JP2011157271A - Aggregate and method for producing the same - Google Patents

Aggregate and method for producing the same Download PDF

Info

Publication number
JP2011157271A
JP2011157271A JP2011102545A JP2011102545A JP2011157271A JP 2011157271 A JP2011157271 A JP 2011157271A JP 2011102545 A JP2011102545 A JP 2011102545A JP 2011102545 A JP2011102545 A JP 2011102545A JP 2011157271 A JP2011157271 A JP 2011157271A
Authority
JP
Japan
Prior art keywords
particle
particles
powder
aggregate
particulate material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011102545A
Other languages
Japanese (ja)
Other versions
JP5594782B2 (en
Inventor
Yasumasa Takao
泰正 高尾
Iwao Asai
巌 浅井
Hiroshi Asano
浩志 浅野
Kazumasa Tsubata
和昌 津幡
Tomoko Okuura
朋子 奥浦
Satoru Nakada
悟 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Nippon Menard Cosmetic Co Ltd
Sanshin Koko KK
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Nippon Menard Cosmetic Co Ltd
Sanshin Koko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Nippon Menard Cosmetic Co Ltd, Sanshin Koko KK filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2011102545A priority Critical patent/JP5594782B2/en
Publication of JP2011157271A publication Critical patent/JP2011157271A/en
Application granted granted Critical
Publication of JP5594782B2 publication Critical patent/JP5594782B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aggregate of a granular substance by a new shape-control method, which is conventionally impossible, and to provide a method for producing the aggregate. <P>SOLUTION: A solid or hollow aggregate is provided, comprising aggregation of a granular substance of a metal oxide having a particle diameter of less than 0.1 μm, and a method for producing the aggregate is provided. The method includes dispersing the granular substance in a dispersion medium selected from an aqueous solvent, an alcohol- and an ether-based solvent to prepare a mixture liquid containing the granular substance. The granular substance is dispersed in the mixture liquid to obtain an average distance between surfaces of the granular substance satisfying L<SB>DLVO</SB>≥L<SB>Woodcock</SB>in the mixture liquid. The mixture liquid is changed into droplets of less than 100 μm, which are dried by vaporizing the dispersion medium. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、構造制御性が高く、可視光透過性と紫外線遮蔽性に優れる、ナノ粒子を原料とした顆粒体に関するものである。   The present invention relates to a granule using nanoparticles as a raw material, which has a high structure controllability and is excellent in visible light permeability and ultraviolet shielding properties.

本発明は、先願の複合粒子に係る粒子形態制御法(特許文献1及び2、図1・2参照)から発展(図3〜5参照)し、予め固形(結晶)化されたナノメーターオーダー粒子を第二成分(子粒子)とし、液相分散理論・ナノ粒子充填理論・噴霧法(液滴プロセス)の3つを方法論とすることで、中実・中空顆粒、可逆的変化可能な膨潤機能性粉体等を提供するものである。   The present invention has been developed from a particle morphology control method (see Patent Documents 1 and 2 and FIGS. 1 and 2) related to the composite particles of the prior application (see FIGS. 3 to 5), and has been previously solidified (crystallized) on the nanometer order. By using particles as the second component (child particles) and the three methods of liquid phase dispersion theory, nanoparticle packing theory, and spraying method (droplet process), solid and hollow granules, reversibly changeable swelling Functional powders and the like are provided.

本発明が成立した時代的要因(技術的背景)は、媒体撹拌型粉砕装置(ビーズミル)による液体中の粒状物質の分散度と、噴霧法(特に3〜4流体ノズル)による液滴径分布の、微細構造制御技術の急速な進展がある(図1〜3)。これに、既往の液相DLVO微粒子分散と、粒子充填構造を統合的に説明する理論的進展が組み合わさり、本発明の萌芽となった。   The historical factors (technical background) that the present invention was established are the degree of dispersion of the particulate matter in the liquid by the medium stirring type pulverizer (bead mill) and the droplet size distribution by the spray method (particularly 3-4 fluid nozzles). There is rapid progress in fine structure control technology (Figs. 1-3). This was combined with the conventional liquid phase DLVO fine particle dispersion and the theoretical progress to explain the particle packing structure in an integrated manner, which was the beginning of the present invention.

本発明の技術的特徴は、両者を融合したことにある。即ち、液相法(DLVO分散理論)と固相法(粒子充填理論)を組み合わせた液相中のナノ粒子の均一分散法と、ミクロンオーダーの液滴形成法と固形分の急速固化法とを、不可欠の技術的要件として融合した結果、分散や複合を支配する微小力(液架橋力やヘテロ凝集力等)と、操作条件として調節される粉体一次特性の制御性が格段に向上した(図3〜14)。   The technical feature of the present invention resides in the fusion of both. That is, a uniform dispersion method of nanoparticles in a liquid phase combining a liquid phase method (DLVO dispersion theory) and a solid phase method (particle packing theory), a micron-order droplet formation method, and a rapid solidification method of solids As a result of integration as an indispensable technical requirement, the micro force (liquid crosslinking force, hetero-cohesive force, etc.) that governs dispersion and compounding, and the controllability of the primary characteristics of the powder that are adjusted as operating conditions have been greatly improved ( 3-14).

本発明の特徴は、オーダードミクスチャー、即ち、異種成分等の均一な複合や分散、及び、構成成分の低凝集性という、粉体二次特性(本発明では、顆粒体という形態・構造制御)の制御性が向上した結果、粒状物質を原料とした粒子集合体特性(可視光透過性、紫外線遮蔽性、膨潤性が可逆変化する粉体、粉体層滑沢性、熱伝導性)を、格段に向上できることにある(図11〜14)。   The feature of the present invention is an ordered mixture, that is, uniform composite and dispersion of different components, etc., and secondary characteristics of the powder such as low cohesiveness of the constituents (in the present invention, morphology and structure control of granules) As a result of improving the controllability of particles, the characteristics of particle aggregates made from particulate materials (visible light transmittance, ultraviolet shielding properties, powders with reversibly changing swelling, powder layer lubricity, thermal conductivity) It is that it can be remarkably improved (FIGS. 11 to 14).

発明の発展性として、この均一分散性(複合化)と低凝集性は、濃厚系スラリーと呼ばれる実際の製造現場の現実的な濃度条件下(例えば40wt(重量)%以上)でのオーダードミクスチャーの提供や、顆粒体や中空粒子、フィラー等の板状の粒状物質の技術分野を拡大するという、格段の有用性を奏することができる(例えば、構成成分の分散と第二成分の結晶化とを同時達成することが必要なエマルション法等の汎用プロセスでは、不可能であった)。   As a development of the invention, this uniform dispersibility (combination) and low agglomeration are ordered mixtures under realistic concentration conditions (for example, 40 wt (%) or more) in actual production sites called concentrated slurry. And the expansion of the technical field of plate-like granular materials such as granules, hollow particles, and fillers (for example, dispersion of constituent components and crystallization of the second component) Is not possible with a general-purpose process such as an emulsion method that requires simultaneous achievement of

粘土鉱物を原料とした板状又は鱗片状の粉体、特にマイカ、又はセリサイト(絹雲母)、又はマスコバイト(白雲母)、又はフロコバイト(金雲母)、又はバイオタイト(黒雲母)と呼ばれるケイ酸塩鉱物(雲母系、特に非膨潤性の粘土鉱物)は、粉体形状に起因する高い流動性(滑沢性)と、高い透明性とを併せ持つ高性能粉体で、化粧品用基材等として多用されている。特に絹雲母は、鉱物の一種で、英名のセリサイト(sericite)でも呼称される。   Plate-like or scale-like powder made from clay mineral, especially called mica, sericite (sericite), mascobite (muscovite), flocovite (phlogopite), or biotite (biotite) Silicate minerals (mica, especially non-swelling clay minerals) are high-performance powders that combine high fluidity (sliding properties) due to powder shape and high transparency. Etc. are often used. In particular, sericite is a kind of mineral and is also referred to as the English name sericite.

火山岩等の熱水変質帯等に粉末状の塊として産出し、愛知県北設楽郡東栄町(振草)にある粟代鉱山は、国際的な絹雲母の供給源として有名で、この絹雲母は「三信マイカ」(振草絹雲母)の名で販売されている。化学組成は、ほぼ「KAlSiAl20」で、白雲母(金雲母)に近い単斜晶系を有する。主に化粧品ファンデーション素材として用いられている。更に、耐熱性のある潤滑材としてや、粒子径分布調整や微粉砕したものは、プラスチック等の強化材用フィラーとしても使用されており、工業的にも重要な基材である(特許文献1〜2、非特許文献1〜3)。 Produced as a powdery mass in hydrothermal alteration zones such as volcanic rocks, the Bandai mine in Toei-cho, Kitashirakura-gun, Aichi Prefecture is famous as an international source of sericite. It is sold under the name of “Sanshin Mica”. The chemical composition is approximately “K 2 Al 4 Si 6 Al 2 O 20 ” and has a monoclinic system close to muscovite (phlogopite). It is mainly used as a cosmetic foundation material. Further, a heat-resistant lubricant, a particle size distribution adjusted or finely pulverized is also used as a filler for reinforcing materials such as plastics, and is an industrially important base material (Patent Document 1). -2, nonpatent literature 1-3).

機能性化粧品(Cosmeceuticals=Cosmetics+Pharmaceuticals)として業界に浸透している新材料系に例示されるような、基礎化粧品(スキンケア)や仕上げ化粧品(メイクアップ)に対する、物性の高度化、新機能の発現、新用途の開発等、演色(着色)性や透明・素肌感等の仕上がり(ソフトフォーカス)機能、質感、皺等の凹凸隠蔽性や滑沢性・使用感等の顔料(化粧)機能に加え、紫外線(UV)遮蔽能(SPF値)や肌荒れ防止用保湿性等を訴求する薬効機能をも高めた、機能性材料原料への需要が高まっている(非特許文献5〜6)。   Improvement of physical properties, expression of new functions, newness for basic cosmetics (skin care) and finished cosmetics (make-up), as exemplified by new material systems that have penetrated the industry as functional cosmetics (Cosmeticals = Cosmetics + Pharmaceuticals) In addition to pigmentation (makeup) functions such as color rendering (coloration) and finish (soft focus) functions such as transparency and skin feel, texture and concavo-convexity and smoothness and feeling of use such as development of applications There is an increasing demand for functional material raw materials that also have enhanced medicinal functions that promote (UV) shielding ability (SPF value), moisture retention for preventing rough skin, and the like (Non-Patent Documents 5 to 6).

また、上記の高級化粧品で特に要請の高いセリサイト(絹雲母)は、鉱物系原料としての資源枯渇の恐れもあり、“3R”のReduce(省資源化)的な観点からも、単純な基材としての利用ではなく、粉体基礎物性の高度化、新機能の発現、新用途の開発等が、喫緊の課題となっている(特許文献1〜6、非特許文献1〜6)。   In addition, sericite (sericite), which is particularly demanded in the above-mentioned luxury cosmetics, may be depleted of resources as a mineral-based raw material, and is a simple basis from the viewpoint of “3R” Reduce (resource saving). Rather than being used as a material, advancement of powder physical properties, development of new functions, development of new applications, etc. are urgent issues (Patent Documents 1 to 6, Non-Patent Documents 1 to 6).

本発明の技術的背景と既往技術群の課題を、物質発明として、〔1〕体質顔料、及び〔2〕パール顔料、製法発明として、〔3〕粒子複合化法、の観点から網羅することで、明確化する(図1〜3の操作条件・材料構造・材料機能のパテントマップを参照)。   By covering the technical background of the present invention and the problems of the existing technical group from the viewpoint of [1] extender pigments, and [2] pearl pigments, and manufacturing inventions as [3] particle composite methods. Clarify (see patent conditions map of operating conditions / material structure / material function in FIGS. 1 to 3).

〔1〕体質顔料(Body Pigment又はExtender Pigment)とは、主に化粧品業界に浸透している呼称で、無色又は白色(即ち、低屈折率・低隠蔽性)で、着色自由度と高滑沢性、高感触・使用感を材料機能とする、板状又は鱗片状のケイ酸塩鉱物(雲母系、特に非膨潤性の粘土鉱物)粉体をいう。化粧品(成形体や油分等と配合されたファンデーション組成とされた製品)用の原料粉体の基材である。   [1] Body pigment (Body Pigment or Extender Pigment) is a name that has mainly penetrated into the cosmetics industry. It is colorless or white (that is, low refractive index and low hiding property), and has a high degree of freedom in coloring and high lubrication. Refers to plate-like or scale-like silicate mineral (mica-based, especially non-swelling clay mineral) powders that have high function, high touch and feeling of use as material functions. It is a raw material powder base material for cosmetics (a product having a foundation composition blended with a molded product, oil, or the like).

