EP2190612B1 - Method and device for the electromagnetic stirring of electrically conductive fluids - Google Patents

Method and device for the electromagnetic stirring of electrically conductive fluids Download PDF

Info

Publication number
EP2190612B1
EP2190612B1 EP08801098.8A EP08801098A EP2190612B1 EP 2190612 B1 EP2190612 B1 EP 2190612B1 EP 08801098 A EP08801098 A EP 08801098A EP 2190612 B1 EP2190612 B1 EP 2190612B1
Authority
EP
European Patent Office
Prior art keywords
magnetic field
solidification
melt
period
amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP08801098.8A
Other languages
German (de)
French (fr)
Other versions
EP2190612A1 (en
Inventor
Petr. A. Nikrityuk
Sven Eckert
Dirk RÄBIGER
Bernd Willers
Kerstin Eckert
Roger Grundmann
Gunter Gerbeth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technische Universitaet Dresden
Helmholtz Zentrum Dresden Rossendorf eV
Original Assignee
Technische Universitaet Dresden
Helmholtz Zentrum Dresden Rossendorf eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technische Universitaet Dresden, Helmholtz Zentrum Dresden Rossendorf eV filed Critical Technische Universitaet Dresden
Publication of EP2190612A1 publication Critical patent/EP2190612A1/en
Application granted granted Critical
Publication of EP2190612B1 publication Critical patent/EP2190612B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/02Use of electric or magnetic effects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/45Magnetic mixers; Mixers with magnetically driven stirrers
    • B01F33/451Magnetic mixers; Mixers with magnetically driven stirrers wherein the mixture is directly exposed to an electromagnetic field without use of a stirrer, e.g. for material comprising ferromagnetic particles or for molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/04Influencing the temperature of the metal, e.g. by heating or cooling the mould
    • B22D27/045Directionally solidified castings
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/06Constructional features of mixers for pig-iron
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D27/00Stirring devices for molten material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • Y10T137/0391Affecting flow by the addition of material or energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/206Flow affected by fluid contact, energy field or coanda effect [e.g., pure fluid device or system]

Definitions

  • the invention relates to a method and a device for the electromagnetic stirring of electrically conductive liquids in the liquid state and / or during the solidification of the liquids using a horizontal magnetic field generating a Lorentz force, rotating magnetic field.
  • time-dependent electromagnetic fields open up a possibility for mixing, for example, molten metal melts.
  • the magnetic field amplitude and frequency parameters can be used to directly and accurately control the electromagnetic field in a simple manner.
  • the present invention relates to magnetic, mostly in the horizontal direction rotating traveling fields, also referred to as rotating magnetic fields (English: rotating magnetic fields RMF).
  • a major problem with regard to the use of a rotating magnetic field for electromagnetic stirring is that the majority of the kinetic energy of the melt for the primary azimuthal rotational movement is applied, but which contributes only slightly to the mixing of the melt.
  • An intensification of the mixing process is possible primarily by an enhancement of the secondary meridional flow.
  • An increase in magnetic field strength or magnetic field frequency causes a widening of the secondary flow, ie an increase in the speed values in the axial and radial directions and the generation of additional turbulence, for example the occurrence of Taylor-Görtler-vortexes, as in the documents PA Nikrityuk, K. Eckert, R. Grundmann: Magnetohydrodynamics, 2004, 40, pp.
  • Rotating magnetic fields are already used in metallurgical processes, such as the continuous casting of steel.
  • metallurgical processes such as the continuous casting of steel.
  • DE AS 1 962 341 For this purpose, an arrangement of a polyphase electromagnetic winding for generating a traveling field perpendicular to the casting direction is described on a continuous casting plant.
  • a method for stirring the molten steel in the continuous casting is also in the document US 2003/0106667 described in which two superimposed and counter-rotating magnetic fields are used. While the lower magnetic field takes over the actual function of the stirrer, the task of the upper magnetic field is to decelerate the rotating melt in the area of the free surface to very low velocity values in order to compensate for the negative effects of stirring - a deflection and turbulence of the free surface ,
  • the invention has for its object to provide a method for the electromagnetic stirring of electrically conductive liquids, which are designed so that an intense three-dimensional flow inside the liquid for mixing in the liquid state reaches up to the immediate vicinity of solidification fronts and at the same time undisturbed , free surface of the liquid can be ensured.
  • a three-phase current I D is used, which is applied, for example in the form of a three-phase alternating current, to at least three pairs of induction coils placed on a cylindrical container containing the liquid.
  • the container can be filled as electrically conductive liquids metallic or semiconductor melts.
  • a period T P according to condition (I) is chosen to be 0.5 ⁇ t ia ⁇ T PM ⁇ 1.5 ⁇ t ia as long as the melt is still completely liquid, while at the beginning of the state of solidification the period duration T P is increased so that, according to condition (II), it is satisfied that 0.8 ⁇ t ia ⁇ T PE ⁇ 4 ⁇ t ia .
  • the amplitude B 0 of the magnetic field can be readjusted.
  • v is defined as the kinematic viscosity of the melt
  • V sol as the solidification rate
  • H 0 as the height of the melt volume
  • B 1 and B 2 are defined as the lower limits of the magnetic field amplitude B 0 in the course of solidification depending on the parameters v, V sol and H 0 can change.
  • the respective period durations with mixing T PM and at the beginning of solidification T PE , in which the magnetic field is applied, are interrupted by pauses in the pause duration Tpause, in which no magnetic field is applied to the melt, wherein the pause duration T break for each period T P with T Pause ⁇ 0.5 ⁇ T P is set.
  • the container with the electrically conductive liquid which may in particular be a melt, may preferably be arranged concentrically within the induction coils.
  • the container may be provided with a heating device and / or cooling device, which may be in communication with a fixed metal body.
  • the container bottom can be in direct contact with a solid metal body, which is traversed by a cooling medium in the interior.
  • the side walls of the container may be thermally insulated.
  • the heat sink can communicate with a thermostat.
  • Between the heat sink and the container may be a liquid metal film to achieve a stable heat transfer with low contact resistance.
  • the liquid metal film may be made of a gallium alloy.
  • At least one temperature sensor may be positioned, for example in the form of a thermocouple, which provides an information signal about the time of onset of solidification and is connected to the control unit ,
  • the method according to any one of claims 1 to 7 can be used for stirring electrically conductive liquids in the form of metallic melts in metallurgical processes or in the form of semiconductor melts in crystal growth, for the purification of molten metals, in continuous casting or in the solidification of metallic materials.
  • the direction of the rotating magnetic field is reversed at quite specific, regular time intervals.
  • the reversal is carried out by means of the control means for shifting the phases of a three-phase alternating current, whereby the direction of rotation of the rotating phases of a three-phase alternating current and thus reverses the direction of rotation of the rotating magnetic field.
  • the parameter t ia represents an adjustment time (English: initial adjustment time), in which, after an abrupt connection of a rotating magnetic field in a melt, which was previously at rest, the double vortex typical of the meridional secondary flow has formed.
  • the characteristic response time t ia is calculated according to a formula from the variables electrical conductivity of the melt, density of the melt and frequency and amplitude of the magnetic field.
  • An associated constant takes into account the influence of size and shape of the melt volume and can take numbers between three and five. This is compared to the prior art, in particular with respect to the document DE 3 730 300 a defined range for the period T P , in which the direction of rotation change is adjustable.
  • An essential feature of the invention is that the direction of the rotating magnetic field is reversed at regular time intervals, with the period T P of the change of direction exists an important parameter that can be specified to make the stirring intensive.
  • An essential criterion for the success of the process is the possibility of a targeted control of the secondary flow. Different flow patterns are advantageous for different objectives.
  • the present invention can be used advantageously for the efficient stirring of melts and for the directed solidification of multicomponent melts.
  • the objective in an application of the method in the directional solidification of metallic alloys is that in addition to a thermal homogenization of the melt, the direction of the flow in the immediate vicinity of the solidification front over time should be varied so that a time average for the radial velocity component close to zero results.
  • the present invention shows that the meridional secondary flow rate field is significantly and logically dependent on variations in the parameter T p .
  • T P the proper adjustment of the period T P is crucial in view of the objective of the particular application.
  • T P the strength of the magnetic field, the dimensions and shape of the melt volume and the material properties of the melt must be taken into account.
  • the operation of the method is the example of the device 1 according to the Fig. 1 and the Fig. 2a, 2b explained in more detail.
  • the pairs 31, 32, 33 of the induction coils are connected to a control / regulating unit 12, which transmits a three-phase current I D to the pairs 31, 32, 33 of induction coils via a connected power supply unit 11, the phase position of the pairs 31, 32.33 of the induction coils feeding three-phase current I D at regular time intervals corresponding to the predetermined period T PM for mixing in the liquid state or T PE for mixing from the beginning of solidification is shifted by 180 ° and thus a reversal of the direction of rotation of the magnetic field and the Lorentz force F L driving the flow is reached, the control unit 12 being in communication with the temperature sensor 10 whose temperature data at the time of solidification start trigger the switching over of the period from T PM to T PE .
  • the cylindrical container 13 is filled with the liquid, electrically conductive first melt 2.
  • the container 13 is located centrally symmetrically in the middle of the arrangement 3 of the induction coil pairs 31, 32, 33, as in FIG Fig. 1b is shown.
  • the induction coil pairs 31, 32, 33 are fed by a power supply unit 11 with a three-phase current I D in the form of a three-phase alternating current and generate a magnetic field which rotates about the symmetry axis 14 of the container 13 and is oriented horizontally with the direction of rotation 15 (arrow direction).
  • the temporal change of the magnetic field strength generates a Lorentz force F L with a dominant azimuthal component, which the melt 2 in Fig. 2a or 21 , 22 in Fig. 2b put in a rotary motion.
  • the power supply unit 11 of the induction coil pairs 31, 32, 33 is connected to the control / regulation unit 12, which causes a shift of the phases of the three-phase alternating current I D at predetermined time intervals.
  • the result of the phase shift is that the direction of rotation 15 of the horizontally oriented magnetic field reverses during the phase change in the direction of rotation 16, as in FIG Fig. 1b is shown.
  • the method can be used, for example, for the temperature distribution in a one-component melt 2, as in Fig. 2a is shown to homogenize or to balance the concentration in segregated multicomponent melts 21,22, as in Fig. 2b 3, with the higher density melt 22 being in the lower part of the container 13 before the start of mixing and being covered by the lighter melt 21.
  • the electromagnetic stirring method is based on a periodic reversal of the direction of the Lorentz force F L driving the flow.
  • the character of the flow is determined by a periodic change of the direction of rotation 15-16, 16-15 of the magnetic field B 0 .
  • the flow is slowed down and the melt 2, 21, 22 is accelerated in the opposite direction.
  • the Lorentz force F L varies in the axial direction with the associated force component and has a maximum in the center plane 17 of the container 13.
  • the melt 2, 21, 22 is braked more strongly in the vicinity of the center plane 17 and accelerated in the opposite direction 16 than in the vicinity of the bottom 4 of the container 13 and the free surface 5 is the case.
  • the parameter t ia is the so-called adjustment time (English: initial adjustment time) and denotes the time scale, in which after an abrupt connection of a rotating magnetic field in a melt 2, 21,22, which was previously in the resting state, that for the meridional Secondary flow 18 typical double vortex forms.
  • the variables ⁇ , ⁇ , ⁇ and B 0 denote the electrical conductivity and the density of the melt, the frequency and the amplitude of the magnetic field, while the constant C g describes the influence of size and shape of the melt volume and assume numbers between three and five can.
  • a GaInSn melt 21,22 was measured by means of the ultrasonic Doppler method.
  • the experimental results prove the existence of a certain period T P at which the intensity of the secondary meridional flow 18 reaches a maximum.
  • the position of the maximum U zmax 2 varies with the magnetic field strength and corresponds to the respective adjustment time t ia .
  • liquid lead 22 and liquid tin 21 can each be half in the cylindrical container 13.
  • the lead 22 is significantly heavier and stores before the start of mixing in the lower half of the container 13.
  • the rotating magnetic field B 0 is switched on, the direction of rotation is reversed at regular time intervals.
  • a cooling device 23 for the solidification of metallic melts 2 can be supplemented by a cooling device 23 for the solidification of metallic melts 2.
  • the cooling device 23 contains a metal block 6, in the interior of which cooling channels 7 are present.
  • the container 13 stands on the metal block 6.
  • the cooling channels 7 located in the interior of the metal block 6 are flowed through by a coolant during the solidification process.
  • the melt 2 is removed from the heat down.
  • a thermal insulation 8 of the container 13 prevents heat losses in the radial direction.
  • At the bottom 4 and the side walls 20 of the container 13 is at least one temperature sensor 10, for example mounted in the form of a thermocouple.
  • the temperature measurements allow monitoring of the beginning and the course of the state of solidification and allow a timely adjustment of the magnetic field parameters (eg B 0 and T P ) by the control unit 12 controlled by the power supply unit 11 to the individual stages of the solidification process.
  • Al-Si alloys 21, 22 may be used in the device 1 according to FIG Fig. 1 . 2 B directionally controlled solidify.
  • the structural properties obtained are based on the Fig. 6a, 6b, 6c . 7a, 7b and 8th concerning the formation of columnar dendrites, grain refining and segregation:
  • Fig. 6 shows the macrostructure in longitudinal section of cylindrical blocks of an Al-7wt% Si alloy, for example, with a diameter of 50mm and a height of 60mm, which were directionally solidified under the action of a rotating magnetic field at a field strength B 0 of 6.5mT.
  • the magnetic field was switched on with a time delay of 30 s after the start of solidification on the container bottom.
  • a coarse columnar structure grows parallel to the symmetry axis of the container.
  • a modified columnar structure is first formed, as in Fig. 7a shown, ie the columnar grains are finer and grow tilted to the side.
  • Fig. 8 is a radial distribution of the area fraction of primary crystals in Al-7wt% Si samples (with seven parts by weight Si), which were solidified under magnetic field influence with variation of the pulse duration T p .
  • Fig. 6 to 8 show that in the case of electromagnetic stirring with a change of direction of the magnetic field with switching on the magnetic field, a direct transition to equiaxial grain growth can be achieved.
  • the periodic change of the direction of rotation of the magnetic field leads in each case to a reduction of segregation, which with a suitable choice of the pulse duration T P is also almost completely avoided, as in Fig. 7b can be shown.
  • the application of the invention may be used for the mixing of molten metals 2, 21, 22, for continuous casting, for the directed solidification of mixed metallic alloys and for the directed solidification of semiconductor melts, among others. be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Continuous Casting (AREA)
  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

