JP2011158223A - Four-way valve and refrigerating cycle using the same - Google Patents

Four-way valve and refrigerating cycle using the same Download PDF

Info

Publication number
JP2011158223A
JP2011158223A JP2010022095A JP2010022095A JP2011158223A JP 2011158223 A JP2011158223 A JP 2011158223A JP 2010022095 A JP2010022095 A JP 2010022095A JP 2010022095 A JP2010022095 A JP 2010022095A JP 2011158223 A JP2011158223 A JP 2011158223A
Authority
JP
Japan
Prior art keywords
way valve
electromagnetic coil
outlet pipe
compressor
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010022095A
Other languages
Japanese (ja)
Inventor
Hiroshi Aoki
洋 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2010022095A priority Critical patent/JP2011158223A/en
Publication of JP2011158223A publication Critical patent/JP2011158223A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Multiple-Way Valves (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem of shortage of cooling capacity in conventional four-way valve cooling devices for performing cooling by interposing a heat transfer body between an outlet pipe to a suction port of a compressor and a four-way valve. <P>SOLUTION: In this four-way valve and refrigerating cycle using the four-way valve, an outlet pipe to a suction port of a compressor is bonded to a magnet coil of a pilot solenoid valve of the four-way valve. Thus, since the outlet pipe to the suction port of the compressor cooled by a refrigerant and the four-way valve are directly cooled, the four-way valve can be cooled efficiently. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、空気調和機や給湯器などのヒートポンプシステムに用いられる四方弁及びそれを用いた冷凍サイクルに関するものである。   The present invention relates to a four-way valve used in a heat pump system such as an air conditioner or a water heater, and a refrigeration cycle using the same.

ヒートポンプ式冷凍サイクル内には、冷凍サイクル内の冷媒の流路を暖房運転サイクルと冷房運転サイクルとに切り換えるための四方弁が備えられている。この四方弁はパイロット電磁弁を備えており、そのパイロット電磁弁内に電磁コイルがあり、暖房運転サイクル時はその電磁コイルを通電し、冷房運転サイクル時は、その電磁コイルの通電を止めて四方弁の切り換えを行っている。その為、夏場などの外気温が高い状態で、暖房(ヒートポンプ式給湯器などは夏場でも暖房運転を行う)をすると、四方弁が放熱しくいことによる冷却不足と、電磁コイルの通電による発熱で、四方弁が高温になり、信頼性を損なうおそれがある。そのため、四方弁を冷却する必要がある。従来の四方弁の冷却方法は、特開平11―325634号公報に開示されている図7のように、四方弁のパイロット電磁弁の電磁コイルと圧縮機の吸込口への出口管の間に伝熱体を挿入することで、出口管内に流れる低温の冷媒が伝熱体を介して四方弁を冷却していた。   The heat pump refrigeration cycle includes a four-way valve for switching the refrigerant flow path in the refrigeration cycle between a heating operation cycle and a cooling operation cycle. This four-way valve has a pilot solenoid valve, and there is an electromagnetic coil in the pilot solenoid valve. The solenoid coil is energized during the heating operation cycle, and the solenoid coil is de-energized during the cooling operation cycle. The valve is switched. For this reason, if heating is performed in a hot environment such as summer (heat pump water heaters are also operated in summer) due to insufficient cooling due to the heat dissipation of the four-way valve and heat generation due to energization of the electromagnetic coil. The four-way valve may become hot and impair reliability. Therefore, it is necessary to cool the four-way valve. As shown in FIG. 7 disclosed in Japanese Patent Application Laid-Open No. 11-325634, a conventional four-way valve cooling method is transmitted between an electromagnetic coil of a pilot solenoid valve of a four-way valve and an outlet pipe to a suction port of a compressor. By inserting the heat element, the low-temperature refrigerant flowing in the outlet pipe cooled the four-way valve via the heat transfer element.

特開平11―325634号公報Japanese Patent Application Laid-Open No. 11-325634

しかしながら、従来の四方弁の冷却では、伝熱体を介して四方弁を冷却していたため、冷却効率が悪いという問題があった。そこで、本発明においては、上記の問題点に鑑み、効率よく四方弁を冷却することを目的とする。   However, the conventional cooling of the four-way valve has a problem that the cooling efficiency is poor because the four-way valve is cooled via the heat transfer body. In view of the above problems, an object of the present invention is to efficiently cool a four-way valve.