主としてマイカ等の粘土鉱物の単体、即ち、表面水酸基の親水・疎水化等の表面処理は行っていても、酸化チタン(チタニアと呼称される二酸化チタンTiOの他、黒色の低次酸化チタンTiOXも含む)等、他の酸化物系材料の複合化までは行っていない単機能の粒状物質について、その後の開発の基点となった代表例を時系列的に列挙すると、以下のようになる(特許文献1〜6、非特許文献1〜16)。 Mainly clay minerals such as mica, that is, surface treatment such as hydrophilicity / hydrophobization of surface hydroxyl groups, titanium oxide (titanium dioxide TiO 2 called titania, black low-order titanium oxide TiOX For example, the following is a list of representative examples that have become the starting point for further development of single-function particulate materials that have not been combined with other oxide-based materials. Patent Documents 1 to 6, Non-Patent Documents 1 to 16).

(1)天然物由来の原料粉体を精製(粒子径分布調整)、低純度(タルク含む)、山口雲母(株)・浅田製粉(株)等
(2)天然物由来の原料粉体を精製(粒子径分布調整)、高純度、絹雲母(マイカ)
(3)天然物由来の原料粉体の表面処理(湿式・乾式法、基材表面の親水・疎水化)、角八魚麟箔(株)「エイトパール」、三好化成(株)・大東化成(株)・岩瀬コスファ(株)等
(4)合成雲母(金雲母の水酸基のフッ素置換や天然鉱物の水熱処理)、トピー工業(株)・コープケミカル(株)等
(1) Purification of natural product-derived raw material powder (adjusted particle size distribution), low purity (including talc), Yamaguchi Mica Co., Ltd., Asada Flour Milling Co., Ltd. (2) Purification of natural product-derived raw material powder (Particle size distribution adjustment), high purity, sericite (mica)
(3) Surface treatment of raw material powders derived from natural products (wet / dry method, hydrophilic / hydrophobic base material surface), Kakuhachi Fish Foil Co., Ltd. “Eight Pearl”, Miyoshi Kasei Co., Ltd., Daito Kasei (4) Synthetic mica (fluorine substitution of hydroxyl groups of phlogopite and hydrothermal treatment of natural minerals), Topy Industries, Ltd., Corp Chemical Co., Ltd., etc.

体質顔料の代表的な既往技術群より、現状の技術的課題を抽出すると、以下のようになる。
(1)粉体の形状や構造の制御や粉体操作が単純(精製による粒子径分布調整レベル、等)であることが多い。
(2)現状は単機能(顔料機能≒演色性と滑沢性)に特化した材料系であることから、合成材料に比べ人為的な操作を加え難く、或いは経済的に不利である。
(3)(それ故)顔料機能(演色性や滑沢性等)を改善する技術が多く、薬効機能(紫外線遮蔽等)を目的とした知財が少ない。
(4)天然物由来の原料粉体が多く、高性能粉体であるほど原料自身の枯渇等の問題は大きい(所謂“3R”のReduce(省資源化)的な観点からの対処法が必須)。
(5)既往技術群は、いわば帰納(経験又は試行錯誤・個別対応・局所最適)的に開発された方法論で、異種技術を(演繹的に)探索・適用する方向となっていない。
The current technical problems are extracted from the group of representative past technologies of extender pigments as follows.
(1) Control of the shape and structure of the powder and powder operation are often simple (particle size distribution adjustment level by refining, etc.).
(2) Since the present system is a material system specialized in a single function (pigment function≈color rendering property and lubricity), it is difficult to add an artificial operation compared to a synthetic material, or it is economically disadvantageous.
(3) (Therefore) There are many techniques for improving pigment functions (color rendering properties, lubricity, etc.), and there are few intellectual properties for the purpose of medicinal functions (such as ultraviolet shielding).
(4) The more raw material powders derived from natural products and the higher the performance of powders, the greater the problems such as depletion of the raw materials themselves (so-called “3R” reduction from the viewpoint of resource saving) is essential. ).
(5) The existing technology group is a method developed inductively (experience or trial and error / individual correspondence / local optimization), and is not in a direction to search (appropriately) heterogeneous technologies.

特に上記の最後の課題は、機能性化粧品においては、大きな問題である。機能性化粧品の基材である体質顔料の基礎物性は、その後工程の複合粉体やファンデーション特性に影響する一次特性である。従って、局所的に特性改善しても、他特性が劣化しかねない。例えば、液相中の粒子分散理論とナノ粒子充填理論に係る、粉体工学的な現象理解に立脚しなければ、技術の本質を扱うことにならない。   Especially the last subject mentioned above is a big problem in functional cosmetics. The basic physical properties of extender pigments, which are base materials for functional cosmetics, are primary characteristics that affect composite powder and foundation characteristics in the subsequent process. Therefore, even if the characteristics are improved locally, other characteristics may deteriorate. For example, the essence of the technology will not be dealt with unless it is based on the understanding of powder engineering phenomena related to particle dispersion theory and nanoparticle packing theory in the liquid phase.

粉体工学で解明されている液相中分散理論とナノ粒子充填理論に係る学術的な現象の理解を応用し、(発明として重要な立項要素である)演繹(俯瞰又は仮説検証・理論設計・全体調整)的に構造化することは必須であるが、現時点では実現されていない。その結果、体質顔料の流動性(滑沢性)等の基礎物性のみを改善した局所的な効果しか奏し得ず、機能性化粧品の複数機能の相乗という喫緊の必須要件(発明の進歩性)を本質的に解決する手段を奏し得ていない。   Applying the understanding of academic phenomena related to dispersion theory in liquid phase and nanoparticle packing theory that have been elucidated in powder engineering, deduction (which is an important element as an invention) (overview or hypothesis verification, theoretical design, Although it is essential to make a structure in terms of overall adjustment, it has not been realized at this time. As a result, only local effects that improve only basic physical properties such as fluidity (sliding property) of extender pigments can be achieved, and the urgent essential requirement (inventive step of the invention) of synergy of multiple functions of functional cosmetics. Essentially no means to solve it.

〔2〕既往技術群のパール顔料(Pearl Pigment)とは、主に化粧品業界に浸透している呼称で、特に多重の反射・散乱・干渉光(いわゆる真珠様光沢)を目途とした複合粒子をいう。化粧品用の原料粉体の添加材である。母粒子群として、マイカやタルク系のケイ酸塩鉱物のほか硼珪酸系金属酸化物等が用いられている。子粒子群として、チタニア、酸化亜鉛ZnO(亜鉛華)、酸化鉄(四三酸化鉄マグネタイトFeや三二酸化鉄ヘマタイトFe(いわゆる弁柄))、硫酸バリウムBaSO、酸化セリウムCeO、炭酸カルシウムCaCO(石灰石)等の、球状や板状の金属酸化物粒子等が用いられている。 [2] The pearl pigments (Pearl Pigments) in the past technology group are the names that have mainly penetrated into the cosmetics industry, especially composite particles that aim at multiple reflection, scattering and interference light (so-called pearly luster). Say. It is a raw material powder additive for cosmetics. As a group of mother particles, mica and talc silicate minerals as well as borosilicate metal oxides are used. As child particle groups, titania, zinc oxide ZnO (zinc white), iron oxide (iron tetroxide magnetite Fe 3 O 4 and iron sesquioxide hematite Fe 2 O 3 (so-called dial)), barium sulfate BaSO 4 , cerium oxide Spherical or plate-like metal oxide particles such as CeO 2 and calcium carbonate CaCO 3 (limestone) are used.

また、子粒子の構造や形状(モルフォロジー)例として、粒状(複数成分が多層化されることも)、棒状、膜状(二層以上に多層化されることも)、また多孔状に、付着・被覆(静電的な弱い接触状態から、化学的反応や物質転換を伴う強固な結合まで)された構造体等、多種多様なモルフォロジーを含む。   In addition, as examples of the structure and shape (morphology) of the child particles, the particles are attached in a granular form (multiple components may be multi-layered), rod-like, film-like (multi-layered in two or more layers), or porous. -It includes a wide variety of morphologies, such as coated structures (from weak electrostatic contact to strong bonds with chemical reactions and material transformations).

物質発明として、パール顔料の技術的構成要素に着目した場合、後述の参考発明と同じ(又は部分的に同じ)構成の母粒子・子粒子(材料の種類)と、本発明と部分的に同じ操作法(製法)を用いた既往技術群が、いくつか存在している。即ち、前記の体質顔料を母粒子とし、チタニア・シリカ(SiO)・アルミナ(Al)・ジルコニア(ZrO)等の球状粒子(や薄膜)を添加第二成分(子粒子)として、その後の開発の基点となった基本的な代表例を列挙すると、以下のようになる(特許文献7〜21、非特許文献12〜31)。 As a material invention, when focusing on the technical components of pearl pigments, it is partially the same as the present invention as the mother particles / child particles (type of material) having the same (or partially the same) configuration as the reference invention described later. There are several existing technical groups using the operation method (production method). That is, the above-mentioned extender pigment is used as a base particle, and spherical particles (or thin film) such as titania, silica (SiO 2 ), alumina (Al 2 O 3 ), and zirconia (ZrO 2 ) are added as a second component (child particle). The basic representative examples that have become the basis for the subsequent development are listed below (Patent Documents 7 to 21, Non-Patent Documents 12 to 31).

(1)マイカ等の粘土鉱物とチタニアとの複合粒子に関する基本特許、デュポン(株)。
(2)多層・複合化、チタニア以外にアルミナやシリコン系の表面処理等、触媒化成(株)「カバーリーフ」、メルク(株)等。
(3)子粒子が特殊形態、蓋付カップ状の水酸化アルミニウムAl(OH)粒状被覆、三好化成(株)資生堂(株)「エクセルマイカ」。
(4)子粒子が特殊形態、羽毛状の酸化亜鉛系、資生堂(株)等。
(1) Basic patent on composite particles of clay minerals such as mica and titania, DuPont.
(2) Multilayer / composite, alumina and silicon-based surface treatments in addition to titania, Catalyst Chemical Co., Ltd. “Coverleaf”, Merck Co., Ltd., etc.
(3) Child particles are in special form, cup-shaped aluminum hydroxide Al (OH) with a lid, 3 granular coating, Miyoshi Kasei Co., Ltd. Shiseido Co., Ltd. “Excel Mica”.
(4) The child particles have a special form, feather-shaped zinc oxide, Shiseido Co., Ltd.

(5)子粒子が特殊形態、レフ板又はバタフライ(蝶)状の硫酸バリウム系、資生堂(株)。
(6)子粒子が特殊形態、チタニアの角柱状(紡錘状やナノチューブを含む)化、大阪市工研(ペルオキソチタン酸アンモニウム法)等。
(7)子粒子が特殊形態、中空パール顔料、花王(株)。
(5) Barium sulfate-based, Shiseido Co., Ltd., a child particle having a special form, a reflex plate or a butterfly shape.
(6) Child particles have a special form, titania prismatic shape (including spindle shape and nanotube), Osaka City Institute of Technology (ammonium peroxotitanate method), etc.
(7) The child particles have a special form, hollow pearl pigment, Kao Corporation.

(8)子粒子が特殊形態、顆粒(毬藻)状パール顔料、テイカ(株)。
(9)子粒子がポリマー、PMMA(ポリメタクリル酸メチル、ポリメチルメタクリレート、アクリル樹脂)等、ロレアル(株)「エアロパウダー」、ノエビア(株)・資生堂(株)等。
(10)アジア系に肌色強調、ベンガラ(弁柄)酸化鉄(FeやFe)系、BASF(株)(旧エンゲルハード社)・メルク(株)(世界2大メーカー)。
(11)アジア系に肌色強調、Fe置換型マイカ(合成品)、トピー工業(株)。
(8) The child particles have a special form, granule (diatom) -like pearl pigment, Teika Co., Ltd.
(9) Child particles are polymer, PMMA (polymethyl methacrylate, polymethyl methacrylate, acrylic resin), L'Oreal Co., Ltd. “Aero Powder”, Noevir Co., Ltd., Shiseido Co., Ltd., etc.
(10) Skin color enhancement for Asians, Bengala (petal) iron oxide (Fe 3 O 4 and Fe 2 O 3 ), BASF Corp. (former Engelhard Corp.), Merck Corp. (the world's two largest manufacturers) .
(11) Skin color enhancement for Asians, Fe-substituted mica (synthetic product), Topy Industries, Ltd.

また、操作条件・材料構造・材料機能のパテントマップ分析の中で、特に材料機能を請求項として挙げた代表例を列挙すると、以下のようになる(特許文献7〜30、非特許文献32〜59)。   In addition, in the patent map analysis of operating conditions, material structure, and material function, typical examples in which the material function is cited as a claim are listed as follows (Patent Documents 7 to 30, Non-Patent Documents 32- 59).

