JP2013198928A - Method of producing composite material formed by composite of matrix metal and solid-phase fine particles, and metal bonded grinding wheel produced by the same - Google Patents

Method of producing composite material formed by composite of matrix metal and solid-phase fine particles, and metal bonded grinding wheel produced by the same Download PDF

Info

Publication number
JP2013198928A
JP2013198928A JP2012068658A JP2012068658A JP2013198928A JP 2013198928 A JP2013198928 A JP 2013198928A JP 2012068658 A JP2012068658 A JP 2012068658A JP 2012068658 A JP2012068658 A JP 2012068658A JP 2013198928 A JP2013198928 A JP 2013198928A
Authority
JP
Japan
Prior art keywords
metal
mixed powder
composite material
powder
solid phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012068658A
Other languages
Japanese (ja)
Inventor
Takashi Sato
尚 佐藤
Ryo Mizuno
亮 水野
Takahiro Kunimine
崇裕 國峯
Yoshimi Watanabe
義見 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya Institute of Technology NUC
Original Assignee
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Institute of Technology NUC filed Critical Nagoya Institute of Technology NUC
Priority to JP2012068658A priority Critical patent/JP2013198928A/en
Publication of JP2013198928A publication Critical patent/JP2013198928A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To solve such a problem that the distribution of grinding particles of a metal bonded grinding wheel to be produced by a centrifugal-force mixing powder method is difficult to be controlled due to fluidity or the like.SOLUTION: Matrix metal powder and solid-phase fine-particle powder are mixed together to make mixed powder, and after the mixed powder is put into a casting mold, centrifugal force is applied to the casting mold and base-material melted metal produced by a melting furnace for casting is put into the casting mold, to produce a composite material wherein the matrix metal and solid-phase fine particles form a composite. During the production, the temperature of base-material molten metal produced by the melting furnace for casting is determined on the basis of apparent thermal conductivity of the mixed powder so that the matrix metal in the mixed powder is melted and the moving speed of the solid-phase fine particles by the centrifugal force becomes low. In addition, when the solid-phase particles are ununiformly dispersed even at the melting temperature determined on the basis of the thermal conductivity, ununiform dispersion can be improved by reducing the dimension of solid-phase particles.

Description

本発明は、遠心鋳造を利用することにより、母相金属と固相微細粒子が複合化した複合材料の製造方法及び当該方法により製造されるメタルボンド砥石に関するものである。   The present invention relates to a method of manufacturing a composite material in which a matrix metal and solid phase fine particles are combined by utilizing centrifugal casting, and a metal bond grindstone manufactured by the method.

メタルボンド砥石は、ダイヤモンドやSiCといった砥粒を金属母相中に複合化させた砥石である。このようなメタルボンド砥石は、従来、焼結法あるいは電着法によって作製されている。焼結法にて作製したメタルボンド砥石は、砥粒が砥石全体に渡って均一に分散している。そのため、焼結法によって作製される砥石は砥粒の使用量が多い。一方で、電着法で作製した砥石は、刃先近傍のみに砥粒が分散している砥粒層が存在するが、砥粒層と台金との界面で剥離が生じることが多い欠点を持つ。そのため、焼結や電着で作製したメタルボンド砥石は、ダイヤモンドの使用量が多いことやその耐久性が低い問題を有していた。 A metal bond grindstone is a grindstone in which abrasive grains such as diamond and SiC are compounded in a metal matrix. Such a metal bond grindstone is conventionally produced by a sintering method or an electrodeposition method. In the metal bond grindstone produced by the sintering method, the abrasive grains are uniformly dispersed throughout the grindstone. Therefore, the grindstone produced by the sintering method uses a large amount of abrasive grains. On the other hand, the grindstone produced by the electrodeposition method has an abrasive layer in which abrasive grains are dispersed only in the vicinity of the cutting edge, but has a drawback that peeling often occurs at the interface between the abrasive layer and the base metal. . Therefore, the metal bond grindstone produced by sintering or electrodeposition has a problem that the amount of diamond used is large and its durability is low.

金属母相中に微細な固相粒子を複合化させる方法の一つに、特許文献1、非特許文献1および非特許文献2に示されている遠心力混合粉末法がある。この技術では、まず母相金属粉末と複合化させたい固相粒子を混合して混合粉末1を作製する(図1)。そして、該混合粉末1を円筒形状金型2に投入した後、前記円筒形状金型2を回転させることによって該混合粉末1に遠心力を印加し、湯道3を通じて溶解炉で溶解された母相金属溶湯4を流し込む(図2)。凝固後、微細な固相粒子が母相金属に強固に固定され、母相金属中に微細固相粒子が均一あるいは傾斜分散した複合材料を得ることできる。図1および図2に示す遠心力混合粉末法は図3に示す外周面に固相粒子5が分散した円筒形状複合材料を作製する方法であるが、図4に示すような遠心鋳造装置を用いることによって、図5のような棒状試料の先端部に固相粒子5が分散した複合材料を得ることもできる。   One of the methods for compositing fine solid phase particles in a metal matrix is a centrifugal mixed powder method disclosed in Patent Document 1, Non-Patent Document 1, and Non-Patent Document 2. In this technique, first, mixed powder 1 is prepared by mixing solid phase particles to be combined with a matrix metal powder (FIG. 1). Then, after the mixed powder 1 is put into the cylindrical mold 2, a centrifugal force is applied to the mixed powder 1 by rotating the cylindrical mold 2, and the mother melted in the melting furnace through the runner 3. The phase metal melt 4 is poured (FIG. 2). After solidification, fine solid phase particles are firmly fixed to the matrix metal, and a composite material can be obtained in which the fine solid phase particles are uniformly or gradiently dispersed in the matrix metal. The centrifugal force mixed powder method shown in FIGS. 1 and 2 is a method for producing a cylindrical composite material in which solid phase particles 5 are dispersed on the outer peripheral surface shown in FIG. 3, but a centrifugal casting apparatus as shown in FIG. 4 is used. Thus, a composite material in which the solid phase particles 5 are dispersed at the tip of the rod-shaped sample as shown in FIG.