Die Erfindung betrifft ein Verfahren und eine Einrichtung zum elektromagnetischen Rühren von elektrisch leitenden Flüssigkeiten im flüssigen Zustand und/oder während der Erstarrung der Flüssigkeiten unter Verwendung eines in der horizontalen Ebene eine Lorentzkraft erzeugenden, rotierenden Magnetfeldes.The invention relates to a method and a device for the electromagnetic stirring of electrically conductive liquids in the liquid state and / or during the solidification of the liquids using a horizontal magnetic field generating a Lorentz force, rotating magnetic field.

Aufgrund ihrer kontaktlosen Wechselwirkung mit elektrisch leitfähigen Flüssigkeiten eröffnen zeitabhängige elektromagnetische Felder eine Möglichkeit zum Mischen von beispielsweise flüssigen Metallschmelzen. Über die Parameter Magnetfeldamplitude und -frequenz kann das elektromagnetische Feld in einfacher Weise unmittelbar und genau geregelt werden.Due to their contactless interaction with electrically conductive liquids, time-dependent electromagnetic fields open up a possibility for mixing, for example, molten metal melts. The magnetic field amplitude and frequency parameters can be used to directly and accurately control the electromagnetic field in a simple manner.

Die vorliegende Erfindung betrifft magnetische, meist in horizontaler Richtung umlaufende Wanderfelder, auch als rotierende Magnetfelder (engl. rotating magnetic fields RMF) bezeichnet.The present invention relates to magnetic, mostly in the horizontal direction rotating traveling fields, also referred to as rotating magnetic fields (English: rotating magnetic fields RMF).

Die Anwendung eines rotierenden Magnetfeldes beispielsweise auf einen mit flüssiger Metallschmelze gefüllten zylindrischen Behälter ruft eine in weiten Bereichen nahezu starre Rotationsbewegung der Metallschmelze hervor, welche kaum zum konvektiven Austausch im Volumen der Schmelze beiträgt. Für die zu beobachtenden Mischvorgänge ist im Wesentlichen die sogenannte meridionale Sekundärströmung verantwortlich, die in der meridionalen Ebene (r-z-Ebene) aufgrund des Druckunterschieds zwischen der Mitte des Behälters und den Randschichten am Boden und an der freien Oberfläche entsteht und deren Amplitude in Abhängigkeit von der Geometrie der betrachteten Strömung etwa um den Faktor Fünf bis Zehn geringer als die rotierende azimutale Strömung ausfällt. In der meridionalen Ebene, wie in der Druckschrift P.A. Nikrityuk, M. Ungarish, K. Eckert and R. Grundmann: Spin-up of a liquid metal flow driven by a rotating magnetic field in a finite cylinder: A numerical and analytical study, Phys. Fluids, 2005, vol. 17, 067101 ), beschrieben ist, bildet sich eine sogenannte Doppelwirbelstruktur aus, d.h. im Bereich der horizontalen Mittelebene des Behälters wird die flüssige Metallschmelze radial nach außen transportiert, strömt an den Seitenwänden nach oben bzw. unten und fließt am Boden und unterhalb der freien Oberfläche wieder zurück zur Achse. Die Richtung der sekundären Zirkulation stellt sich für beide Drehrichtungen des Magnetfeldes in derselben Weise ein. DE 10 2004 017 443 B3 beschreibt ein Verfahren und eine Vorrichtung zum Rühren von elektrisch leitenden Flüssigkeiten in Behältern unter Verwendung eines rotierenden Magnetfeldes mit einer Drehrichtung. Moeinipour, K. u. a. beschreiben den Einfluss des rotierenden Magnetfeldes auf die Eigenschaften der Gusslegierung EN AC-AlSi7Mg, speziell auf den Wachstum der Dendriten. [ Moeinipour, K. u. a.: Einfluss des rotierenden Magnetfeldes auf das Gefüge und die Dendriten der Gusslegierung EN AC-AlSi7Mg. Giesserei Volume 91, Heft. 12 (2004), S. 18-20, 22-23 .]The application of a rotating magnetic field, for example, to a liquid container filled with liquid molten metal container causes a nearly rigid rotational movement of the molten metal in a wide range, which hardly contributes to the convective exchange in the volume of the melt. For the mixing processes to be observed essentially the so-called meridional secondary flow is responsible, which arises in the meridionalen plane (rz plane) due to the pressure difference between the center of the container and the edge layers at the bottom and on the free surface and their amplitude as a function of Geometry of the considered flow about by a factor of five to ten less than the rotating azimuthal flow fails. In the meridional plane, as in the publication PA Nikrityuk, M. Ungarish, K. Eckert and R. Grundmann: Spin-up of a liquid metal flow driven by a rotating magnetic field in a finite cylinder: A numerical and analytical study, Phys. Fluids, 2005, vol. 17, 067101 ), a so-called double vortex structure is formed, ie in the region of the horizontal center plane of the container, the liquid molten metal is transported radially outward, flows upwards or downwards on the side walls and flows back to the bottom and below the free surface Axis. The direction of the secondary circulation adjusts itself in the same way for both directions of rotation of the magnetic field. DE 10 2004 017 443 B3 describes a method and apparatus for stirring electrically conductive liquids in containers using a rotating magnetic field in one direction of rotation. Moeinipour, K. et al. Describe the influence of the rotating magnetic field on the properties of the casting alloy EN AC-AlSi7Mg, especially on the growth of the dendrites. [ Moeinipour, K. et al.: Influence of the rotating magnetic field on the microstructure and the dendrites of the cast alloy EN AC-AlSi7Mg. Foundry Volume 91, Heft. 12 (2004), pp. 18-20, 22-23 .]

Ein wesentliches Problem im Hinblick auf die Anwendung eines rotierenden Magnetfeldes für das elektromagnetische Rühren besteht darin, dass der überwiegende Anteil der Bewegungsenergie der Schmelze für die primäre azimutale Rotationsbewegung aufgebracht wird, die aber nur in geringem Maße zur Durchmischung der Schmelze beiträgt. Eine Intensivierung des Mischvorganges ist in erster Linie durch eine Verstärkung der meridionalen Sekundärströmung möglich. Eine Erhöhung von Magnetfeldstärke oder Magnetfeldfrequenz bewirkt eine Anfachung der Sekundärströmung, d.h. eine Zunahme der Geschwindigkeitswerte in axialer und radialer Richtung sowie die Erzeugung zusätzlicher Verwirbelung, z.B. das Auftreten von Taylor-Görtler-Wirbeln, wie in den Druckschriften P.A. Nikrityuk, K. Eckert, R. Grundmann: Magnetohydrodynamics, 2004, 40, pp. 127-146 . und P.A. Nikrityuk, K. Eckert, R. Grundmann: CD Proceeding of the Conference on Turbulence and Interactions TI2006, France, 2006, May 28-June 2, 2006 , beschrieben ist, in der Nähe der Seitenwände. Dies führt zu einer intensiveren Durchmischung der flüssigen Metallschmelze.A major problem with regard to the use of a rotating magnetic field for electromagnetic stirring is that the majority of the kinetic energy of the melt for the primary azimuthal rotational movement is applied, but which contributes only slightly to the mixing of the melt. An intensification of the mixing process is possible primarily by an enhancement of the secondary meridional flow. An increase in magnetic field strength or magnetic field frequency causes a widening of the secondary flow, ie an increase in the speed values in the axial and radial directions and the generation of additional turbulence, for example the occurrence of Taylor-Görtler-vortexes, as in the documents PA Nikrityuk, K. Eckert, R. Grundmann: Magnetohydrodynamics, 2004, 40, pp. 127-146 , and PA Nikrityuk, K. Eckert, R. Grundmann: CD Proceeding of the Conference on Turbulence and Interactions TI2006, France, 2006, May 28-June 2, 2006 , described, near the side walls. This leads to a more intensive mixing of the liquid molten metal.

Ein Problem besteht darin, dass gleichzeitig aber auch die Rotationsbewegung verstärkt wird und deutliche Störungen und Auslenkungen der freien Oberfläche der flüssigen Metallschmelze hervorruft. In der Folge kann es zu unerwünschten Effekten wie den Einschlüssen von Schlacke in der Schmelze oder der Aufnahme von Sauerstoff aus der Atmosphäre kommen.One problem is that at the same time, however, the rotational movement is amplified and causes significant disturbances and deflections of the free surface of the liquid molten metal. As a result, undesirable effects such as the inclusion of slag in the melt or the absorption of oxygen from the atmosphere may occur.

Ein weiteres Problem tritt für das elektromagnetische Rühren beim Übergang von dem flüssigen Zustand in den Zustand der Erstarrung, d.h. während der gerichteten Erstarrung von metallischen Legierungen oder Halbleiterschmelzen, auf. In unmittelbarer Umgebung einer voranschreitenden Erstarrungsfront entmischt sich die Schmelze aufgrund der unterschiedlichen Löslichkeit einzelner Komponenten in der flüssigen bzw. festen Phase. Eine Strömung in unmittelbarer Umgebung der Erstarrungsfront wirkt dem Aufbau einer ausgedehnten Konzentrationsgrenzschicht entgegen, indem angereicherte Schmelze von der Erstarrungsfront weg transportiert wird. Strömt die Schmelze dabei ausschließlich in eine Richtung, kann es aber in anderen Volumenbereichen zu Entmischungen kommen, welche die mechanischen Eigenschaften des resultierenden Festkörpers merklich verschlechtern.Another problem arises for the electromagnetic stirring in the transition from the liquid state to the state of solidification, i. during the directional solidification of metallic alloys or semiconductor melts, on. In the immediate vicinity of a progressive solidification front, the melt separates due to the different solubility of individual components in the liquid or solid phase. A flow in the immediate vicinity of the solidification front counteracts the build-up of an extended concentration boundary layer by transporting enriched melt away from the solidification front. If the melt flows exclusively in one direction, segregation may occur in other volume ranges, which noticeably worsen the mechanical properties of the resulting solid.

Rotierende Magnetfelder kommen bereits in metallurgischen Prozessen, wie dem Stranggießen von Stahl zum Einsatz. In der Druckschrift DE AS 1 962 341 wird dazu eine Anordnung einer mehrphasigen elektromagnetischen Wicklung zur Erzeugung eines Wanderfeldes senkrecht zur Gießrichtung an einer Stranggießanlage beschrieben.Rotating magnetic fields are already used in metallurgical processes, such as the continuous casting of steel. In the publication DE AS 1 962 341 For this purpose, an arrangement of a polyphase electromagnetic winding for generating a traveling field perpendicular to the casting direction is described on a continuous casting plant.