本発明は、上記課題を解決するため、電磁弁に通電することにより、ヒートポンプ式冷凍サイクルを暖房サイクルと冷房サイクルとに切り換える四方弁において、前記電磁弁の電磁コイルと、前記四方弁の前記圧縮機の吸込口への出口管とを熱的に接続する構成となっている。   In order to solve the above-mentioned problems, the present invention provides a four-way valve that switches a heat pump refrigeration cycle between a heating cycle and a cooling cycle by energizing the solenoid valve, and an electromagnetic coil of the solenoid valve and the compression of the four-way valve. It is the structure which connects with the exit pipe | tube to the suction inlet of a machine thermally.

本発明によれば、四方弁を効率良く冷却することができ、また、伝熱体などの部品を削減することができる。   According to the present invention, the four-way valve can be efficiently cooled, and parts such as a heat transfer body can be reduced.

本発明による空気調和機の第一実施例の四方弁の構成図である。It is a block diagram of the four-way valve of the 1st Example of the air conditioner by this invention. 本発明による空気調和機の第二実施例の四方弁の構成図である。It is a block diagram of the four-way valve of the 2nd Example of the air conditioner by this invention. 本発明による一部実体図的に表現した冷媒回路図であり、暖房運転状態を示す。FIG. 3 is a refrigerant circuit diagram expressed in partial substantial view according to the present invention and shows a heating operation state. 本発明による一部実体図的に表現した冷媒回路図であり、冷房運転状態を示す。FIG. 3 is a refrigerant circuit diagram expressed in partial substantial view according to the present invention, showing a cooling operation state. 本発明によるモードスイッチと電磁コイルの通電状態の関係を示す説明図である。It is explanatory drawing which shows the relationship between the mode switch by this invention, and the energization state of an electromagnetic coil. 本発明による空気調和機の第三実施例の四方弁と冷媒配管の構成図である。It is a block diagram of the four-way valve and refrigerant | coolant piping of the 3rd Example of the air conditioner by this invention. 従来例による空気調和機の四方弁の実施例の斜視図である。It is a perspective view of the Example of the four-way valve of the air conditioner by a prior art example.

本発明は、パイロット電磁弁の電磁コイルと、四方弁の圧縮機の吸込口への出口管とを、直接熱的に接続することで、四方弁を効率よく冷却できることを目的としたものである。   An object of the present invention is to efficiently cool a four-way valve by directly thermally connecting an electromagnetic coil of a pilot solenoid valve and an outlet pipe to a suction port of a compressor of the four-way valve. .

以下に第一実施例を図1、図3乃至図5に基づいて説明する。図3、図4は一部実体図的に表現した冷媒回路図であり、冷媒を圧縮する圧縮機1、四方弁4、四方弁4の接続口8に冷媒配管を介して接続され外気と冷媒の熱交換を行う室外熱交換器25、冷媒が通過し断熱膨張する膨張機構である電子膨張弁26、四方弁4の接続口9に冷媒配管を介して接続され室内空気と冷媒の熱交換を行う室内熱交換器27が順次冷媒配管で接続された冷凍サイクルである。   The first embodiment will be described below with reference to FIGS. 1 and 3 to 5. FIG. 3 and FIG. 4 are refrigerant circuit diagrams partially expressed in a substantial diagram, and are connected to the compressor 1, the four-way valve 4, and the connection port 8 of the four-way valve 4 for compressing the refrigerant through the refrigerant pipe and the outside air and the refrigerant. An outdoor heat exchanger 25 that exchanges heat, an electronic expansion valve 26 that is an expansion mechanism through which refrigerant passes and adiabatically expands, and a connection port 9 of the four-way valve 4 that is connected via a refrigerant pipe to exchange heat between indoor air and the refrigerant. The indoor heat exchanger 27 to be performed is a refrigeration cycle in which refrigerant pipes are sequentially connected.

