、つまり脱硫処理前の燐濃度に対して(2)式よりも金属Al原単位が少なくなると、脱硫効率ηが0.4未満となる可能性がある。一方、図2では、金属Al原単位の分布の上端側に近い範囲にも、脱硫効率ηが0.4未満となった脱硫処理が少数分布している。これは、金属Alが酸化して生成するAlなどによって生成された酸化物の液相量が過剰となり、粉状のCaO系脱硫剤の凝集が進んで反応界面積が減少し、脱硫促進に逆効果となったためと考えられる。 As can be seen from FIG. 2, the desulfurization efficiency η is less than 0.4 when the metal Al basic unit is lower than the formula (2) below the formula (2), that is, the phosphorus concentration before the desulfurization treatment. there is a possibility. On the other hand, in FIG. 2, a small number of desulfurization treatments in which the desulfurization efficiency η is less than 0.4 are also distributed in a range near the upper end side of the distribution of the metal Al basic unit. This is because the liquid phase amount of the oxide produced by Al 2 O 3 produced by oxidation of metal Al becomes excessive, the aggregation of the powdered CaO-based desulfurization agent proceeds, the reaction interface area decreases, and desulfurization This is thought to be due to an adverse effect on promotion.

そこで、脱硫処理において金属Alの必要添加量が(2)式で表わされると仮定して、溶銑1tあたりの金属Alの過剰添加量EAl(kg/t)を下記(3)式で表される値とし、過剰添加量EAlと脱硫効率ηとの関係を図3に整理した。なお、金属Alの過剰添加量EAlは、正の値であれば金属Alが必要添加量よりも過剰に添加されたことを示し、負の値であれば金属Alが必要添加量より少なく添加されたことを示す。
Al=YAl−(0.28−X/0.75) ・・・(3)
Therefore, assuming that the required addition amount of metal Al in the desulfurization treatment is expressed by the equation (2), the excess addition amount E Al (kg / t) of metal Al per 1 ton of hot metal is expressed by the following equation (3). FIG. 3 shows the relationship between the excess addition amount EAl and the desulfurization efficiency η. In addition, if the excess addition amount E Al of metal Al is a positive value, it indicates that the metal Al is added in excess of the required addition amount, and if it is negative, the metal Al is added less than the required addition amount. Indicates that
E Al = Y Al- (0.28-X P /0.75) (3)

図3から、金属Alの過剰添加量EAlを0kg/t以上、0.12kg/t以下の範囲とすること、つまり、YAl及びXが下記(4)式を満たす範囲とすることにより、脱硫効率ηが0.4未満となって脱硫不良が発生することを抑制できることが確認できた。
0.28−X/0.75≦YAl≦0.40−X/0.75 ・・・(4)
なお、金属Alの過剰添加量EAlが0.12kg/t超となる場合、金属Alの添加量が多くなり過ぎることで、スラグの液相量の増大により石灰粒子が凝集し、反応界面が減少するため、脱硫効率が逆に低くなってしまう可能性がある。
From Figure 3, the excess amount E Al metal Al 0 kg / t or more, to the range of 0.12 kg / t, that is, by Y Al and X P is a range satisfying the following equation (4) It was confirmed that the desulfurization efficiency η was less than 0.4 and it was possible to suppress the occurrence of poor desulfurization.
0.28−X P /0.75≦Y Al ≦ 0.40−X P /0.75 (4)
Incidentally, if the excess amount E Al metal Al is 0.12 kg / t exceeds, by too many amount of the metal Al, lime particles are agglomerated by increasing the amount of liquid phase of the slag, the reaction interface As a result, the desulfurization efficiency may be lowered.

<脱硫方法>
本発明の一実施形態に係る溶銑2の脱硫方法は、上記の知見に基づいたものである。本実施形態に係る溶銑2の脱硫方法は、上記調査と同様に図1に示す機械攪拌式の溶銑脱硫装置1を用いて、溶銑2に対して脱硫処理を行う。なお、溶銑脱硫装置1の構成は、上記調査と同様である。
本実施形態では、上記調査と同様に、高炉から出銑された溶銑に対して脱燐処理を行う。脱硫処理を行う溶銑2は、上記調査と同様に、脱燐処理が施された溶銑を含むものであり、溶銑鍋3に収容される。また、脱硫処理の前に、溶銑鍋3に収容された溶銑2の試料が採取され、燐濃度及び硫黄濃度の分析が行われる。さらに、上記調査と同様に、溶銑鍋3に収容された溶銑2に対して、浴面に浮上しているスラグを除去する除滓が行われる。
<Desulfurization method>
The method for desulfurizing hot metal 2 according to an embodiment of the present invention is based on the above findings. In the hot metal 2 desulfurization method according to this embodiment, the hot metal 2 is desulfurized using the mechanical stirring type hot metal desulfurization apparatus 1 shown in FIG. In addition, the structure of the hot metal desulfurization apparatus 1 is the same as the said investigation.
In the present embodiment, the dephosphorization treatment is performed on the hot metal discharged from the blast furnace, as in the above-described investigation. The hot metal 2 subjected to the desulfurization treatment contains the hot metal that has been subjected to the dephosphorization treatment and is accommodated in the hot metal ladle 3 as in the above investigation. In addition, before the desulfurization treatment, a sample of the hot metal 2 accommodated in the hot metal ladle 3 is collected and analyzed for phosphorus concentration and sulfur concentration. Further, similarly to the above-described investigation, the hot metal 2 accommodated in the hot metal ladle 3 is subjected to removal to remove slag floating on the bath surface.

