JP2011162805A - Method for producing functionally gradient material - Google Patents

Method for producing functionally gradient material Download PDF

Info

Publication number
JP2011162805A
JP2011162805A JP2010023389A JP2010023389A JP2011162805A JP 2011162805 A JP2011162805 A JP 2011162805A JP 2010023389 A JP2010023389 A JP 2010023389A JP 2010023389 A JP2010023389 A JP 2010023389A JP 2011162805 A JP2011162805 A JP 2011162805A
Authority
JP
Japan
Prior art keywords
particles
functionally gradient
centrifugal force
gradient material
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010023389A
Other languages
Japanese (ja)
Inventor
Yoshimi Watanabe
義見 渡辺
Takashi Sato
尚 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya Institute of Technology NUC
Original Assignee
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Institute of Technology NUC filed Critical Nagoya Institute of Technology NUC
Priority to JP2010023389A priority Critical patent/JP2011162805A/en
Publication of JP2011162805A publication Critical patent/JP2011162805A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To produce a functionally gradient material without producing the molten metal of a part of stock composing the same. <P>SOLUTION: Using a slurry containing two or more kinds of particles composed of high speed moving particles having a high specific gravity and/or a large particle diameter and low speed moving particles having a low specific gravity and/or a small particle diameter, this slurry is settled in a centrifugal force field; thereafter, a liquid phase part is removed to produce a green body having a compositional gradient, and this green body is sintered so as to be solidified; thus the functionally gradient material is obtained. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、傾斜機能材料の製造方法に関するものである。   The present invention relates to a method for producing a functionally gradient material.

傾斜機能材料とは組成、組織が異なる複数の素材が傾斜し一体的に組み合わされた材料のことである。傾斜機能材料を製造するためには、材料設計に応じて材料内部の組成分布や組織を自由に制御できる技術が要求される。傾斜機能材料の製造技術は、素材と大きさの組合せにより多種多岐にわたる。具体例として、金属粉末とセラミックス粉末とを所定の割合で混合し、その混合粉末をあらかじめ定められた組成分布に従って組成を変えながら積層し、それの焼結を行う粉末冶金法がある。しかし、この手法では組成傾斜が段階的になり、連続的に組成が傾斜した材料の製造は困難である。   The functionally gradient material is a material in which a plurality of materials having different compositions and structures are inclined and integrally combined. In order to manufacture a functionally gradient material, a technique capable of freely controlling the composition distribution and structure inside the material according to the material design is required. The manufacturing technology of functionally gradient materials varies widely depending on the combination of materials and sizes. As a specific example, there is a powder metallurgy method in which metal powder and ceramic powder are mixed at a predetermined ratio, the mixed powder is laminated while changing the composition in accordance with a predetermined composition distribution, and sintered. However, in this method, the composition gradient is stepwise, and it is difficult to manufacture a material having a continuously gradient composition.

特許文献1、特許文献2および特許文献3に記載の、遠心力を利用した製造法では連続的組成傾斜が可能となる。遠心力を利用した傾斜機能材料の従来の製造技術は、大きく2つの手法に分けることが出来る。その一つは遠心鋳造を応用した遠心力法である(図1)。第2相粒子を含む金属溶湯を遠心鋳造に供すると、金属溶湯と第2相粒子の密度差によって、第2相粒子が金属母相中を移動する。金属溶湯中に粒子が傾斜分布した状態で移動を終了させれば傾斜機能材料製造法の製造が行え、これを遠心力固相法と呼んでいる。   In the manufacturing methods using centrifugal force described in Patent Document 1, Patent Document 2 and Patent Document 3, continuous composition gradient is possible. Conventional manufacturing technology of functionally gradient materials using centrifugal force can be roughly divided into two methods. One of them is the centrifugal force method using centrifugal casting (Fig. 1). When the molten metal containing the second phase particles is subjected to centrifugal casting, the second phase particles move in the metal matrix due to the difference in density between the molten metal and the second phase particles. If the movement is terminated in a state where the particles are distributed in the metal melt, a functionally gradient material manufacturing method can be manufactured, which is called a centrifugal solid phase method.