四方弁4は、圧縮機1の吐出口2から吐出する冷媒の流路を冷房運転サイクル、暖房運転サイクルに切り換えるものである。この四方弁4は、冷媒流路を切り換えるピストン5と、本体ケース6と、同本体ケース6に開口した圧縮機1の吐出口2からの冷媒配管に接続される入口管7と、冷媒配管を介して室外熱交換器26と接続される接続口8と、冷媒配管を介して室内熱交換器28と接続される接続口9と、圧縮機1の吸込口3へ冷媒配管を介して接続される出口管10と、ピストン5を冷媒の圧力を利用して作動させるパイロット電磁弁11とから構成されている。   The four-way valve 4 switches the flow path of the refrigerant discharged from the discharge port 2 of the compressor 1 between a cooling operation cycle and a heating operation cycle. The four-way valve 4 includes a piston 5 for switching the refrigerant flow path, a main body case 6, an inlet pipe 7 connected to a refrigerant pipe from the discharge port 2 of the compressor 1 opened in the main body case 6, and a refrigerant pipe. The connection port 8 connected to the outdoor heat exchanger 26 through the refrigerant pipe, the connection port 9 connected to the indoor heat exchanger 28 through the refrigerant pipe, and the suction port 3 of the compressor 1 through the refrigerant pipe. And a pilot solenoid valve 11 that operates the piston 5 by using the pressure of the refrigerant.

23は冷房と暖房とを切り換えるモードスイッチ、24はモードスイッチ23からのモード信号を受けて電磁コイル12への通電をON/OFFする制御部である。   Reference numeral 23 denotes a mode switch for switching between cooling and heating.

パイロット電磁弁11は、電磁コイル12と、電磁コイル12により作動するプランジャー13と、同プランジャー13の作動を補助するバネ14と15と、プランジャー13を収納した弁ケース16と、プランジャー13により開閉するポート17と18と、出口管10の圧縮機1の吸込力を弁ケース16へ導く弁管19と、ポート17が開いたときの吸込力でピストン5を引っ張る弁管20と、ポート18が開いたときの吸込力でピストン5を引っ張る弁管21とから構成されている。図3に示すように、電磁コイル12に通電すると、電磁コイル12に磁束が発生し、この発生した磁束がプランジャー13を吸引して、プランジャー13を電磁コイル12側に移動させる。これが、暖房を行う場合の状態である。また、電磁コイル12に通電しないと、プランジャー13はバネ15に引っ張られて、バネ15側に移動する。これが、冷房を行う場合の状態である。なお、冷房運転サイクル時に電磁コイルに通電し、暖房運転サイクル時に電磁コイルを通電しない設計仕様にすることもある。   The pilot electromagnetic valve 11 includes an electromagnetic coil 12, a plunger 13 that is operated by the electromagnetic coil 12, springs 14 and 15 that assist the operation of the plunger 13, a valve case 16 that houses the plunger 13, and a plunger. Ports 17 and 18 that are opened and closed by a valve 13, a valve pipe 19 that guides the suction force of the compressor 1 of the outlet pipe 10 to the valve case 16, a valve pipe 20 that pulls the piston 5 by the suction force when the port 17 is opened, The valve pipe 21 pulls the piston 5 with the suction force when the port 18 is opened. As shown in FIG. 3, when the electromagnetic coil 12 is energized, a magnetic flux is generated in the electromagnetic coil 12, and the generated magnetic flux attracts the plunger 13 and moves the plunger 13 toward the electromagnetic coil 12. This is the state when heating is performed. If the electromagnetic coil 12 is not energized, the plunger 13 is pulled by the spring 15 and moves to the spring 15 side. This is the state when cooling is performed. In some cases, the electromagnetic coil is energized during the cooling operation cycle and the electromagnetic coil is not energized during the heating operation cycle.

電磁コイル12を冷却する構成は、図1に示すように、電磁コイル12と出口管10が熱的に接続するように、電磁コイル12を出口管10の側面に固定している。これにより、出口管10から圧縮機には低温の冷媒が流れるので、電磁コイル12を冷却することが出来る。なお、本実施例は、図示していないが熱伝導性を考慮して、金属性の取付具を用いて、電磁コイル12と出口管10を熱的に接続している。この他に、熱伝導の高い樹脂を用いて固定するなどもあるが、本発明は、電磁コイル12と出口管10が熱的に接続されていれば良く、これらのような熱的な接続方法に限定したものではない。   In the configuration for cooling the electromagnetic coil 12, the electromagnetic coil 12 is fixed to the side surface of the outlet pipe 10 so that the electromagnetic coil 12 and the outlet pipe 10 are thermally connected as shown in FIG. 1. Thereby, since the low-temperature refrigerant flows from the outlet pipe 10 to the compressor, the electromagnetic coil 12 can be cooled. In the present embodiment, although not shown, the electromagnetic coil 12 and the outlet pipe 10 are thermally connected using a metallic fixture in consideration of thermal conductivity. In addition to this, fixing is performed using a resin having high thermal conductivity. However, in the present invention, it is only necessary that the electromagnetic coil 12 and the outlet pipe 10 are thermally connected. It is not limited to.