脱硫処理では、まず、上記調査と同様に、他の溶銑の脱硫処理で発生した脱硫処理後のスラグを予め用意し、重機を用いて溶銑鍋3に収容された溶銑2の浴面上に上置き添加する。この際、使用済み脱硫スラグの脱硫能を有効利用して、新規に使用する脱硫剤の使用量を抑制するとともに、系外へのスラグ排出量を抑制する目的で使用済み脱硫スラグを循環させて再使用する。しかし、循環使用するスラグ量をある程度以上に増大させても、次第に再使用スラグの脱硫効率が低下するため、新規に使用する脱硫剤の使用量や系外へのスラグ排出量はあまり削減できず、再使用するための作業の負荷や溶銑の温度降下の増大を招くため得策ではない。このため、再使用する脱硫スラグの添加量は、新規に使用する脱硫剤の添加量と同程度に留めることが望ましく、4kg/t〜8kg/t程度とすることが好ましい。   In the desulfurization treatment, first, in the same manner as in the above investigation, slag after desulfurization treatment generated in the desulfurization treatment of other hot metal is prepared in advance, and is placed on the bath surface of the hot metal 2 accommodated in the hot metal ladle 3 using a heavy machine. Add. At this time, the desulfurization ability of the used desulfurized slag is effectively utilized to suppress the amount of newly used desulfurizing agent and to circulate the used desulfurized slag for the purpose of reducing the amount of slag discharged outside the system. Reuse. However, even if the amount of slag to be recycled is increased to a certain extent, the desulfurization efficiency of reused slag gradually decreases, so the amount of newly used desulfurizing agent and the amount of slag discharged outside the system cannot be reduced much. It is not a good idea because it causes an increase in the work load for reuse and an increase in the temperature drop of the hot metal. For this reason, it is desirable that the amount of desulfurization slag to be reused be kept at the same level as the amount of desulfurization agent to be newly used, and is preferably about 4 kg / t to 8 kg / t.

次いで、溶銑鍋3を台車4に搭載させ、攪拌羽根10の位置が溶銑鍋3の略中心となるように台車4の位置を調整する。
さらに、攪拌羽根10を低速で回転させながら下降させて溶銑2に所定の深さで浸漬させる。
その後、予め設定された脱硫処理に必要な脱硫剤5a及び脱硫剤5bの合計量に対して、少なくともその一部を脱硫剤5aとして添加し、攪拌羽根10の回転速度を120rpm程度の所定の回転数まで上昇させた。
Next, the hot metal ladle 3 is mounted on the cart 4, and the position of the cart 4 is adjusted so that the position of the stirring blade 10 is substantially the center of the hot metal pan 3.
Further, the stirring blade 10 is lowered while rotating at a low speed and immersed in the hot metal 2 at a predetermined depth.
Thereafter, at least a part of the desulfurization agent 5a and the desulfurization agent 5b necessary for the desulfurization treatment set in advance is added as a desulfurization agent 5a, and the rotation speed of the stirring blade 10 is set to a predetermined rotation of about 120 rpm. Raised to number.

次いで、攪拌羽根10の回転数が所定の回転数に達したならば、所定時間継続して攪拌を行うことで脱硫処理を行う。この間、必要に応じて設定された脱硫剤の添加量の残部分を、脱硫剤5a及び脱硫剤5bの少なくとも一方から連続的または断続的に、投入シュート14または上吹きランス15を介して添加する。
また、初期または処理中の脱硫剤5a,5bの添加と並行するタイミング、または脱硫剤5a,5bの添加が行われる前もしくは後のタイミングに、脱硫反応を促進させるために、Al系脱酸剤6a,6bを投入シュート14または上吹きランス15から添加する。
Next, when the rotation speed of the stirring blade 10 reaches a predetermined rotation speed, the desulfurization treatment is performed by continuously stirring for a predetermined time. During this time, the remainder of the addition amount of the desulfurizing agent set as necessary is added continuously or intermittently from at least one of the desulfurizing agent 5a and the desulfurizing agent 5b via the charging chute 14 or the upper blowing lance 15. .
Further, in order to promote the desulfurization reaction at the timing of the initial stage or in parallel with the addition of the desulfurizing agents 5a and 5b, or before or after the addition of the desulfurizing agents 5a and 5b, 6 a and 6 b are added from the charging chute 14 or the upper blowing lance 15.

Al系脱酸剤6a,6bは、脱硫処理前の溶銑2の燐濃度に応じて、溶銑2の燐濃度が低くなるに従って合計添加量を増大させるように添加する。この場合、Al系脱酸剤6a,6bの合計添加量は、Al系脱酸剤6a,6b中の金属Al純分での合計添加量を、溶銑2の燐濃度に応じて(2)式の傾きに従って変化させることが好ましく、(4)式で示される範囲内とすることがさらに好ましい。また、Al系脱酸剤6a,6bの添加方法としては、単独で投入シュート14から上置き添加する方法、脱硫剤5aとの混合物として投入シュート14から上置き添加する方法、脱硫剤5bの混合物として上吹きランス15から投射する方法等を、単独あるいは組み合わせて用いることができる。それぞれのAl系脱酸剤6a,6bの添加方法における添加タイミングには特に制限はないが、溶銑鍋3内のスラグや再使用する溶銑脱硫スラグなどに含まれる酸素源を速やかに還元して脱硫効率を向上するためには、脱硫処理の初期に十分な量のAl系脱酸剤6a,6bを添加することが望ましい。このため、Al系脱酸剤6a,6bを、脱硫処理開始後2分までに、Al系脱酸剤の全添加量の30質量%以上を添加することが望ましく、40質量%以上、80質量%以下を添加することがより望ましい。脱硫処理の中盤にもAl系脱酸剤6a,6bの一部を添加することが望ましいのは、脱硫処理の中盤に添加する脱硫剤5a,5bの還元や滓化を促進するとともに、脱硫処理初期に過剰な液相スラグが生成されて脱硫剤5a,5bの凝集が進行することを抑制するためである。総じて、脱硫処理の初期までに十分な量のAl系脱酸剤6aを単独または添加する脱硫剤5aとの混合物として上置き添加するとともに、脱硫処理の中盤に比較的少量のAl系脱酸剤6bと脱硫剤5bとの混合物を上吹きランス15から投射する方法が脱硫剤の効率の観点から望ましい。   The Al-based deoxidizers 6a and 6b are added according to the phosphorus concentration of the hot metal 2 before the desulfurization treatment so that the total addition amount increases as the phosphorus concentration of the hot metal 2 decreases. In this case, the total addition amount of the Al-based deoxidizers 6a and 6b is the same as the total addition amount of the pure metal Al in the Al-based deoxidizers 6a and 6b depending on the phosphorus concentration of the hot metal 2 (2) It is preferable to make it change according to the inclination of, and more preferably within the range shown by the equation (4). The Al-based deoxidizers 6a and 6b may be added by adding them from the charging chute 14 alone, by adding them from the charging chute 14 as a mixture with the desulfurizing agent 5a, or by a mixture of the desulfurizing agent 5b. The method of projecting from the top blowing lance 15 can be used alone or in combination. There are no particular restrictions on the timing of addition in the method of adding each of the Al-based deoxidizers 6a and 6b. However, the oxygen source contained in the slag in the hot metal ladle 3 or the hot metal desulfurization slag to be reused is quickly reduced for desulfurization. In order to improve efficiency, it is desirable to add a sufficient amount of Al-based deoxidizers 6a and 6b at the initial stage of the desulfurization treatment. For this reason, it is desirable to add 30 mass% or more of the total addition amount of the Al-based deoxidizer to the Al-based deoxidizer 6a, 6b by 2 minutes after the start of the desulfurization treatment, and 40 mass% or more and 80 mass%. It is more desirable to add up to%. It is desirable to add a part of the Al-based deoxidizers 6a and 6b to the middle of the desulfurization process as well as promoting the reduction and hatching of the desulfurization agents 5a and 5b added to the middle of the desulfurization process. This is to prevent excessive liquid phase slag from being generated in the initial stage and agglomeration of the desulfurizing agents 5a and 5b from proceeding. In general, a sufficient amount of the Al-based deoxidizer 6a is added alone or as a mixture with the added desulfurizer 5a by the beginning of the desulfurization treatment, and a relatively small amount of the Al-based deoxidizer is added to the middle of the desulfurization treatment. A method of projecting a mixture of 6b and the desulfurizing agent 5b from the top blowing lance 15 is desirable from the viewpoint of the efficiency of the desulfurizing agent.