Ein Verfahren zum Rühren der Stahlschmelze beim Stranggießen ist auch in der Druckschrift US 2003/0106667 beschrieben, bei dem zwei übereinander angeordnete und gegenläufig rotierende Magnetfelder eingesetzt werden. Während das untere Magnetfeld die eigentliche Funktion des Rührers übernimmt, kommt dem oberen Magnetfeld die Aufgabe zu, die rotierende Schmelze im Bereich der freien Oberfläche auf sehr kleine Geschwindigkeitswerte abzubremsen, um die negativen Auswirkungen des Rührens - eine Auslenkung und Verwirbelung der freien Oberfläche - zu kompensieren.A method for stirring the molten steel in the continuous casting is also in the document US 2003/0106667 described in which two superimposed and counter-rotating magnetic fields are used. While the lower magnetic field takes over the actual function of the stirrer, the task of the upper magnetic field is to decelerate the rotating melt in the area of the free surface to very low velocity values in order to compensate for the negative effects of stirring - a deflection and turbulence of the free surface ,

Ein Problem besteht darin, dass mit zwei Magnetrührern - einem unteren Magnetrührer und einem oberen Magnetrührer - gearbeitet wird. Dies bedeutet im Vergleich zum Gebrauch nur eines Magnetsystems einen höheren apparativen und regelungstechnischen Aufwand. Gleichzeitig weist ein derartiges Verfahren eine ungünstige Energiebilanz auf. Mit Hilfe des unteren Magnetrührers wird mechanische Energie in die Stahlschmelze gebracht und die Stahlschmelze in Rotation versetzt. Da aber im oberen Bereich der Stranggussanlage vom Anwender eine weit weniger intensive Rotation der Schmelze gewünscht wird, muss bei dieser Herangehensweise zusätzliche Energie im oberen Magnetrührer aufgewendet werden, um die Strömung dort zu bremsen.One problem is that it works with two magnetic stirrers - a lower magnetic stirrer and an upper magnetic stirrer. This means in comparison to the use of only one magnetic system a higher apparatus and control engineering effort. At the same time, such a method has an unfavorable energy balance. With the help of the lower magnetic stirrer mechanical energy is brought into the molten steel and the molten steel is set in rotation. However, since a much less intensive rotation of the melt is desired by the user in the upper part of the continuous casting plant, in this approach additional energy has to be expended in the upper magnetic stirrer in order to brake the flow there.

In den Druckschriften DE 2 401 145 und DE 3 730 300 sind jeweils Verfahren zum elektromagnetischen Rühren in Stranggusskokillen beschrieben, bei denen eine periodische Änderung des Stromes in der Spulenanordnung vorgenommen wird. In der Druckschrift DE 2 401 145 ist beschrieben, dass mit dieser Verfahrensweise die Ausbildung von sekundären Weißbändern und Sekundärdendriten vermieden werden kann.In the pamphlets DE 2 401 145 and DE 3 730 300 In each case, methods for electromagnetic stirring in continuous casting molds are described in which a periodic change of the current in the coil arrangement is made. In the publication DE 2 401 145 It is described that with this procedure the formation of secondary white bands and secondary dendrites can be avoided.

Mit dem in der Druckschrift DE 3 730 300 beschriebenen Verfahren wird eine Beruhigung der freien Badoberfläche erreicht. Es wird davon ausgegangen, dass das resultierende Magnetfeld im Innern der Schmelze gleichzeitig eine intensive Rührbewegung aufrechterhält. In beiden zuletzt genannten Druckschriften werden für die Zykluszeiten, in denen die Stromrichtung gewechselt werden soll, sehr weite Bereiche, namentlich zwischen einer Sekunde und 30 Sekunden angegeben. Die Zykluszeit, auch Periodendauer genannt, oder die Frequenz des Vorzeichenwechsels des Stroms ist ein wichtiger Parameter mit großem Einfluss auf die sich ausbildende Strömung.With the in the publication DE 3 730 300 described method, a calming of the free bath surface is achieved. It is assumed that the resulting magnetic field inside the melt simultaneously maintains an intense stirring motion. In both last mentioned documents, very wide ranges, namely between one second and 30 seconds, are specified for the cycle times in which the current direction is to be changed. The cycle time, also called period duration, or the frequency of the sign change of the current is an important parameter with a large influence on the forming flow.

Ein Problem besteht darin, dass in beiden Druckschriften keine Details über eine vorgebbare Periodendauer in Abhängigkeit von der Magnetfeldstärke, der Geometrie der Anordnung von Induktionsspulen oder den Materialeigenschaften der flüssigen Metallschmelze beschrieben sind.One problem is that in both documents no details about a predefinable period as a function of the magnetic field strength, the geometry of the arrangement of induction coils or the material properties of the liquid molten metal are described.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum elektromagnetischen Rühren von elektrisch leitfähigen Flüssigkeiten anzugeben, die derart geeignet ausgebildet sind, dass eine intensive dreidimensionale Strömung im Innern der Flüssigkeit zum Durchmischen im flüssigen Zustand bis in die unmittelbare Umgebung von Erstarrungsfronten erreicht und gleichzeitig eine ungestörte, freie Oberfläche der Flüssigkeit gewährleistet werden.The invention has for its object to provide a method for the electromagnetic stirring of electrically conductive liquids, which are designed so that an intense three-dimensional flow inside the liquid for mixing in the liquid state reaches up to the immediate vicinity of solidification fronts and at the same time undisturbed , free surface of the liquid can be ensured.

Die Aufgabe wird durch die Merkmale der Patentansprüche 1 und 8 gelöst.The object is solved by the features of claims 1 and 8.

In dem Verfahren zum elektromagnetischen Rühren von elektrisch leitenden Flüssigkeiten im flüssigen Zustand und/oder im Zustand des Beginns der Erstarrung der Flüssigkeit unter Verwendung eines in der horizontalen Ebene eine Lorentzkraft FL erzeugenden, rotierenden Magnetfeldes,
werden im Kennzeichenteil gemäß dem Patentanspruch 1

  • die Drehrichtung des in der horizontalen Ebene rotierenden Magnetfeldes in regelmäßigen, zeitlichen Abständen in Form einer Periodendauer TP gewechselt, wobei die Frequenz des Richtungswechsels der Bewegung des Magnetfeldvektors derart eingestellt wird,
  • im Zustand der Durchmischung der Flüssigkeit eine Periodendauer TP zwischen zwei Richtungswechseln des Magnetfeldes in einem Zeitintervall ΔTPM in Abhängigkeit von der Einstellzeit ti.a. mit Bedingung 0.5 t i . a . < T PM < 1.5 t i . a .
    Figure imgb0001
    eingestellt, und
  • zu Beginn des Zustandes der Erstarrung der Flüssigkeit eine Periodendauer TP zwischen zwei Richtungswechseln des Magnetfeldes in einem Zeitintervall ΔTPE in Abhängigkeit von der Einstellzeit ti.a. mit Bedingung 0.8 t i . a . < T PE < 4 t i . a
    Figure imgb0002
    eingestellt, wobei die Einstellzeit ti.a. durch die Gleichung t i . a . = C g B 0 σω ρ 1
    Figure imgb0003
    gegeben wird, in der sich nach einem Zuschalten des rotierenden Magnetfeldes in einer sich im Ruhezustand befindenden Flüssigkeit der Doppelwirbel der meridionalen Sekundärströmung ausbildet, und σ als elektrische Leitfähigkeit, ρ als Dichte der Flüssigkeit, ω als Frequenz und B0 als Amplitude des Magnetfeldes und Cg als Konstante für den Einfluss von Größe und Form des Volumens der Flüssigkeit definiert werden.
In the method for the electromagnetic stirring of electrically conductive liquids in the liquid state and / or in the state of the beginning of the solidification of the liquid using a in the horizontal plane of a Lorentz force F L generating, rotating magnetic field,
be in the characterizing part according to claim 1
  • the direction of rotation of the rotating magnetic field in the horizontal plane at regular time intervals in the form of a period T P changed, wherein the frequency of the change of direction of the movement of the magnetic field vector is set such
  • in the state of mixing of the liquid, a period T P between two changes in direction of the magnetic field in a time interval .DELTA.T PM depending on the setting time t ia with condition 0.5 t i , a , < T PM < 1.5 t i , a ,
    Figure imgb0001
    set, and
  • at the beginning of the state of solidification of the liquid, a period T P between two changes in direction of the magnetic field in a time interval .DELTA.T PE as a function of the setting time t ia with condition 0.8 t i , a , < T PE < 4 t i , a
    Figure imgb0002
    adjusted, wherein the adjustment time t ia by the equation t i , a , = C G B 0 σω ρ - 1
    Figure imgb0003
    is given, in which forms after connecting the rotating magnetic field in a quiescent liquid of the double vortex of the secondary meridional flow, and σ as electrical conductivity, ρ as the density of the liquid, ω as the frequency and B 0 as the amplitude of the magnetic field and C g as Constant can be defined for the influence of size and shape of the volume of liquid.

Zur Ausbildung des rotierenden Magnetfeldes wird ein Drehstrom ID verwndet, der beispielsweise in Form eines Drei-Phasenwechselstroms an mindestens drei an einem zylindrischen, die Flüssigkeit enthaltenden Behälter platzierte Paare von Induktionsspulen angelegt werden.For the formation of the rotating magnetic field, a three-phase current I D is used, which is applied, for example in the form of a three-phase alternating current, to at least three pairs of induction coils placed on a cylindrical container containing the liquid.

In dem Behälter können als elektrisch leitende Flüssigkeiten metallische oder Halbleiterschmelzen eingefüllt werden.In the container can be filled as electrically conductive liquids metallic or semiconductor melts.

Bei der Durchmischung einer sich abkühlenden Schmelze wird demzufolge eine Periodendauer TP nach Bedingung (I) mit 0.5·ti.a. < TPM < 1.5·ti.a. gewählt, solange die Schmelze noch vollständig flüssig ist, während mit Beginn des Zustandes der Erstarrung die Periodendauer TP so vergrößert wird, so dass nach Bedingung (II) 0.8·ti.a. < TPE < 4·ti.a. erfüllt wird.During the mixing of a cooling melt, therefore, a period T P according to condition (I) is chosen to be 0.5 · t ia <T PM <1.5 · t ia as long as the melt is still completely liquid, while at the beginning of the state of solidification the period duration T P is increased so that, according to condition (II), it is satisfied that 0.8 · t ia <T PE <4 · t ia .

Entsprechend der sich im Verlauf des Zustands der gerichteten Erstarrung verringernden Höhe H0 des Volumens der Schmelze kann die Amplitude B0 des Magnetfeldes nachgeregelt werden.According to the decreasing height H 0 of the volume of the melt in the course of the state of directional solidification, the amplitude B 0 of the magnetic field can be readjusted.

Im Zustand einer temperaturkontrolliert gerichteten Erstarrung ist die Amplitude B0 des Magnetfeldes so zu erhöhen, dass mindestens das Maximum der beiden Werte B 1 = ρ σω 100 V sol H 0

Figure imgb0004
und B 2 = ρ σω 40 V sol 3 2 H 0 v
Figure imgb0005
erreicht wird, wobei v als kinematische Viskosität der Schmelze, Vsol als Erstarrungsgeschwindigkeit, H0 als Höhe des Schmelzenvolumens, und B1 und B2 als untere Grenzwerte der Amplitude B0 des Magnetfeldes definiert werden, die sich im Verlauf der Erstarrung in Abhängigkeit der Parameter v, Vsol und H0 verändern können.In the state of a temperature-controlled solidification, the amplitude B 0 of the magnetic field is to be increased so that at least the maximum of the two values B 1 = ρ σω 100 V Sol H 0
Figure imgb0004
and B 2 = ρ σω 40 V Sol 3 2 H 0 v
Figure imgb0005
where v is defined as the kinematic viscosity of the melt, V sol as the solidification rate, H 0 as the height of the melt volume, and B 1 and B 2 are defined as the lower limits of the magnetic field amplitude B 0 in the course of solidification depending on the parameters v, V sol and H 0 can change.

Die jeweiligen Periodendauern bei Durchmischung TPM und bei Erstarrungsbeginn TPE, in denen das Magnetfeld zugeschaltet anliegt, werden durch Pausen der Pausendauer Tpause, in denen kein Magnetfeld an der Schmelze anliegt, unterbrochen, wobei die Pausendauer TPause zur jeweiligen Periodendauer TP mit TPause ≤ 0.5·TP eingestellt wird.The respective period durations with mixing T PM and at the beginning of solidification T PE , in which the magnetic field is applied, are interrupted by pauses in the pause duration Tpause, in which no magnetic field is applied to the melt, wherein the pause duration T break for each period T P with T Pause ≤ 0.5 · T P is set.

Bei der Modulierung des Verlaufs der elektromagnetischen Kraft FL können anstelle der Rechteckfunktion andere Pulsformen, wie beispielsweise Sinus, Dreieck oder Sägezahn, realisiert werden, wobei der Verlauf und der Maximalwert der Amplitude B0 des Magnetfeldes so festgelegt werden, dass sich für die verschiedenen Pulsformen ein identischer Energieeintrag ergibt.When modulating the course of the electromagnetic force F L other pulse shapes, such as sine, triangle or saw tooth, can be realized instead of the rectangular function, the course and the maximum value of the amplitude B 0 of the magnetic field are set so that for the different pulse shapes gives an identical energy input.