(1)酸化セリウム(suntan長波長UVA(400〜315nm)域の紫外線遮蔽)、コーセー(株)、東北大学、大阪大学。
(2)酸化チタン(sunburn短波長UVB(315〜280nm)域の紫外線遮蔽)と酸化亜鉛(UVA紫外線遮蔽)最適配合、昭和電工(株)。
(3)自然な発色(ソフトフォーカス=透過率VS反射率)評価、日本光研(株)。
(4)使用感・心理的評価(触感試験、官能評価)、三協パイオテク(株)「トライボステーション」等、日本メナード化粧品(株)成形体の配合調整等。
(5)粉体層剪断試験(破壊包絡線評価)、粉体(成形体に対し1個の粒子)同士や壁面等との付着力(原子間力顕微鏡等)評価を含む、(株)ナノシーズ等。
(1) Cerium oxide (suntan long wavelength UVA (400 to 315 nm) ultraviolet shielding), Kose Corporation, Tohoku University, Osaka University.
(2) Titanium oxide (sunburn short wavelength UVB (315 to 280 nm) ultraviolet shielding) and zinc oxide (UVA ultraviolet shielding) optimum blend, Showa Denko K.K.
(3) Natural color development (soft focus = transmittance VS reflectivity) evaluation, Nippon Koken Co., Ltd.
(4) Feeling of use / psychological evaluation (tactile test, sensory evaluation), Sankyo Piotech Co., Ltd. “Tribo Station”, etc., and adjustment of blending of Nippon Menard Cosmetics Co., Ltd.
(5) Nanoseed Co., Ltd., including powder layer shear test (fracture envelope evaluation) and evaluation of adhesion (atomic force microscope, etc.) between powders (one particle for a molded body) and wall surfaces etc.

パール顔料の代表的な既往技術群より、現状の技術的課題を抽出すると以下のようになる。
(1)学術的には単純な複合化法に限られていて、粉体の形状や構造の制御や粉体操作が単純(工程増による多層・複合化、材料種の非人為的な形態形成に依存した特殊形態被覆、等)であることが多い。
(2)現状は主として単機能(特に顔料機能≒演色性と滑沢性)を目途とした材料系であることから、合成材料に比べ人為的な操作を加え難く、或いは経済的に不利である。
(3)天然物由来の原料粉体が多く、高性能粉体であるほど原料自身の枯渇等の問題は大きい(“3R”のReduce(省資源化)的な観点からの対処法が必須)。
(4)機能性化粧品で必須の、顔料機能(演色性や滑沢性等)と薬効機能(紫外線遮蔽等)の相乗が達成されていない。
The current technical issues are extracted from the representative group of existing pearl pigment technologies as follows.
(1) Scientifically limited to simple compounding methods, simple powder shape and structure control and powder manipulation (multi-layer / composite by increasing process, non-artificial morphogenesis of material types) It is often a special form coating that depends on
(2) Currently, the material system is mainly intended for a single function (particularly pigment function ≒ color rendering and lubricity), so that it is difficult to add man-made operations compared to synthetic materials, or it is economically disadvantageous. .
(3) The more raw material powders derived from natural products and the higher the performance of powders, the greater the problems such as depletion of the raw materials themselves (required countermeasures from the viewpoint of “3R” Reduce). .
(4) The synergy of pigment function (color rendering property, lubricity, etc.) and medicinal function (UV shielding, etc.) essential for functional cosmetics is not achieved.

(5)既往技術群は、いわば帰納(経験又は試行錯誤・個別対応・局所最適)的に開発された方法論を適用した形式となっている。
(6)その中でも特に滑沢性・使用感の特性向上や評価(特に心理的・定性的評価の定量化)は未発達で、殆どが、顔料機能(演色性等)・薬効機能(紫外線遮蔽等)を操作したために滑沢性が低下し、評価も定性的(非定量的)なアンケート形式で出願されている。技術的に相互比較し得る形式で出願されたものは見当たらず、専門分野の技術者でも容易には着想し得ない、研究室規模レベルの、別々の独立した検討レベルに留まっている。
(5) The existing technology group is in a form of applying a methodology developed inductively (experience or trial and error, individual correspondence, local optimization).
(6) Among them, the improvement and evaluation of lubricity and feeling of use (especially quantification of psychological and qualitative evaluation) are undeveloped. Most of them are pigment functions (color rendering, etc.) and medicinal functions (ultraviolet ray shielding). Etc.), the lubricity decreased, and the evaluation was filed in a qualitative (non-quantitative) questionnaire format. There are no applications filed in a form that can be compared to each other technically, and they remain at a separate, independent study level at the laboratory scale, which is not easily conceived by technical experts.

特に上記の後半の課題は、機能性化粧品の一層の高機能化のために克服すべきである。例えば、機能性化粧品の添加材であるパール顔料の基礎物性は、その後工程のファンデーション特性に影響する一次特性なので、例え局所的に特性を改善したとしても、他の特性が劣化しかねない。例えば、液相中の粒子分散理論とナノ粒子充填理論に係る、粉体工学的な現象理解に立脚しなければ、技術の本質を扱うことにならない。   In particular, the latter half of the above-mentioned problems should be overcome in order to further enhance the functionality of functional cosmetics. For example, the basic physical properties of the pearl pigment, which is an additive for functional cosmetics, are primary properties that affect the foundation properties of the subsequent process. Therefore, even if the properties are improved locally, other properties may deteriorate. For example, the essence of the technology will not be dealt with unless it is based on the understanding of powder engineering phenomena related to particle dispersion theory and nanoparticle packing theory in the liquid phase.

粉体工学で解明されている液相中分散理論とナノ粒子充填理論に係る学術的な現象の理解を応用し、(発明として重要な立項要素である)演繹(俯瞰又は仮説検証・理論設計・全体調整)的に構造化したものとは、少なくとも現時点ではなっていない。その結果、体質顔料の流動性(滑沢性)等の基礎物性のみを改善した効果しか奏し得ず、機能性化粧品の複数機能の相乗という必須要件(発明の進歩性)を本質的に解決する手段を奏し得ていない。   Applying the understanding of academic phenomena related to dispersion theory in liquid phase and nanoparticle packing theory that have been elucidated in powder engineering, deduction (which is an important element as an invention) (overview or hypothesis verification, theoretical design, What is structured in terms of overall coordination is not at least as of now. As a result, only the basic physical properties such as the fluidity (smoothness) of extender pigments can be improved, and the essential requirement (inventive inventive step) of synergy of multiple functions of functional cosmetics is essentially solved. I have not been able to play the means.

〔3〕既往技術群の手法(粒子複合化法)とは、形状又は構造が制御された粒状物質が、少なくとも二つ以上の物質から形成された、複合構造体、多孔体、顆粒体、多孔性顆粒体、複合構造顆粒体、凝集体、又は中空体であることを特徴とする形状又は構造が制御された粒状物質の製法をいう。   [3] The technique of the existing technology group (particle composite method) is a composite structure, porous body, granule, porous material in which a granular material whose shape or structure is controlled is formed from at least two substances It refers to a method for producing a granular substance having a controlled shape or structure, characterized in that it is a porous granule, a composite structured granule, an aggregate, or a hollow body.

製法発明としての技術的構成要素に着目した場合、後述の参考発明と同じ(又は部分的に同じ)構成の母粒子・子粒子(材料の種類)と、本発明と部分的に同じ操作法(製法)を用いた既往技術群が、いくつか存在している。即ち、物質・製法・機能のうち、主として方法・プロセス(製法発明)でその後の開発の基点となった基本的な代表例を列挙すると、以下のようになる(特許文献22〜29、非特許文献38〜45)。   When paying attention to technical components as a manufacturing method invention, mother particles / child particles (type of material) having the same (or partially the same) configuration as the reference invention described later, and partially the same operating method as the present invention ( There are several existing technology groups using the manufacturing method. That is, among the substances, manufacturing methods, and functions, the following is a list of basic representative examples that have become the starting point of subsequent development mainly in methods and processes (production methods) (Patent Documents 22 to 29, non-patent documents). References 38-45).

(1)固相法に類型化される手法、機械的複合化法(ボールミルやビーズミル法等)、乾式成形プロセス含む。
(2)液相法に類型化される手法、湿式の表面処理、シランカップリング、硫酸チタニルの加水分解法、ゾルゲル法、DLVO理論から計算される静電反発力とvan der Waals引力の差で決まる液中分散等。
(3)気相法に類型化される手法、乾式表面処理、各種噴霧プロセス(凍結乾燥法・噴霧乾燥法・噴霧熱分解法・化学炎法等)、化学気相成長(蒸着)CVD法・物理気相成長(蒸着)PVD法、顆粒体製造や粒子複合化等。
(4)高エネルギー製法に類型化される手法、プラズマ法や超臨界流体法等、カーボンナノチューブ等の新材料系の製法を含む。
(1) Including methods typified by solid-phase methods, mechanical compounding methods (such as ball mill and bead mill methods), and dry molding processes.
(2) Techniques categorized as liquid phase method, wet surface treatment, silane coupling, titanyl sulfate hydrolysis method, sol-gel method, difference of electrostatic repulsion force calculated from DLVO theory and van der Waals attraction Dispersed in liquid.
(3) Methods typified by vapor phase methods, dry surface treatment, various spray processes (freeze drying method, spray drying method, spray pyrolysis method, chemical flame method, etc.), chemical vapor deposition (deposition) CVD method, Physical vapor deposition (vapor deposition) PVD method, granule production, particle composite, etc.
(4) Including methods typified by high energy production methods, production methods of new materials such as carbon nanotubes, such as plasma method and supercritical fluid method.

粒子複合化法の代表的既往技術群より、現状の技術的課題を抽出すると以下のようになる。
(1)操作条件(発明の独自性)として分析した場合、粒子・粉体の均一分散(Breaking Down)と、緻密充填・成形(Building Up)とが、同時には制御されていない。その結果、材料(粉体)構造として、母粒子表面を被覆可能な子粒子を量論組成で添加すると、母粒子・子粒子夫々の凝集形成を回避できていない。凝集を回避しようとすれば、量論比より過剰に少ない子粒子しか添加し得ない(図1・2)。そのため、到達し得る材料機能に限界があった(→例えば下記のように機能性化粧品で必須の顔料機能(演色性や滑沢性等)と薬効機能(紫外線遮蔽等)の相乗が達成されていない)。
The current technical problems are extracted from the representative group of existing technology of particle composite method as follows.
(1) When analyzed as operating conditions (uniqueness of the invention), uniform dispersion of particles / powder (Breaking Down) and dense filling / forming (Building Up) are not controlled at the same time. As a result, when child particles that can cover the surface of the mother particles are added in a stoichiometric composition as a material (powder) structure, formation of aggregates of the mother particles and the child particles cannot be avoided. In order to avoid agglomeration, it is possible to add only child particles that are excessively smaller than the stoichiometric ratio (FIGS. 1 and 2). Therefore, there was a limit to the material functions that can be reached (→ For example, as described below, synergy of pigment functions (color rendering and lubricity, etc.) essential for functional cosmetics and medicinal functions (such as UV shielding) has been achieved. Absent).

(2)発明の進歩性として分析した場合、機能性化粧品で必須の、顔料機能(演色性や滑沢性等)と薬効機能(紫外線遮蔽等)との相乗を達成(又は目的とした)既往技術群が見当たらない(図1・2)。
(3)実材料系(現実に実用化されている系で、粒子径分布幅が広域等、制御上難点が多い物)に限定すると、あまり複雑な複合化法は行われていないか、材料種限定の特異的な形態変化(例えば酸化亜鉛の針状化)を利用した(従って、汎用性のない)方法が主である。合成材料系や研究室規模の既往例に比べ、人為的な操作を加え難く、或いは経済的に不利である。
(4)既往技術群は、いわば帰納(経験又は試行錯誤・個別対応・局所最適)的に開発された方法論を適用した形式となっている。
(2) History of achievement (or purpose) of synergy between pigment function (color rendering property, lubricity, etc.) and medicinal function (ultraviolet ray shielding, etc.) essential for functional cosmetics when analyzed as inventive step There is no technical group (Figs. 1 and 2).
(3) If it is limited to actual material systems (systems that are practically used and have a large particle size distribution range, such as a wide range, etc., there are many control problems) The main method is a method using a specific shape change limited to a species (for example, acicularization of zinc oxide) (and therefore not versatile). Compared with past cases of synthetic materials and laboratory scales, it is difficult to perform an artificial operation or it is economically disadvantageous.
(4) The existing technology group is in a form of applying a methodology developed inductively (experience or trial and error, individual correspondence, local optimization).