金属溶湯中における粒子の移動速度は次のストークスの式によって支配される。   The moving speed of particles in the molten metal is governed by the following Stokes equation.

ここで、dx/dt、rp、rm、g、Dp およびh はそれぞれ粒子の移動速度、粒子の密度、溶融母相の密度、重力、粒子径および見かけの粘性である。この式から分かるように、粒子の移動速度は溶融母相と固相粒子の密度差、重力倍数および固相粒子径の二乗に比例する。金属溶湯に粒子を添加し、遠心力を印加せず重力場での沈降を利用した傾斜機能材料の製造も報告されている。これは、原理的に遠心力法と等しい。溶湯中の第2相粒子が溶解し、遠心力印加場で晶出する場合もあり、これを遠心力晶出法と言う(特許文献4、特許文献5)。いずれの場合も、粒子の移動の終了は金属溶湯の凝固によって行い、この凝固した金属部分は傾斜機能材料の母相となる。それゆえ、この遠心力を利用した技術は、素材の溶湯を作製することが必要である欠点をもつ。また、本技術は、材料内部において組成傾斜が0%から100%である傾斜機能材料をつくることができない。 Here, dx / dt, r p , r m , g, D p and h are the moving speed of the particle, the density of the particle, the density of the molten mother phase, the gravity, the particle diameter and the apparent viscosity, respectively. As can be seen from this equation, the moving speed of the particles is proportional to the density difference between the molten mother phase and the solid phase particles, the multiple of gravity, and the square of the solid phase particle diameter. It has also been reported that functionally gradient materials are produced by adding particles to molten metal and using sedimentation in a gravitational field without applying centrifugal force. This is in principle equal to the centrifugal force method. In some cases, the second phase particles in the molten metal dissolve and crystallize in a centrifugal force application field, which is referred to as a centrifugal force crystallization method (Patent Documents 4 and 5). In any case, the movement of the particles is completed by solidification of the molten metal, and the solidified metal portion becomes the parent phase of the functionally gradient material. Therefore, this technique using centrifugal force has a drawback that it is necessary to produce a molten metal. Moreover, this technique cannot produce a functionally gradient material having a composition gradient of 0% to 100% inside the material.

もう一つの遠心力を利用した製造技術は、遠心力を単に加圧法として利用する遠心力加圧法である(図1)。組成傾斜は、通常遠心力印加前につけられ遠心力場での組成傾斜は期待していない。この手法の応用例として遠心力混合粉末法がある(特許文献6)。ただし、この遠心力を利用した技術も、一方の素材の溶湯を作製することが必要である欠点を有し、材料内部において組成傾斜が0%から100%である傾斜機能材料をつくることができない。   Another manufacturing technique using centrifugal force is a centrifugal force pressurizing method that uses the centrifugal force as a pressurizing method (FIG. 1). The composition gradient is usually applied before the centrifugal force is applied, and the composition gradient in the centrifugal force field is not expected. As an application example of this technique, there is a centrifugal powder mixing method (Patent Document 6). However, this technique using centrifugal force also has a drawback that it is necessary to produce a molten metal of one material, and it is impossible to produce a functionally gradient material having a composition gradient of 0% to 100% inside the material. .

特開2001−80972号公報JP 2001-80972 A 特開2001−115224号公報JP 2001-115224 A 特開2001−112263号公報JP 2001-112263 A 特開2001−252753号公報JP 2001-252753 A 特開2003−166028号公報Japanese Patent Laid-Open No. 2003-166028 特願2008−284589号公報Japanese Patent Application No. 2008-284589

本発明は上記点に鑑みて、傾斜機能材料を構成する一部の素材溶湯を作製することなしに、傾斜機能材料を製造することを目的とする。   In view of the above points, an object of the present invention is to produce a functionally gradient material without producing a part of molten material constituting the functionally gradient material.