設定された合計量の脱硫剤5a,5bの供給が終了した後、更に攪拌羽根10により溶銑2を攪拌した。そして、処理開始から所定の時間、攪拌を行って脱硫処理を終了させ、攪拌羽根10の回転速度を下げて停止させる。
さらに、攪拌羽根10の回転が停止したならば、攪拌羽根10を上昇させ、溶銑鍋3の上方に待機させる。
その後、生成したスラグが浮上して溶銑表面を覆い、静止した状態となったら、溶銑鍋3を除滓場に搬送する。
次いで、脱硫処理で生成したスラグを、上述した混銑車からの流入スラグと同じ要領で溶銑鍋3から排出し、次の脱炭精錬工程に溶銑鍋3を搬送する。
After the supply of the set total amount of desulfurizing agents 5a and 5b was completed, the hot metal 2 was further stirred by the stirring blade 10. Then, the desulfurization process is completed by stirring for a predetermined time from the start of the process, and the rotational speed of the stirring blade 10 is decreased to stop.
Further, when the rotation of the stirring blade 10 is stopped, the stirring blade 10 is raised, and is put on standby above the hot metal ladle 3.
After that, when the generated slag floats to cover the hot metal surface and is in a stationary state, the hot metal ladle 3 is transported to the removal field.
Subsequently, the slag produced | generated by the desulfurization process is discharged | emitted from the hot metal ladle 3 in the same way as the inflow slag from a chaotic vehicle mentioned above, and the hot metal ladle 3 is conveyed to the following decarburization refining process.

<変形例>
以上で、特定の実施形態を参照して本発明を説明したが、これら説明によって発明を限定することを意図するものではない。本発明の説明を参照することにより、当業者には、開示された実施形態とともに種々の変形例を含む本発明の別の実施形態も明らかである。従って、特許請求の範囲に記載された発明の実施形態には、本明細書に記載したこれらの変形例を単独または組み合わせて含む実施形態も網羅すると解すべきである。
<Modification>
Although the present invention has been described above with reference to specific embodiments, it is not intended that the present invention be limited by these descriptions. By referring to the description of the present invention, other embodiments of the present invention will be apparent to those skilled in the art, including various modifications along with the disclosed embodiments. Therefore, it should be understood that the embodiments of the present invention described in the claims also include embodiments including these modifications described in the present specification alone or in combination.

例えば、上記実施形態では、Al系脱酸剤6a,6bを、(2)式の傾きに従い溶銑の燐濃度が低くなるにしたがって金属Al原単位が増大するように添加する、あるいは更に(4)式に示す溶銑の燐濃度に応じた金属Al原単位の範囲で添加することが好ましいとしたが、本発明はかかる例に限定されない。溶銑2の燐濃度に応じたAl系脱酸剤6a,6bの添加量の調整は、操業の実態に即して、溶銑の燐濃度が低くなるにしたがってAl系脱酸剤6a,6bの合計添加量を増大させるように相対的に調整すれば良いが、均して見て溶銑の燐濃度に関して(2)式と同程度の傾きを持たせるように調整することが好ましい。つまり、図4に示す下記(5)式の直線のように、傾きが(2)式の直線の傾きに近い−1.0以上、−1.6以下程度の直線状の関数に従って金属Al原単位を調整するように、溶銑の燐濃度に応じてAl系脱酸剤6a,6bの添加量を調整しても良い。
Al=0.30−X/0.75 ・・・(5)
また、例えば、図4に示す下記(6)式のように直線に近いステップ状や、折れ線状、あるいは曲線状の関数に従って、金属Al原単位つまりAl系脱酸剤6a,6bの添加量を調整しても良く、何れの場合においても(4)式を満たす溶銑の燐濃度に応じた金属Al原単位となる範囲内でAl系脱酸剤6a,6bを添加することが好ましい。
For example, in the above embodiment, the Al-based deoxidizers 6a and 6b are added so that the metal Al basic unit increases as the phosphorus concentration of the hot metal decreases according to the slope of the equation (2), or further (4) Although it is preferable to add in the range of the metal Al basic unit according to the phosphorus concentration of the hot metal shown in the formula, the present invention is not limited to such an example. Adjustment of the addition amount of the Al-based deoxidizers 6a and 6b according to the phosphorus concentration of the hot metal 2 is based on the actual state of operation, and the total amount of the Al-based deoxidizers 6a and 6b is reduced as the phosphorus concentration of the hot metal decreases. The relative amount may be adjusted so as to increase the amount of addition, but it is preferable that the phosphorus concentration of the hot metal is adjusted so as to have the same degree of inclination as the equation (2). That is, as shown in the straight line of the following formula (5) shown in FIG. You may adjust the addition amount of Al type deoxidizer 6a, 6b according to the phosphorus density | concentration of hot metal so that a unit may be adjusted.
Y Al = 0.30−X P /0.75 (5)
Further, for example, according to a step-like, straight line-like, or curved-line function as shown in the following formula (6) shown in FIG. 4, the addition amount of the metal Al basic unit, that is, the Al-based deoxidizers 6 a, 6 b is set. In any case, it is preferable to add the Al-based deoxidizers 6a and 6b within the range of the metallic Al basic unit corresponding to the phosphorus concentration of the hot metal satisfying the formula (4).