具体的に、混合物質の調製において、対象材料組成や、粉体表面の親水性・新油性による制限を受け難い、粉体の形状や構造の制御法に(固相法の一種の)機械的複合化法がある。中でも、反対方向に回転する複数の楕円形状・粉砕媒体間の剪断を利用する方法は、機械的複合化法の中でも剪断力が比較的小さめで、化粧品や薬剤を破壊せずに複合化が可能で(例えば、特許文献3)、例えば、酵母からの酵素の放出特性制御が検討されている(非特許文献2)。しかし、この方法も典型的なバッチプロセス(単位操作毎に区切って非連続で行う回分処理法)であり、生産性や工業化、コストの点で不利である他、特別の設備投資が必須で、現時点ではあまり普及していないようである。   Specifically, in the preparation of mixed substances, it is difficult to be restricted by the composition of the target material, the hydrophilicity / new oiliness of the powder surface, and mechanical (a kind of solid-phase method) for controlling the shape and structure of the powder. There is a compounding method. Above all, the method using shearing between multiple elliptical shapes and grinding media rotating in opposite directions has relatively low shearing force among mechanical compounding methods, and can be combined without destroying cosmetics and drugs. (For example, Patent Document 3), for example, control of the release characteristics of enzymes from yeast is being studied (Non-Patent Document 2). However, this method is also a typical batch process (a batch processing method performed in a non-continuous manner divided into unit operations), which is disadvantageous in terms of productivity, industrialization, and cost, and special capital investment is essential. It seems that it is not so popular at present.

混合物質の調製において、材料を限定せずに、粉体の形状や構造を制御して高機能化を達成する製法の面から検討した場合、金属アルコキシドと粒子表面水酸基との加水分解反応、加湿雰囲気中の粒子表面に生成した水膜を用いた局所加水分解法、Harding(1972)らにより提案された電気二重層のζ(ゼータ)電位の電荷符号差を利用したヘテロ凝集法、懸濁重合法、ゾルゲル法やエマルション法等がある。これらの所謂「液相プロセス」は、粘土鉱物を原料とした粉体、中でも板状又は鱗片状の粉体を適用した化粧品や薬剤分野においても、比較的多く見受けられる方法であり(マイクロカプセル製造、チタニア被覆による紫外線遮蔽等)、粉体の形状や構造の制御に関する代表的な液相法でもある。   In the preparation of mixed substances, there is no limitation on the material, and when considering the manufacturing method to achieve high functionality by controlling the shape and structure of the powder, hydrolysis reaction and humidification of metal alkoxide and particle surface hydroxyl group Local hydrolysis method using water film formed on particle surface in atmosphere, heteroaggregation method using charge sign difference of ζ (zeta) potential of electric double layer proposed by Harding (1972) et al., Suspension weight There are legal methods, sol-gel methods and emulsion methods. These so-called “liquid phase processes” are methods that are relatively common in the cosmetics and pharmaceutical fields to which powders made from clay minerals, especially plate-like or scale-like powders, are applied (microcapsule production). It is also a typical liquid phase method relating to the control of the shape and structure of the powder.

その製造原理は、水相と油相の反発に起因する構成成分の均一分散と、界面活性剤を利用した複合化とを利用するものである。比較的、粒子構造の制御性の高い方法として例示される。しかし、これらの方法は、構成成分の分散と第二成分の結晶化を時間的に同時に達成することが必要で、難制御性の典型的なバッチプロセス(=非連続的な複数工程を必須とする製法)であり、生産性や工業化・コストの点で不利である他、現在の技術では一般化された原料がなく、対象材料によって、組成や粉体特性、調製方法を模索する必要がある、等が問題である。その結果、成功例はシリカ等の合成し易く、液中のζ電位が正負で逆であるような静電引力の機能し易い材料系に散見される研究室規模の製法に分類され、本願で対象とする濃厚系スラリーと呼ばれる実際の製造現場の現実的な濃度条件(例えば40wt(重量)%以上)には不適である(例えば、非特許文献3〜5)。   The manufacturing principle uses uniform dispersion of constituent components resulting from the repulsion of the aqueous phase and the oil phase, and composite using a surfactant. It is exemplified as a method with relatively high controllability of the particle structure. However, these methods require that the dispersion of the constituent components and the crystallization of the second component be achieved simultaneously in time, and a typical batch process (= discontinuous multiple steps) that is difficult to control is essential. In addition to disadvantages in terms of productivity, industrialization, and cost, there is no generalized raw material in current technology, and it is necessary to search for the composition, powder characteristics, and preparation method depending on the target material , Etc. are problems. As a result, successful examples are classified into laboratory-scale manufacturing methods that are often found in material systems that are easy to synthesize, such as silica, and that have a positive and negative ζ potential in the liquid and that have a function of electrostatic attraction. It is unsuitable for a realistic concentration condition (for example, 40 wt (wt)% or more) in an actual manufacturing site called a concentrated slurry of interest (for example, Non-Patent Documents 3 to 5).

混合物質の調製において、(特に本発明と競合し得る)液相〜気相法の中間的な技術的特徴を有する既往例を分析する。液状物質→粒状物質の転換プロセスを具体化する場合に、想定される装置構成を例示する。量産性や連続生産性を考慮して、粉体の形状や構造の制御に関する製法を検討すると、気相合成法(気相法)が相対的に優れている。中でも、噴霧乾燥法、噴霧熱分解法、凍結乾燥法、超臨界法等、“噴霧法”を中心とする「液滴プロセス」は、乳糖や吸入製剤の工業化に成功している代表的な気相法である。   In the preparation of mixed substances, previous cases with intermediate technical characteristics of liquid phase to gas phase processes (especially competing with the present invention) are analyzed. An example of an apparatus configuration assumed when the conversion process of liquid substance → particulate substance is embodied is illustrated. Considering mass productivity and continuous productivity, the gas phase synthesis method (gas phase method) is relatively superior when a production method for controlling the shape and structure of the powder is examined. Above all, the “droplet process” centered on the “spray method” such as spray drying method, spray pyrolysis method, freeze drying method, supercritical method, etc. is a typical example of success in industrializing lactose and inhalation preparations. It is a phase method.

しかし、現在の液滴プロセスは、液相法に比べて比較的高速な乾燥過程によって、原料物質を液状物質中に溶解(又は分散)させた均一な分布状態をそのまま保ち、できるだけ短時間に固化することで複数の粒状物質の均一な分布状態を作る、という点に主眼が置かれている。例えば、中実粉体や凝集粉体、顆粒体、複合粉体の場合、ケラチンと顔料の複合粉体(特許文献3)や、乳糖とアルギン酸ナトリウムの複合粉体(非特許文献5)、吸入製剤粉体の顆粒体(非特許文献6)等、特許等としての新規性は、複数の粒状物質の均一な分布状態に起因していることが多い。従って、雲母系粉体や粘土鉱物粉体、エマルション法と同様に、粉体の形状や構造を多様且つ高制御に調整した新規な粉体(例えば複合構造の粉体、又は多孔性粉体、又は顆粒体、又はマイクロカプセル等)を製造するためには、対象材料によって、組成や粉体特性、調製方法を模索する必要がある等の問題を持っている。   However, the current droplet process is solidified in as short a time as possible by keeping the uniform distribution of the raw material dissolved (or dispersed) in the liquid material by a relatively fast drying process compared to the liquid phase method. The main point is to create a uniform distribution of a plurality of granular materials. For example, in the case of solid powder, agglomerated powder, granules, and composite powder, keratin and pigment composite powder (Patent Document 3), lactose and sodium alginate composite powder (Non-Patent Document 5), inhalation The novelty as a patent, such as a granule of a pharmaceutical powder (Non-patent Document 6), is often attributed to the uniform distribution of a plurality of granular substances. Therefore, as with mica-based powders, clay mineral powders, and emulsion methods, new powders (for example, composite-structured powders, porous powders, In order to produce a granule, a microcapsule, etc.), it is necessary to search for a composition, powder characteristics, and a preparation method depending on the target material.

液滴プロセスの多孔性粉体又は中空粉体の場合も同様で、複数の粒状物質の均一な分布状態に起因した単純な制御等が主である。多孔性粉体又は中空粉体は、液滴の熱処理温度又は液滴の移動速度等の、液滴プロセスの操作条件の調節や、ガラス系フィラーで代表的な発泡成分添加又は芯材の焼失や酸溶解除去による「バブルプロセス」で製造される。この方法には、主に、無機物系等の発泡成分を添加したガラス系材料と同様の電気炉中のバッチ処理(非連続処理)製法(例えば、特許文献6)、発泡成分添加を液滴プロセスと組み合わせた気相中の連続的な製法(例えば、特許文献7)、アゾ系物質等、無機物よりも低沸点の分解開始温度を持つ有機物を発泡成分とした製法(例えば、特許文献8)、ガソリン等の可燃性液状物質を溶媒又は分散媒とし、溶媒からの発泡を利用した気相中の連続的な製法(例えば、特許文献9)、芯材を焼失、又は酸で溶解除去する方法(例えば、特許文献10)、等がある。   The same applies to the case of a porous powder or a hollow powder in a droplet process, and simple control and the like due to a uniform distribution state of a plurality of particulate substances are mainly used. Porous powder or hollow powder can be used for adjusting the operating conditions of the droplet process, such as the heat treatment temperature of the droplet or the moving speed of the droplet, adding foaming components typical of glass fillers, or burning the core material Manufactured in a “bubble process” with acid dissolution removal. This method mainly includes a batch processing (non-continuous processing) manufacturing method (for example, Patent Document 6) in an electric furnace similar to a glass-based material to which a foaming component such as an inorganic material is added. A continuous production method in the gas phase combined with (for example, Patent Document 7), a production method using an organic substance having a decomposition starting temperature having a boiling point lower than that of an inorganic substance such as an azo substance (for example, Patent Document 8), A method of continuous production in the gas phase using a flammable liquid substance such as gasoline as a solvent or a dispersion medium and utilizing foaming from the solvent (for example, Patent Document 9), a method in which the core material is burned out or dissolved and removed with an acid ( For example, there is Patent Document 10).

しかし、これらの従来技術は、言わば無差別にガス状物質をばらまく(言わば絨毯爆撃)方式のため、かなりの確率で液滴外での発泡(言わば誤爆)が起こり、ガス状物質の液滴内部での爆発(発泡)は確率的に期待するしかなかった。そのため、多孔性又は中空構造の均一性と高制御性達成の限界は本質的には解決せず、また、液滴径分布にも幅があるため、気孔率や孔径が不均一、ほぼ確実に破裂粒子が発生する等、多くの問題が未解決であった。   However, since these conventional technologies are indiscriminately dispersed gaseous substances (so-called carpet bombing), foaming outside the droplets (so-called false explosions) occurs with considerable probability, and the inside of the droplets of gaseous substances Explosion (foaming) at was expected with probability. Therefore, the limitations of achieving uniformity and high controllability of the porous or hollow structure are not essentially solved, and since the droplet size distribution is wide, the porosity and the pore size are non-uniform, almost certainly. Many problems such as the generation of ruptured particles have not been solved.

更に、個々の既往例を分析することによって、製法としての問題点を明確化する。特に特許文献27では、母粒子・子粒子の凝集をなくすことが主たる目的にされていて、500μmのタルク等の板状粒子を第二の撹拌用媒体(ジルコニアビーズ)とし、予め粒子化(結晶化)された数10nmのチタニア等の微粒子を第二成分(子粒子)として、数100μmのジルコニアビーズと有機溶媒との媒体撹拌ミル法用いる方法論により、ナノメーター微粒子の分散性向上を目指す旨、開示されている。   Furthermore, the problems as a manufacturing method are clarified by analyzing individual past cases. In particular, in Patent Document 27, the main purpose is to eliminate the aggregation of mother particles and child particles, and plate-like particles such as 500 μm talc are used as a second stirring medium (zirconia beads), and the particles (crystallized in advance) are used. The aim is to improve the dispersibility of nanometer fine particles by a method using a medium stirring mill method of several hundreds of μm of zirconia beads and an organic solvent using fine particles such as titania of several tens of nm as a second component (child particles), It is disclosed.

化粧品組成物例として、有機溶媒の媒体撹拌ミル法やヘンシェルミキサー法と、回転円盤式の噴霧乾燥法とを方法論として用いて、該構成要素から成る粉末化粧料の製造方法が開示されている(特許文献25)。   As an example of a cosmetic composition, there is disclosed a method for producing a powder cosmetic comprising the above components using a medium stirring mill method or a Henschel mixer method of an organic solvent and a rotary disk type spray drying method as methodologies ( Patent Document 25).

予め粒子化(結晶化)された数10nmのチタニア等の微粒子を用い、数mmのジルコニアビーズと有機溶媒との媒体撹拌ミル法と、二流体ノズル式の噴霧乾燥法とを方法論とする(併用する)ことで調製された、化粧料用粉体(いわゆる顆粒体)等が開示されている(特許文献26)。   Using fine particles such as titania with a diameter of several tens of nanometers that have been preliminarily granulated (crystallized), the methodology is a medium stirring mill method of several mm of zirconia beads and an organic solvent and a two-fluid nozzle type spray drying method (combined use) Powders for cosmetics (so-called granules) and the like prepared by the above (Patent Document 26).