請求項1に記載の発明では、傾斜機能材料を構成する一部の素材溶湯を作製することなしに傾斜機能材料を作製するために、移動速度差のある複数種類の粒子を含むスラリーを用い、これに遠心力を作用させることにより移動速度差を利用して傾斜機能材料を製造することを特徴とする。また、請求項2に記載の発明では、移動速度差のある複数種類の粒子を含むスラリーを用い、これを液相の上に注ぎ込んだ後に遠心力を作用させ、粒子の液体中の移動速度差を利用して傾斜機能材料を製造することを特徴とする。   In the invention according to claim 1, in order to produce a functionally gradient material without producing a part of molten material constituting the functionally gradient material, a slurry containing a plurality of types of particles having a difference in moving speed is used. This is characterized in that a functionally gradient material is manufactured by utilizing a difference in moving speed by applying a centrifugal force thereto. Further, in the invention according to claim 2, a slurry containing a plurality of types of particles having a difference in moving speed is used, and after pouring the slurry onto the liquid phase, a centrifugal force is applied to move the difference in moving speed of the particles in the liquid. A functionally gradient material is manufactured using

請求項3に記載の発明では、傾斜機能材料を構成する一部の素材溶湯を作製することなしに材料内部において組成傾斜が0%から100%である傾斜機能材料の作製を可能にするために、移動速度差のある複数種類の粒子を含むスラリーを用い、これを溶融が可能な固体の上に注ぎ込み、その後その固体を溶融させた後に遠心力を作用させ、粒子の液体中の移動速度差を利用して傾斜機能材料を製造することを特徴とする。また、請求項4に記載の発明では、移動速度差のある複数種類の粒子を含むスラリーを用い、これを溶融が可能なあるいは気化が可能な固体の上に注ぎ込み、その固体の下には液体を置き、その後その固体を溶融させた後に遠心力を作用させ、粒子の液体中の移動速度差を利用して傾斜機能材料を製造することを特徴とする。   In the invention according to claim 3, in order to make it possible to produce a functionally gradient material having a composition gradient of 0% to 100% inside the material without producing a part of the raw material melt constituting the functionally gradient material. Using a slurry containing multiple types of particles with different moving speeds, pouring them onto a solid that can be melted, and then melting the solids, and then applying a centrifugal force, the difference in moving speed of the particles in the liquid A functionally gradient material is manufactured using In the invention according to claim 4, a slurry containing a plurality of types of particles having different moving speeds is used, which is poured onto a solid that can be melted or vaporized, and a liquid is placed under the solid. Then, after the solid is melted, a centrifugal force is applied, and the functionally gradient material is manufactured using the difference in the moving speed of the particles in the liquid.