Die Einrichtung zum elektromagnetischen Rühren von elektrisch leitenden Flüssigkeiten im flüssigen Zustand und/oder im Zustand des Beginns der Erstarrung der Flüssigkeit unter Verwendung eines in der horizontalen Ebene eine Lorentzkraft FL erzeugenden, rotierenden Magnetfeldes und unter Kontrolle des Temperaturverlaufs der Flüssigkeit mittels des erfindungsgemäßen Verfahrens enthält zumindest

  • einen zylindrischen Behälter,
  • eine den Behälter umgebende zentralsymmetrische Anordnung von mindestens drei Paaren von Induktionsspulen zur Ausbildung eines eine Lorentzkraft FL erzeugenden, rotierenden Magnetfeldes,
  • mindestens einen Temperatursensor zur Temperaturmessung der Flüssigkeit im Behälter,
wobei
die Paare der Induktionsspulen mit einer Steuer- und Regeleinheit in Verbindung stehen, die über eine angeschlossene Stromversorgungseinheit einen Drehstrom ID an die Paare von Induktionsspulen weiterleitet, wobei die Phasenlage des die Paare der Induktionsspulen speisenden Drehstromes ID in regelmäßigen, zeitlichen Abständen und entsprechend der vorgegebenen Periodendauer TPM für die Durchmischung im flüssigen Zustand oder TPE für die Durchmischung ab Beginn der Erstarrung um 180° verschoben wird und damit eine Umkehrung der Drehrichtung des Magnetfeldes und der die Strömung antreibenden Lorentkraft FL erreicht wird, wobei die Steuer-/Regeleinheit mit dem Temperatursensor in Verbindung steht, dessen Temperaturdaten zum Zeitpunkt des Erstarrungsbeginns das Umschalten der Periodendauer von TPM zu TPE auslösen.The device for the electromagnetic stirring of electrically conductive liquids in the liquid state and / or in the state of the beginning of the solidification of the liquid using a horizontal plane in which a Lorentz force F L generating, rotating magnetic field and under control of the temperature profile of the liquid by means of the inventive method at least
  • a cylindrical container,
  • a centrally symmetrical arrangement of at least three pairs of induction coils surrounding the container for forming a rotating magnetic field generating a Lorentz force F L ,
  • at least one temperature sensor for measuring the temperature of the liquid in the container,
in which
the pairs of induction coils are connected to a control and regulating unit which transmits a three-phase current I D to the pairs of induction coils via a connected power supply unit, the phase position of the three-phase current I D fed to the pairs of induction coils being measured at regular time intervals and corresponding to predetermined period T PM for the mixing in the liquid state or T PE for the mixing is shifted from the beginning of solidification by 180 ° and thus a reversal of the direction of rotation of the magnetic field and the flow driving Lorentkraft F L is achieved, the control unit with the Temperature sensor is in communication whose temperature data at the time of solidification start the switching of the period from T PM to T PE trigger.

Der Behälter mit der elektrisch leitenden Flüssigkeit, die insbesondere eine Schmelze sein kann, kann vorzugsweise konzentrisch innerhalb der Induktionsspulen angeordnet sein.The container with the electrically conductive liquid, which may in particular be a melt, may preferably be arranged concentrically within the induction coils.

Der Behälter kann mit einer Heizeinrichtung und/oder Kühleinrichtung versehen sein, die mit einem fest installierten Metallkörper in Verbindung stehen können.The container may be provided with a heating device and / or cooling device, which may be in communication with a fixed metal body.

Der Behälterboden kann in direktem Kontakt mit einem festen Metallkörper stehen, welcher im Innern von einem Kühlmedium durchflossen wird.The container bottom can be in direct contact with a solid metal body, which is traversed by a cooling medium in the interior.

Die Seitenwände des Behälters können thermisch isoliert sein.The side walls of the container may be thermally insulated.

Der Kühlkörper kann mit einem Thermostaten in Verbindung stehen.The heat sink can communicate with a thermostat.

Zwischen dem Kühlkörper und dem Behälter kann sich ein Flüssigmetallfilm befinden, um einen stabilen Wärmeübergang bei geringem Übergangswiderstand zu erzielen.Between the heat sink and the container may be a liquid metal film to achieve a stable heat transfer with low contact resistance.

Der Flüssigmetallfilm kann aus einer Galliumlegierung bestehen.The liquid metal film may be made of a gallium alloy.

In der Bodenplatte und/oder den Seitenwänden des Behälters, in dem sich die Schmelze befindet, kann mindestens ein Temperatursensor z.B. in Form eines Thermoelements positioniert sein, welches ein Informationssignal über den Zeitpunkt des Beginns der Erstarrung liefert und mit der Steuer- und Regeleinheit verbunden ist.In the bottom plate and / or the side walls of the container in which the melt is located, at least one temperature sensor may be positioned, for example in the form of a thermocouple, which provides an information signal about the time of onset of solidification and is connected to the control unit ,

Das erfindungsgemäße Verfahren nach einem der Ansprüche 1 bis 7 kann zum Rühren von elektrisch leitenden Flüssigkeiten in Form von metallischen Schmelzen in metallurgischen Prozessen oder in Form von Halbleiterschmelzen in der Kristallzüchtung, zur Reinigung von Metallschmelzen, beim Stranggießen oder bei der Erstarrung metallischer Werkstoffeverwendet werden..The method according to any one of claims 1 to 7 can be used for stirring electrically conductive liquids in the form of metallic melts in metallurgical processes or in the form of semiconductor melts in crystal growth, for the purification of molten metals, in continuous casting or in the solidification of metallic materials.

Die Richtung des rotierenden Magnetfeldes wird in ganz bestimmten, regelmäßigen Zeitabständen umgekehrt. Die Umkehr erfolgt mittels der Steuereinrichtung zur Verschiebung der Phasen eine Drei-Phasenwechselstrom, wodurch sich die Drehrichtung der rotierenden Phasen eines Drei-Phasenwechselstromes und damit die Drehrichtung des rotierenden Magnetfeldes umkehrt.The direction of the rotating magnetic field is reversed at quite specific, regular time intervals. The reversal is carried out by means of the control means for shifting the phases of a three-phase alternating current, whereby the direction of rotation of the rotating phases of a three-phase alternating current and thus reverses the direction of rotation of the rotating magnetic field.

Im Zeitraum der Umkehr der Strömungsrichtung tritt eine intensive meridionale Sekundärströmung bei gleichzeitig abgeschwächt ausgeprägter azimutaler Rotationsbewegung auf, wobei durch den ständig wiederkehrenden Richtungswechsel eine intensive Durchmischung erfolgt. Die effiziente Einstellung der Dauer der Periode TP zwischen zwei Richtungswechseln spielt dabei die entscheidende Rolle.In the period of reversal of the direction of flow occurs an intense meridional secondary flow at the same time mitigated pronounced azimuthal rotational movement, which is carried out by the constantly recurring directional change intensive mixing. The efficient adjustment of the duration of the period T P between two changes of direction plays the decisive role.

Erfindungsgemäß gilt folgende Festlegung:

  • Für eine intensive Durchmischung des Schmelze bei gleichzeitig geringem Energieaufwand gilt die Bedingung: 0.5 t i . a . < T P < 1.5 t i . a .
    Figure imgb0006
    oder
    für eine kontrollierte Erstarrung unter Vermeidung der Ausbildung von Entmischungszonen im Erstarrungsgefüge gilt die Bedingung: 0.8 t i . a . < T P < 4 t i . a .
    Figure imgb0007
According to the following definition applies:
  • For an intensive mixing of the melt with at the same time low expenditure of energy the condition applies: 0.5 t i , a , < T P < 1.5 t i , a ,
    Figure imgb0006
    or
    for a controlled solidification while avoiding the formation of segregation zones in the solidification structure, the condition applies: 0.8 t i , a , < T P < 4 t i , a ,
    Figure imgb0007

Der Parameter ti.a. stellt eine Einstellzeit (engl. initial adjustment time) dar, in der sich nach einem abrupten Zuschalten eines rotierenden Magnetfeldes in einer Schmelze, die sich zuvor im Ruhezustand befand, der für die meridionale Sekundärströmung typische Doppelwirbel herausgebildet hat.The parameter t ia represents an adjustment time (English: initial adjustment time), in which, after an abrupt connection of a rotating magnetic field in a melt, which was previously at rest, the double vortex typical of the meridional secondary flow has formed.

Die charakteristische Einstellzeit ti.a. errechnet sich nach einer Formel aus den Variablen elektrische Leitfähigkeit der Schmelze, Dichte der Schmelze sowie Frequenz und Amplitude des Magnetfeldes. Eine zugehörige Konstante berücksichtigt den Einfluss von Größe und Form des Schmelzvolumens und kann Zahlenwerte zwischen Drei und Fünf annehmen. Damit liegt gegenüber dem Stand der Technik, insbesondere gegenüber der Druckschrift DE 3 730 300 ein definierter Bereich für die Periodendauer TP vor, in dem der Drehrichtungswechsel einstellbar ist.The characteristic response time t ia is calculated according to a formula from the variables electrical conductivity of the melt, density of the melt and frequency and amplitude of the magnetic field. An associated constant takes into account the influence of size and shape of the melt volume and can take numbers between three and five. This is compared to the prior art, in particular with respect to the document DE 3 730 300 a defined range for the period T P , in which the direction of rotation change is adjustable.

Ein wesentliches Merkmal der Erfindung besteht darin, dass die Richtung des rotierenden Magnetfeldes in regelmäßigen, zeitlichen Abständen umgekehrt wird, wobei mit der Periodendauer TP des Richtungswechsels ein wichtiger Parameter existiert, der spezifiziert werden kann, um das Rühren intensiv zu gestalten. Ein wesentliches Kriterium für den Erfolg des Verfahrens ist die Möglichkeit einer gezielten Kontrolle der Sekundärströmung. Für verschiedene Zielstellungen sind unterschiedliche Strömungsformen vorteilhaft.An essential feature of the invention is that the direction of the rotating magnetic field is reversed at regular time intervals, with the period T P of the change of direction exists an important parameter that can be specified to make the stirring intensive. An essential criterion for the success of the process is the possibility of a targeted control of the secondary flow. Different flow patterns are advantageous for different objectives.

Die vorliegende Erfindung kann in vorteilhafter Weise für das effiziente Rühren von Schmelzen und bei der gerichteten Erstarrung mehrkomponentiger Schmelzen eingesetzt werden. Um einen dabei eintretenden Mischungseffekt, z.B. bei der Reinigung oder dem Entgasen von Schmelzen, zu maximieren, ist es notwendig, die Intensität der volumengemittelten meridionalen Sekundärströmung im Vergleich zur primären azimutalen Rotationsbewegung zu verstärken. Die Zielstellung bei einer Anwendung des Verfahrens bei der gerichteten Erstarrung metallischer Legierungen besteht darin, dass neben einer thermischen Homogenisierung der Schmelze die Richtung der Strömung in unmittelbarer Umgebung der Erstarrungsfront im Zeitverlauf so variiert werden soll, dass sich ein zeitlicher Mittelwert für die radiale Geschwindigkeitskomponente nahe Null ergibt.The present invention can be used advantageously for the efficient stirring of melts and for the directed solidification of multicomponent melts. In order to avoid an ensuing mixing effect, e.g. in the purification or degassing of melts, it is necessary to increase the intensity of the volume average secondary meridional flow compared to the primary azimuthal rotational motion. The objective in an application of the method in the directional solidification of metallic alloys is that in addition to a thermal homogenization of the melt, the direction of the flow in the immediate vicinity of the solidification front over time should be varied so that a time average for the radial velocity component close to zero results.

Die vorliegende Erfindung zeigt, dass das Geschwindigkeitsfeld der meridionalen Sekundärströmung in deutlicher und nachvollziehbarer Weise von Variationen des Parameters TP abhängt.The present invention shows that the meridional secondary flow rate field is significantly and logically dependent on variations in the parameter T p .

Es wird offensichtlich, dass für eine effiziente Ausgestaltung des Verfahrens zum Rühren die zutreffende Einstellung der Periodendauer TP im Hinblick auf die Zielstellung der jeweiligen Anwendung entscheidend ist. Bei der Spezifizierung von TP sind die Stärke des Magnetfeldes, die Abmessungen und die Form des Schmelzenvolumens sowie die Materialeigenschaften der Schmelze einzubeziehen.It will be apparent that for an efficient embodiment of the method of stirring, the proper adjustment of the period T P is crucial in view of the objective of the particular application. When specifying T P , the strength of the magnetic field, the dimensions and shape of the melt volume and the material properties of the melt must be taken into account.