これまで、図4に示すような装置を用いて、遠心力混合粉末法でCu母相中にダイヤモンド粒子が分散した棒状のメタルボンド砥石を作製している(非特許文献3)。その結果、ダイヤモンド粒子をCu母相に複合化することは可能であったが、湯流れなどにより、意図したダイヤモンド粒子分布を得ることが困難であった。そのため、遠心力混合粉末法によって目的の砥粒分布を持つメタルボンド砥石を製造するためには、砥粒の分散制御方法を確立する必要があった。   Up to now, a rod-shaped metal bond grindstone in which diamond particles are dispersed in a Cu matrix has been produced by a centrifugal mixing powder method using an apparatus as shown in FIG. 4 (Non-patent Document 3). As a result, it was possible to combine the diamond particles with the Cu matrix, but it was difficult to obtain the intended diamond particle distribution due to hot water flow or the like. Therefore, in order to manufacture a metal bond grindstone having a target abrasive grain distribution by the centrifugal mixed powder method, it is necessary to establish a dispersion control method of the abrasive grains.

特開2008-284589号公報JP 2008-284589 A

渡辺義見,佐藤尚;ケミカルエンジニヤリング,54 (2009) 249-254.Yoshimi Watanabe, Nao Sato; Chemical Engineering, 54 (2009) 249-254. Yoshimi Watanabe, Yoshifumi Inaguma, Hisashi Sato and Eri Miura-Fujiwara; Materials, 2 (2009) 2510-2525.Yoshimi Watanabe, Yoshifumi Inaguma, Hisashi Sato and Eri Miura-Fujiwara; Materials, 2 (2009) 2510-2525. Yoshimi Watanabe, Eri Miura-Fujiwara, Hisashi Sato, Kunio Takekoshi, Hideaki Tsuge, Tadashi Kaga, Naoyuki Bando, Shigemasa Yamagami, Kazumasa Kurachi and Hisanori Yokoyama; International Journal of Materials and Puroduct Techonology, 42 (2011) 29-44.Yoshimi Watanabe, Eri Miura-Fujiwara, Hisashi Sato, Kunio Takekoshi, Hideaki Tsuge, Tadashi Kaga, Naoyuki Bando, Shigemasa Yamagami, Kazumasa Kurachi and Hisanori Yokoyama; International Journal of Materials and Puroduct Techonology, 42 (2011) 29-44.

本発明は上記点に鑑みて、遠心力混合粉末法にて作製するメタルボンド砥石の砥粒分布の制御が湯流れなどに起因して困難である問題点を解決することを目的とする。   In view of the above points, an object of the present invention is to solve the problem that it is difficult to control the grain distribution of a metal bond grindstone produced by a centrifugal force mixed powder method due to the flow of molten metal.

上記目的を達成するため、請求項1および請求項2に記載の発明では、混合粉末の見かけの熱伝導率に基づいた母相金属の溶解温度設定および混合粉末中の固相粒子寸法によって、遠心力混合粉末法にて作製する複合材料の固相粒子分布制御に関する方法を発明した。   In order to achieve the above object, in the inventions described in claim 1 and claim 2, the centrifugal temperature is determined by setting the melting temperature of the matrix metal based on the apparent thermal conductivity of the mixed powder and the solid phase particle size in the mixed powder. We have invented a method for controlling the solid phase particle distribution of composite materials produced by the force-mixing powder method.

請求項1および請求項2に記載の発明における製造方法では、まず母相金属粉末と固相粒子粉末の混合粉末を作製し、該混合粉末を図4に示すような遠心鋳造装置の鋳造用鋳型6に投入する。その後、次に説明する方法で決定される溶解温度で母相金属7を溶解炉コイル8にて溶解した後、混合粉末を有する鋳造用鋳型6に遠心力を印加し、該母相金属溶湯を該鋳造用鋳型6に流し込む。これにより、図5に示すような棒状鋳造材の先端部で固相粒子5が均一分散した複合材料を製造する。なお、母相金属の溶解温度は以下の手順にて決定される。作製した混合粉末の見かけの熱伝導率を次のMaxwell式にて推算する。   In the manufacturing method according to the first and second aspects of the present invention, first, a mixed powder of a parent phase metal powder and a solid phase particle powder is prepared, and the mixed powder is cast in a centrifugal casting apparatus as shown in FIG. 6 Then, after melting the parent phase metal 7 in the melting furnace coil 8 at the melting temperature determined by the method described below, a centrifugal force is applied to the casting mold 6 having the mixed powder, Pour into the casting mold 6. Thus, a composite material in which the solid phase particles 5 are uniformly dispersed at the tip of the rod-shaped cast material as shown in FIG. 5 is manufactured. The melting temperature of the parent phase metal is determined by the following procedure. The apparent thermal conductivity of the prepared mixed powder is estimated by the following Maxwell equation.