上記構成において、次にその作用と効果について説明する。先ず、図3にて示す暖房時について説明する。図5の説明図に示すように、モードスイッチ23が暖房になっていると、制御部24は電磁コイル12に通電する。図3に示すように、同電磁コイル12がプランジャー13を吸引する力とバネ15の作動力との和がバネ14の作動力より強いため、プランジャー13は電磁コイル12側に引かれてポート17が開く。これにより、弁管19と20が連通し、圧縮機1の吸込力によって、ピストン5の弁管20側の圧力が弁管21側より低くなり、ピストン5は弁管20側に押し付けられる。この結果、圧縮機1の吐出口2からの入口管7が室内熱交換器27への接続口9と接続され、室外熱交換器25からの接続口8が圧縮機1の吸込口3への出口管10と接続され、暖房を行う場合の冷媒回路(暖房運転サイクル)となる。この状態にて、圧縮機1より吐出した高温高圧のガス冷媒は、四方弁4の入口管7から接続口9を通り、室内熱交換器27にて室内空気に放熱することにより凝縮して高温高圧の液冷媒となる。同高温高圧の液冷媒は電子膨張弁26にて断熱膨張することにより低温低圧の液冷媒となり、同低温低圧の液冷媒は室外熱交換器25にて外気から吸熱することにより蒸発して低温低圧のガス冷媒となり、四方弁4の接続口8から出口管10を通り、圧縮機1の吸込側に戻る。出口管10は低温低圧のガス冷媒が通過することにより低温となるため、出口管10と電磁コイル12を熱的に接続することで、通電することにより加熱された電磁コイル12の熱が吸収され効果的に冷却される。   Next, the operation and effect of the above configuration will be described. First, the heating time shown in FIG. 3 will be described. As shown in the explanatory diagram of FIG. 5, when the mode switch 23 is in the heating mode, the control unit 24 energizes the electromagnetic coil 12. As shown in FIG. 3, since the sum of the force that the electromagnetic coil 12 attracts the plunger 13 and the operating force of the spring 15 is stronger than the operating force of the spring 14, the plunger 13 is pulled toward the electromagnetic coil 12 side. Port 17 opens. As a result, the valve pipes 19 and 20 communicate with each other, and the pressure on the valve pipe 20 side of the piston 5 becomes lower than that on the valve pipe 21 side by the suction force of the compressor 1, and the piston 5 is pressed against the valve pipe 20 side. As a result, the inlet pipe 7 from the discharge port 2 of the compressor 1 is connected to the connection port 9 to the indoor heat exchanger 27, and the connection port 8 from the outdoor heat exchanger 25 is connected to the suction port 3 of the compressor 1. It is connected to the outlet pipe 10 and becomes a refrigerant circuit (heating operation cycle) when heating is performed. In this state, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 passes through the connection port 9 from the inlet pipe 7 of the four-way valve 4, condenses by radiating heat to the indoor air in the indoor heat exchanger 27, and becomes high temperature. It becomes a high-pressure liquid refrigerant. The high-temperature and high-pressure liquid refrigerant becomes a low-temperature and low-pressure liquid refrigerant by adiabatic expansion by the electronic expansion valve 26, and the low-temperature and low-pressure liquid refrigerant evaporates by absorbing heat from the outside air in the outdoor heat exchanger 25, and the The gas refrigerant passes through the outlet pipe 10 from the connection port 8 of the four-way valve 4 and returns to the suction side of the compressor 1. Since the outlet pipe 10 is cooled by the passage of the low-temperature and low-pressure gas refrigerant, the heat of the electromagnetic coil 12 heated by energization is absorbed by thermally connecting the outlet pipe 10 and the electromagnetic coil 12. Effectively cooled.