Die Erfindung wird nachstehend an zwei Ausführungsbeispielen mittels mehrerer Zeichnungen näher beschrieben.The invention is described below with reference to two exemplary embodiments by means of several drawings.

Es zeigen:

Fig. 1
eine schematische Darstellung einer Einrichtung zum elektromagnetischen Rühren zur Durchmischung einer flüssigen Schmelze in Verbindung mit dem erfindungsgemäßen Verfahren, wobei
Fig. 1a
einen schematischen Aufbau der Einrichtung in Vorderansicht,
Fig. 1b
eine Draufsicht auf die Einrichtung nach Fig. 1a,
Fig. 1c
eine schematische Darstellung der Strömungsarten in einem in der horizontalen Ebene rotierenden Magnetfeld,
Fig. 1d
eine Periodendauer (Tp)-Temperatur (T)-Darstellung der Schmelze im flüssigen Zustand und im Übergang zur Erstarrung, wobei Tsol die Temperatur des Behälterbodens zu Beginn der Erstarrung bezeichnet, und
Fig. 1e
eine Lorentzkraft (FL/FLO)-Zeit(t)-Darstellung,
Fig. 2
zwei schematische zylindrische Behälter mit flüssigen Metallschmelzen, wobei
Fig. 2a
eine flüssige Schmelze eines Metalls und
Fig. 2b
zwei übereinander befindliche Schmelzen zweier unterschiedlicher Metalle im Ruhezustand (im entmischten Zustand) zeigen,
Fig. 3
die experimentell ermittelte Abhängigkeit der Intensität der meridionalen Sekundärströmung von der Periodendauer TP,
Fig. 4
Ergebnisse numerischer Simulationen zur Mischung von flüssigem Blei (Pb) und flüssigem Zinn (Sn): Mischungsverhalten bei gleicher Zeit nach Beginn der Mischung (t/tspin-up=1.92) , wobei Fig. 4a kontinuierliches RMF, Tp= ∞ Fig. 4b Tp/ti.a. = 1.03 . Fig. 4c Tp/ti.a. = 2. zeigen.
Fig. 5
Darstellung der Ergebnisse numerischer Simulationen zur Mischung der Zinn-Konzentration in der unteren Behälterhälfte: Zeitliche Entwicklung der volumengemittelten Sn-Konzentration im unteren Behältervolumen für verschiedene Szenarios. < C Sn > = 4 0 H 0 / 2 0 R 0 C Sn r dr dz R 0 2 H 0
Figure imgb0008
Fig. 6
Erstarrung einer Al-Si-Legierung unter Magnetfeldeinfluss, B0 = 6.5 mT, (Makrogefüge), wobei Fig. 6a kontinuierliches RMF, Tp= ∞ Fig. 6b Tp/ti.a. = 1.67 .. Fig. 6c Tp/ti.a. = 0.95 zeigen, und
Fig. 7
Erstarrung einer Al-Si-Legierung unter Magnetfeldeinfluss (Mikrogefüge), wobei Fig. 7a kontinuierliches RMF, Tp= ∞ Fig. 7b Tp/ti.a. = 1.67 zeigen.
Fig. 8
eine radiale Verteilung des Flächenanteils an Primärkristallen in Al7wt%Si-Proben (mit sieben Gewichtsanteilen Si), die unter Magnetfeldeinfluss mit Variation der Pulsdauer TP erstarrt wurden.
Show it:
Fig. 1
a schematic representation of an apparatus for electromagnetic stirring for mixing a liquid melt in conjunction with the inventive method, wherein
Fig. 1a
a schematic structure of the device in front view,
Fig. 1b
a plan view of the device according to Fig. 1a .
Fig. 1c
a schematic representation of the flow types in a rotating in the horizontal plane magnetic field,
Fig. 1d
a period (Tp) -Temperatur (T) representation of the melt in the liquid state and in the transition to solidification, where T sol denotes the temperature of the container bottom at the beginning of solidification, and
Fig. 1e
a Lorentz force (F L / F LO ) time (t) representation,
Fig. 2
two schematic cylindrical container with liquid molten metal, wherein
Fig. 2a
a liquid melt of a metal and
Fig. 2b
show two superimposed melting of two different metals at rest (in the unmixed state),
Fig. 3
the experimentally determined dependence of the intensity of the secondary meridional flow on the period T P ,
Fig. 4
Results of numerical simulations for the mixing of liquid lead (Pb) and liquid tin (Sn): mixing behavior at the same time after the beginning of the mixing (t / t spin-up = 1.92), where Fig. 4a continuous RMF, T p = ∞ Fig. 4b T p / t ia = 1.03. Fig. 4c T p / t ia . = 2 show.
Fig. 5
Presentation of the results of numerical simulations for the mixing of the tin concentration in the lower half of the container: Time evolution of the volume-averaged Sn concentration in the lower container volume for different scenarios. < C sn > = 4 0 H 0 / 2 0 R 0 C sn r dr dz R 0 2 H 0
Figure imgb0008
Fig. 6
Solidification of an Al-Si alloy under magnetic field influence, B 0 = 6.5 mT, (macrostructure), where Fig. 6a continuous RMF, T p = ∞ Fig. 6b T p / t ia = 1.67 .. Fig. 6c T p / t ia = 0.95, and
Fig. 7
Solidification of an Al-Si alloy under magnetic field influence (microstructure), wherein Fig. 7a continuous RMF, T p = ∞ Fig. 7b T p / t ia = 1.67 show.
Fig. 8
a radial distribution of the area fraction of primary crystals in Al7wt% Si samples (with seven parts by weight Si), which were solidified under magnetic field influence with variation of the pulse duration T P.

Die Funktionsweise des Verfahrens wird am Beispiel der Einrichtung 1 gemäß der Fig. 1 und der Fig. 2a,2b näher erläutert.The operation of the method is the example of the device 1 according to the Fig. 1 and the Fig. 2a, 2b explained in more detail.

In Fig. 1,1a,1b ist in einer schematischen Darstellung ine Einrichtung 1 zum Rühren einer im flüssigen Zustand befindlichen Flüssigkeit in Form einer metallischen Schmelze 2 unter Verwendung eines in der horizontalen Ebene eine Lorentzkraft FL erzeugenden, rotierenden Magnetfeldes gezeigt, wobei die Einrichtung 1 zumindest enthält

  • einen zylindrischen Behälter 13 mit der darin befindlichen flüssigen Schmelze 2, wie in Fig. 2a gezeigt ist, oder 21,22, wie in Fig. 2b gezeigt ist,
  • eine den Behälter 13 umgebende zentralsymmetrische Anordnung 3 von mindestens drei Paaren 31,32,33 von Induktionsspulen zur Ausbildung eines eine Lorentzkraft FL erzeugenden, rotierenden Magnetfeldes und
  • mindestens einen Temperatursensor 10 zur Temperaturmessung der Flüssigkeit 2,21,22 im Behälter 13.
In Fig. 1,1a, 1b is shown in a schematic representation ine device 1 for stirring a liquid in the liquid state in the form of a metallic melt 2 using a horizontal plane in a Lorentz force F L generating, rotating magnetic field, wherein the device 1 contains at least
  • a cylindrical container 13 with the liquid melt 2 therein, as in Fig. 2a is shown, or 21,22, as in Fig. 2b is shown
  • a surrounding the container 13 centrally symmetrical arrangement 3 of at least three pairs 31,32,33 of induction coils to form a Lorentz force F L generating, rotating magnetic field and
  • at least one temperature sensor 10 for measuring the temperature of the liquid 2,21,22 in the container 13th

Die Paare 31,32,33 der Induktionsspulen stehen mit einer Steuer-/Regeleinheit 12 in Verbindung, die über eine angeschlossene Stromversorgungseinheit 11 einen Drehstrom ID an die Paare 31,32,33 von Induktionsspulen weiterleitet, wobei die Phasenlage des die Paare 31,32,33 der Induktionsspulen speisenden Drehstromes ID in regelmäßigen, zeitlichen Abständen entsprechend der vorgegebenen Periodendauer TPM für die Durchmischung im flüssigen Zustand oder TPE für die Durchmischung ab Beginn der Erstarrung um 180° verschoben wird und damit eine Umkehrung der Drehrichtung des Magnetfeldes und der die Strömung antreibenden Lorentzkraft FL erreicht wird, wobei die Steuer-/Regeleinheit 12 mit dem Temperatursensor 10 in Verbindung steht, dessen Temperaturdaten zum Zeitpunkt des Erstarrungsbeginns das Umschalten der Periodendauer von TPM zu TPE auslösen.The pairs 31, 32, 33 of the induction coils are connected to a control / regulating unit 12, which transmits a three-phase current I D to the pairs 31, 32, 33 of induction coils via a connected power supply unit 11, the phase position of the pairs 31, 32.33 of the induction coils feeding three-phase current I D at regular time intervals corresponding to the predetermined period T PM for mixing in the liquid state or T PE for mixing from the beginning of solidification is shifted by 180 ° and thus a reversal of the direction of rotation of the magnetic field and the Lorentz force F L driving the flow is reached, the control unit 12 being in communication with the temperature sensor 10 whose temperature data at the time of solidification start trigger the switching over of the period from T PM to T PE .

Der zylindrische Behälter 13 ist mit der flüssigen, elektrisch leitfähigen ersten Schmelze 2 gefüllt. Der Behälter 13 befindet sich zentralsymmetrisch inmitten der Anordnung 3 der Induktionsspulenpaare 31,32,33, wie in Fig. 1b gezeigt ist. Die Induktionsspulenpaare 31,32,33 werden von einer Stromversorgungseinheit 11 mit einem Drehstrom ID in Form eines Drei-Phasenwechselstroms gespeist und erzeugen ein um die Symmetrieachse 14 des Behälters 13 rotierendes, mit der Drehrichtung 15 (Pfeilrichtung) horizontal ausgerichtetes Magnetfeld. Die zeitliche Änderung der Magnetfeldstärke erzeugt eine Lorentzkraft FL mit einer dominierenden azimutalen Komponente, welche die Schmelze 2 in Fig. 2a oder 21,22 in Fig. 2b in eine Drehbewegung versetzt. Die Stromversorgungseinheit 11 der Induktionsspulenpaare 31,32,33 ist mit der Steuer-/Regeleinheit 12 verbunden, welche in vorgegebenen zeitlichen Abständen eine Verschiebung der Phasen des Drei-Phasenwechselstromes ID bewirkt. Die Phasenverschiebung hat zur Folge, dass sich die Drehrichtung 15 des horizontal ausgerichteten Magnetfeldes während des Phasenwechsels in die Drehrichtung 16 umkehrt, wie in Fig. 1b gezeigt ist.The cylindrical container 13 is filled with the liquid, electrically conductive first melt 2. The container 13 is located centrally symmetrically in the middle of the arrangement 3 of the induction coil pairs 31, 32, 33, as in FIG Fig. 1b is shown. The induction coil pairs 31, 32, 33 are fed by a power supply unit 11 with a three-phase current I D in the form of a three-phase alternating current and generate a magnetic field which rotates about the symmetry axis 14 of the container 13 and is oriented horizontally with the direction of rotation 15 (arrow direction). The temporal change of the magnetic field strength generates a Lorentz force F L with a dominant azimuthal component, which the melt 2 in Fig. 2a or 21 , 22 in Fig. 2b put in a rotary motion. The power supply unit 11 of the induction coil pairs 31, 32, 33 is connected to the control / regulation unit 12, which causes a shift of the phases of the three-phase alternating current I D at predetermined time intervals. The result of the phase shift is that the direction of rotation 15 of the horizontally oriented magnetic field reverses during the phase change in the direction of rotation 16, as in FIG Fig. 1b is shown.

Das Verfahren kann eingesetzt werden, beispielsweise um die Temperaturverteilung in einer einkomponentigen Schmelze 2, wie in Fig. 2a gezeigt ist, zu homogenisieren oder um einen Konzentrationsausgleich in entmischten mehrkomponentigen Schmelzen 21,22, wie in Fig. 2b gezeigt ist, herbeizuführen, wobei sich die Schmelze 22 mit der höheren Dichte vor Beginn des Mischens im unteren Teil des Behälters 13 befindet und von der leichteren Schmelze 21 bedeckt wird.The method can be used, for example, for the temperature distribution in a one-component melt 2, as in Fig. 2a is shown to homogenize or to balance the concentration in segregated multicomponent melts 21,22, as in Fig. 2b 3, with the higher density melt 22 being in the lower part of the container 13 before the start of mixing and being covered by the lighter melt 21.