遠心力による傾斜機能材料製造の原理を示す模式図である。It is a schematic diagram which shows the principle of functionally gradient material manufacture by centrifugal force. Ti粒子(密度4.5Mg/m)とZrO粒子(密度5.95Mg/m)のスラリー中の移動速度を示す図である。Ti particles (density of 4.5 mg / m 3) is a diagram showing the moving speed of the slurry of ZrO 2 particles (density of 5.95Mg / m 3). 粒径90〜150μmのTi粒子と粒径38〜75μmのZrO粒子を用い遠心力スラリー法中で製造した傾斜機能材料の粒子分布(組成傾斜)を示す図である。シミュレーションによって求めている。It is a figure which shows the particle distribution (composition gradient) of the functionally gradient material manufactured in the centrifugal force slurry method using Ti particles with a particle size of 90 to 150 μm and ZrO 2 particles with a particle size of 38 to 75 μm. It is determined by simulation. 遠心力スラリー投入法によって製造した傾斜機能材料における粒子分布(組成傾斜)に及ぼす溶媒帯幅の影響を示す図である。溶媒帯幅は、40mm、60mmおよび100mmである。シミュレーションによって求めている。It is a figure which shows the influence of the solvent zone | band width which acts on the particle distribution (composition gradient) in the functionally gradient material manufactured by the centrifugal force slurry injection method. The solvent band widths are 40 mm, 60 mm and 100 mm. It is determined by simulation. 溶媒帯の幅を0mmおよび100mmとしたときの、傾斜機能材料の組成傾斜を示す図である。It is a figure which shows the composition inclination of a functionally gradient material when the width | variety of a solvent zone is 0 mm and 100 mm. Ti粒子の粒径が63〜90μm、ZrO粒子の粒径が75〜106μmの系を利用して製造した傾斜機能材料の組成傾斜を示す図である。上のグラフがシミュレーション結果であり、下のグラフが実験結果である。The particle size of Ti particles is a diagram showing 63~90Myuemu, the composition gradient of FGM the particle size of the ZrO 2 particles were produced by using a system of 75~106Myuemu. The upper graph is the simulation result, and the lower graph is the experimental result. スラリー投入法の実施例を示す図である。It is a figure which shows the Example of a slurry injection method. 溶媒帯として溶融が可能な固体を用いたスラリー投入法の実施例を示す図である。It is a figure which shows the Example of the slurry injection method using the solid which can be melt | dissolved as a solvent zone.

本実施形態は、移動速度差のある複数種類の粒子を混合したスラリーに遠心力を印加することにより、粒子間の移動速度差を利用して組成傾斜を作製し、全ての粒子が遠心力方向に移動した後にスラリーの液相部分を除去して固化することによって、素材の溶湯を用いることなしに傾斜機能材料を作製するものである。   In this embodiment, a centrifugal force is applied to a slurry in which a plurality of types of particles having different moving speeds are mixed, thereby creating a composition gradient using the moving speed difference between the particles, and all particles are in the direction of the centrifugal force. The functionally graded material is produced without using the molten metal by removing the liquid phase portion of the slurry after solidification and solidifying.

本実施形態による傾斜機能材料の作製は、以下の手順でおこなわれる。
(1)スラリーとして、図1に示すような、比重の大きいおよび/または粒径の大きな高速移動粒子(第1の粒子)と、比重の小さなおよび/または粒径の小さな低速移動粒子(第1の粒子よりも比重の小さなおよび/または粒径の小さな第2の粒子)の2種類以上の粒子を含むスラリーを用いる。
(2)このスラリーを遠心力場で沈降させ、その後、液相部分を取り除き、組成傾斜を有するグリーン体を作製する。
(3)このグリーン体を焼結することによって固化し、傾斜機能材料を得る。
The functionally gradient material according to the present embodiment is manufactured according to the following procedure.
(1) As a slurry, as shown in FIG. 1, high-speed moving particles (first particles) having a large specific gravity and / or large particle size, and low-speed moving particles (first particles) having a small specific gravity and / or small particle size A slurry containing two or more types of particles having a specific gravity smaller than that of the second particle and / or a second particle having a smaller particle diameter) is used.
(2) The slurry is allowed to settle in a centrifugal force field, and then the liquid phase portion is removed to produce a green body having a composition gradient.
(3) The green body is solidified by sintering to obtain a functionally gradient material.