Figure 2018172719
Figure 2018172719

また、上記実施形態では、Al系脱酸剤の調整に用いられる溶銑の燐濃度が、溶銑鍋3に収容された溶銑2の分析値であるとしたが、本発明はかかる例に限定されない。例えば、混銑車の溶銑の燐濃度を分析して、各混銑車からの溶銑の配合比率を加重平均することで、溶銑鍋3に収容された溶銑2の燐濃度を推定するようにしてもよい。   Moreover, in the said embodiment, although the phosphorus density | concentration of the hot metal used for adjustment of Al type deoxidizer was taken as the analytical value of the hot metal 2 accommodated in the hot metal ladle 3, this invention is not limited to this example. For example, the phosphorus concentration of hot metal contained in the hot metal ladle 3 may be estimated by analyzing the phosphorus concentration of the hot metal of the hot metal car and performing weighted averaging of the mixture ratio of hot metal from each of the hot metal cars. .

さらに、上記実施形態では、溶銑の搬送及び脱燐処理において混銑車が用いられるとしたが、本発明はかかる例に限定されない。例えば、混銑車の代わりに溶銑鍋を搬送用容器や脱燐処理の反応容器に用いる場合であってもよい。また、脱燐処理では、転炉型の精錬炉で、気体の酸素源や固体の酸素源を用いて酸化精錬を行う転炉型の脱燐処理が行われてもよい。
さらに、上記実施形態では、他の溶銑の脱硫処理で用いられた脱硫処理後のスラグを溶銑2に添加するとしたが、本発明はかかる例に限定されない。溶銑2に脱硫処理後のスラグを添加せずに、溶銑脱硫装置1にて添加される脱硫剤やAl系脱酸剤等の精錬剤のみを用いて脱硫処理が行われてもよい。
Furthermore, in the said embodiment, although the kneading vehicle was used in the hot metal conveyance and the dephosphorization process, this invention is not limited to this example. For example, instead of a kneading wheel, a hot metal ladle may be used as a transport container or a dephosphorization reaction container. Further, in the dephosphorization process, a converter type dephosphorization process in which oxidative refining is performed using a gaseous oxygen source or a solid oxygen source in a converter type refining furnace may be performed.
Furthermore, in the said embodiment, although the slag after the desulfurization process used by the desulfurization process of the other hot metal was added to the hot metal 2, this invention is not limited to this example. The desulfurization treatment may be performed using only a refining agent such as a desulfurization agent and an Al-based deoxidizer added in the hot metal desulfurization apparatus 1 without adding the slag after the desulfurization treatment to the hot metal 2.

さらに、上記実施形態では、機械攪拌式の溶銑脱硫装置1において適用するとしたが、本発明はかかる例に限定されない。例えば、混銑車や溶銑鍋などの搬送容器に収容された溶銑に対して、浸漬ランスを浸漬させ、浸漬ランスから脱硫剤やAl系脱酸剤を吹き込むようなインジェクション式の脱硫処理方法においても適用することができる。インジェクション式の脱硫処理方法においても、上記実施形態と同様にAl系脱酸剤の添加量を調整することにより、溶銑の脱燐条件に応じた脱酸効果が得られ、脱硫効率が低下することを防止できる。   Furthermore, in the said embodiment, although it applied in the mechanical stirring type hot metal desulfurization apparatus 1, this invention is not limited to this example. For example, it is also applicable to injection-type desulfurization treatment methods in which a dipping lance is immersed in hot metal contained in a transport container such as a kneading wheel or hot metal ladle and a desulfurizing agent or an Al-based deoxidizing agent is blown from the dipping lance. can do. Also in the injection-type desulfurization treatment method, the deoxidation effect according to the dephosphorization conditions of the hot metal can be obtained and the desulfurization efficiency can be reduced by adjusting the addition amount of the Al-based deoxidizer as in the above embodiment. Can be prevented.

<実施形態の効果>
(1)本発明の一態様に係る溶銑2の脱硫方法は、高炉から出銑され、脱燐処理が施された溶銑を含む溶銑2に、生石灰を含む脱硫剤5a,5bと、金属Alの含有量が10質量%以上で残部が主にAlであるAl系脱酸剤6a,6bとを添加して脱硫処理を行う、溶銑の脱硫方法であって、脱硫処理前の溶銑2の燐濃度に応じて、燐濃度が低くなるにしたがってAl系脱酸剤の添加量を増大させるように調整する。
<Effect of embodiment>
(1) The desulfurization method for hot metal 2 according to one aspect of the present invention includes a desulfurization agent 5a, 5b containing quick lime and a metal Al containing hot metal containing hot metal discharged from a blast furnace and subjected to dephosphorization. A hot metal desulfurization method in which a desulfurization treatment is performed by adding Al-based deoxidizers 6a and 6b having a content of 10% by mass or more and the balance being mainly Al 2 O 3. According to the phosphorus concentration, the amount of Al-based deoxidizer added is adjusted to increase as the phosphorus concentration decreases.