次に、図4にて示す冷房時について説明する。図5の説明図に示すように、モードスイッチ23が冷房になっていると、制御部24は電磁コイル12に通電しない。図2に示すように、バネ14の作動力がバネ15の作動力より強いため、プランジャー13はバネ15側に押されてポート18が開く。これにより、弁管19と21が連通し、圧縮機1の吸込力によって、ピストン5の弁管21側の圧力が弁管20側より低くなり、ピストン5は弁管21側に押し付けられる。この結果、圧縮機1の吐出口2からの入口管7が室外熱交換器25への接続口8と接続され、室内熱交換器27からの接続口9が圧縮機1の吸込口3への出口管10と接続され、冷房を行う場合の冷媒回路(冷房運転サイクル)となる。この状態にて、圧縮機1より吐出した高温高圧のガス冷媒は、四方弁4の入口管7から接続口8を通り、室外熱交換器25にて外気に放熱することにより凝縮して高温高圧の液冷媒となる。同高温高圧の液冷媒は電子膨張弁26にて断熱膨張することにより低温低圧の液冷媒となり、同低温低圧の液冷媒は室内熱交換器27にて室内空気から吸熱することにより蒸発して低温低圧のガス冷媒となり、四方弁4の接続口9から出口管10を通り、圧縮機1の吸込側に戻る。出口管10は低温低圧のガス冷媒が通過することにより低温となるため、出口管10と電磁コイル12を熱的に接続することで、電磁コイル12を冷却する。冷房時は、電磁コイル12は通電していないため、加熱されていないが、電磁コイル12に通電して暖房に切り換えた際には、電磁コイル12が十分に冷却されており有利になる。   Next, the cooling time shown in FIG. 4 will be described. As shown in the explanatory diagram of FIG. 5, when the mode switch 23 is cooled, the control unit 24 does not energize the electromagnetic coil 12. As shown in FIG. 2, since the operating force of the spring 14 is stronger than the operating force of the spring 15, the plunger 13 is pushed toward the spring 15 and the port 18 is opened. As a result, the valve pipes 19 and 21 communicate with each other, and the pressure on the valve pipe 21 side of the piston 5 becomes lower than that on the valve pipe 20 side due to the suction force of the compressor 1, and the piston 5 is pressed against the valve pipe 21 side. As a result, the inlet pipe 7 from the discharge port 2 of the compressor 1 is connected to the connection port 8 to the outdoor heat exchanger 25, and the connection port 9 from the indoor heat exchanger 27 is connected to the suction port 3 of the compressor 1. A refrigerant circuit (cooling operation cycle) for cooling is connected to the outlet pipe 10. In this state, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 passes through the connection port 8 from the inlet pipe 7 of the four-way valve 4 and is condensed by radiating heat to the outside air in the outdoor heat exchanger 25. It becomes a liquid refrigerant. The high-temperature and high-pressure liquid refrigerant becomes a low-temperature and low-pressure liquid refrigerant by adiabatically expanding by the electronic expansion valve 26, and the low-temperature and low-pressure liquid refrigerant evaporates by absorbing heat from the indoor air in the indoor heat exchanger 27 and has a low temperature. It becomes a low-pressure gas refrigerant, passes through the outlet pipe 10 from the connection port 9 of the four-way valve 4, and returns to the suction side of the compressor 1. Since the outlet pipe 10 has a low temperature when the low-temperature and low-pressure gas refrigerant passes, the electromagnetic coil 12 is cooled by thermally connecting the outlet pipe 10 and the electromagnetic coil 12. During cooling, the electromagnetic coil 12 is not energized and is not heated. However, when the electromagnetic coil 12 is energized and switched to heating, the electromagnetic coil 12 is sufficiently cooled, which is advantageous.

以下に第二実施例を図2に基づいて説明する。図2は、第二実施例の四方弁4の構成図である。図2に示すように、電磁コイル12を本体ケース6に取り付けられるように配置し、圧縮機1の吸込口3へ接続する出口管10を曲げて、電磁コイル12に熱的に接続するように配置することで、電磁コイル12を冷却することができる。   A second embodiment will be described below with reference to FIG. FIG. 2 is a configuration diagram of the four-way valve 4 of the second embodiment. As shown in FIG. 2, the electromagnetic coil 12 is disposed so as to be attached to the main body case 6, and the outlet pipe 10 connected to the suction port 3 of the compressor 1 is bent so as to be thermally connected to the electromagnetic coil 12. By arranging, the electromagnetic coil 12 can be cooled.