本実施形態では、移動速度差のある複数種類の粒子として、Ti粒子(密度4.5Mg/m)とZrO粒子(密度5.95Mg/m)を用いるが、これが材料系を決定するものではない。これらの沈降速度を計算により求め、それを図2に示す。図のように、粒径が同一の場合、密度の大きいZrO粒子の沈降速度が速い。これに対し、Ti粒子の粒径が大きく、ZrO粒子のそれが小さい場合には、逆転する場合もある。このスラリーを遠心力場で沈降させ、その後、液相部分を取り除き、組成傾斜を有するグリーン体を作製する。この方法を遠心力スラリー法という。このグリーン体の焼結により傾斜機能材料を得る。 In this embodiment, Ti particles (density 4.5 Mg / m 3 ) and ZrO 2 particles (density 5.95 Mg / m 3 ) are used as a plurality of types of particles having a difference in moving speed, which determines the material system. It is not a thing. These sedimentation rates are obtained by calculation and are shown in FIG. As shown in the figure, when the particle diameter is the same, the sedimentation rate of the ZrO 2 particles having a high density is fast. On the other hand, when the particle size of the Ti particles is large and that of the ZrO 2 particles is small, the direction may be reversed. The slurry is allowed to settle in a centrifugal field, and then the liquid phase portion is removed to produce a green body having a composition gradient. This method is called a centrifugal slurry method. A functionally gradient material is obtained by sintering the green body.

まず、遠心力スラリー法中の粒子の運動をシミュレーションにより解析した。シミュレーションに用いたTi粒子の粒径は90〜150μm、ZrO粒子の粒径は38〜75μmであり、この条件では、図2からもわかるようにTi粒子の沈降速度がZrO粒子のそれを上回る。得られた結果を図3に示す。ここで、横軸は規格化した位置であり、1.0および0.0はそれぞれ沈降体の下部(遠心力方向最底辺部)およびその逆である。図のように沈降体の下部に行くにつれ、Ti粒子の体積分率が増加し、組成傾斜が確認できるが、その組成傾斜は0%から100%へとはなっていない。これは、スラリー中、遠心力方向最底辺部においても当初から低速移動粒子(ここではZrO粒子)が存在するためである。 First, the motion of particles in the centrifugal slurry method was analyzed by simulation. The particle size of Ti particles used in the simulation is 90-150, the particle size of the ZrO 2 particles is 38~75Myuemu, in this condition, settling velocity of the Ti particles as can be seen from Figure 2 is that of the ZrO 2 particles Exceed. The obtained results are shown in FIG. Here, the horizontal axis is a normalized position, and 1.0 and 0.0 are the lower part of the sediment (the lowest side in the centrifugal force direction) and vice versa. As shown in the figure, the volume fraction of Ti particles increases and the composition gradient can be confirmed as it goes to the lower part of the sediment, but the composition gradient does not change from 0% to 100%. This is because low-speed moving particles (in this case, ZrO 2 particles) are present from the beginning even in the bottom of the slurry in the centrifugal force direction.

したがって、0%から100%へと組成傾斜する材料を得ようとする場合、液相のみの溶媒帯を用意し、それに上述のスラリーを投入する手法が有効である。この遠心力スラリー投入法における溶媒帯幅の影響を調査したものが図4である。図4における溶媒帯幅は40mm、60mmおよび100mmであり、溶媒帯を設けた以外の条件は図3のシミュレーションと同一である。図のように、溶媒帯の幅が長くなるにつれて大きな組成傾斜が得られている。図4に示すように、溶媒帯の幅が100mmあれば、0%から100%の組成傾斜となる。   Therefore, in order to obtain a material whose composition is inclined from 0% to 100%, it is effective to prepare a solvent zone having only a liquid phase and add the above slurry thereto. FIG. 4 shows the investigation of the influence of the solvent bandwidth in this centrifugal slurry injection method. The solvent zone widths in FIG. 4 are 40 mm, 60 mm, and 100 mm, and the conditions other than the provision of the solvent zone are the same as in the simulation of FIG. As shown in the figure, a large composition gradient is obtained as the width of the solvent zone increases. As shown in FIG. 4, when the width of the solvent zone is 100 mm, the composition gradient is 0% to 100%.