上記(1)の構成によれば、Al系脱酸剤の添加量を生石灰に対して常に一定の割合とする従来の脱硫方法に対して、溶銑2の燐濃度に応じてAl系脱酸剤6a,6bの使用量を変化させる。これにより、溶銑2や溶銑鍋3に混入した脱燐処理後のスラグの酸素ポテンシャルの違いに応じて、酸素ポテンシャルが高くなる程、Al系脱酸剤6a,6bの使用量が増大するように添加することができる。このため、脱燐処理によって溶銑2及びスラグの酸素ポテンシャルが高くなった場合においても、脱硫反応への悪影響を効果的に防止することができる。その結果、フッ素源を用いないCaO系の脱硫剤5a,5bを用いても、脱硫効率が極端に低下することが防止され、予防的に脱硫剤を過剰に使用する必要がなくなることから、全体として脱硫剤使用量の削減が可能となり、高い脱硫効率で脱硫処理することができる。つまり、上記(1)の構成によれば、脱硫剤5a,5bやAl系脱酸剤6a,6bの使用量を過度に増大させることなく、脱硫不良の発生を抑制することが可能となるため、スラグの発生量及び脱硫コストを抑制することができる。また、精錬剤の使用種類を増加させる必要がないため、小型の設備においても、容易に適用することが可能となる。   According to the configuration of (1) above, the Al-based deoxidizer is added in accordance with the phosphorus concentration of the hot metal 2 as compared with the conventional desulfurization method in which the addition amount of the Al-based deoxidizer is always a constant ratio with respect to quicklime. The usage amount of 6a, 6b is changed. Thereby, according to the difference in the oxygen potential of the slag after the dephosphorization process mixed in the hot metal 2 or the hot metal ladle 3, the use amount of the Al-based deoxidizers 6a and 6b increases as the oxygen potential increases. Can be added. For this reason, even when the oxygen potential of the hot metal 2 and the slag is increased by the dephosphorization treatment, it is possible to effectively prevent an adverse effect on the desulfurization reaction. As a result, even if CaO-based desulfurization agents 5a and 5b that do not use a fluorine source are used, it is possible to prevent the desulfurization efficiency from being extremely reduced, and it is not necessary to use a desulfurization agent excessively in a proactive manner. As a result, the amount of desulfurization agent used can be reduced, and desulfurization can be performed with high desulfurization efficiency. That is, according to the configuration of (1), it is possible to suppress the occurrence of defective desulfurization without excessively increasing the amount of the desulfurizing agents 5a and 5b and the Al-based deoxidizing agents 6a and 6b. Moreover, the generation amount of slag and the desulfurization cost can be suppressed. Further, since it is not necessary to increase the use type of the refining agent, it can be easily applied to a small facility.

(2)上記(1)の構成において、脱硫処理前の溶銑2の燐濃度X(質量%)が0.03以上、0.15以下の範囲であり、燐濃度Xに対して、Al系脱酸剤6a,6bに含まれる金属Alの溶銑1tあたりの添加量YAl(kg/t)が(4)式を満たす範囲となるように、Al系脱酸剤6a,6bの添加量を決定する。
上記(2)の構成によれば、上記(1)の構成による効果に加え、溶銑2及びスラグの酸素ポテンシャルに応じて、脱硫効率の低下を防止するために必要なAl系脱酸剤6a,6bを過不足なく添加することができる。
(2) In the above configuration (1), the phosphorus concentration of the molten iron 2 before desulfurization treatment X P (wt%) of 0.03 or more, in the range of 0.15 or less, relative to the phosphorus concentration X P, Al Amounts of Al- based deoxidizers 6a and 6b so that the added amount Y Al (kg / t) per 1 ton of molten metal contained in the system-based deoxidizers 6a and 6b satisfies the formula (4). To decide.
According to the configuration of the above (2), in addition to the effect of the configuration of the above (1), the Al-based deoxidizer 6a, which is necessary for preventing the desulfurization efficiency from being lowered according to the oxygen potential of the hot metal 2 and the slag. 6b can be added without excess or deficiency.

(3)上記(1)または(2)の構成において、処理容器(例えば、溶銑鍋3)内の溶銑2を、攪拌羽根によって攪拌させながら脱硫処理する。
上記(3)の構成によれば、上記実施形態と同様な機械攪拌式の溶銑脱硫装置1において、脱硫効率の低下を防止することができる。
(3) In the configuration of the above (1) or (2), the hot metal 2 in the processing vessel (for example, hot metal ladle 3) is desulfurized while being stirred by a stirring blade.
According to the configuration of (3) above, in the mechanical stirring type hot metal desulfurization apparatus 1 similar to the above embodiment, it is possible to prevent the desulfurization efficiency from being lowered.

次に、本発明者らが行った実施例について説明する。実施例では、上記実施形態と同様に、高炉から出銑された溶銑を容量約300tの混銑車に収容した後、溶銑脱燐設備に搬送し、混銑車に収容された溶銑に、焼結鉱粉などの酸化剤の粉体と生石灰などの石灰系媒溶剤の粉体とを吹き込んで、溶銑脱燐処理を実施した。高炉から出銑した溶銑の燐濃度は、0.12質量%〜0.14質量%の範囲であり、ほぼ全ての混銑車の溶銑について処理を実施した。しかしながら、脱燐の程度は、処理前の溶銑の珪素濃度や、溶銑の在庫状況や製鋼製品の生産計画の状況などによって許容される処理時間によって異なるものとなり、処理後の溶銑の燐濃度は、0.035質量%〜0.12質量%の範囲となった。   Next, examples performed by the present inventors will be described. In the example, the hot metal discharged from the blast furnace was accommodated in a mixed car having a capacity of about 300 t, then transferred to a hot metal dephosphorization facility, and the molten iron stored in the mixed car was transferred to the sintered ore as in the above embodiment. The hot metal dephosphorization treatment was carried out by blowing powder of an oxidizing agent such as powder and powder of a lime-based solvent such as quick lime. The phosphorus concentration in the hot metal discharged from the blast furnace was in the range of 0.12% by mass to 0.14% by mass, and almost all the molten iron in the kneading car was treated. However, the degree of dephosphorization varies depending on the silicon concentration of the hot metal before processing, the processing time allowed depending on the stock status of hot metal, the status of the production plan of steel products, etc., and the phosphorus concentration of hot metal after processing is It became the range of 0.035 mass%-0.12 mass%.