装置工学的な既往例としては、ミクロンオーダー以下の母粒子・子粒子の凝集回避を目的とし、二流体ノズル式・噴霧乾燥法のノズル設計・提案を方法論とした、母粒子表面への子粒子複合化法が開示されている(特許文献28)。   As a past example of equipment engineering, a child particle on the surface of the mother particle was designed with the method of designing and proposing the nozzle of the two-fluid nozzle type / spray drying method for the purpose of avoiding aggregation of the mother particle / child particle of micron order or less. A compounding method is disclosed (Patent Document 28).

数学的モデルと噴霧プロセスを併用する特許として、母粒子に高分子材料を用いて、赤道表面効果・数学的モデルにより、母粒子表面に付着する単位表面積あたりの子粒子の重量比を請求項とした粒子複合化法が開示されている(特許文献29)。   As a patent that uses both a mathematical model and a spraying process, a polymer material is used for the mother particles, and the weight ratio of the child particles per unit surface area that adheres to the mother particle surface is determined by using an equatorial surface effect / mathematical model. A particle composite method is disclosed (Patent Document 29).

しかし、以上の母粒子・子粒子の凝集回避と母粒子表面への子粒子の複合化は、液相中の粒子分散理論とナノ粒子充填理論に係る、粉体工学的な現象理解に同時に立脚しなければ、技術の本質を扱うことにならない。粉体工学で解明されている液相中分散理論とナノ粒子充填理論に係る学術的な現象の理解を応用し、(発明として重要な立項要素である)演繹(俯瞰又は仮説検証・理論設計・全体調整)的に構造化したものとは、少なくとも現時点ではなっていない。その結果、体質顔料としての流動性(滑沢性)やパール顔料としての演色性等の単機能の改善に留まり、機能性化粧品の複数機能の相乗という必須要件(発明の進歩性)を本質的に解決する手段を奏し得ていない。   However, the above-mentioned avoidance of the aggregation of the mother particles and the child particles and the combination of the child particles on the surface of the mother particles are simultaneously based on the understanding of the powder engineering phenomenon related to the particle dispersion theory in the liquid phase and the nanoparticle packing theory. Otherwise, you will not deal with the essence of technology. Applying the understanding of academic phenomena related to dispersion theory in liquid phase and nanoparticle packing theory that have been elucidated in powder engineering, deduction (which is an important element as an invention) (overview or hypothesis verification, theoretical design, What is structured in terms of overall coordination is not at least as of now. As a result, the improvement of single function such as fluidity (smoothness) as extender pigment and color rendering as pearl pigment is essential, and the essential requirement (inventive step of invention) of synergy of multiple functions of functional cosmetics is essential. It has not been possible to solve the problem.

以上の現状分析の一つの論拠として、例えば、母粒子に板状粒子(=球状粒子よりも凝集をなくすことが難しい)を用いる既往技術群が全て、有機溶媒(=多くの場合に親水表面を有する無機粉体の分散が容易)を好適例の必須用件として構成されている点や、水系の分散媒の場合は、好適例の材料種が母粒子・子粒子共に球状粒子に留まっている点を挙げる。   One reason for the above analysis of the current situation is that, for example, all the existing technical groups using plate-like particles (= harder to eliminate aggregation than spherical particles) as the mother particles are all organic solvents (= in many cases, hydrophilic surfaces are removed). In the case of an aqueous dispersion medium, both the mother particles and the child particles remain spherical particles. Point up.

これらは、上述の技術的課題(3)に整理した通り、製法特許としての技術的構成要素に着目した場合、新規な操作条件(発明の独自性)を加えなければ、目的とする進歩性を達成し得ないとする、本発明の立場を証明している。   As summarized in the above technical problem (3), when focusing on the technical components as the manufacturing process patents, if the new operating conditions (uniqueness of the invention) are not added, the intended inventive step is achieved. It proves the position of the present invention that cannot be achieved.

以上、粒子1個及び/又は粒子群(粉体層や粒子充填層、成形体、圧粉体等を含む)の外部形態や内部構造の制御法、及びその粒状物質と、制御装置に関して、(1)体質顔料、(2)パール顔料、(3)粒子複合化法、3つの観点から、特許としての技術的構成要素の問題を俯瞰すると、下記のように整理される。   As described above, regarding the control method of the external form and internal structure of one particle and / or particle group (including a powder layer, a particle packed layer, a molded body, a green compact, and the like), its granular substance, and a control device ( From the three viewpoints, 1) extender pigments, (2) pearl pigments, (3) particle compounding methods, the problems of technical components as patents are summarized as follows.

(1)粒子・粉体の均一分散(Breaking Down)と、緻密充填・成形(Building Up)とを、同時に制御した構成、が不可。
(2)液相中の粒子分散理論と、ナノ粒子充填理論とに係る、粉体工学的理論を同時に制御条件として数式化した、技術項目の抽出、が不可。
(3)機能性化粧品で必須の、顔料機能(演色性や滑沢性等)と薬効機能(紫外線遮蔽等)の相乗が、が不可。
(1) A configuration in which particle / powder uniform dispersion (Breaking Down) and dense filling / molding (Building Up) are simultaneously controlled is impossible.
(2) It is not possible to extract technical items by formulating the powder engineering theory related to the particle dispersion theory in the liquid phase and the nanoparticle packing theory simultaneously as control conditions.
(3) The synergy of pigment function (color rendering property, lubricity, etc.) and medicinal function (ultraviolet ray shielding, etc.) essential for functional cosmetics is impossible.

その結果、板状粒子を母粒子、予め固形(結晶)化されたナノメーターオーダー粒子を子粒子とした複合粒子において、母粒子・子粒子の凝集フリー、且つ、母粒子表面に子粒子が微細均一に複合化された複合粒子に関して、以下の全ての要件を満たすことは、現状では不可能であった。   As a result, in the composite particles in which the plate-like particles are the mother particles and the nanometer order particles previously solidified (crystallized) are the child particles, the mother particles and the child particles are free from aggregation and the child particles are fine on the surface of the mother particles. It has not been possible at present to satisfy all of the following requirements for uniformly composite particles.

(1)当該粒状物質の集合体(粉体層や粒子充填層、成形体、圧粉体等を含む)の、光学波長800nmの透過率の、400nmの透過率による減算(差)を、可視光透過率、光学波長400nmの透過率の、290nmの透過率による減算(差)を、紫外線遮蔽率、として、各指標を定義した時、可視光透過率が20%以下、紫外線遮蔽率が40%以上、
(2)当該粒状物質の集合体の、内部摩擦角が、15°以下、
(3)高コストな人為的操作を要せず、経済的にも問題のない操作条件(工程の改善)、
(4)特に、平均粒子径15μm以下、且つアスペクト比(=平均粒子径÷平均粒子厚)100以下の含水ケイ酸アルミニウムカリウム、又は層状ケイ酸塩、又は雲母、又は粘土鉱物製の板状の粒状物質原料と、平均粒子径0.1μm以下の予め固形(結晶)化された金属酸化物製の添加物質に好適な、発明としての技術的構成要素、が必要である。
(1) The subtraction (difference) of the transmittance at an optical wavelength of 800 nm and the transmittance at 400 nm of the aggregate (including a powder layer, a particle packed layer, a molded body, a green compact, etc.) of the particulate matter is visible. When each index is defined by subtracting (difference) between light transmittance and transmittance at an optical wavelength of 400 nm by transmittance at 290 nm as UV shielding rate, visible light transmittance is 20% or less and UV shielding rate is 40. %more than,
(2) The internal friction angle of the aggregate of the granular materials is 15 ° or less,
(3) Operation conditions that do not require high-cost artificial operation and are economically satisfactory (improvement of the process),
(4) In particular, a hydrous aluminum potassium silicate having an average particle diameter of 15 μm or less and an aspect ratio (= average particle diameter ÷ average particle thickness) of 100 or less, or a layered silicate, mica, or a plate made of clay mineral A technical component as an invention suitable for a granular material raw material and an additive material made of a metal oxide that has been pre-solidified (crystallized) with an average particle diameter of 0.1 μm or less is required.

従って、既往技術では、濃厚系スラリーと呼ばれる実際の製造現場の現実的な濃度条件(例えば40wt(重量)%以上)でのオーダードミクスチャー(均一な複合+凝集フリー)製法等、粒状物質に係る微細構造の高制御化技術の、緊急性の高い要求に応えることができなかった。   Therefore, in the existing technology, it is related to the particulate matter such as an ordered mixture (uniform composite + aggregation-free) manufacturing method under a realistic concentration condition (for example, 40 wt (% by weight) or more) called a concentrated slurry. We were unable to meet the urgent demands for high-control technology for fine structures.