ここで、leff、lm、ldおよびVdは、それぞれ混合粉末の見かけの熱伝導率、母材の熱伝導率、固相粒子の熱伝導率および固相粒子の体積分率である。算出した混合粉末の見かけの熱伝導率に基づいて、混合粉末中の母相金属を溶解できるような溶解温度を決定する。ただし、この溶解温度を決定するためには、混合粉末の見かけの熱伝導率、母相金属溶湯の温度(溶解温度)およびそれによって得られる鋳造材の良否の関係をあらかじめ把握し、その関係を示すデーターベースを作成する必要がある。すなわち、鋳造で用いる混合粉末の見かけの熱伝導率に対して、該データーベースから適切な溶解温度を決定しなければならない。また、熱伝導率に基づいて決定した溶解温度における遠心鋳造でも固相粒子が不均一に分散する場合は、固相粒子の寸法を小さくすることによって改善することも可能である。すなわち、混合粉末の見かけの熱伝導率を考慮した母相金属の溶解温度および固相粒子の寸法によって、固相粒子が均一分散した複合材料を製造する製造方法を本発明の技術的手段とする。 Where l eff , l m , l d and V d are the apparent thermal conductivity of the mixed powder, the thermal conductivity of the base material, the thermal conductivity of the solid phase particles and the volume fraction of the solid phase particles, respectively. . Based on the apparent thermal conductivity of the calculated mixed powder, a melting temperature at which the matrix metal in the mixed powder can be dissolved is determined. However, in order to determine this melting temperature, the relationship between the apparent thermal conductivity of the mixed powder, the temperature of the parent metal melt (melting temperature) and the quality of the cast material obtained thereby is grasped in advance, and the relationship is determined. You need to create a database to show. That is, an appropriate melting temperature must be determined from the database for the apparent thermal conductivity of the mixed powder used in casting. In addition, if solid phase particles are dispersed non-uniformly even by centrifugal casting at a melting temperature determined based on the thermal conductivity, it can be improved by reducing the size of the solid phase particles. That is, a technical method of the present invention is a manufacturing method for manufacturing a composite material in which solid phase particles are uniformly dispersed according to the melting temperature of the parent phase metal and the size of the solid phase particles in consideration of the apparent thermal conductivity of the mixed powder. .

請求項3および請求項4に記載の発明における製造方法では、まずCu母相粉末と砥粒粉末の混合粉末を作製し、該混合粉末を図4に示すような遠心鋳造装置の鋳型に投入する。その後、混合粉末の見かけの熱伝導率を数1より算出し、それに基づいて決定した溶解温度にてCu母相溶湯を作製した後、混合粉末を有する鋳造用鋳型に遠心力を印加し、該Cu母相溶湯を該鋳造用鋳型に流し込む。これにより、棒状鋳造材の先端部で砥粒が均一分散したメタルボンド砥石を製造する。また、熱伝導率に基づいて決定した溶解温度における遠心力混合粉末法でも砥粒が不均一に分散する場合は、砥粒の寸法を小さくすることによって改善することも可能である。すなわち、Cuと砥粒の混合粉末における見かけの熱伝導率を考慮したCu母相溶湯の溶湯温度および砥粒寸法によって、砥粒が均一分散したメタルボンド砥石を製造する製造方法を本発明の技術的手段とする。   In the manufacturing method according to the third and fourth aspects of the present invention, first, a mixed powder of a Cu matrix powder and an abrasive powder is prepared, and the mixed powder is put into a mold of a centrifugal casting apparatus as shown in FIG. . Thereafter, the apparent thermal conductivity of the mixed powder is calculated from Equation 1, and after preparing a Cu mother phase melt at the melting temperature determined based on it, a centrifugal force is applied to the casting mold having the mixed powder, A Cu matrix melt is poured into the casting mold. Thereby, the metal bond grindstone in which the abrasive grains are uniformly dispersed at the tip portion of the rod-shaped cast material is manufactured. Further, even if the abrasive grains are dispersed non-uniformly by the centrifugal mixed powder method at the melting temperature determined based on the thermal conductivity, it is also possible to improve by reducing the size of the abrasive grains. That is, the manufacturing method of manufacturing a metal bond grindstone in which abrasive grains are uniformly dispersed according to the molten metal temperature and the abrasive grain size of the Cu mother phase molten metal in consideration of the apparent thermal conductivity in the mixed powder of Cu and abrasive grains. As a means.

また請求項1から請求項4において記述されている図4に示される遠心鋳造装置は、上記実施例に制限されるものではなく、その趣旨を逸脱しない範囲で適宜変更して適用可能である。例えば、図1に示すような円筒形状金型を用いたタイプの遠心鋳造装置や三角柱、四角柱および多角柱などその他複雑な形状の鋳造用鋳型を持つ遠心鋳造装置も適用可能である。さらに請求項2において記述されている該母材金属粉末と該母材溶融金属は、同一の種類の金属や合金である必要は無く、例えば、母材金属粉末が鉄合金、母材溶融金属が鉄合金といった様に、その他すべての金属および合金の組み合わせでも適用可能である。 Further, the centrifugal casting apparatus shown in FIG. 4 described in claims 1 to 4 is not limited to the above-described embodiment, and can be appropriately modified and applied without departing from the gist thereof. For example, a centrifugal casting apparatus of a type using a cylindrical mold as shown in FIG. 1 and a centrifugal casting apparatus having a casting mold having a complicated shape such as a triangular prism, a quadrangular prism, and a polygonal prism can be applied. Further, the base metal powder and the base metal molten metal described in claim 2 do not have to be the same type of metal or alloy. For example, the base metal powder is an iron alloy or a base metal molten metal. Combinations of all other metals and alloys, such as iron alloys, are also applicable.