次いで、混銑車に収容された脱燐処理後の溶銑を、製鋼工場に搬送し、1つまたは複数の混銑車から容量約300tの溶銑鍋に溶銑を移注した。そして、上記実施形態と同様に、溶銑浴面上のスラグの一部を除去するとともに、溶銑試料を採取して硫黄濃度や燐濃度等の各成分濃度を分析した。さらに、他の溶銑の脱硫処理にて発生した脱硫スラグ約6kg/tを溶銑鍋内の溶銑浴面上に上置き添加した後、上記実施形態と同様に図1に示す機械撹拌式の溶銑脱硫装置1に溶銑鍋3を移動して脱硫処理を実施した。脱硫処理前の溶銑2の成分は、C:4.0質量%〜4.4質量%、Si:0.01質量%未満〜0.10質量%、P:0.040質量%〜0.120質量%、S:0.025質量%〜0.035質量%であった。   Subsequently, the hot metal after the dephosphorization process accommodated in the kneading car was conveyed to a steelmaking factory, and the hot metal was transferred from one or more kneading cars to a hot metal ladle having a capacity of about 300 t. And like the said embodiment, while removing a part of slag on the hot metal bath surface, the hot metal sample was extract | collected and each component density | concentrations, such as sulfur concentration and phosphorus concentration, were analyzed. Furthermore, after adding about 6 kg / t of desulfurization slag generated in the desulfurization treatment of other hot metal on the hot metal bath surface in the hot metal pan, the mechanical stirring type hot metal desulfurization shown in FIG. The hot metal ladle 3 was moved to the apparatus 1 to carry out the desulfurization treatment. The components of the hot metal 2 before the desulfurization treatment are: C: 4.0% by mass to 4.4% by mass, Si: less than 0.01% by mass to 0.10% by mass, P: 0.040% by mass to 0.120% The mass% was S: 0.025 mass% to 0.035 mass%.

さらに、図1の溶銑脱硫装置1において、溶銑鍋3に収容された約300tの溶銑2に攪拌羽根10を低速で回転させながら所定の深さまで浸漬させ、脱硫剤5aである生石灰を溶銑1tあたり5kg上置き添加した。そして、攪拌羽根10を120rpmの回転速度で回転させて溶銑2と脱硫剤5aとを攪拌し、脱硫処理を開始した。脱硫処理前の溶銑2の硫黄濃度や脱硫処理後の硫黄濃度の目標値(上限値)に基づいて、脱硫剤5a,5bである生石灰の追加量と撹拌時間(脱硫処理時間)を調整し、溶銑1tあたり5kg〜8kgの予定量の生石灰を添加し終えた後、予定時間の攪拌が終了したら脱硫処理を終了した。攪拌羽根10を停止し、上昇させた後、溶銑鍋3を除滓場に移動し、脱硫処理で生成したスラグを溶銑鍋から排出するとともに、溶銑試料を採取して成分分析に供し、次の脱炭精錬工程に溶銑鍋を搬送した。   Further, in the hot metal desulfurization apparatus 1 shown in FIG. 1, the stirring blade 10 is dipped to a predetermined depth while rotating at a low speed in about 300 t of hot metal 2 accommodated in the hot metal ladle 3, and quick lime as a desulfurizing agent 5a is added per 1t of hot metal. 5 kg was added on top. And the stirring blade 10 was rotated at the rotational speed of 120 rpm, the hot metal 2 and the desulfurization agent 5a were stirred, and the desulfurization process was started. Based on the target concentration (upper limit) of the sulfur concentration of the hot metal 2 before the desulfurization treatment and the sulfur concentration after the desulfurization treatment, the additional amount of quick lime as the desulfurization agents 5a and 5b and the stirring time (desulfurization treatment time) are adjusted, After the addition of a predetermined amount of quick lime of 5 kg to 8 kg per 1 ton of hot metal, the desulfurization treatment was completed when stirring for the predetermined time was completed. After the stirring blade 10 is stopped and raised, the hot metal ladle 3 is moved to the demolition field, and the slag generated by the desulfurization treatment is discharged from the hot metal ladle, and a hot metal sample is collected and used for component analysis. The hot metal ladle was transported to the decarburization refining process.

脱硫処理ではAl系脱酸剤6a,6bとして、上記実施形態と同様にAlドロスを用い、添加方法を種々変更して実施例1〜5及び比較例1,2の7条件で脱硫処理を実施した。Alドロスとしては、実施例5では金属Alの含有量が30質量%のものを用い、実施例1〜4及び比較例1,2では、金属Alの含有量が12質量%のものを用いた。
比較例1では、脱硫処理開始時に5kg/tの脱硫剤5aを上置き添加した後、Al系脱酸剤6aを溶銑1tあたり約1.8kgの一定量として一括で添加した。そして、追加分の脱硫剤を添加する場合には、1回または複数回に分けて脱硫剤5aのみを上置き添加する方法で約500回の脱硫処理を続けて行った。
In the desulfurization treatment, Al dross is used as the Al-based deoxidizers 6a and 6b in the same manner as in the above embodiment, and the desulfurization treatment is performed under the seven conditions of Examples 1 to 5 and Comparative Examples 1 and 2 by variously changing the addition method. did. As Al dross, in Example 5, the content of metal Al was 30% by mass, and in Examples 1-4 and Comparative Examples 1 and 2, the content of metal Al was 12% by mass. .
In Comparative Example 1, 5 kg / t of the desulfurizing agent 5a was added on top at the start of the desulfurization treatment, and then the Al-based deoxidizing agent 6a was added as a fixed amount of about 1.8 kg per 1 ton of hot metal. When an additional amount of desulfurizing agent was added, the desulfurization treatment was continued about 500 times by a method in which only the desulfurizing agent 5a was added in one or more times.

また、比較例2では、比較例1と同様に、脱硫処理開始時に5kg/tの脱硫剤5aを上置き添加した後、追加分の脱硫剤を添加する場合には、1回または複数回に分けて脱硫剤5aのみを上置き添加した。さらに、比較例2では、脱硫処理開始時及び脱硫処理中に脱硫剤5aを上置き添加する毎に、添加した脱硫剤5aに対して30質量%のAl系脱酸剤6aを添加する方法で約500回の脱硫処理を続けて行った。   Further, in Comparative Example 2, similarly to Comparative Example 1, after adding 5 kg / t of desulfurizing agent 5a at the start of desulfurization treatment, when adding an additional amount of desulfurizing agent, once or a plurality of times. Separately, only the desulfurizing agent 5a was added on top. Furthermore, in Comparative Example 2, every time the desulfurization agent 5a is added at the beginning of the desulfurization treatment and during the desulfurization treatment, 30% by mass of the Al-based deoxidizer 6a is added to the added desulfurization agent 5a. The desulfurization treatment was continued about 500 times.