特開2005−219972号公報(形状と構造を制御した雲母系粉体、及びその製造方法)、三信鉱工(株)(商品名「GOSE」)Japanese Unexamined Patent Application Publication No. 2005-219972 (Mica-based powder with controlled shape and structure, and method for producing the same), Sanshin Mining Co., Ltd. (trade name “GOSE”) 特開2008−056646号公報(化粧料)、日本メナード(株)三信鉱工(株)(商品名「STA−20C」)JP 2008-056646 A (Cosmetics), Nippon Menard Co., Ltd. Sanshin Mining Co., Ltd. (trade name "STA-20C") 特開昭54−106536号公報(雲母の精製方法)、(株)角八魚麟箔(商品名「エイトパール」)Japanese Patent Application Laid-Open No. 54-106536 (Mica Purification Method), Kakuhachi Fish Foil Co., Ltd. (trade name “Eight Pearl”) 特開2003−212721号公報(化粧用体質顔料およびその製造方法)、メルクコーポレイションJapanese Patent Application Laid-Open No. 2003-127721 (cosmetic extender pigment and method for producing the same), Merck Corporation 特開2004−161612号公報(合成雲母)、(株)コープケミカル(株)コーセーJP-A-2004-161612 (synthetic mica), Co-op Chemical Co., Ltd. Kose 特許2001524号公報(合成雲母粉体、その製造方法および該合成雲母粉体を配合した化粧料)、(株)トピー工業Japanese Patent No. 2001524 (synthetic mica powder, method for producing the same, and cosmetics containing the synthetic mica powder), Topy Industries, Ltd. 米国特許第3087827号明細書(Micaceous Flake Pigment、1963)、du Pont、「パール顔料(マイカ)の基本特許」U.S. Pat. No. 3,087,827 (Micaceous Flake Pigment, 1963), du Pont, "Basic patent for pearl pigment (mica)" 特開平8−59232号公報(板状硫酸バリウム及びその製法)、(株)堺化学工業、「板状硫酸バリウム」JP-A-8-59232 (plate-like barium sulfate and its production method), Sakai Chemical Industry Co., Ltd., “plate-like barium sulfate” 特開2000−169122号公報(非晶質リン酸カルシウム複合粒子とその製造方法および化粧料)、積水化成品工業(株)JP 2000-169122 A (Amorphous calcium phosphate composite particles, method for producing the same and cosmetics), Sekisui Plastics Co., Ltd. 特開平07−002598号公報(針状酸化チタンの製造方法)、(株)石原産業、四塩化チタン水溶液を加熱加水分解JP 07-002598 A (Method for producing acicular titanium oxide), Ishihara Sangyo Co., Ltd., Hydrolysis of aqueous solution of titanium tetrachloride 特開2004−315356号公報(針状酸化チタン微粒子その製造方法及びその用途)、大阪市工研、メタノール(MeOH)法による針状チタニア粒子製法JP 2004-315356 A (Acicular titanium oxide fine particle production method and use thereof), Osaka City Institute of Technology, Manufacturing method of acicular titania particles by methanol (MeOH) method 米国特許第2001017097号明細書(Lustrous interference pigments with black absorption color)、BASF(Engelhard Co.)商品名「Duochrome」US Patent No. 20101017097 (Lustrous interference pigments with black absorption color), BASF (Engelhard Co.) trade name “Duochrome” 特開2004−352725号公報(ガラス基材の化粧品用真珠光沢顔料)、エンゲルハード コーポレイションJP 2004-352725 A (Glass-based pearlescent pigment for cosmetics), Engelhard Corporation 特開2000−264623号公報(ドープ型雲母及び該雲母を金属酸化物で被覆したドープ型雲母の製造方法)、(株)トピー工業JP 2000-264623 A (Doped mica and method for producing doped mica obtained by coating the mica with a metal oxide), Topy Industries, Ltd. 特開2001−98186号公報(薄片状顔料及びその製造方法)、(株)メルク・ジヤパンJP 2001-98186 A (flaky pigment and method for producing the same), Merck Japan Ltd. 特開2006−21991号公報(金属ドープ酸化チタン微粒子の製造方法)、(株)関西ペイントJP 2006-21991 A (Production Method of Metal Doped Titanium Oxide Fine Particles), Kansai Paint Co., Ltd. 特開2008−115161号公報(多機能性複合粉体を配合してなる化粧料)、触媒化成工業(株)(商品名「カバーリーフ」)JP 2008-115161 A (Cosmetic compounded with multifunctional composite powder), Catalyst Chemical Industry Co., Ltd. (trade name “Coverleaf”) 特開2002−068929号公報(ケラチン含有凝集複合粒子及びそれを用いた化粧料)、(株)積水化成工業、液滴プロセス(噴霧法)顆粒体JP 2002-068929 A (Keratin-containing aggregated composite particles and cosmetics using the same), Sekisui Chemical Co., Ltd., droplet process (spray method) granules 特開2003−277216号公報(造粒物を含有する化粧料)、(株)ポーラ化成、液滴プロセス(噴霧法)による顆粒体製法JP-A-2003-277216 (Cosmetic material containing a granulated product), POLAR CHEMICAL CO., LTD., Granule production method by droplet process (spraying method) 特開2001−122615号公報(窒化ホウ素被覆球状ホウ酸塩粒子とそれを含む混合粉末及びそれらの製造方法)、(電気化学工業)、液滴プロセス(噴霧法)による窒化ホウ素(BN)顆粒体JP-A-2001-122615 (Boron nitride-coated spherical borate particles, mixed powder containing the same and manufacturing method thereof), (Electrochemical Industry), Boron nitride (BN) granules by droplet process (spraying method) 特開2003−104840号公報(崩壊性球状窒化硼素粒子並びに該粒子の製造方法及びこれを含有する化粧料)、(株)コーセー、噴霧乾燥法によるBN顆粒体JP 2003-104840 A (disintegrating spherical boron nitride particles and method for producing the particles and cosmetics containing the particles), Kose Co., Ltd., BN granules by spray drying method 特開平08−281155号公報(液体を微粒子に噴射する方法とノズル)、(株)藤崎電機「4流体ノズル法」JP 08-281155 A (Method and nozzle for injecting liquid into fine particles), Fujisaki Electric Co., Ltd. “4-fluid nozzle method” 特開2004−292398号公報(複合微細粉末の製造方法と製造装置)、(株)藤崎電機「4流体ノズル法」JP 2004-292398 A (Production method and production apparatus for composite fine powder), Fujisaki Electric Co., Ltd. “4-fluid nozzle method” 特開2006−225183号公報(還元性ガス製造装置及び方法)、火炎法による球状粒子製法JP 2006-225183 A (reducing gas production apparatus and method), spherical particle production method by flame method 特開2006−8629号公報(化粧料用粉体及び化粧料)、日立マクセル(株)、粒子複合化JP 2006-8629 A (powder for cosmetics and cosmetics), Hitachi Maxell, Ltd., particle composite 特開2008−37844号公報(粉末化粧料の製造方法)(株)資生堂、粒子複合化JP 2008-37844 A (Production method of powder cosmetics) Shiseido Co., Ltd., particle composite 特許第3606400号公報(粉体組成物の製造方法)テイカ(株)宮崎俊雅他、粒子複合化Japanese Patent No. 3606400 (Method for producing powder composition) Takeka Toshimasa Miyazaki et al., Particle composite 特許第2108700号公報(少なくとも二種類の粒子を用いてスプレーにより製造する粉末の製造方法、WO9101798、1991−02−21)LVMHモエヘネシー・ルイヴィトングループ、粒子複合化Patent No. 2108700 (Powder production method using at least two kinds of particles by spraying, WO 9101798, 1991-02-21) LVMH Moët Hennessy Louis Vuitton Group, Particle composite 特許第3118055号公報(微粒子コーティング法および装置ならびに噴霧用ノズル)日清製粉(株)、粒子複合化Japanese Patent No. 3118055 (Fine particle coating method and apparatus and spray nozzle) Nisshin Flour Milling Co., Ltd., particle composite 特開2007−212367号公報(毛細管力による微小力センサーその評価法と評価装置)、(株)岡田精工(ナノシーズ)商品名「PAF」Japanese Unexamined Patent Publication No. 2007-212367 (Evaluation Method and Apparatus for Micro Force Sensor Using Capillary Force), Okada Seiko Co., Ltd. (Nano Seeds), trade name “PAF”