Das Verfahren zum elektromagnetischen Rühren basiert auf einer periodischen Umkehr der Richtung der die Strömung antreibenden Lorentzkraft FL. Der Charakter der Strömung wird durch einen periodischen Wechsel der Drehrichtung 15-16,16-15 des Magnetfeldes B0 bestimmt. Zum Zeitpunkt der Richtungsumkehr wird die Strömung gebremst und die Schmelze 2;21,22 in die entgegengesetzte Richtung beschleunigt. Die Lorentzkraft FL variiert in axialer Richtung mit der zugehörigen Kraftkomponente und besitzt ein Maximum in der Mittelebene 17 des Behälters 13. Bei einer Umpolung der Drehrichtung 15 des Magnetfeldes wird die Schmelze 2;21,22 in der Umgebung der Mittelebene 17 stärker abgebremst und in die Gegenrichtung 16 beschleunigt als dies in der Nähe des Bodens 4 des Behälters 13 und der freien Oberfläche 5 der Fall ist. Die Ungleichzeitigkeiten bei der Richtungsumkehrung 15-16,16-15 der Strömung erzeugen starke Gradienten der Rotationsbewegung in axialer Richtung der Symmetrieachse 14. Das Auftreten derartiger Gradienten führt, wie in Fig. 1c gezeigt ist, zu einer Anfachung der meridionalen Sekundärströmung 18. Im Zeitraum der Umkehr der Strömungsrichtung tritt somit eine intensive Sekundärströmung 18 bei gleichzeitig schwach ausgeprägter Rotationsbewegung 19 auf. Die Durchmischung der Schmelze 2;21,22 wird umso effizienter, je besser die Intensitäten von primärer azimutaler Rotationsbewegung 19 und der meridionalen Sekundärströmung 18 einander angenähert werden können. Erreicht werden kann dies über einen längeren Zeitraum hinweg durch ständig wiederkehrende Richtungswechsel des Magnetfeldes B0. In diesem Zusammenhang spielt, wie in Fig. 1d,1e gezeigt ist, die Einstellung der Periodendauer TP eine entscheidende Rolle. Ist die Periodendauer TP zu lang, nimmt die primäre azimutale Rotationsbewegung 19 im Vergleich zur meridionalen Sekundärströmung 18 deutlich an Intensität zu. Eine kürzere Periodendauer TP ist von Vorteil, da häufigere Richtungswechsel 15-16,16-15 die Sekundärströmung 18 verstärken. Wird die Periodendauer TP aber zu klein, kann die Schmelze 2;21,22 nicht ausreichend beschleunigt werden, sowohl primäre Rotationsbewegung 19 als auch Sekundärströmung 18 verlieren an Intensität. Somit existiert, wie in Fig. 1e gezeigt ist, ein bestimmter optimaler Wert der Periodendauer TP, der von der Magnetfeldstärke B0, Größe und Form des Volumens und den Materialeigenschaften der Schmelze 2;21,22 abhängt.The electromagnetic stirring method is based on a periodic reversal of the direction of the Lorentz force F L driving the flow. The character of the flow is determined by a periodic change of the direction of rotation 15-16, 16-15 of the magnetic field B 0 . At the time of reversal, the flow is slowed down and the melt 2, 21, 22 is accelerated in the opposite direction. The Lorentz force F L varies in the axial direction with the associated force component and has a maximum in the center plane 17 of the container 13. When the direction of rotation 15 of the magnetic field is reversed, the melt 2, 21, 22 is braked more strongly in the vicinity of the center plane 17 and accelerated in the opposite direction 16 than in the vicinity of the bottom 4 of the container 13 and the free surface 5 is the case. The nonuniformities in the direction reversal 15-16, 16-15 of the flow create strong gradients of rotational movement in the axial direction of the axis of symmetry 14. The occurrence of such gradients leads, as in FIG Fig. 1c In the period of reversal of the flow direction thus occurs an intense secondary flow 18 at the same time weak rotational movement 19 on. The mixing of the melt 2, 21, 22 becomes more efficient the better the intensities of the primary azimuthal rotational movement 19 and of the secondary meridional flow 18 can be approximated. This can be achieved over a longer period by constantly changing direction of the magnetic field B 0 . In this context, as in Fig. 1d . 1e is shown, the setting of the period T P a crucial role. If the period T P is too long, the primary azimuthal rotational movement 19 increases significantly in intensity compared to the secondary meridional flow 18. A shorter period T P is advantageous because more frequent changes of direction 15-16, 16-15 increase the secondary flow 18. If the period T P but too small, the melt 2, 21,22 can not be sufficiently accelerated, both primary rotational movement 19 and secondary flow 18 lose intensity. Thus, as in Fig. 1e a certain optimum value of the period T P , which depends on the magnetic field strength B 0 , the size and shape of the volume and the material properties of the melt 2, 21, 22, is shown.

Ein effizientes Rühren der flüssigen Schmelze 2;21,22, d.h. eine maximierte Rührwirkung bei möglichst geringem Energieaufwand, wird erreicht, wenn die Periodendauer TP gemäß Fig. 1d wie folgt festgelegt wird: 0.5 t i . a . < T P < 1.5 t i . a .

Figure imgb0009
An efficient stirring of the liquid melt 2, 21, 22, ie a maximized stirring effect with the lowest possible expenditure of energy, is achieved if the period T P according to FIG Fig. 1d is set as follows: 0.5 t i , a , < T P < 1.5 t i , a ,
Figure imgb0009

Der Parameter ti.a. ist die sogenannte Einstellzeit (engl. initial adjustment time) und bezeichnet die Zeitskale, in der sich nach einem abrupten Zuschalten eines rotierenden Magnetfeldes in einer Schmelze 2;21,22, die sich zuvor im Ruhezustand befand, der für die meridionale Sekundärströmung 18 typische Doppelwirbel herausbildet. Die Einstellzeit ti.a. wird durch folgende Gleichung definiert t i . a . = C g B 0 σω ρ 1 ,

Figure imgb0010
wobei die Variablen σ, ρ, ω und B0 die elektrische Leitfähigkeit und die Dichte der Schmelze, die Frequenz und die Amplitude des Magnetfeldes bezeichnen, während die Konstante Cg den Einfluss von Größe und Form des Schmelzenvolumens beschreibt und Zahlenwerte zwischen Drei und Fünf annehmen kann.The parameter t ia is the so-called adjustment time (English: initial adjustment time) and denotes the time scale, in which after an abrupt connection of a rotating magnetic field in a melt 2, 21,22, which was previously in the resting state, that for the meridional Secondary flow 18 typical double vortex forms. The set time t ia is defined by the following equation t i , a , = C G B 0 σω ρ - 1 .
Figure imgb0010
where the variables σ, ρ, ω and B 0 denote the electrical conductivity and the density of the melt, the frequency and the amplitude of the magnetic field, while the constant C g describes the influence of size and shape of the melt volume and assume numbers between three and five can.

In einem Plexiglaszylinder 13 mit einem Durchmesser 2r und einer Höhe von je 60mm wurde die Strömung einer GalnSn-Schmelze 21,22 mit Hilfe des Ultraschall-Doppler-Verfahrens vermessen. Fig. 3 zeigt den entlang einer axialen Linie bei r = 18mm gemessenen quadratischen Mittelwert der vertikalen Geschwindigkeit Uz 2 in Abhängigkeit von der Periodendauer TP. Die experimentellen Ergebnisse belegen die Existenz einer bestimmten Periodendauer TP, bei der die Intensität der meridionalen Sekundärströmung 18 ein Maximum erreicht. Die Lage des Maximums Uzmax 2 variiert mit der Magnetfeldstärke und entspricht der jeweiligen Einstellzeit ti.a..In a Plexiglas cylinder 13 with a diameter 2r and a height of 60mm each, the flow of a GaInSn melt 21,22 was measured by means of the ultrasonic Doppler method. Fig. 3 shows the along a axial line at r = 18mm measured root mean square value of the vertical velocity U z 2 as a function of the period T P. The experimental results prove the existence of a certain period T P at which the intensity of the secondary meridional flow 18 reaches a maximum. The position of the maximum U zmax 2 varies with the magnetic field strength and corresponds to the respective adjustment time t ia .

Mit der Erfindung können verschiedene Schmelzen 21,22, wie in Fig. 2b gezeigt ist, miteinander vermischt werden. Z.B. können sich in dem zylindrischen Behälter 13 je zur Hälfte flüssiges Blei 22 und flüssiges Zinn 21 befinden. Das Blei 22 ist deutlich schwerer und lagert vor Beginn des Mischens in der unteren Hälfte des Behälters 13. Zu einem definierten Zeitpunkt wird das rotierende Magnetfeld B0 zugeschaltet, dessen Drehrichtung in regelmäßigen, zeitlichen Abständen umgekehrt wird. Die Fig.4 und die Fig.4a,4b,4c enthalten die Ergebnisse numerischer Simulationen bei einem Magnetfeld von 1 mT im Hinblick auf die Konzentrationsverteilung von Blei (schwarz) 22 und Zinn (weiß) 21 in einer r-z-Halbebene nach einer bestimmten Zeit von 20s, wobei
Fig. 4a mit TP = 0
Fig. 4b mit TP = 1.03 ti.a.
Fig. 4c mit TP = 2 ti.a.
With the invention, various melts 21, 22, as in FIG Fig. 2b is shown mixed together. For example, liquid lead 22 and liquid tin 21 can each be half in the cylindrical container 13. The lead 22 is significantly heavier and stores before the start of mixing in the lower half of the container 13. At a defined time, the rotating magnetic field B 0 is switched on, the direction of rotation is reversed at regular time intervals. The Figure 4 and the 4a, 4b, 4c contain the results of numerical simulations at a magnetic field of 1 mT with respect to the concentration distribution of lead (black) 22 and tin (white) 21 in a rz half-plane after a certain time of 20s, where
Fig. 4a with T P = 0
Fig. 4b with T P = 1.03 t ia
Fig. 4c with T P = 2 t ia

Ein Vergleich der in Fig. 5 dargestellten Ergebnisse numerischer Simulationen zur Mischung der Zinn-Konzentration CSn in der unteren Behälterhälfte für eine zeitliche Entwicklung der volumengemittelten Sn-Konzentration im unteren Behältervolumen für verschiedene Szenarios in Bezug auf die Strömungen in Fig. 4a,4b,4c < C Sn > = 4 0 H 0 / 2 0 R 0 C Sn r dr dz R 0 2 H 0

Figure imgb0011
für verschieden eingestellte Werte für die Periodendauer TP zeigt, dass die Durchmischung am schnellsten für die Periodendauer TP ≈ ti.a. vonstatten geht. Die Darstellung wird durch die zeitliche Entwicklung der Zinn-Konzentration 21 in der unteren Behälterhälfte (R0 - Radius, H0 - Höhe des Behälters) bestätigt, welche in Fig. 4b dargestellt ist. Besonders festzuhalten ist in diesem Zusammenhang, dass bei der Einstellung eines ungeeigneten Wertes der Periodendauer TP im Hinblick auf eine Homogenisierung des Schmelzenvolumens schlechtere Ergebnisse erzielt werden als bei der Anwendung eines kontinuierlich rotierenden Magnetfeldes.A comparison of in Fig. 5 presented results of numerical simulations for mixing the tin concentration C Sn in the lower half of the container for a time evolution of the volume-average Sn concentration in the lower container volume for different scenarios in relation to the flows in Fig. 4a, 4b, 4c < C sn > = 4 0 H 0 / 2 0 R 0 C sn r dr dz R 0 2 H 0
Figure imgb0011
for various set values for the period T P shows that the mixing is the fastest for the period T P ≈ t ia takes place. The representation is confirmed by the time evolution of the tin concentration 21 in the lower half of the container (R 0 - radius, H 0 - height of the container), which in Fig. 4b is shown. It should be particularly noted in this context that when setting an inappropriate value of the period T P with respect to a homogenization of the melt volume worse results are achieved than in the application of a continuously rotating magnetic field.