本発明の背景技術である遠心力混合粉末法における母相金属粉末と固相粒子粉末の混合粉末1を回転中の円筒形状金型2に投入する方法を模式的に描いた図である。It is the figure which drawn typically the method of throwing into the rotating cylindrical-shaped metal mold | die 2 the mixed powder 1 of the mother phase metal powder and solid-phase particle powder in the centrifugal force mixed powder method which is background art of this invention. 本発明の背景技術である遠心力混合粉末法における母相金属溶湯4を回転中の円筒形状金型2に流し込む方法を模式的に描いた図である。It is the figure which drawn typically the method of pouring the mother phase metal melt 4 in the rotating cylindrical mold 2 in the centrifugal force mixed powder method which is the background art of the present invention. 本発明の背景技術である遠心力混合粉末法を用いて作製した外周面に固相粒子を有する円筒形状複合材料を模式的に描いた図である。It is the figure which drawn typically the cylindrical composite material which has a solid-phase particle on the outer peripheral surface produced using the centrifugal force mixed powder method which is the background art of this invention. 本発明の背景技術である遠心力混合粉末法にて棒状複合材料を作製する際に用いる遠心鋳造装置を模式的に描いた図である。It is the figure which drawn typically the centrifugal casting apparatus used when producing a rod-shaped composite material with the centrifugal force mixed powder method which is the background art of this invention. 図4に示す遠心鋳造装置を用いて本発明の背景技術である遠心力混合粉末法によって作製した棒状複合材料を模式的に描いた図である。It is the figure which drawn typically the rod-shaped composite material produced by the centrifugal force mixed powder method which is the background art of this invention using the centrifugal casting apparatus shown in FIG. 本発明の実施形態における遠心力混合粉末法にて用いて鋳造用鋳型の模式図である。It is a schematic diagram of the casting mold used in the centrifugal mixed powder method in the embodiment of the present invention. 本発明の実施形態における遠心力混合粉末法によって製造したCu―ダイヤモンド複合材料の外観を示す実体顕微鏡写真である。Cu母相金属の溶解温度は1200℃である。複合材料先端部には、ダイヤモンド粒子が分散している混合粉末領域10が存在する。It is a stereoscopic microscope picture which shows the external appearance of the Cu-diamond composite material manufactured by the centrifugal force mixed powder method in the embodiment of the present invention. The melting temperature of the Cu matrix metal is 1200 ° C. At the tip of the composite material, there is a mixed powder region 10 in which diamond particles are dispersed. 本発明の実施形態における遠心力混合粉末法によって製造したCu―ダイヤモンド複合材料の外観を示す実体顕微鏡写真である。Cu母相金属の溶解温度は1250℃である。複合材料先端部には、ダイヤモンド粒子が分散している混合粉末領域10が存在する。It is a stereoscopic microscope picture which shows the external appearance of the Cu-diamond composite material manufactured by the centrifugal force mixed powder method in the embodiment of the present invention. The melting temperature of the Cu matrix metal is 1250 ° C. At the tip of the composite material, there is a mixed powder region 10 in which diamond particles are dispersed. 本発明の実施形態における遠心力混合粉末法によって製造したCu―ダイヤモンド複合材料の外観を示す実体顕微鏡写真である。Cu母相金属の溶解温度は1300℃である。複合材料先端部には、ダイヤモンド粒子が分散している混合粉末領域10が存在する。It is a stereoscopic microscope picture which shows the external appearance of the Cu-diamond composite material manufactured by the centrifugal force mixed powder method in the embodiment of the present invention. The melting temperature of the Cu matrix metal is 1300 ° C. At the tip of the composite material, there is a mixed powder region 10 in which diamond particles are dispersed. 本発明の実施形態における遠心力混合粉末法によって製造したCu−ダイヤモンド複合材料の混合粉末領域10における微細組織を示した走査型電子顕微鏡写真である。Cu母相金属の溶解温度は1200℃である。It is the scanning electron micrograph which showed the fine structure in the mixed powder area | region 10 of the Cu-diamond composite material manufactured by the centrifugal force mixed powder method in embodiment of this invention. The melting temperature of the Cu matrix metal is 1200 ° C. 本発明の実施形態における遠心力混合粉末法によって製造したCu−ダイヤモンド複合材料の混合粉末領域10における微細組織を示した走査型電子顕微鏡写真である。Cu母相金属の溶解温度は1250℃である。It is the scanning electron micrograph which showed the fine structure in the mixed powder area | region 10 of the Cu-diamond composite material manufactured by the centrifugal force mixed powder method in embodiment of this invention. The melting temperature of the Cu matrix metal is 1250 ° C. 本発明の実施形態における遠心力混合粉末法によって製造したCu−ダイヤモンド複合材料の混合粉末領域10における微細組織を示した走査型電子顕微鏡写真である。Cu母相金属の溶解温度は1300℃である。It is the scanning electron micrograph which showed the fine structure in the mixed powder area | region 10 of the Cu-diamond composite material manufactured by the centrifugal force mixed powder method in embodiment of this invention. The melting temperature of the Cu matrix metal is 1300 ° C. 本発明の実施形態における遠心力混合粉末法によって製造したCu−SiC複合材料の外観を示す実体顕微鏡写真である。このCu−SiC複合材料は、Cu母相金属を1300℃で溶解することによって製造された。It is a stereoscopic microscope picture which shows the external appearance of the Cu-SiC composite material manufactured by the centrifugal force mixed powder method in embodiment of this invention. This Cu—SiC composite material was produced by melting a Cu matrix metal at 1300 ° C. 本発明の実施形態における遠心力混合粉末法によって製造したCu−SiC複合材料の混合粉末領域10における微細組織を示した走査型電子顕微鏡写真である。Cu母相金属の溶解温度は1300℃である。It is the scanning electron micrograph which showed the fine structure in the mixed powder area | region 10 of the Cu-SiC composite material manufactured by the centrifugal force mixed powder method in embodiment of this invention. The melting temperature of the Cu matrix metal is 1300 ° C. 本発明の実施形態における遠心力混合粉末法において、粒子径150―170μmのダイヤモンド砥粒を用いて、かつCu母相金属を1300℃で溶解することによって製造されたCu−ダイヤモンド複合材料の先端部におけるダイヤモンド砥粒体積分率変化を示すグラフである。In the centrifugal mixed powder method according to the embodiment of the present invention, a tip portion of a Cu-diamond composite material manufactured by dissolving diamond matrix metal at 1300 ° C. using diamond abrasive grains having a particle size of 150-170 μm It is a graph which shows the diamond abrasive grain volume fraction change in. 本発明の実施形態における遠心力混合粉末法において、粒子径60−70μmのダイヤモンド砥粒を用いて、かつCu母相金属を1300℃で溶解することによって製造されたCu−ダイヤモンド複合材料の先端部におけるダイヤモンド砥粒体積分率変化を示すグラフである。In the centrifugal mixed powder method according to the embodiment of the present invention, a tip portion of a Cu-diamond composite material manufactured by melting diamond matrix metal at 1300 ° C. using diamond abrasive grains having a particle diameter of 60-70 μm It is a graph which shows the diamond abrasive grain volume fraction change in. 本発明の実施形態における遠心力混合粉末法にて製造したCu−ダイヤモンド複合材料を用いて作製したジャイロ式穴あけ加工機用メタルボンド砥石の模式図である。It is a schematic diagram of the metal bond grindstone for gyro type | mold drilling machines produced using the Cu-diamond composite material manufactured with the centrifugal force mixed powder method in embodiment of this invention. 本発明の実施形態で製造したジャイロ式穴あけ加工機用メタルボンド砥石による炭素繊維強化樹脂(CFRP)の穴あけ試験の結果を示す実体顕微鏡写真。The stereomicrograph which shows the result of the drilling test of carbon fiber reinforced resin (CFRP) by the metal bond grindstone for gyro-type drilling machines manufactured by embodiment of this invention.