鈴木伸治、絹雲母(マイカ)の特性と応用、FRAGRANCE J、No.6、P.51−56、1994、三信鉱工(株)(商品名「三信マイカ」FSE等)Shinji Suzuki, Characteristics and application of sericite (mica), FRAGANCE J, No. 6, P.I. 51-56, 1994, Sanshin Mining Co., Ltd. (trade name “Sanshin Mica” FSE, etc.) 岡村優子、愛知県粟代鉱山セリサイト鉱床、地質ニュース、Vol.540、p.49−53、1998、三信鉱工(株)Yuko Okamura, Aichi Prefecture Sasayo Mine Sericite Deposit, Geological News, Vol. 540, p. 49-53, 1998, Sanshin Mining Co., Ltd. 横山信吾、佐藤努、渡邊隆、雲母粘土鉱物の膨張性と層電化特性、粘土科学、Vol.43、p.64−70、2003Yokoyama, Shingo, Sato, Tsutomu, Watanabe, Takashi, Mica Clay Mineral Expansion and Layer Electricity, Clay Science, Vol. 43, p. 64-70, 2003 毛利邦彦、ファンデーション用粉体の開発動向、色材、Vol.69、p.530−538、1996、(株)ポーラ化成Kunihiko Mori, Development Trend of Powder for Foundations, Coloring Materials, Vol. 69, p. 530-538, 1996, Polar Chemical Co., Ltd. 鈴木正人監修、機能性化粧品(第三巻)シーエムシー出版(2007)Supervised by Masato Suzuki, Functional Cosmetics (Vol. 3) CMC Publishing (2007) 鈴木高広、化粧品開発における粉体技術ノウハウ、COSMETIC STAGE、Vol.2、No.4、p.55−62、2008、(株)ロレアルTakahiro Suzuki, powder technology know-how in cosmetic development, COSMETIC STAGE, Vol. 2, no. 4, p. 55-62, 2008, L'Oreal Co., Ltd. 古沢隆資、粘土鉱物の合成と利用、粘土科学、Vol.37、p.112−117、1997Takashi Furusawa, Synthesis and Use of Clay Minerals, Clay Science, Vol. 37, p. 112-117, 1997 北川隆司、セリサイトの利用、人口粘土、人工粘土研究会編、TIC、p.232−235、1999Takashi Kitagawa, Use of Sericite, Population Clay, Artificial Clay Study Group, TIC, p. 232-235, 1999 秋山麗三、マレーシア国におけるセリサイト質陶石、セラミックス、Vol.35、p.1064−1065、2000Akiyama Reizo, Sericite Ceramic Stone, Ceramics, Vol. 35, p. 1064-1065, 2000 鈴木高広、透明感のある光沢を持つ合成マイカ化粧料の開発、FRAGRANCE J.No.4、p.45−52、2002、(株)トピー工業、アスペクト比Takahiro Suzuki, Development of Synthetic Mica Cosmetics with Transparent Gloss, FRAGANCE J. No. 4, p. 45-52, 2002, Topy Industries, Ltd., aspect ratio 古沢隆資、粘土鉱物の合成と利用、粘土科学、Vol.44、p.112−117、2005、(株)コープケミカルTakashi Furusawa, Synthesis and Use of Clay Minerals, Clay Science, Vol. 44, p. 112-117, 2005, Coop Chemical Co., Ltd. 太田俊一、マイカの合成とその応用、粘土科学、Vol.44、p.124−128、2005、(株)トピー工業Shunichi Ota, Synthesis of Mica and its Application, Clay Science, Vol. 44, p. 124-128, 2005, Topy Industries, Ltd. 遠井慎吾、松井順一、顔料表面処理技術によるくすみ防止素材の開発、FRAGRANCE J、No.3、p.16−20、2007、(株)カネボウ、「セリサイト(絹雲母(マイカ))透明化処理」Shingo Toi, Junichi Matsui, Development of Dullness Prevention Material by Pigment Surface Treatment Technology, FRAGRANCE J, No. 3, p. 16-20, 2007, Kanebo Co., Ltd., “Sericite (sericite (mica)) transparency treatment” M.Iijima、M.Tsukada、H.Kamiya、Effect of particle size on surface modification of silica nanoparticles by using silane coupling agents and their dispersion stability in methylethylketone、Journal of Colloid and Interface Science、Vol.307、418−424(2007)M.M. Iijima, M.I. Tsukada, H .; Kamiya, Effect of particulate size on surface modification of silico nanoparticulates by capping and binding instability and thirssing. 307, 418-424 (2007) 大江昌彦、城下浩、肌の透明感と角質層の光学特性との関連性について、Fragrance J、No.4、p.38−44、2002Masahiko Oe, Hiroshi Shiroshita, Fragrance J, No. 5 on the relationship between the transparency of the skin and the optical properties of the stratum corneum. 4, p. 38-44, 2002 安孫子昌周、ファンデーション用合成マイカ粉体の開発、Fragrance J、No.6、p.65−70、2006Masako Abiko, Development of Synthetic Mica Powder for Foundation, Fragrance J, No. 6, p. 65-70, 2006 日置亜也子、角柱状チタンサブミクロン微粒子の調製、IEEJ Trans SM、Vol.124、p.28−29、2004Ayako Hioki, Preparation of prismatic titanium submicron fine particles, IEEE Trans SM, Vol. 124, p. 28-29, 2004 中平敦、久保敬、ナノチューブ状HTiOの合成と構造評価、マテリアルインテグレーション、Vol.18、No.1、p.15−19、2005Jun Nakahira, Takashi Kubo, Synthesis and structural evaluation of nanotube-like HTiO, Material Integration, Vol. 18, no. 1, p. 15-19, 2005 春日智子、チタニアナノチューブの合成と機能化、マテリアルインテグレーション、Vol.18、No.1、p.26−30、2005、針状粒子、液相法Tomoko Kasuga, Synthesis and Functionalization of Titania Nanotubes, Material Integration, Vol. 18, no. 1, p. 26-30, 2005, acicular particles, liquid phase method 松田厚範、ベクトルプロセシングによる機能性チタニアナノコーティングの低温合成、マテリアルインテグレーション、Vol.18、No.11、p.31−39、2005Matsuda Atsunori, Low-temperature synthesis of functional titania nanocoating by vector processing, Material integration, Vol. 18, no. 11, p. 31-39, 2005 瀬戸章文、奥山喜久夫、CVDによるZnO微粒子の製造と形態制御、ケミカルエンジニアリング、Vol.40、No.6、p.25−30、1995、針状酸化亜鉛粒子Akifumi Seto, Kikuo Okuyama, Production and control of ZnO fine particles by CVD, Chemical Engineering, Vol. 40, no. 6, p. 25-30, 1995, acicular zinc oxide particles D.Christophe、川本真、可児俊之、後藤達也、鈴木高広、エアロパウダーファンデーションの開発、Fragrance J、No.6、p.40−48、2006、(株)ロレアル、高分子添加物D. Christophe, Makoto Kawamoto, Toshiyuki Kani, Tatsuya Goto, Takahiro Suzuki, Development of Aero Powder Foundation, Fragrance J, No. 6, p. 40-48, 2006, L'Oreal Co., Ltd., polymer additive 福井寛、化粧品とドラッグデリバリーシステムへの応用、機械の研究、Vol.57、p.203−216、2005、(株)資生堂「PMMA」Hiroshi Fukui, application to cosmetics and drug delivery systems, research on machinery, Vol. 57, p. 203-216, 2005, Shiseido "PMMA" 小川克基、透明感仕上がり感に優れた高機能性パール剤の開発と応用、FRAGRANCE J、No.9、p.70−71、2004、(株)資生堂、「羽毛状酸化亜鉛」Katsumi Ogawa, Development and application of high-performance pearl agent with excellent finish of transparency, FRAGRANJ, No. 9, p. 70-71, 2004, Shiseido Co., Ltd. “Feathered zinc oxide” 藤原直三、化粧品用パール顔料、COSMETIC STAGE、Vol.2、No.4、p.55−62、2008Naozo Fujiwara, Pearl pigment for cosmetics, COSMETIC STAGE, Vol. 2, no. 4, p. 55-62, 2008 八木克彦、形態制御ハイブリッド粉体の若返りメーキャップへの応用、FRAGRANCE J、No.3、p.10−15、2006、(株)資生堂、「レフ板(硫酸バリウム)」Katsuhiko Yagi, Application of morphology-controlled hybrid powder to rejuvenation makeup, FRAGRANJ, No. 3, p. 10-15, 2006, Shiseido Co., Ltd., “Ref board (barium sulfate)” 宮崎巧、化粧品分野における機能性粉末の構造と機能、触媒化成技報、Vol.17、p.67−74、2000、触媒化成工業(株)(商品名「カバーリーフ」)Taku Miyazaki, Structure and function of functional powder in the cosmetics field, Catalysis Chemical Technical Report, Vol. 17, p. 67-74, 2000, Catalytic Chemical Industry Co., Ltd. (trade name “Coverleaf”) 田中巧、化粧料用粉体の表面処理技術とその応用に関する総説、J.Jpn.Colour Mater、Vol.79、p.67−74、2006、触媒化成工業(株)(商品名「カバーリーフ」)Tanaka Takumi, review of cosmetic powder surface treatment technology and its applications, Jpn. Color Mater, Vol. 79, p. 67-74, 2006, Catalyst Chemical Industry Co., Ltd. (trade name “Coverleaf”) 堀野政章、肌の形態及び色調トラブル修正効果を有する粉体の開発動向、FRAGRANCE J、No.4、P.53−58、2002、(株)三好化成(株)資生堂、(商品名「エクセルマイカ」)、「水酸化アルミニウムAl(OH)3」Horino Masaaki, Development Trends of Powders with Skin Morphology and Color Tone Trouble Correction Effects, FRAGRANCE J, No. 4, P.I. 53-58, 2002, Miyoshi Kasei Co., Ltd. Shiseido, (trade name “Excelmica”), “Aluminum hydroxide Al (OH) 3” 高田潤、伝統顔料の赤に挑む、現代化学、No.10、p.25−30、2005、「弁柄(ベンガラ)」Jun Takada, challenge to the red of traditional pigments, modern chemistry, No. 10, p. 25-30, 2005, “Bengara” J.Wu、B.Huang、M.Wang、A.Osaka、Titania Nanoflowers with High Photocatalytic Activity、J.Am.Ceram.Soc.Vol.89、p.2660−2663、2006、チタニア異形体J. et al. Wu, B.W. Huang, M.M. Wang, A.M. Osaka, Titania Nanoflowers with High Photocatalytic Activity, J. Am. Am. Ceram. Soc. Vol. 89, p. 2660-2663, 2006, titania variant 蒲田佳昌、岡英雄、多機能性マリモ状チタンの開発と化粧品原料としての応用、FRAGRANCE J.No.3、p.45−49、2007、(株)テイカ、硫酸チタニルによるチタニア顆粒体Yoshimasa Hamada, Hideo Oka, Development of Multifunctional Marimo-like Titanium and Application as Cosmetic Raw Material, FRAGRANCE J. No. 3, p. 45-49, 2007, Takeka Co., Ltd., titania granules with titanyl sulfate H.Xu、L.Gao、H.Gu、J.Guo、D.Yan、Synthesis Of Solid, Spherical CeO2 Particles Prepared By The Spray hydrolysis reaction method、J.Am.Ceram.Soc.vol.85、p.139−144、2002、セリアH. Xu, L. Gao, H .; Gu, J. et al. Guo, D.C. Yan, Synthesis Of Solid, Spherical CeO2 Particles Prepared By The Spray hydration reaction method, J. Biol. Am. Ceram. Soc. vol. 85, p. 139-144, 2002, ceria 矢部信良、佐藤次雄、酸化セリウムを用いた化粧品用紫外線遮断剤の開発、マテリアルインテグレーション、Vol.16、No.2、p.25−29、2003、(株)コーセー、セリアNobuyoshi Yabe, Tsuguo Sato, Development of UV blockers for cosmetics using cerium oxide, Material Integration, Vol. 16, no. 2, p. 25-29, 2003, Kose Co., Ceria 増井敏行、今中信人、セリウムの紫外線遮断材への応用、Bulletin of CerSJ、Vol.42、p.851−855、2007、セリアToshiyuki Masui, Nobuto Imanaka, Application of cerium to UV blocking material, Bulletin of CerSJ, Vol. 42, p. 851-855, 2007, Ceria 細見恵児、新規フルオロシリコーン処理粉体の開発とファンデーションへの応用、FRAGRANCE J.No.12、p.131−139、2003、日本メナード化粧品(株)、高分子被覆(表面処理)Keiko Hosomi, Development of new fluorosilicone-treated powder and application to foundation, FRAGRANCE J. No. 12, p. 131-139, 2003, Nippon Menard Cosmetics Co., Ltd., polymer coating (surface treatment) 津幡和昌、粉体表面の形態制御により調整された化粧品用複合粉体の機能、日本化学会第87春季年会予稿集、2B7−35、2007、日本メナード化粧品(株)、三信鉱工(株)商品名「STA−20C」「GOSE」及び成形体の配合調整Kazumasa Tsukuma, Function of Composite Powder for Cosmetics Adjusted by Morphological Control of Powder Surface, Proceedings of the 87th Annual Meeting of the Chemical Society of Japan, 2B7-35, 2007, Nippon Menard Cosmetics Co., Ltd., Sanshin Mining Co., Ltd. ( Co., Ltd. Trade name "STA-20C" "GOSE" and molding adjustment 院去貢、田原隆志、微小ビーズを用いたビーズミルにおける凝集ナノ粒子の分散、粉体工学会誌、Vol.41、No.8、p.578−585、(株)寿工業、媒体撹拌型粉砕装置(ビーズミル)Mitsuru Inoue, Takashi Tahara, Dispersion of Aggregated Nanoparticles in a Bead Mill Using Fine Beads, Journal of Powder Engineering, Vol. 41, no. 8, p. 578-585, Kotobuki Kogyo Co., Ltd., medium stirring type crusher (bead mill) 堺英樹、塩素法で合成した球状酸化チタンの特性、粉体及び粉末冶金、Vol.53、p.334−338、2006、化学炎法による球状粒子Hideki Tsuji, Characteristics of Spherical Titanium Oxide Synthesized by Chlorine Method, Powder and Powder Metallurgy, Vol. 53, p. 334-338, 2006, spherical particles by chemical flame method Y.Takao、M.Sando、Al−System Non−Oxide Spherical Powder Synthesis by Liquefied Petroleum Gas Firing、J.Am.Ceram.Soc.Vol.88、p.450−452、2005、化学炎法による球状粒子製法Y. Takao, M.M. Sando, Al-System Non-Oxide Spherical Powder Synthesis by Liquidated Petroleum Gas Fire, J. Am. Am. Ceram. Soc. Vol. 88, p. 450-452, 2005, spherical particle production by chemical flame method 古澤邦夫、安斉誓、高分子ラテックスと球状シリカのヘテロ凝集、高分子論文集、Vol.44、No.6、p.483−489、1987、ζ電位差によるヘテロ凝集法Furusawa Kunio, Ansei Osamu, Hetero-aggregation of polymer latex and spherical silica, Polymer Papers, Vol. 44, no. 6, p. 483-489, 1987, hetero-aggregation method by zeta potential difference 古澤邦夫編、混錬分散の基礎と先端的応用技術、テクノシステム、p.59−68(2003)Kunio Furusawa, Kneading Dispersion Basics and Advanced Application Technology, Techno System, p. 59-68 (2003) 岡田達裕、植松聡、定木淳、藤田豊久、粒子径の異なるサブミクロン微粒子混合物の異種凝集を用いた分離、環境資源工学、Vol.53、No.4、p.191−198、2006、ζ電位差によるヘテロ凝集法Tatsuhiro Okada, Kaoru Uematsu, Kaoru Sadagi, Toyohisa Fujita, Separation of Submicron Particle Mixtures with Different Particle Sizes Using Different Agglomeration, Environmental Resource Engineering, Vol. 53, no. 4, p. 191-198, 2006, hetero-aggregation method by ζ potential difference 日本液体微粒化学会編、アトマイゼーションテクノロジー、森北出版、pp.110−113、2001、噴霧法(液相プロセス)Edited by Japanese Society of Liquid Atomization, Atomization Technology, Morikita Publishing, pp. 110-113, 2001, spray method (liquid phase process) 黒岩昭郎、タルクの化粧品への新しい展開、FRAGRANCE J.No.12、p.131−139、2003、(株)日本光研、各種材料系における透過率VS反射率マップ(光学的機能の演繹的アプローチ法)Akuro Kuroiwa, new developments in talc cosmetics, FRAGANCE J. No. 12, p. 131-139, 2003, Nippon Koken Co., Ltd., transmittance VS reflectance map in various material systems (a deductive approach to optical functions) R.L.Carr、Classifying flow properties of solids、Chem.Eng.Vol.72、p.69−72、1965、Carr定数の定義R. L. Carr, Classifying flow properties of solids, Chem. Eng. Vol. 72, p. 69-72, 1965, Carr constant definition Standard Shear Testing Method for Bulk Solids Using the Jenike Shear Cell、ASME−D、6128−97、Jenike法(レシプロ型・粉体層剪断評価法)規格Standard Shear Testing Method for Bulk Solids Using the Jenike Shear Cell, ASME-D, 6128-97, Jenike Method (Reciprocating Type / Powder Layer Shear Evaluation Method) Standard 綱川浩、粉体の流動性の評価、粉体工学会誌、Vol.19、p.516−521、1982、Jenike法(レシプロ型・粉体層剪断評価法)Tsunakawa Hiroshi, Evaluation of Fluidity of Powder, Journal of Powder Engineering, Vol. 19, p. 516-521, 1982, Jenike method (reciprocating type, powder layer shear evaluation method) 樫本明生、板状マイカ/微小ポリメチルメタクリレート球状粉体混合系の組成と粉体物性、色材協会誌、Vol.74、p.593−597、2001、(株)花王(株)三協パイオテク、レシプロ型・粉体層剪断評価法Akio Enomoto, Composition and powder properties of plate-like mica / micro-polymethylmethacrylate spherical powder mixed system, Journal of Color Material Association, Vol. 74, p. 593-597, 2001, Kao Corporation Sankyo Piotech, reciprocating type, powder layer shear evaluation method 廣田満昭、粉体層力学物性の測定とその応用、粉体工学会誌、Vol.41、p.197−205、2004、粉体層剪断評価Mitsuda Hamada, Measurement of mechanical properties of powder layer and its application, Journal of Powder Engineering, Vol. 41, p. 197-205, 2004, powder layer shear evaluation 高尾泰正、浅井巌、島田泰拓、粒子モルフォロジー制御による合成・評価・材料開発、静電気学会誌、Vol.29、p.218−223、2005Yasumasa Takao, Satoshi Asai, Yasaku Shimada, Synthesis / Evaluation / Material Development by Controlling Particle Morphology, Journal of Electrostatic Society, Vol. 29, p. 218-223, 2005 飯田健夫、高級感(感性)を設計するための計測・評価法、MATERIALSTAGE、Vol.6、p.1−5、2007、官能評価等Takeo Iida, Measurement / Evaluation Method for Designing Luxury (Sensitivity), MATERIALSTAGE, Vol. 6, p. 1-5, 2007, sensory evaluation, etc. 日本工業規格、塗料一般試験方法JIS−K5600、1998Japanese Industrial Standard, Paint General Test Method JIS-K5600, 1998 日本工業規格、顔料試験方法JIS−K5101、2004Japanese Industrial Standard, Pigment Test Method JIS-K5101, 2004 日本工業規格、ファインセラミックス薄膜の光透過率試験方法JIS−R1635、1998、紫外・可視光透過率規格Japanese Industrial Standard, Test Method for Light Transmittance of Fine Ceramics Thin Film JIS-R1635, 1998, Ultraviolet / Visible Light Transmittance Standard 日本薬局方、粉体の流動性、第26章、第15改正日局、4242−4247、2006、粉体層剪断評価・規格Japanese Pharmacopoeia, Powder Flowability, Chapter 26, 15th Amendment, 4242-4247, 2006, Powder Layer Shear Evaluation / Standard G.L.Messing,S.C.Zhang,G.V.Jayanthi、Ceramic Powder Synthesis by Spray Pyrolysis,J.Am.Ceram.Soc.vol.76、p.2707−2726,1993G. L. Messaging, S.M. C. Zhang, G .; V. Jayanthi, Ceramic Powder Synthesis by Spray Pyrolysis, J. et al. Am. Ceram. Soc. vol. 76, p. 2707-2726, 1993 蓑嶋裕典、松嶋景一郎、篠原邦夫、噴霧乾燥造粒法により調製された顆粒の内部空隙率の推算、化学工学論文集、Vol.30、p.381−384、2004Hironori Takashima, Keiichiro Matsushima, Kunio Shinohara, Estimation of internal porosity of granules prepared by spray-drying granulation method, Chemical Engineering Papers, Vol. 30, p. 381-384, 2004 森隆昌、椿淳一郎、微粒子分散系制御の新展開、粉体工学会誌、Vol.45、p.835−843、2008Takamasa Mori, Shinichiro Mori, New Development of Fine Particle Dispersion Control, Journal of Powder Engineering, Vol. 45, p. 835-843, 2008 神谷秀博、飯島志行、ナノ粒子の分散・凝集挙動の評価と制御、色材、Vol.82、p.214−218、2009Hidehiro Kamiya, Shiyuki Iijima, Evaluation and Control of Dispersion / Aggregation Behavior of Nanoparticles, Coloring Materials, Vol. 82, p. 214-218, 2009

上記の現状分析に鑑み、本発明者らは、既往技術群の技術的課題を抜本的に解決することを可能とする粒状物質の形態制御法、及びその粒状物質と制御装置の開発を目標に鋭意研究を積み重ねた結果、液相中の粒子分散理論と、ナノ粒子充填理論に係る、粉体工学的・学術的な現象の理解が進展しつつある点に着目した。   In view of the above-described analysis of the present situation, the present inventors have aimed to develop a form control method for particulate matter, and the particulate matter and control device that can drastically solve the technical problems of the existing technology group. As a result of earnest research, we focused on the progress of understanding of powder engineering and academic phenomena related to particle dispersion theory in liquid phase and nanoparticle packing theory.