以下に第三実施例を図6に基づいて説明する。図6は、上記実施例とは異なり、四方弁4の出口管10の代わりに、四方弁4の出口管10に接続され圧縮機1の吸入口に戻る冷媒が流れる冷媒配管である戻り管31を用いている。その戻り管31を図6のように曲げて、電磁コイル12と熱的に接続させて、電磁コイル12を冷却している。これにより、従来の電磁コイル12を冷却することができない四方弁4でも用いることができ、四方弁4の電磁コイル12を効率よく冷却することができる。なお、本実施例では戻り管31を曲げて電磁コイル12を冷却しているが、本願発明はこれに限定したものではなく、四方弁4の出口管10を曲げることで、電磁コイル12と熱的に接続させる為に出口管10に接続される戻り管31を曲げなくても良い。   A third embodiment will be described below with reference to FIG. FIG. 6 differs from the above-described embodiment in that a return pipe 31 is a refrigerant pipe through which a refrigerant that is connected to the outlet pipe 10 of the four-way valve 4 and returns to the suction port of the compressor 1 flows instead of the outlet pipe 10 of the four-way valve 4. Is used. The return pipe 31 is bent as shown in FIG. 6 and thermally connected to the electromagnetic coil 12 to cool the electromagnetic coil 12. Thereby, the conventional four-way valve 4 that cannot cool the electromagnetic coil 12 can be used, and the electromagnetic coil 12 of the four-way valve 4 can be efficiently cooled. In this embodiment, the return pipe 31 is bent to cool the electromagnetic coil 12, but the present invention is not limited to this, and the outlet coil 10 of the four-way valve 4 is bent so that the electromagnetic coil 12 and the thermal coil 12 are heated. Therefore, the return pipe 31 connected to the outlet pipe 10 does not have to be bent.

以上のように、本発明は四方弁4と、低温の冷媒が流れている出口管10または圧縮機1の吸込側へ戻る戻り管31とを熱的に接続することで、四方弁4を効率良く冷却することができ、四方弁4の信頼性を損なうおそれを減らすことが出来る。また、伝熱体などの部品を削減することができる。   As described above, according to the present invention, the four-way valve 4 and the return pipe 31 returning to the suction side of the compressor 1 or the outlet pipe 10 through which the low-temperature refrigerant flows are thermally connected to make the four-way valve 4 efficient. Cooling can be performed well, and the risk of impairing the reliability of the four-way valve 4 can be reduced. Moreover, parts, such as a heat exchanger, can be reduced.

1 圧縮機
2 吐出口
3 吸込口
4 四方弁
8 室外熱交換器と接続する接続口
9 室内熱交換器と接続する接続口
10 出口管
11 パイロット電磁弁
12 電磁コイル
25 室外熱交換器
26 電子膨張弁(膨張機構)
27 室内熱交換器
31 戻り管
DESCRIPTION OF SYMBOLS 1 Compressor 2 Discharge port 3 Suction port 4 Four-way valve 8 Connection port connected with an outdoor heat exchanger 9 Connection port connected with an indoor heat exchanger 10 Outlet pipe 11 Pilot solenoid valve 12 Electromagnetic coil 25 Outdoor heat exchanger 26 Electronic expansion Valve (expansion mechanism)
27 Indoor heat exchanger 31 Return pipe

Claims (4)