これに対して、実施例1では、脱硫処理前の溶銑2の燐濃度X(質量%)に応じて、Al系脱酸剤6aの添加量の目標値を、Al系脱酸剤6aであるAlドロスに含まれる金属Alの原単位YAl(kg/t)が(5)式を満たすように決定した。そして、比較例1と同様に、脱硫処理開始時に生石灰5kg/tを上置き添加した後、調整された量のAl系脱酸剤6aを一括で添加した。また、追加分の脱硫剤5aを添加する場合は、1回または複数回に分けて生石灰のみを上置き添加する方法で約500回の脱硫処理を続けて行った。 In contrast, in Example 1, in accordance with the phosphorus concentration X P desulfurization pretreatment hot metal 2 (by mass%), the target value of the amount of Al-based deoxidizer 6a, an Al-based deoxidizer 6a The basic unit Y Al (kg / t) of metal Al contained in a certain Al dross was determined so as to satisfy the formula (5). Then, similarly to Comparative Example 1, after adding 5 kg / t of quicklime at the start of the desulfurization treatment, an adjusted amount of the Al-based deoxidizer 6a was added all at once. Further, when adding an additional amount of desulfurizing agent 5a, about 500 desulfurization treatments were continuously performed by a method in which only quick lime was added in one or a plurality of times.

実施例2では、Al系脱酸剤6aの添加量の目標値を、Al系脱酸剤6aに含まれる金属Alの原単位YAl(kg/t)が(6)式を満たすように決定した。そして、脱硫処理前の溶銑2の燐濃度Xに応じてステップ状にAl系脱酸剤6aの添加量を調整する以外は実施例1と同様にして約500回の脱硫処理を続けて行った。
実施例3では、脱硫処理開始時に生石灰5kg/tを上置き添加した直後に、Al系脱酸剤6aに含まれる金属Alの原単位YAl(kg/t)が(2)式を満たすように添加量が調整されたAl系脱酸剤6aを添加した。そして、追加分の脱硫剤5aを上置き添加する毎に、追加した脱硫剤5aに対して15質量%のAl系脱酸剤6aを添加する方法で約500回の脱硫処理を続けて行った。
In Example 2, the target value of the addition amount of the Al-based deoxidizer 6a is determined so that the basic unit YAl (kg / t) of the metal Al contained in the Al-based deoxidizer 6a satisfies the equation (6). did. Then, performed is continued desulfurization treatment of about 500 times in the same manner as in Example 1 except for adjusting the amount of addition of Al-based deoxidizer 6a stepwise in accordance with the phosphorus concentration X P desulfurization pretreatment hot metal 2 It was.
In Example 3, immediately after adding 5 kg / t of quicklime at the start of the desulfurization treatment, the basic unit Y Al (kg / t) of metal Al contained in the Al-based deoxidizer 6a satisfies the formula (2). Was added with an Al-based deoxidizing agent 6a whose amount was adjusted. Then, every time the additional amount of desulfurizing agent 5a was added on top, about 500 times of desulfurization treatment was continued by adding 15% by mass of Al-based deoxidizing agent 6a to the added desulfurizing agent 5a. .

実施例4では、実施例3と同様の方法で、脱硫処理開始時に脱硫剤5aとAl系脱酸剤6aを添加した。その後、追加分の脱硫剤と、追加分の脱硫剤に対して15質量%のAl系脱酸剤とを、それぞれ脱硫剤5bとAl系脱酸剤6bとして、両者が混合された状態で上吹きランス15から溶銑2に吹き付けて添加する方法で、約500回の脱硫処理を続けて行った。
実施例5では、金属Alの含有量が30質量%のAlドロスをAl系脱酸剤6aとして用いる以外は、実施例1と同じ方法で約500回の脱硫処理を続けて行った。
In Example 4, the desulfurizing agent 5a and the Al-based deoxidizing agent 6a were added at the start of the desulfurization process in the same manner as in Example 3. Thereafter, an additional amount of desulfurizing agent and 15% by mass of an Al-based deoxidizing agent with respect to the additional amount of desulfurizing agent are respectively used as a desulfurizing agent 5b and an Al-based deoxidizing agent 6b. The desulfurization treatment was continued about 500 times by the method of spraying and adding to the hot metal 2 from the blowing lance 15.
In Example 5, desulfurization treatment was performed about 500 times in the same manner as in Example 1 except that Al dross having a metal Al content of 30% by mass was used as the Al-based deoxidizer 6a.

実施例1〜5及び比較例1,2において、脱硫不良チャージとなるリスクが高い、(1)式で定義した脱硫効率ηが0.4未満となるチャージの発生比率を、比較例1の場合の発生比率を基準とする指標で評価し、表1に示す。何れの実施例及び比較例においても、脱硫剤5a,5bの平均原単位(溶銑1tあたりの添加量)は6kg/t程度、添加したAl系脱酸剤6a,6bに含まれる金属Alの平均原単位(溶銑1tあたりの添加量)は0.22kg/t程度と同程度であった。   In Examples 1 to 5 and Comparative Examples 1 and 2, there is a high risk of desulfurization defective charge, and the charge generation ratio at which the desulfurization efficiency η defined by the formula (1) is less than 0.4 is the case of Comparative Example 1. Table 1 shows an evaluation based on an index based on the generation ratio. In any of the examples and comparative examples, the average basic unit (addition amount per 1 ton of hot metal) of the desulfurizing agents 5a and 5b is about 6 kg / t, and the average of metal Al contained in the added Al-based deoxidizers 6a and 6b. The basic unit (added amount per 1 ton of hot metal) was about 0.22 kg / t.

Figure 2018172719
Figure 2018172719

表1の結果より、脱硫処理前の溶銑2の燐濃度に応じて、溶銑2の燐濃度が低くなるにしたがってAl系脱酸剤6a,6bであるAlドロスの添加量を増大させるように調整する本発明の方法では、脱硫剤やAl系脱酸剤の使用量を増大させることなく、脱硫不良チャージの発生の抑制が可能となることが確認できた。   Based on the results in Table 1, the amount of Al dross as the Al-based deoxidizers 6a and 6b is adjusted to increase as the phosphorus concentration in the hot metal 2 decreases according to the phosphorus concentration in the hot metal 2 before the desulfurization treatment. In the method of the present invention, it has been confirmed that the generation of defective desulfurization charge can be suppressed without increasing the amount of desulfurization agent or Al-based deoxidizer used.