Die in Fig. 2 dargestellte Einrichtung 1 des mit einer elektrisch leitfähigen Schmelze 2 gefüllten zylindrischen Behälters 13 in der Anordnung 3 von Induktionsspulenpaaren 31,32,33, wie in Fig. 1,1a,1b gezeigt ist, kann durch eine Kühleinrichtung 23 für die Erstarrung metallischer Schmelzen 2 ergänzt sein. Die Kühleinrichtung 23 enthält einen Metallblock 6, in dessen Innern Kühlkanäle 7 vorhanden sind. Der Behälter 13 steht auf dem Metallblock 6. Die im Innern des Metallblocks 6 befindlichen Kühlkanäle 7 werden während des Erstarrungsprozesses von einem Kühlmittel durchflossen. Mittels der Kühleinrichtung 23 wird der Schmelze 2 die Wärme nach unten entzogen. Eine thermische Isolierung 8 des Behälters 13 verhindert Wärmeverluste in radialer Richtung. Am Boden 4 und den Seitenwänden 20 des Behälters 13 ist mindestens ein Temperatursensor 10, z.B. in Form eines Thermoelements angebracht. Die Temperaturmessungen ermöglichen eine Überwachung des Beginns und des Verlaufs des Zustandes der Erstarrung und ermöglichen eine zeitnahe Anpassung der Magnetfeldparameter (z.B. B0 und TP) durch die mittels der Steuer-/Regeleinheit 12 gesteuerte Stromversorgungseinheit 11 an die einzelnen Stadien des Erstarrungsprozesses.In the Fig. 2 illustrated device 1 of the filled with an electrically conductive melt 2 cylindrical container 13 in the arrangement 3 of induction coil pairs 31,32,33, as in Fig. 1,1a, 1b can be supplemented by a cooling device 23 for the solidification of metallic melts 2. The cooling device 23 contains a metal block 6, in the interior of which cooling channels 7 are present. The container 13 stands on the metal block 6. The cooling channels 7 located in the interior of the metal block 6 are flowed through by a coolant during the solidification process. By means of the cooling device 23, the melt 2 is removed from the heat down. A thermal insulation 8 of the container 13 prevents heat losses in the radial direction. At the bottom 4 and the side walls 20 of the container 13 is at least one temperature sensor 10, for example mounted in the form of a thermocouple. The temperature measurements allow monitoring of the beginning and the course of the state of solidification and allow a timely adjustment of the magnetic field parameters (eg B 0 and T P ) by the control unit 12 controlled by the power supply unit 11 to the individual stages of the solidification process.

Zum weiterführenden Rühren der erstarrenden Schmelze 2 wird die periodische Umkehr der Richtung der die Strömung antreibenden Lorentzkraft FL fortgesetzt. Die Periodendauer TPE wird, wie in Fig.1d gezeigt ist, derart eingestellt, dass die Schmelze 2 gut durchmischt wird und die Richtung der meridionalen Sekundärströmung 18 in der Umgebung der Erstarrungsfront einem ständigen Richtungswechsel unterliegt.For further stirring of the solidifying melt 2, the periodic reversal of the direction of the Lorentz force F L driving the flow is continued. The period T PE is, as in Fig.1d is shown, adjusted so that the melt 2 is well mixed and the direction of the secondary meridional flow 18 in the vicinity of the solidification front undergoes a constant change of direction.

Al-Si-Legierungen 21,22 können in der Einrichtung 1 gemäß Fig. 1,2b temperaturkontrolliert gerichtet erstarren. Die erhaltenen Gefügeeigenschaften werden anhand der Fig. 6a, 6b, 6c, 7a, 7b und 8 bezüglich der Ausbildung kolumnarer Dendriten, der Kornfeinung und der Entmischung näher erläutert:Al-Si alloys 21, 22 may be used in the device 1 according to FIG Fig. 1 . 2 B directionally controlled solidify. The structural properties obtained are based on the Fig. 6a, 6b, 6c . 7a, 7b and 8th concerning the formation of columnar dendrites, grain refining and segregation:

Fig. 6 zeigt das Makrogefüge im Längsschnitt zylindrischer Blöcke einer Al-7wt%Si-Legierung, z.B. bei einem Durchmesser von 50mm und einer Höhe von 60mm, die unter Einwirkung eines rotierenden Magnetfeldes bei einer Feldstärke B0 von 6.5mT gerichtet erstarrt wurden. Im hier vorliegenden Fall wurde das Magnetfeld mit einer zeitlichen Verzögerung von 30s nach Beginn der Erstarrung am Behälterboden eingeschaltet. Im Zeitraum bis zum Einsetzen der elektromagnetisch angetriebenen Strömung wächst ein grobes kolumnares Gefüge parallel zur Symmetrieachse des Behälters. Im Fall eines kontinuierlich wirkenden rotierenden Magnetfeldes bildet sich zunächst ein modifiziertes kolumnares Gefüge, wie in Fig. 7a gezeigt, heraus, d.h. die kolumnaren Körner werden feiner und wachsen zur Seite geneigt. In der Mitte des Probekörpers ist ein Morphologieübergang vom kolumnaren zum equiaxialen Kornwachstum zu beobachten. An der Erstarrungsfront transportiert die Sekundärströmung Si-reiche Schmelze zur Symmetrieachse 14 hin. Dies führt zu typischen Entmischungsmustern, die eine Verarmung eutektischer Phasen in den Randzonen und eine Konzentration im Bereich der Symmetrieachse 14 aufweisen. Dies ist gleichbedeutend mit einer Erhöhung des Anteils an Primärkristallen nahe der Seitenwände und Reduzierung des Anteils an Primärkristallen im Zentrum der Probe. Fig. 6 shows the macrostructure in longitudinal section of cylindrical blocks of an Al-7wt% Si alloy, for example, with a diameter of 50mm and a height of 60mm, which were directionally solidified under the action of a rotating magnetic field at a field strength B 0 of 6.5mT. In the present case, the magnetic field was switched on with a time delay of 30 s after the start of solidification on the container bottom. In the period until the onset of the electromagnetically driven flow, a coarse columnar structure grows parallel to the symmetry axis of the container. In the case of a continuously acting rotating magnetic field, a modified columnar structure is first formed, as in Fig. 7a shown, ie the columnar grains are finer and grow tilted to the side. In the middle of the specimen a morphology transition from columnar to equiaxial grain growth can be observed. At the solidification front, the secondary flow transports Si-rich melt to the symmetry axis 14. This leads to typical demixing patterns, the depletion of eutectic phases in the peripheral zones and a Concentration in the region of the axis of symmetry 14 have. This is equivalent to increasing the proportion of primary crystals near the sidewalls and reducing the proportion of primary crystals in the center of the sample.

In Fig. 8 ist eine radiale Verteilung des Flächenanteils an Primärkristallen in Al-7wt%Si-Proben (mit sieben Gewichtsanteilen Si), die unter Magnetfeldeinfluss mit Variation der Pulsdauer TP erstarrt wurden.In Fig. 8 is a radial distribution of the area fraction of primary crystals in Al-7wt% Si samples (with seven parts by weight Si), which were solidified under magnetic field influence with variation of the pulse duration T p .

Die Fig. 6 bis 8 zeigen, dass im Falle des elektromagnetischen Rührens mit Richtungswechsel des Magnetfeldes mit Einschalten des Magnetfeldes ein direkter Übergang zum equiaxialen Kornwachstum erreicht werden kann. Der periodische Wechsel der Drehrichtung des Magnetfeldes führt in jedem Fall zu einer Verringerung der Entmischung, die bei geeigneter Wahl der Pulsdauer TP auch nahezu völlig vermieden, wie in Fig. 7b gezeigt ist, werden kann.The Fig. 6 to 8 show that in the case of electromagnetic stirring with a change of direction of the magnetic field with switching on the magnetic field, a direct transition to equiaxial grain growth can be achieved. The periodic change of the direction of rotation of the magnetic field leads in each case to a reduction of segregation, which with a suitable choice of the pulse duration T P is also almost completely avoided, as in Fig. 7b can be shown.

Die Vorteile der Erfindung bestehen im Folgenden:

  • Ausbildung einer intensiven, dreidimensionalen Strömung im Innern der Metallschmelze 2;21,22,
  • sehr gute Durchmischung der Metallschmelze 2;21,22 durch intensive meridionale Sekundärströmung 18,
  • geringerer Energieaufwand im Vergleich zum kontinuierlich rotierenden Magnetfeld, da nicht der überwiegende Teil der aufgewendeten Energie für in die Aufrechterhaltung der azimutalen Rotationsströmung aufgebracht werden muss, und ein höherer Energieanteil in die für die Durchmischung effektivere meridionale Sekundärströmung 18 aufgebracht wird,
  • die erfindungsgemäß festgelegte Frequenz der periodischen Richtungsumkehr der meridionalen Sekundärströmung 18 ermöglicht bestimmbare Werte für die Durchmischung oder bei gerichteter Erstarrung,
  • Störungen und Auslenkungen der freien, in Fig. 1,2a,2b dargestellten Oberfläche 5 der Schmelze 2;21,22 mit unerwünschten Effekten, wie Schlackeneinschlüsse, werden vermieden,
  • bei der gerichteten Erstarrung kann die Ausbildung von Entmischungszonen im Erstarrungsgefüge, die die mechanischen Eigenschaften verschlechtern, vermieden werden,
  • nur ein Magnetsystem und damit geringerer apparativer und regelungstechnischer Aufwand gegenüber übereinander angeordneten, gegenläufig rotierenden Systemen sind erforderlich.
The advantages of the invention are as follows:
  • Formation of an intensive, three-dimensional flow in the interior of the molten metal 2, 21, 22,
  • very good mixing of the molten metal 2, 21, 22 by intensive secondary meridional flow 18,
  • less energy input compared to the continuously rotating magnetic field, since not the majority of the energy expended in the maintenance of the azimuthal rotational flow must be applied, and a higher proportion of energy is applied in the more effective for mixing meridional secondary flow 18,
  • the frequency of the periodic reversal of direction of the secondary meridional flow 18 determined according to the invention makes it possible to determine definable values for mixing or directional solidification,
  • Disturbances and deflections of the free, in Fig. 1 . 2a, 2b shown surface 5 of the melt 2, 21,22 with undesirable effects, such as slag inclusions are avoided,
  • in directional solidification, the formation of segregation zones in the solidification structure, which worsen the mechanical properties, can be avoided,
  • only a magnetic system and thus less equipment and control effort over stacked, counter-rotating systems are required.

Die Anwendung der Erfindung kann für das Mischen von Metallschmelzen 2;21,22, für das Stranggießen, zur gerichteten Erstarrung von vermischten metallischen Legierungen und zur gerichteten Erstarrung von Halbleiterschmelzen u.a. eingesetzt werden.The application of the invention may be used for the mixing of molten metals 2, 21, 22, for continuous casting, for the directed solidification of mixed metallic alloys and for the directed solidification of semiconductor melts, among others. be used.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
EinrichtungFacility
22
erste Schmelzefirst melt
33
Anordnung von InduktionsspulenArrangement of induction coils
3131
erstes Paar Induktionsspulenfirst pair of induction coils
3232
zweites Paar Induktionsspulensecond pair of induction coils
3333
drittes Paar Induktionsspulenthird pair of induction coils
44
Bodenplattebaseplate
55
Oberflächesurface
66
Metallblockmetal block
77
Kühlkanälecooling channels
88th
Isolierunginsulation
99
Kühlkörperheatsink
1010
Temperatursensortemperature sensor
1111
StromversorgungseinheitPower supply unit
1212
Steuer-/RegeleinheitControl / regulation unit
1313
Behältercontainer
1414
Symmetrieachseaxis of symmetry
1515
Erste DrehrichtungFirst direction of rotation
1616
zweite Drehrichtungsecond direction of rotation
1717
Mittelebenemidplane
1818
meridionale Sekundärströmungmeridional secondary flow
1919
azimutale Rotationsströmungazimuthal rotational flow
2020
Seitenwändeside walls
2121
zweite Schmelzesecond melt
2222
dritte Schmelzethird melt
2323
Kühleinrichtungcooling device
TP T P
Periodendauerperiod
TPM T pm
Periodendauer bei DurchmischungPeriod duration with mixing
TPE T PE
Periodendauer zu Beginn der ErstarrungPeriod duration at the beginning of solidification
TPause T break
Pausendauerbreak time
ti.a t ia
EinstellzeitResponse time

Claims (8)