電磁弁に通電することにより、ヒートポンプ式冷凍サイクルを暖房サイクルと冷房サイクルとに切り換える四方弁において、
前記電磁弁の電磁コイルと、前記四方弁の圧縮機の吸込口への出口管とを熱的に接続することを特徴とする四方弁。
In the four-way valve that switches the heat pump refrigeration cycle between the heating cycle and the cooling cycle by energizing the solenoid valve,
A four-way valve characterized in that an electromagnetic coil of the solenoid valve and an outlet pipe to a suction port of a compressor of the four-way valve are thermally connected.
前記電磁コイルを前記出口管の側面に固定し、
同電磁コイルと同出口管とが熱的に接続することを特徴とする請求項1に記載の四方弁。
Fixing the electromagnetic coil to a side surface of the outlet pipe;
The four-way valve according to claim 1, wherein the electromagnetic coil and the outlet pipe are thermally connected.
前記電磁コイルを本体ケースの側面に固定し、
前記出口管を曲げて、同電磁コイルと同出口管とが熱的に接続することを特徴とする請求項1に記載の四方弁。
Fixing the electromagnetic coil to the side of the body case;
The four-way valve according to claim 1, wherein the outlet pipe is bent to thermally connect the electromagnetic coil and the outlet pipe.
圧縮機の吐出口から吐出される冷媒を、電磁弁を有する四方弁、室外熱交換器、膨張機構、室内熱交換器、前記四方弁を経て前記圧縮機の吸込口へ循環するヒートポンプ式冷凍サイクルにおいて、
前記四方弁の出口管に接続され前記圧縮機の吸入口に戻る冷媒が流れる冷媒配管と、前記電磁弁の電磁コイルとを熱的に接続することを特徴とする冷凍サイクル。
A heat pump refrigeration cycle that circulates refrigerant discharged from the discharge port of the compressor to a suction port of the compressor via a four-way valve having an electromagnetic valve, an outdoor heat exchanger, an expansion mechanism, an indoor heat exchanger, and the four-way valve In
A refrigeration cycle, wherein a refrigerant pipe through which a refrigerant that is connected to an outlet pipe of the four-way valve and returns to an inlet of the compressor flows, and an electromagnetic coil of the electromagnetic valve are thermally connected.
JP2010022095A 2010-02-03 2010-02-03 Four-way valve and refrigerating cycle using the same Pending JP2011158223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010022095A JP2011158223A (en) 2010-02-03 2010-02-03 Four-way valve and refrigerating cycle using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010022095A JP2011158223A (en) 2010-02-03 2010-02-03 Four-way valve and refrigerating cycle using the same

Publications (1)

Publication Number Publication Date
JP2011158223A true JP2011158223A (en) 2011-08-18

Family

ID=44590317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010022095A Pending JP2011158223A (en) 2010-02-03 2010-02-03 Four-way valve and refrigerating cycle using the same

Country Status (1)

Country Link
JP (1) JP2011158223A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5932131B2 (en) * 2013-02-27 2016-06-08 三菱電機株式会社 Air conditioner for vehicles
CN105987198A (en) * 2015-02-15 2016-10-05 浙江盾安禾田金属有限公司 Self-propelled four-way valve and air-conditioning system thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5932131B2 (en) * 2013-02-27 2016-06-08 三菱電機株式会社 Air conditioner for vehicles
CN105987198A (en) * 2015-02-15 2016-10-05 浙江盾安禾田金属有限公司 Self-propelled four-way valve and air-conditioning system thereof

Similar Documents

Publication Publication Date Title
CN106338112B (en) A kind of air-conditioning heat recovery system
JP5387235B2 (en) Heat pump type hot water heater
JP5419437B2 (en) Air conditioning combined water heater
JP5137494B2 (en) Equipment and air conditioner using refrigeration cycle
WO2011065001A1 (en) Cooling structure for magnet-fitted reactor
WO2013135048A1 (en) Heat exchanger and cabinet
CN101365917A (en) Defrost system
JP2005257231A (en) Heat pump hot water supply air conditioner
JP5919036B2 (en) Heat pump type water heater
JPH11325634A (en) Four-way valve cooler of air conditioner
KR101325319B1 (en) a regenerative air-conditioning apparatus
JP2012247136A (en) Booster unit, and air conditioning apparatus combined with water heater including the same
JP2011158223A (en) Four-way valve and refrigerating cycle using the same
KR101280211B1 (en) Heat pump system with frost prevention and operating methodology for heat pump system
JP2011112254A (en) Refrigeration device
KR101320189B1 (en) Integrated heat pump system with boiler and air conditioner and its operating methodology for heat pump system
KR101173736B1 (en) Refrigerating and freezing combine air conditioning system
JP2009092321A (en) Cooling/heating hot water supply system and its operating method
JP5413594B2 (en) Heat pump type water heater
JP2009281629A (en) Heat pump water heater
JP2005030708A (en) Cooling structure for semiconductor for controlling geothermal heat pump
JP6029852B2 (en) Heat pump type heating device
TWI529356B (en) Heat pump for heating and cooling
JP6791235B2 (en) Refrigeration equipment
KR20190077692A (en) heat transmitter