(第1実施形態)
母材金属粉末である粒子径15μm以下のCu粉末と、砥粒である粒子径150−170μmのダイヤモンド粒子とからなるCu−25vol.%ダイヤモンド混合粉末を16.2gだけ作製し、該混合粉末を図6に示す鋳造用鋳型に充填した。Cuとダイヤモンドの熱伝導率をそれぞれ402W/mKおよび2000W/mKとしたとき、該混合粉末の見かけの熱伝導率は602W/mKである。そして母相金属で純Cuインゴット130gを鋳造用溶解炉に装填し、溶解温度1200℃,1250℃および1300℃に加熱することでCu母相溶湯とした後、重力倍数35G(重力倍数1Gが重力場に相当)の遠心力を印加し、該Cu母相溶湯を鋳造用鋳型に流し込んだ。これによって、図7に示すような鋳造材先端部にダイヤモンド砥粒が分散した複合材料を製造した。図7(a)、(b)および(c)に示す実体顕微鏡写真は、それぞれ溶解温度1200℃、1250℃および1300℃で作製したCu−ダイヤモンド複合材料のマクロ組織である。溶解温度1200℃および1250℃で作製した複合材料先端部においては、混合粉末中のCu粉末が溶解しておらず、混合粉末領域10において一部のCu粉末が脱落した。一方、1300℃で作製したCu−ダイヤモンド複合材料においては、1200℃および1250℃で作製した複合材料で生じたCu粉末の脱落が生じなかった。図8(a)、(b)および(c)に示す走査型電子顕微鏡写真は、それぞれ溶解温度1200℃、1250℃および1300℃で作製したCu−ダイヤモンド複合材料の先端部(混合粉末領域10)における微細組織を示している。この写真からも、溶解温度1300℃で作製した複合材料のみにおいて混合粉末中のCu粉末が溶解していることが分かる。すなわち、見かけの熱伝導率が626W/mKである混合粉末を用いる場合は、1300℃以上の溶解温度が必要である。
(First embodiment)
Cu-25 vol. Made of Cu powder having a particle diameter of 15 μm or less as a base metal powder and diamond particles having a particle diameter of 150-170 μm as abrasive grains. Only 16.2 g of a% diamond mixed powder was produced, and the mixed powder was filled in a casting mold shown in FIG. When the thermal conductivity of Cu and diamond is 402 W / mK and 2000 W / mK, respectively, the apparent thermal conductivity of the mixed powder is 602 W / mK. Then, 130 g of pure Cu ingot made of a parent phase metal is charged in a melting furnace for casting and heated to a melting temperature of 1200 ° C., 1250 ° C., and 1300 ° C. to obtain a Cu parent phase molten metal. The Cu mother phase molten metal was poured into a casting mold. As a result, a composite material in which diamond abrasive grains were dispersed at the tip of the cast material as shown in FIG. 7 was produced. Stereomicrographs shown in FIGS. 7 (a), (b) and (c) are macrostructures of Cu-diamond composite materials produced at melting temperatures of 1200 ° C., 1250 ° C. and 1300 ° C., respectively. At the composite material tips prepared at melting temperatures of 1200 ° C. and 1250 ° C., the Cu powder in the mixed powder was not dissolved, and a part of the Cu powder dropped out in the mixed powder region 10. On the other hand, in the Cu-diamond composite material produced at 1300 ° C., Cu powder produced by the composite material produced at 1200 ° C. and 1250 ° C. did not fall off. Scanning electron micrographs shown in FIGS. 8 (a), (b) and (c) show the tips of the Cu-diamond composite material (mixed powder region 10) prepared at melting temperatures of 1200 ° C., 1250 ° C. and 1300 ° C., respectively. The microstructure is shown in FIG. Also from this photograph, it can be seen that the Cu powder in the mixed powder is dissolved only in the composite material produced at the melting temperature of 1300 ° C. That is, when using a mixed powder having an apparent thermal conductivity of 626 W / mK, a melting temperature of 1300 ° C. or higher is required.