  1. Method for the electromagnetic stirring of electrically conductive fluids (2, 21, 22) in the liquid state and/or in the state at the beginning of the solidification of the fluid (2, 21, 22) by using a rotating magnetic field which produces a Lorentz force (FL) in the horizontal plane, characterized in that the direction of rotation (15, 16) of the magnetic field rotating in the horizontal plane is changed in regular time intervals in the form of a period (TP), the frequency of the change in direction of the movement of the magnetic field vector being set in such a way that in the state of the mixing of the liquid fluid (2, 21, 22) a period (TP) between two changes in direction of the magnetic field in a time interval (ΔTPM) is provided as a function of the initial adjustment time (ti.a.) with the condition that 0.5 t i . a . < T PM < 1.5 t i . a . ,
    Figure imgb0017
    and that at the beginning of the state of solidification of the fluid (2, 21, 22) a period (TP) is adjusted between two changes in direction of the magnetic field in a time interval (ΔTPE) as a function of the initial adjustment time ti.a. with the condition that 0.8 t i . a . < T PE < 4 t i . a ,
    Figure imgb0018
    the initial adjustment time (ti.a.) being given by the equation t i . a . = C g B 0 σω ρ 1
    Figure imgb0019
    in which after the rotating magnetic field is switched on in a fluid (2; 21, 22) in a state of rest the double vortex of the meridional secondary flow (18) is formed, and σ is defined as the electrical conductivity, ρ as the density of the fluid (2, 21, 22), ω as a frequency and B0 as the amplitude of the magnetic field, and Cg is defined as a constant for the influence of the size and shape of the volume of the fluid (2, 21, 22).
  2. Method according to Claim 1, characterized in that in order to form the rotating magnetic field a rotary current (ID) in the form of a three-phase alternating current is applied to at least three pairs (31, 32, 33) of induction coils placed on a cylindrical container (13) containing the fluid (2, 21, 22).
  3. Method according to Claim 1 or 2, characterized in that metal or semiconductor melts (2, 21, 22) are poured as electrically conductive fluids into the container (13).
  4. Method according to at least one preceding claim, characterized in that the amplitude (B0) of the magnetic field is corrected in accordance with the height (H0) of the volume of the melt (2; 21, 22), which decreases in the course of the state of the directional solidification.
  5. Method according to Claim 4, characterized in that in the state of a directional solidification under temperature control the amplitude (B0) of the magnetic field is increased in accordance with the course of the process such that the amplitude (B0) corresponds to the respective maximum of the two values B 1 = ρ σω 100 V sol H 0
    Figure imgb0020
    and B 2 = ρ σω 40 V sol 3 2 H 0 v
    Figure imgb0021
    v being defined as the kinematic viscosity of the melt (2, 21, 22), Vsol being defined as the rate of solidification, and H0 being defined as the height of the melt volume and B1 and B2 as lower limit values of the amplitude of the magnetic field B0.
  6. Method according to Claims 1 to 4, characterized in that the respective periods during mixing (TPM) and the beginning of solidification (TPE) in which the magnetic field is present and switched on are interrupted by pauses of pause duration (TPause) in which no magnetic field is present at the melt (2, 21, 22), the pause duration (TPause) being adjusted relative to the respective period (TP) with TPause ≤ 0.5 · TP.
  7. Method according to Claims 1 to 6, characterized in that pulsed functions, for example a sine, triangle or sawtooth function, are implemented instead of the rectangular function when modulating the profile of the Lorentz force (FL), the profile and the maximum value of the amplitude (B0) of the magnetic field being defined such that an identical energy input results for the pulsed functions.
  8. Use of the method according to one of Claims 1 to 7 for the electromagnetic stirring of electrically conductive fluids (2, 21, 22) in the form of metallic melts in metallurgical processes, or in the form of semiconductor melts in crystal growth for the purpose of cleaning metal melts, during continuous casting or during the solidification of metallic materials.
EP08801098.8A 2007-08-03 2008-08-01 Method and device for the electromagnetic stirring of electrically conductive fluids Not-in-force EP2190612B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200710037340 DE102007037340B4 (en) 2007-08-03 2007-08-03 Method and device for the electromagnetic stirring of electrically conductive liquids
PCT/DE2008/001260 WO2009018809A1 (en) 2007-08-03 2008-08-01 Method and device for the electromagnetic stirring of electrically conductive fluids

Publications (2)

Publication Number Publication Date
EP2190612A1 EP2190612A1 (en) 2010-06-02
EP2190612B1 true EP2190612B1 (en) 2017-12-20

Family

ID=40120237

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08801098.8A Not-in-force EP2190612B1 (en) 2007-08-03 2008-08-01 Method and device for the electromagnetic stirring of electrically conductive fluids

Country Status (5)

Country Link
US (2) US20110297239A1 (en)
EP (1) EP2190612B1 (en)
JP (1) JP5124863B2 (en)
DE (1) DE102007037340B4 (en)
WO (1) WO2009018809A1 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8584692B2 (en) * 2010-10-06 2013-11-19 The Invention Science Fund I, Llc Electromagnetic flow regulator, system, and methods for regulating flow of an electrically conductive fluid
US8453330B2 (en) 2010-10-06 2013-06-04 The Invention Science Fund I Electromagnet flow regulator, system, and methods for regulating flow of an electrically conductive fluid
US9008257B2 (en) 2010-10-06 2015-04-14 Terrapower, Llc Electromagnetic flow regulator, system and methods for regulating flow of an electrically conductive fluid
US8397760B2 (en) * 2010-10-06 2013-03-19 The Invention Science Fund I, Llc Electromagnetic flow regulator, system, and methods for regulating flow of an electrically conductive fluid
US8781056B2 (en) 2010-10-06 2014-07-15 TerraPower, LLC. Electromagnetic flow regulator, system, and methods for regulating flow of an electrically conductive fluid
CN102980415A (en) * 2012-11-20 2013-03-20 中国科学院研究生院 Method for driving periodic flow of metal melt on basis of spiral magnetic field of electrified coil
DE102013009773B4 (en) * 2013-06-05 2016-02-11 Technische Universität Dresden Device and method for increasing the binding efficiency of binding capable target structures
AT515244A2 (en) * 2013-12-30 2015-07-15 Inteco Special Melting Technologies Gmbh Method for producing long ingots of large cross section
JP6234841B2 (en) * 2014-02-24 2017-11-22 株式会社神戸製鋼所 Continuous casting equipment for ingots made of titanium or titanium alloy
JP6379515B2 (en) * 2014-02-25 2018-08-29 新日鐵住金株式会社 Steel continuous casting method
JP6033807B2 (en) * 2014-03-27 2016-11-30 高橋 謙三 Metal melt stirring device and metal melt transfer device
JP2017527752A (en) * 2014-07-28 2017-09-21 ザ リージェンツ オブ ザ ユニバーシティー オブ コロラド,ア ボディー コーポレート Phononic materials used to control flow behavior
CN104826533B (en) * 2015-05-11 2016-11-09 兰州大学 Combined annular stereo magnetic stirring apparatus
US10898949B2 (en) 2017-05-05 2021-01-26 Glassy Metals Llc Techniques and apparatus for electromagnetically stirring a melt material
CN109261939B (en) * 2017-07-17 2023-11-24 中国科学院大学 Device and method for additive manufacturing by utilizing liquid metal
DE102018105700A1 (en) 2018-03-13 2019-09-19 Technische Universität Ilmenau Apparatus and method for non-invasively stirring an electrically conductive fluid
CN109482844A (en) * 2019-01-02 2019-03-19 江苏大学 Complex precise casting fine grain casting device and method
KR20220016680A (en) 2020-08-03 2022-02-10 삼성전자주식회사 Thermal interface material, method of manufacturing the same, and semiconductor package including the same
US20220252091A1 (en) * 2021-02-05 2022-08-11 Arizona Board of Regents on behalf Arizona State Univernity Robotic devices using magnetic fields for three-dimensional control of fluids
CN114559002A (en) * 2022-04-06 2022-05-31 上海大学 Control method for rotating magnetic field secondary flow
CN115645968B (en) * 2022-10-11 2023-06-30 浙江佳人新材料有限公司 DMT capturing and recycling process
CN115647335A (en) * 2022-10-26 2023-01-31 山东大学 Metal solidification device and method with multi-physical-field coupling effect
CN116329530B (en) * 2023-05-12 2023-08-04 山西昌鸿电力器材有限公司 Intelligent casting process for hardware fitting

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1962341B2 (en) 1969-12-12 1971-06-24 Aeg Elotherm Gmbh ARRANGEMENT OF A MULTI-PHASE ELECTROMAGNETIC WINDING ON THE STRAND GUIDE FRAMEWORK OF A CONTINUOUS CASTING PLANT
JPS5252895Y2 (en) * 1973-04-18 1977-12-01
DE3730300A1 (en) 1987-09-10 1989-03-23 Aeg Elotherm Gmbh Method and apparatus for the electromagnetic stirring of metal melts in a continuous casting mould
US4969501A (en) * 1989-11-09 1990-11-13 Pcc Airfoils, Inc. Method and apparatus for use during casting
JP3247265B2 (en) * 1994-12-06 2002-01-15 昭和電工株式会社 Metal casting method and apparatus
JPH09182941A (en) * 1995-12-28 1997-07-15 Nippon Steel Corp Electromagnetic-stirring method for molten steel in continuous casting mold
EP2295169B1 (en) * 1997-12-08 2014-04-23 Nippon Steel & Sumitomo Metal Corporation Apparatus for casting molten metal
US6402367B1 (en) * 2000-06-01 2002-06-11 Aemp Corporation Method and apparatus for magnetically stirring a thixotropic metal slurry
SE519840C2 (en) 2000-06-27 2003-04-15 Abb Ab Method and apparatus for continuous casting of metals
JP2005066613A (en) * 2003-08-21 2005-03-17 Yaskawa Electric Corp Electromagnetic stirring apparatus
US7063127B2 (en) * 2003-09-18 2006-06-20 International Business Machines Corporation Method and apparatus for chip-cooling
DE102004017443B3 (en) 2004-04-02 2005-04-21 Technische Universität Dresden Device for stirring electrically conducting liquids in a container to control material and heat exchange comprises a control/regulating unit with an interrupting unit and a computer
DE102007038281B4 (en) * 2007-08-03 2009-06-18 Forschungszentrum Dresden - Rossendorf E.V. Method and device for the electromagnetic stirring of electrically conductive liquids

Also Published As

Publication number Publication date
US8944142B2 (en) 2015-02-03
DE102007037340A1 (en) 2009-02-19
WO2009018809A1 (en) 2009-02-12
US20110297239A1 (en) 2011-12-08
JP2010535105A (en) 2010-11-18
US20140290433A1 (en) 2014-10-02
DE102007037340B4 (en) 2010-02-25
EP2190612A1 (en) 2010-06-02
JP5124863B2 (en) 2013-01-23

Similar Documents

Publication Publication Date Title
EP2190612B1 (en) Method and device for the electromagnetic stirring of electrically conductive fluids
DE102007038281B4 (en) Method and device for the electromagnetic stirring of electrically conductive liquids
DE60111943T2 (en) DEVICE FOR MAGNETIC STIRING OF A THIXOTROPIC METAL MELT
DE69931141T2 (en) Melting process in an induction cold-melt crucible
DE2853202A1 (en) IMPROVED PROCESS FOR MANUFACTURING THIXOTROPIC SLURRY
DE112007002628T5 (en) Electromagnetic stirring device
DE1300208B (en) Ladle spout
DE60024142T2 (en) CASTING SYSTEM AND CASTING METHOD FOR HIGH-PURITY AND FINE-CARBURETED METAL CASTING
DE3006588A1 (en) METHOD AND DEVICE FOR FORMING SEMI-SOLID THIXOTROPEN ALLOY POWDER
DE69530567T2 (en) METHOD AND DEVICE FOR CONTINUOUSLY POURING METAL MELT
DE2401145A1 (en) METHOD AND DEVICE FOR CONTINUOUS CASTING
EP3134220A1 (en) Method and device for thin-slab strand casting
DE2855933A1 (en) PROCESS FOR INFLUENCING THE DISTRIBUTION OF DIFFERENT COMPONENTS IN AN ELECTRICALLY CONDUCTIVE LIQUID
EP0850116A1 (en) Electromagnetic device for use with a continuous-casting mould
DE102010041061B4 (en) Crystallization plant and crystallization process for producing a block from a material whose melt is electrically conductive
DE2911842A1 (en) PROCEDURE FOR STIRRING IN CONTINUOUS CASTING
DE102005009326B4 (en) Method and pouring device for the production of micro castings
EP1877209B9 (en) Method for the production of pigs, and pigs
DE102004017443B3 (en) Device for stirring electrically conducting liquids in a container to control material and heat exchange comprises a control/regulating unit with an interrupting unit and a computer
DE3116792C2 (en) Process for obtaining granules from an alloy melt and apparatus for carrying out the same
WO2011076157A1 (en) Method and arrangement for influencing the melting convection in the production of a solid body from an electrically conductive melt
DE69403950T3 (en) AC magnetic stirring for continuous casting of metals
DE10000097C2 (en) Process and device for metal fiber production by the melt extraction process
DE102004044637B3 (en) Controlled solidification plant for melts of electrically conductive material includes an annular cathode and several annular part anodes spaced out from each other
DE2143866A1 (en) Process for the production of a permanent agnet material

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100224

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TECHNISCHE UNIVERSITAET DRESDEN

Owner name: HELMHOLTZ-ZENTRUM DRESDEN - ROSSENDORF E.V.

17Q First examination report despatched

Effective date: 20120926

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170718

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 955913

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008015807

Country of ref document: DE

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20171220

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20171220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180321

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180420

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008015807

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180831

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180801

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180831

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080801

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210823

Year of fee payment: 14

Ref country code: AT

Payment date: 20210818

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20210824

Year of fee payment: 14

Ref country code: DE

Payment date: 20210831

Year of fee payment: 14

Ref country code: NO

Payment date: 20210820

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008015807

Country of ref document: DE

REG Reference to a national code

Ref country code: NO

Ref legal event code: MMEP

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 955913

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220801

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220801