これは、実験でも確認できている。溶媒帯の幅を0mmおよび100mmとし、実際の材料での実験を行った。ただし、遠心力は印加せず、重力場での沈降とした。沈降後、液相を取り除いた後、乾燥させ、放電プラズマ焼結法にて焼結した。ここで、放電プラズマ焼結法は、先進材料合成分野で注目されている新しい焼結法である。圧粉体粒子間隙に直接パルス状の電気エネルギーを投入し、火花放電現象により瞬時に発生した放電プラズマの高エネルギーを効果的に利用する。図5は得られた材料の組成傾斜を示す。溶媒帯が0mmの試料ではTi粒子の傾斜は0%〜70%であるのに対し、溶媒帯が100mmの試料では0%〜100%の組成傾斜が達成できている。この結果は、ミュレーションと良い一致を示している。   This has been confirmed by experiments. Experiments with actual materials were performed with the width of the solvent zone being 0 mm and 100 mm. However, centrifugal force was not applied, and sedimentation was performed in a gravitational field. After settling, the liquid phase was removed, dried, and sintered by a discharge plasma sintering method. Here, the spark plasma sintering method is a new sintering method that is attracting attention in the field of advanced material synthesis. Pulsed electric energy is directly injected into the green compact particle gap, and the high energy of the discharge plasma generated instantaneously by the spark discharge phenomenon is used effectively. FIG. 5 shows the composition gradient of the resulting material. In the sample with the solvent zone of 0 mm, the Ti particle gradient is 0% to 70%, whereas with the sample with the solvent zone of 100 mm, the composition gradient of 0% to 100% can be achieved. This result shows good agreement with the simulation.

同様に、Ti粒子の粒径が63〜90μm、ZrO粒子の粒径が75〜106μm の系でもシミュレーションと実験を行った。この系では、高速移動粒子がZrO粒子となる。図6に溶媒帯を100mmとした時のシミュレーション結果および実験結果を示す。今度は沈降体の下部に行くにつれ、ZrO粒子の体積分率が増加する。この系においても溶媒帯を設けることにより0%から100%までの幅広い組成傾斜が得られることがわかる。 Similarly, simulations and experiments were performed in a system in which the particle size of Ti particles was 63 to 90 μm and the particle size of ZrO 2 particles was 75 to 106 μm. In this system, the fast moving particles become ZrO 2 particles. FIG. 6 shows simulation results and experimental results when the solvent zone is 100 mm. This time, the volume fraction of ZrO 2 particles increases as it goes to the bottom of the sediment. It can be seen that even in this system, a wide composition gradient from 0% to 100% can be obtained by providing a solvent zone.

スラリーをこの溶媒帯に投入するとき、液相に特別な流れを生じさせてはいけないために注意が必要である。例えば、図7に示すような装置を用いれば可能である。ここで、上部にスラリーを入れる。下部は液体のみの溶媒帯となる。バルブを解放することにより、溶媒帯の液相に特別な流れを生じさせずにスラリーの投入が可能となる。しかし、この手法では、回転場での作業は困難であり、遠心力場での製造には向かない。   Care should be taken when introducing the slurry into this solvent zone, as no special flow should occur in the liquid phase. For example, it is possible to use an apparatus as shown in FIG. Here, the slurry is put in the upper part. The lower part is a liquid-only solvent zone. By opening the valve, the slurry can be charged without causing a special flow in the liquid phase of the solvent zone. However, this method is difficult to work in a rotating field and is not suitable for manufacturing in a centrifugal field.