そこで、これを検証するために、ダイヤモンドよりも熱伝導率が低いSiCを砥粒とした混合粉末を作製して鋳造を試みた。母材金属粉末である粒子径15μm以下のCu粉末と砥粒である粒子径150−170μmのSiC粒からなるCu−25vol.%SiC混合粉末を作製し、該混合粉末を鋳造用鋳型に充填した。CuとSiCの熱伝導率をそれぞれ402W/mKおよび600W/mKとしたとき、該混合粉末の見かけの熱伝導率は446W/mKである。そして母相金属で純Cuインゴット130gを溶解炉に装填し、溶解温度1300℃に加熱することでCu溶融金属とした後、重力倍数35G(重力倍数1Gが重力場に相当)の遠心力を印加し、該Cu母相溶湯を鋳造用鋳型に流し込んだ。これによって、図9に示すような複合材料先端部にSiC粒子が分散した複合材料を製造した。図9から分かるように、SiC粒子を用いた鋳造材は、混合粉末領域10におけるCu粉末の溶解が完了しておらず、一部のCu粉末が脱落した。よって、混合粉末の見かけの熱伝導率が小さな場合は、より高い温度でのCu母相金属の溶解が必要である。すなわち、混合粉末の見かけの熱伝導率を基準として、遠心力混合粉末法による複合材料の固相粒子分散制御が可能である。   Therefore, in order to verify this, an attempt was made by producing a mixed powder using SiC, which has a lower thermal conductivity than diamond, as abrasive grains. Cu-25 vol. Made of Cu powder having a particle diameter of 15 μm or less as a base metal powder and SiC particles having a particle diameter of 150 to 170 μm as abrasive grains. % SiC mixed powder was prepared, and the mixed powder was filled in a casting mold. When the thermal conductivity of Cu and SiC is 402 W / mK and 600 W / mK, respectively, the apparent thermal conductivity of the mixed powder is 446 W / mK. Then, 130 g of pure Cu ingot is loaded into the melting furnace with the parent phase metal and heated to a melting temperature of 1300 ° C. to form a Cu molten metal, and then a centrifugal force of gravity multiple 35G (gravity multiple 1G corresponds to the gravitational field) is applied. The Cu matrix melt was poured into a casting mold. As a result, a composite material in which SiC particles were dispersed at the tip of the composite material as shown in FIG. 9 was manufactured. As can be seen from FIG. 9, in the cast material using SiC particles, the dissolution of the Cu powder in the mixed powder region 10 was not completed, and a part of the Cu powder dropped off. Therefore, when the apparent thermal conductivity of the mixed powder is small, it is necessary to dissolve the Cu matrix metal at a higher temperature. That is, it is possible to control the solid phase particle dispersion of the composite material by the centrifugal mixed powder method based on the apparent thermal conductivity of the mixed powder.

図10は、Cu母相の溶湯温度1300℃で上記の遠心力混合粉末法にて作製したCu−ダイヤモンド複合材料における複合材料先端からの距離に伴う砥粒体積分率変化を示したグラフである。このグラフより、Cu−ダイヤモンド複合材料におけるダイヤモンド砥粒分布は目標値と大きく異なっていた。これは、ダイヤモンド砥粒が遠心力の影響によって遠心力方向と反対方向に移動したためである。非特許文献1に示されているように、液相中における固相粒子の移動速度は固相粒子直径が小さくなるほど遅くなる。そのため、ダイヤモンド砥粒の直径を小さくすることで、鋳造材中の固相粒子分布を制御することが可能である。そこで、砥粒である粒子径60−70μmのダイヤモンド粒子を用いて、同様の鋳造条件にてCu−ダイヤモンド複合材料を作製した。図11は、該鋳造材におけるダイヤモンド砥粒分布を示したグラフである。このグラフより、ダイヤモンド砥粒分布の制御に成功していることが分かる。   FIG. 10 is a graph showing the change in the volume fraction of the abrasive grains with the distance from the tip of the composite material in the Cu-diamond composite material produced by the above centrifugal force mixed powder method at a molten metal temperature of 1300 ° C. of the Cu matrix. . From this graph, the diamond abrasive grain distribution in the Cu-diamond composite material was significantly different from the target value. This is because the diamond abrasive grains have moved in the direction opposite to the centrifugal force direction due to the centrifugal force. As shown in Non-Patent Document 1, the moving speed of the solid phase particles in the liquid phase becomes slower as the solid phase particle diameter becomes smaller. Therefore, it is possible to control the solid phase particle distribution in the cast material by reducing the diameter of the diamond abrasive grains. Therefore, a Cu-diamond composite material was produced under the same casting conditions using diamond particles having a particle diameter of 60-70 μm as abrasive grains. FIG. 11 is a graph showing the distribution of diamond abrasive grains in the cast material. From this graph, it can be seen that the control of the distribution of diamond abrasive grains is successful.

遠心力混合粉末法にて作製したCu−ダイヤモンド複合材料から砥石11を切り出し、歯車12を取り付けることによって図12に示すようなジャイロ式穴あけ加工機用メタルボンド砥石を作製し、炭素繊維強化樹脂(CFRP)の穴あけ加工試験を行った。その結果を示す実体顕微鏡写真は図13である。この結果より、バリのないCFRPの穴あけ加工に成功しており、本技術によって作製したメタルボンド砥石は難加工材の加工砥石として有効である。   A grindstone 11 is cut out from a Cu-diamond composite material produced by a centrifugal force mixed powder method, and a gear 12 is attached to produce a metal bond grindstone for a gyro-type drilling machine as shown in FIG. CFRP) drilling test was conducted. A stereomicrograph showing the result is shown in FIG. From this result, drilling of CFRP without burrs has been successful, and the metal bond grindstone produced by this technology is effective as a grindstone for difficult-to-work materials.