1 溶銑脱硫装置
10 攪拌羽根
10a 軸部
10b 羽根部
11a〜11d ホッパー
12a,12b ロータリーフィーダ
13a,13b 切り出し装置
14 投入シュート
15 上吹きランス
2 溶銑
3 溶銑鍋
4 台車
DESCRIPTION OF SYMBOLS 1 Hot metal desulfurization apparatus 10 Stirring blade 10a Shaft part 10b Blade part 11a-11d Hopper 12a, 12b Rotary feeder 13a, 13b Cutting device 14 Input chute 15 Top blowing lance 2 Hot metal 3 Hot metal ladle 4 Carriage

Claims (3)

高炉から出銑され、脱燐処理が施された溶銑を含む溶銑に、生石灰を含む脱硫剤と、金属Alの含有量が10質量%以上で残部が主にAlであるAl系脱酸剤とを添加して脱硫処理を行う、溶銑の脱硫方法であって、
前記脱硫処理前の前記溶銑の燐濃度に応じて、前記燐濃度が低くなるにしたがって前記Al系脱酸剤の添加量を増大させるように調整することを特徴とする溶銑の脱硫方法。
To the hot metal containing hot metal extracted from a blast furnace and subjected to dephosphorization treatment, an Al-based desulfurization agent containing a desulfurization agent containing quicklime and a metal Al content of 10% by mass or more and the balance being mainly Al 2 O 3 is used. A desulfurization method for hot metal in which a desulfurization treatment is performed by adding an acid agent,
A hot metal desulfurization method comprising adjusting the amount of addition of the Al-based deoxidizer as the phosphorus concentration decreases in accordance with the phosphorus concentration of the hot metal before the desulfurization treatment.
前記脱硫処理前の前記溶銑の燐濃度X(質量%)が0.03以上、0.15以下の範囲であり、前記燐濃度に対して、前記Al系脱酸剤に含まれる金属Alの溶銑1tあたりの添加量YAl(kg/t)が下記(4)式を満たす範囲となるように、前記Al系脱酸剤の添加量を決定することを特徴とする請求項1に記載の溶銑の脱硫方法。
0.28−X/0.75≦YAl≦0.40−X/0.75 ・・・(4)
The phosphorus concentration X P (wt%) of the hot metal pre-desulfurization process 0.03 or more and 0.15 or less, relative to the phosphorus concentration of the metal Al contained in the Al-based deoxidizer 2. The addition amount of the Al-based deoxidizer is determined such that the addition amount Y Al (kg / t) per 1 ton of hot metal is in a range satisfying the following expression (4): 2. Hot metal desulfurization method.
0.28−X P /0.75≦Y Al ≦ 0.40−X P /0.75 (4)
処理容器内の前記溶銑を、攪拌羽根によって攪拌させながら脱硫処理することを特徴とする請求項1または2に記載の溶銑の脱硫方法。   The hot metal desulfurization method according to claim 1 or 2, wherein the hot metal in the processing vessel is desulfurized while being stirred by a stirring blade.
JP2017070540A 2017-03-31 2017-03-31 Desulfurization method of molten pig iron Pending JP2018172719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017070540A JP2018172719A (en) 2017-03-31 2017-03-31 Desulfurization method of molten pig iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017070540A JP2018172719A (en) 2017-03-31 2017-03-31 Desulfurization method of molten pig iron

Publications (1)

Publication Number Publication Date
JP2018172719A true JP2018172719A (en) 2018-11-08

Family

ID=64107130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017070540A Pending JP2018172719A (en) 2017-03-31 2017-03-31 Desulfurization method of molten pig iron

Country Status (1)

Country Link
JP (1) JP2018172719A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021110016A (en) * 2020-01-14 2021-08-02 日本製鉄株式会社 Model construction device, prediction device, model construction method, prediction method, and computer program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021110016A (en) * 2020-01-14 2021-08-02 日本製鉄株式会社 Model construction device, prediction device, model construction method, prediction method, and computer program
JP7401752B2 (en) 2020-01-14 2023-12-20 日本製鉄株式会社 Model construction device, prediction device, model construction method, prediction method, and computer program

Similar Documents

Publication Publication Date Title
KR101366720B1 (en) Method of desulfurization of molten iron
JP6061053B2 (en) Hot metal desulfurization method and desulfurization agent
JP4845078B2 (en) Hot metal desulfurization method
JP5045031B2 (en) Hot metal desulfurization agent and desulfurization treatment method
WO2016174696A1 (en) Method for reuse of desulfurization slag
JP5177170B2 (en) Hot metal desulfurization method
JP2018172719A (en) Desulfurization method of molten pig iron
JP5888194B2 (en) Desulfurization method for molten steel
JP6024192B2 (en) Method for preventing hot metal after desulphurization
JP5066923B2 (en) Hot metal desulfurization treatment method
JP4998677B2 (en) Reuse method of desulfurization slag
JP6238019B2 (en) Hot metal desulfurization method with less recuperation
JP4984928B2 (en) Hot metal desulfurization method
JP5446300B2 (en) Hot metal desulfurization treatment method
JP6416634B2 (en) Desiliconization and desulfurization methods in hot metal ladle
JP2009114489A (en) Method for dephosphorizing molten iron
JP4904858B2 (en) Hot metal dephosphorization method
JP2000345224A (en) Method for desulfurizing molten iron
JP5668641B2 (en) Hot metal desulfurization method
JP6649639B2 (en) Method of adding desulfurizing agent into hot metal processing vessel and method of refining hot metal
JP2012017521A (en) Dephosphorization method of molten iron using dust
JP4360239B2 (en) Method for desulfurization of molten steel in vacuum degassing equipment
JP4772454B2 (en) Hot metal refining method
JP2023003056A (en) Desulfurization treatment method and desulfurizer for hot metal
JP6289204B2 (en) Desiliconization and desulfurization methods in hot metal ladle