この溶媒帯として溶融が可能な固体を用いる。図8は、溶媒帯として溶融が可能な固体を用いたスラリー投入法の実施例を示す図である。まず、回転する金型に溶融可能な固体を入れる。ここで、金型の形状は円筒状に限ることはなく、また、重力場の場合には回転させる必要もない。次に、スラリーをこの上に注ぎ込む。その後、その固体を溶融させた後あるいは溶解させながら遠心力を作用させれば、粒子の液体中の移動速度差を利用する傾斜機能材料製造における組成傾斜の制御が可能となる。ここで、溶融が可能なあるいは気化が可能な固体の上に注ぎ込み、その固体の下には液体を置いても良い。その場合は、その後その固体を溶融させた後に遠心力を作用させ、粒子の液体中の移動速度差を利用する傾斜機能材料製造における組成傾斜の制御が可能となる。   A solid that can be melted is used as the solvent zone. FIG. 8 is a diagram showing an example of a slurry charging method using a solid that can be melted as a solvent zone. First, a meltable solid is placed in a rotating mold. Here, the shape of the mold is not limited to a cylindrical shape, and it is not necessary to rotate in the case of a gravitational field. The slurry is then poured onto this. Thereafter, if a centrifugal force is applied after the solid is melted or dissolved, it is possible to control the composition gradient in the production of the functionally gradient material using the difference in the moving speed of the particles in the liquid. Here, it may be poured onto a solid that can be melted or vaporized, and a liquid may be placed under the solid. In that case, after the solid is melted, a centrifugal force is applied to control the composition gradient in the functionally gradient material manufacturing utilizing the difference in the moving speed of the particles in the liquid.

本発明は上記実施例に制限されるものではなく、その趣旨を逸脱しない範囲で適宜変更して適用可能である。例えば、スラリーとして液相部分がないものを用いてもよい。その場合、スラリーに遠心力を作用させることによって組成傾斜を作製した後、固化することによって傾斜機能材料を製造することができる。   The present invention is not limited to the above-described embodiments, and can be applied with appropriate modifications without departing from the spirit thereof. For example, a slurry having no liquid phase portion may be used. In that case, a functionally gradient material can be produced by producing a composition gradient by applying centrifugal force to the slurry and then solidifying the composition gradient.

Claims (4)

移動速度差のある複数種類の粒子を含むスラリーを用い、これに遠心力を作用させることにより移動速度差を利用して傾斜機能材料を製造することを特徴とする傾斜機能材料の製造方法。   A method for producing a functionally gradient material, comprising using a slurry containing a plurality of types of particles having a difference in moving speed, and applying a centrifugal force to the slurry to produce a functionally gradient material using the moving speed difference. 移動速度差のある複数種類の粒子を含むスラリーを用い、これを液相の上に注ぎ込んだ後に遠心力を作用させ、粒子の液体中の移動速度差を利用して傾斜機能材料を製造することを特徴とする傾斜機能材料の製造方法。   Using a slurry containing multiple types of particles with different moving speeds, pouring the slurry onto the liquid phase and then applying centrifugal force to produce functionally gradient materials using the moving speed difference of the particles in the liquid A method for producing a functionally gradient material. 移動速度差のある複数種類の粒子を含むスラリーを用い、これを溶融が可能な固体の上に注ぎ込み、その後その固体を溶融させた後に遠心力を作用させ、粒子の液体中の移動速度差を利用して傾斜機能材料を製造することを特徴とする傾斜機能材料の製造方法。   Using a slurry containing multiple types of particles with different moving speeds, pouring them onto a solid that can be melted, and then melting the solids, and then applying a centrifugal force to reduce the moving speed difference of the particles in the liquid. A method for producing a functionally gradient material, characterized by producing a functionally gradient material. 移動速度差のある複数種類の粒子を含むスラリーを用い、これを溶融が可能なあるいは気化が可能な固体の上に注ぎ込み、その固体の下には液体を置き、その後その固体を溶融させた後に遠心力を作用させ、粒子の液体中の移動速度差を利用して傾斜機能材料を製造することを特徴とする傾斜機能材料の製造方法。   After using a slurry containing multiple types of particles with different moving speeds, pouring it onto a solid that can be melted or vaporized, placing a liquid under the solid, and then melting the solid A method of producing a functionally gradient material, wherein a functionally gradient material is produced by applying a centrifugal force and utilizing a difference in moving speed of particles in a liquid.
JP2010023389A 2010-02-04 2010-02-04 Method for producing functionally gradient material Pending JP2011162805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010023389A JP2011162805A (en) 2010-02-04 2010-02-04 Method for producing functionally gradient material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010023389A JP2011162805A (en) 2010-02-04 2010-02-04 Method for producing functionally gradient material