1 母相金属粉末と固相粒子粉末を混合することにより作製された混合粉末である。   1 A mixed powder produced by mixing a matrix metal powder and a solid phase particle powder.

2 空洞を有し、回転可能な円筒形状金型である。   2 Cylindrical mold having a cavity and rotatable.

3 混合粉末や母相金属溶湯を円筒形状金型へ流し込むための湯道である。   3 A runner for pouring mixed powder or molten metal of the parent phase metal into a cylindrical mold.

4 複合材料の母相金属とするために、円筒形状金型へ流し込む母相金属溶湯である。   4 A matrix metal melt that is poured into a cylindrical mold to form a matrix metal of a composite material.

5 遠心力混合粉末法によって製造された円筒形状の複合材料における固相粒子である。固相粒子は複合材料の外周面のみに分散している。   5 Solid phase particles in a cylindrical composite material produced by the centrifugal force mixed powder method. The solid phase particles are dispersed only on the outer peripheral surface of the composite material.

6 棒状の複合材料を製造するための遠心鋳造装置における鋳造用鋳型である。   6 A casting mold in a centrifugal casting apparatus for producing a rod-shaped composite material.

7 溶解前の母相金属である。   7 It is a parent phase metal before dissolution.

8 母相金属を溶解するための高周波コイルである。   8 A high-frequency coil for melting the parent phase metal.

9 鋳造用鋳型内部にある中子である。
10 遠心力混合粉末法によって製造された棒状Cu−ダイヤモンド複合材料あるいはCu−SiC複合材料の先端部の混合粉末が存在していた混合粉末領域である。
11 メタルボンド砥石におけるダイヤモンド砥粒が分散した砥石の部分である。
12 ジャイロ式穴あけ加工機にてメタルボンド砥石を回転させるために必要な歯車である。
9 A core inside the casting mold.
10 This is a mixed powder region in which a mixed powder at the tip of a rod-like Cu-diamond composite material or a Cu-SiC composite material manufactured by the centrifugal force mixed powder method was present.
11 A portion of a grindstone in which diamond abrasive grains in a metal bond grindstone are dispersed.
12 A gear required for rotating a metal bond grindstone with a gyro drilling machine.

Claims (4)

母相金属粉末および固相微細粒子粉末を混合してこれらの混合粉末を作製し、該混合粉末を鋳造用鋳型に投入した後に鋳造用鋳型に遠心力を印加し、鋳造用溶解炉で作製した母材溶融金属を鋳造用鋳型に流し込むことにより、母相金属と固相微細粒子が複合化した複合材料を製造する方法であって、前記鋳造用溶解炉で作製した母相溶湯の温度は、混合粉末中の母相金属を溶融し、かつ遠心力による固相微細粒子の移動速度が小さくなる温度となるように混合粉末の見かけの熱伝導率に基づいて決定することを特徴とする母相金属と固相微細粒子が複合化した複合材料の製造方法。   The mixed metal powder and the solid phase fine particle powder were mixed to prepare a mixed powder. After the mixed powder was put into a casting mold, a centrifugal force was applied to the casting mold and the mixed powder was prepared in a casting melting furnace. A method of producing a composite material in which a matrix metal and solid phase fine particles are combined by pouring a matrix molten metal into a casting mold, wherein the temperature of the matrix phase melt produced in the melting furnace for casting is The matrix phase is determined based on the apparent thermal conductivity of the mixed powder so that the matrix metal in the mixed powder is melted and the moving speed of the solid phase fine particles is reduced by centrifugal force. A method for producing a composite material in which metal and solid phase fine particles are combined. 前記製造方法であって、熱伝導率に基づいて決定した溶解温度における遠心鋳造でも固相粒子が不均一に分散する場合は固相粒子の寸法を小さくして制御することを特徴とする母相金属と固相微細粒子が複合化した複合材料の製造方法。 In the manufacturing method, the solid phase is controlled by reducing the size of the solid phase particles when the solid phase particles are unevenly dispersed even in the centrifugal casting at the melting temperature determined based on the thermal conductivity. A method for producing a composite material in which metal and solid phase fine particles are combined. 前記母相金属粉末がCu粉末、真鍮、ブロンズ、又は鉄鋼であり、
前記固相微細粒子粉末がダイヤモンド、SiC、アルミナ、又はCBNであることを特徴とする請求項1、又は2に記載の母相金属と固相微細粒子が複合化した複合材料の製造方法。
The matrix metal powder is Cu powder, brass, bronze, or steel;
The method for producing a composite material in which the matrix metal and the solid phase fine particles are combined according to claim 1 or 2, wherein the solid phase fine particle powder is diamond, SiC, alumina, or CBN.
前記の母相金属と固相微細粒子が複合化した複合材料の製造方法により製造されるメタルボンド砥石。 A metal bond grindstone manufactured by a method for manufacturing a composite material in which the matrix metal and solid phase fine particles are combined.
JP2012068658A 2012-03-26 2012-03-26 Method of producing composite material formed by composite of matrix metal and solid-phase fine particles, and metal bonded grinding wheel produced by the same Pending JP2013198928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012068658A JP2013198928A (en) 2012-03-26 2012-03-26 Method of producing composite material formed by composite of matrix metal and solid-phase fine particles, and metal bonded grinding wheel produced by the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012068658A JP2013198928A (en) 2012-03-26 2012-03-26 Method of producing composite material formed by composite of matrix metal and solid-phase fine particles, and metal bonded grinding wheel produced by the same

Publications (1)

Publication Number Publication Date
JP2013198928A true JP2013198928A (en) 2013-10-03

Family

ID=49519573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012068658A Pending JP2013198928A (en) 2012-03-26 2012-03-26 Method of producing composite material formed by composite of matrix metal and solid-phase fine particles, and metal bonded grinding wheel produced by the same

Country Status (1)

Country Link
JP (1) JP2013198928A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107639215A (en) * 2017-10-24 2018-01-30 中原内配集团安徽有限责任公司 A kind of preparation method of aluminium silicon titanium alloy cylinder sleeve
CN107716902A (en) * 2017-10-25 2018-02-23 安徽恒利增材制造科技有限公司 A kind of bimetallic casting method of plunger pump rotor
CN108262466A (en) * 2017-12-13 2018-07-10 浙江灿根智能科技有限公司 A kind of bi-metal casting process
CN108474063A (en) * 2015-12-10 2018-08-31 湖南特力新材料有限公司 A kind of alumina dispersion-strenghtened non-leaded easily-cutting brass of ODS and its manufacturing method
CN110560657A (en) * 2019-09-10 2019-12-13 清华大学天津高端装备研究院洛阳先进制造产业研发基地 ceramic hollow sphere/titanium-based composite foam material and centrifugal casting method thereof
CN112692259A (en) * 2020-12-08 2021-04-23 山东天物成型科技有限公司 Production process of super-wear-resistant bimetal hob ring

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108474063A (en) * 2015-12-10 2018-08-31 湖南特力新材料有限公司 A kind of alumina dispersion-strenghtened non-leaded easily-cutting brass of ODS and its manufacturing method
CN108474063B (en) * 2015-12-10 2020-04-28 湖南特力新材料有限公司 Aluminum oxide dispersion-strengthened lead-free-cutting brass and manufacturing method thereof
CN107639215A (en) * 2017-10-24 2018-01-30 中原内配集团安徽有限责任公司 A kind of preparation method of aluminium silicon titanium alloy cylinder sleeve
CN107639215B (en) * 2017-10-24 2020-01-03 中原内配集团安徽有限责任公司 Manufacturing method of aluminum-silicon-titanium alloy cylinder sleeve
CN107716902A (en) * 2017-10-25 2018-02-23 安徽恒利增材制造科技有限公司 A kind of bimetallic casting method of plunger pump rotor
CN108262466A (en) * 2017-12-13 2018-07-10 浙江灿根智能科技有限公司 A kind of bi-metal casting process
CN110560657A (en) * 2019-09-10 2019-12-13 清华大学天津高端装备研究院洛阳先进制造产业研发基地 ceramic hollow sphere/titanium-based composite foam material and centrifugal casting method thereof
CN110560657B (en) * 2019-09-10 2021-02-09 清华大学天津高端装备研究院洛阳先进制造产业研发基地 Ceramic hollow sphere/titanium-based composite foam material and centrifugal casting method thereof
CN112692259A (en) * 2020-12-08 2021-04-23 山东天物成型科技有限公司 Production process of super-wear-resistant bimetal hob ring

Similar Documents

Publication Publication Date Title
JP2013198928A (en) Method of producing composite material formed by composite of matrix metal and solid-phase fine particles, and metal bonded grinding wheel produced by the same
JP2013166982A (en) Method for producing functionally gradient material by using both sintering method and casting method
JP5756162B2 (en) Solidification microstructure of molded molded products molded with aggregate molds
CN105130482B (en) A kind of Metal toughened ceramic matric composite for 3D printing
WO2016119558A1 (en) Alloy powder used for directly 3d-printing metal components, and method for preparation of said alloy powder
CN111633209B (en) Steel/aluminum bimetal additive/equal material composite manufacturing method
WO2001002112A1 (en) Disintegrative core for high pressure casting, method for manufacturing the same, and method for extracting the same
CN102416462B (en) A kind of preparation method of metal-base composites of local enhancement
CN104532031B (en) Method for preparing nano-ceramic particle reinforced aluminum-based composite material
JP6315761B2 (en) Self-lubricating metal composite material and self-lubricating metal matrix composite material excellent in strength, lubricity and wear resistance, and method for producing the metal composite material and metal matrix composite material
CN102688988A (en) Micro-investment casting forming method for complex micro-component
Nazari et al. Production of copper-aluminum bimetal by using centrifugal casting and evaluation of metal interface
CN106041089B (en) The unrestrained manufacturing method for oozing burning Ti-Al-Cu-Sn-Ni micropore skives
JP5737016B2 (en) Disintegrating core and method for producing the same
Luo et al. Effect of the pouring temperature by novel synchronous rolling-casting for metal on microstructure and properties of ZLl04 alloy
KR20130048984A (en) Preparing method of bulk metallic glass rod by vacuum centrifugal casting and preparing
Miura-Fujiwara et al. Fabrication of metal-based functionally graded grinding wheel by a centrifugal mixed-powder method
JP2014100770A (en) Composite abrasive grain, composite abrasive grain grinding wheel and manufacturing method of composite abrasive grain grinding wheel
CN103357819A (en) Bucket tooth investment casting method
CN104226898A (en) Investment casting method for bucket tooth
JP6279326B2 (en) Manufacturing method of sputtering target
JP5430342B2 (en) Foundry sand and casting mold
JP6095935B2 (en) Precision casting mold manufacturing method
JP6679101B2 (en) Method of joining ceramics and metal and joined body of ceramics and metal
JP2003147459A (en) Copper alloy cast member and method for producing the same