Publications (1)

Publication Number Publication Date
JP2011162805A true JP2011162805A (en) 2011-08-25

Family

ID=44593850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010023389A Pending JP2011162805A (en) 2010-02-04 2010-02-04 Method for producing functionally gradient material

Country Status (1)

Country Link
JP (1) JP2011162805A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110216006A (en) * 2019-07-08 2019-09-10 江苏建筑职业技术学院 Small scale copper aluminium mixes scrap aqueous medium separator after electric appliance dismantling
CN112011707A (en) * 2019-05-31 2020-12-01 南京理工大学 Method for preparing gradient structure material through non-equilibrium solidification based on centrifugal force

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112011707A (en) * 2019-05-31 2020-12-01 南京理工大学 Method for preparing gradient structure material through non-equilibrium solidification based on centrifugal force
CN112011707B (en) * 2019-05-31 2022-02-15 南京理工大学 Method for preparing gradient structure material through non-equilibrium solidification based on centrifugal force
CN110216006A (en) * 2019-07-08 2019-09-10 江苏建筑职业技术学院 Small scale copper aluminium mixes scrap aqueous medium separator after electric appliance dismantling
CN110216006B (en) * 2019-07-08 2020-11-17 江苏建筑职业技术学院 Small-scale copper-aluminum mixed waste block water medium separation device after electric appliance disassembly

Similar Documents

Publication Publication Date Title
Zhu et al. Solidification behavior and grain morphology of laser additive manufacturing titanium alloys
US11148204B2 (en) Method for the additive manufacturing of a part by selective melting or selective sintering of optimized-compactness powder beds using a high energy beam
Zhou et al. Balling phenomena in selective laser melted tungsten
Liu et al. Solidification microstructure evolution and its corresponding mechanism of metastable immiscible Cu80Fe20 alloy with different cooling conditions
US20180236541A1 (en) Nanoparticle delivery for controlling metal part density in additive manufacturing
EP2190612B1 (en) Method and device for the electromagnetic stirring of electrically conductive fluids
JP6861823B2 (en) Casting method
Porter et al. Microstructural control of colloidal‐based ceramics by directional solidification under weak magnetic fields
EP1493517B1 (en) Process for producing materials reinforced with nanoparticles and articles formed thereby
JP2018532613A (en) Additive manufacturing method and apparatus
JP5878398B2 (en) Titanium melting equipment
JP6839423B2 (en) Stereolithography slurry and method for manufacturing stereolithography using it
JP2011162805A (en) Method for producing functionally gradient material
WO2015128597A1 (en) Forming a composite component
CN106583727B (en) A kind of increasing material manufacturing method of metal-base particles enhancing component
CN103103374A (en) Method for preparing aluminum matrix composite through high pressure solidification after semi-solid mechanical stirring
JP2013198928A (en) Method of producing composite material formed by composite of matrix metal and solid-phase fine particles, and metal bonded grinding wheel produced by the same
US10421161B2 (en) High quality, void and inclusion free alloy wire
CN106735223B (en) A kind of increasing material manufacturing method of Metal Substrate in-situ authigenic particle enhancing component
Wu et al. Experimental investigations and phase-field simulations of triple-phase-separation kinetics within liquid ternary Co-Cu-Pb immiscible alloys
JP2011184713A (en) Functionally gradient material in which compound particle is gradient-dispersed
Kim et al. Centrifugal separation of primary silicon crystal in solvent refining of silicon using Al‐30% Si alloy
Zocca LSD-print: a 10-years journey of an additive manufacturing technology from porcelain to technical ceramics
RU2620231C2 (en) Chill mould
JP2010137245A (en) Die for die casting, and die casting method