粒子に働く微小力は、van der Waals(又はLondon−van der Waals)引力、分子間力、静電気力、液架橋力(毛管凝縮力)等から構成され、取り扱う雰囲気(湿度、真空度、構成ガス組成等)や、粉体特性(粒子径、モルフォロジー(外的形状、内的構造等)、巨視的扁平度、微視的表面粗さ、材質に基づく親水(撥油)〜疎水(撥水)性等により影響を受け、これらが、個々の材料系で適宜選択され、制御して用いられている。   The micro force acting on the particle is composed of van der Waals (or London-van der Waals) attractive force, intermolecular force, electrostatic force, liquid bridging force (capillary condensing force), etc., and handled atmosphere (humidity, vacuum, constituent gas) Composition) and powder characteristics (particle diameter, morphology (external shape, internal structure, etc.), macroscopic flatness, microscopic surface roughness, and hydrophilic (oil repellent) to hydrophobic (water repellent) based on material These are influenced by the properties and the like, and are appropriately selected and controlled in each material system.

この中で、本発明者らは、静電ホモ反発力・静電ヘテロ凝集力・Van der Waals凝集力・液架橋凝集力が、大気中(=水分が本質的に存在)はもちろん、多くの雰囲気中で粒子に働く付着力の支配的因子であり、特に液相中の粒子の付着力の中で、最も影響度が大きいと考えられていること、に着目した。   Among them, the present inventors have many electrostatic homo-repulsive forces, electrostatic hetero-cohesive forces, Van der Waals cohesive forces, and liquid-crosslinking cohesive forces in the atmosphere (= water is essentially present) as well as many We paid attention to the fact that it is the dominant factor of the adhesion force acting on the particles in the atmosphere, and is considered to have the greatest influence among the adhesion forces of the particles in the liquid phase.

粒子分散理論において、液相プロセスは、粒子・粉体の制御性と、工程の経済性との整合が比較的とりやすい方法論であり、粒子・粉体の均一分散(Breaking Down)において、既往例でも用いられている(図1)。一方、緻密充填・成形(Building Up)に関して、製剤の打錠工程において、主に乾式(固相)プロセスとして、六方細密充填等数学的モデルを実材料系に適用する既往例が種々行われている。   In the particle dispersion theory, the liquid phase process is a methodology that is relatively easy to match the controllability of particles / powder and the economics of the process. In the case of uniform dispersion of particles / powder (Breaking Down) But it is also used (Fig. 1). On the other hand, with regard to dense filling / molding (Building Up), various examples of applying a mathematical model such as hexagonal close-packing to an actual material system are mainly performed as a dry (solid phase) process in the tableting process of a preparation. Yes.

この両者を組み合わせると、静電「斥力」を母・子粒子の同種同士の均一分散に用い、母粒子表面を被覆可能な子粒子を量論組成で複合化しつつ、同時に母粒子・子粒子夫々の凝集形成を回避した(所謂)オーダードミクスチャー(Ordered Mixture=均一な複合+凝集フリー)を、所与し得る可能性が見出せる。   Combining both, electrostatic “repulsive force” is used to uniformly disperse the same kind of mother and child particles, and the child particles that can cover the surface of the mother particles are combined in a stoichiometric composition, while the mother particles and child particles are simultaneously It is possible that a so-called ordered mixture (ordered mixture = homogeneous complex + aggregation-free) that avoids the formation of agglomerates is given.

しかし、現時点では、粒子分散理論において、母粒子表面を被覆可能な子粒子を量論組成で添加すると、粒子相互の物理的接触が発生し得るにも関わらず「(恰も)分散には限界がない(=無限に分散し得る)」かのように、粒子充填理論が全く顧慮されていない。   However, at present, in the particle dispersion theory, when the child particles capable of covering the surface of the mother particles are added in a stoichiometric composition, although there is a possibility that physical contact between the particles may occur, “(限界) is limited in dispersion. The particle packing theory is not taken into account at all, as if it was “not (= can be infinitely dispersed)”.

特に濃厚系スラリーと呼ばれる実際の製造現場の現実的な濃度条件下(例えば40wt(重量)%以上)では、このような言わば「無限に分散し得る」と仮定した計算式では、子粒子の凝集を回避できない。その結果、現時点では、母粒子・子粒子夫々の凝集形成を回避できていないか、凝集を回避しようとすれば、量論比より過剰に少ない子粒子しか添加し得ないという極めて大きな問題状況に留まっている(図2)。   In particular, under the realistic concentration conditions (for example, 40 wt (weight)% or more) of an actual manufacturing site called a concentrated slurry, the calculation formula assumed to be “infinitely dispersible” in this way, the aggregation of the child particles Cannot be avoided. As a result, at present, the formation of agglomeration of the mother particles and the child particles has not been avoided, or if trying to avoid agglomeration, it is a very serious problem that only child particles that are excessively smaller than the stoichiometric ratio can be added. It remains (Figure 2).

更に、近年、所謂ナノメーターサイズ(サブミクロン以下)の微粒子(ナノ粒子)の実用化が進展したという状況変化が見られる。粉体工学等の学術的レベル(研究室規模)では、液相中の粒子分散理論と、ナノ粒子・充填理論とを相乗させようとする試みが、数学的アプローチから実施されている。   Furthermore, in recent years, there has been a change in the situation that so-called nanometer-sized (submicron or smaller) fine particles (nanoparticles) have been put into practical use. At the academic level (laboratory scale) such as powder engineering, attempts to synergize the particle dispersion theory in the liquid phase with the nanoparticle / packing theory are being carried out from a mathematical approach.

しかし、本発明者らは、その工業的実用化や検証(実施例)としては、あくまで数学的計算によるモデル範囲内や、ラボレベルの少量試料に留まっていて、(本発明のような)現実的規模の材料特性上の検証や、技術的必須項目の抽出に成功した先例は見当たらない。しかし、本発明者らは、これらは、既往の技術群が経験則に基づく知見の蓄積で得られた成果であったためで、現象の「本質的な限定要素」が明確化されていないこと、異分野の知見を組み合わせるという発想が希薄であること、等が理由であって、工業技術としての限界ではない、と考えた。   However, the inventors of the present invention, as their practical application and verification (examples), remain within a model range based on mathematical calculations or a small amount of samples at a laboratory level. There are no precedents that succeeded in verifying material properties on a scale and extracting technically essential items. However, the present inventors, because these are the results obtained by accumulating knowledge based on empirical rules in the past technology group, that the "essential limiting element" of the phenomenon has not been clarified, We thought that the idea of combining knowledge from different fields was rare, and that it was not the limit of industrial technology.

本発明は、現状では不可能であった新規な形態制御法による粒状物質の凝集体及びその製造方法を提供することを目的とするものである。   An object of the present invention is to provide an aggregate of granular materials by a novel form control method that is impossible at present and a method for producing the same.

上記の課題を解決するための、参考発明は、粒子径30μm未満、及び、アスペクト比(粒子径の粒子厚さによる除算(商))が100以下の、金属酸化物の、板状・棒状・紡錘状又は鱗片状の粒状物質(母粒子)、及び、粒子径0.1μm未満の、金属酸化物の粒状物質(子粒子)、より構成される、複合粒子を製造する方法において、粒状物質を、水系溶媒、アルコールないしエーテル系溶媒より選ばれる液状物質(分散媒体)中に分散し、粒状物質を含む液状物質(混合液体)を製造し、混合液体中の、粒状物質の分散度と液状物質の乾燥速度を、制御因子として選択し、混合液体中で作用するvan der Waals引力と、界面電気二重層の重なりに基づく静電反発力との、両微小力間の相互作用によって定まる、混合液体中の粒状物質の平均表面間距離(LDLVO)を算出すると共に、同時に、混合液体中に含まれる粒状物質の固形分濃度と、粒子径とによって定まる、混合液体中の粒状物質の平均表面間距離(LWoodcock)を、別途算出して、混合液体中の粒状物質の平均表面間距離を「LDLVO≧LWoodcock」となるよう、混合液体中の粒状物質を高分散化する制御を行うと共に、同時に、混合液体を100μm未満の液状物質(液滴)とし、液滴の制御温度を−100〜10000℃となるように、液状物質の乾燥を高速度化する制御を行うことにより、母粒子と子粒子が単独で凝集することなく、母粒子表面に子粒子が均一状態又は局所的に制御された不均一状態で被覆された形態・形状又は構造を有する複合粒子を作製することを特徴とする複合粒子の製造方法、である。
また、第1の発明は、粒子径0.1μm未満の金属酸化物の粒状物質が凝集してなる中実又は中空の凝集体の製造方法において、
上記粒状物質を、水系溶媒、アルコールないしエーテル系溶媒より選ばれる分散媒体中に分散し、上記粒状物質を含む混合液体を製造し、
上記混合液体中で作用するvan der Waals引力と、界面電気二重層の重なりに基づく静電反発力との両微小力間の相互作用によって定まる上記混合液体中の上記粒状物質の平均表面間距離(LDLVO)を算出すると共に、上記混合液体中に含まれる上記粒状物質の固形分濃度と粒子径とによって定まる上記混合液体中の上記粒状物質の平均表面間距離(LWoodcock)を算出し、
上記混合液体中の粒状物質の平均表面間距離が「LDLVO≧LWoodcock」となるように上記混合液体中の上記粒状物質を分散させると共に、
上記混合液体を100μm未満の液滴とし、該液滴から上記分散媒体を蒸発させて乾燥させることを特徴とする凝集体の製造方法にある。
In order to solve the above problems, the reference invention is a plate-like, rod-like, metal oxide having a particle diameter of less than 30 μm and an aspect ratio (division of particle diameter by particle thickness (quotient)) of 100 or less. In a method for producing a composite particle comprising a spindle-shaped or scale-like granular material (mother particles) and a metal oxide granular material (child particles) having a particle diameter of less than 0.1 μm, , Dispersed in a liquid substance (dispersion medium) selected from aqueous solvents, alcohols or ether solvents, to produce a liquid substance (mixed liquid) containing a particulate substance, and the degree of dispersion of the granular substance and the liquid substance in the mixed liquid The liquid mixture is determined by the interaction between van der Waals attractive force acting in the mixed liquid and the electrostatic repulsion force based on the overlap of the interfacial electric double layer. Grain inside To calculate the average surface distance of substance (L DLVO), at the same time, the solid concentration of particulate matter contained in the liquid mixture, determined by the particle diameter and the average surface distance of the particulate matter in the mixed liquid (L (Woodcock ) is calculated separately, and the particulate matter in the mixed liquid is controlled to be highly dispersed so that the average distance between the surfaces of the particulate matter in the mixed liquid becomes “L DLVO ≧ L Woodcock ”. By making the mixed liquid a liquid substance (droplet) of less than 100 μm and controlling the speed of drying of the liquid substance so that the control temperature of the droplet becomes −100 to 10000 ° C., the mother particle and the child particle The composite particles having the form, shape, or structure in which the child particles are coated in a uniform state or a locally controlled non-uniform state on the surface of the mother particles without agglomerating alone. Method for producing a composite particle according to symptom is.
The first invention is a method for producing a solid or hollow aggregate obtained by agglomerating a particulate material of a metal oxide having a particle diameter of less than 0.1 μm.
Dispersing the particulate material in a dispersion medium selected from an aqueous solvent, alcohol or ether solvent to produce a mixed liquid containing the particulate material,
The average inter-surface distance of the particulate matter in the mixed liquid determined by the interaction between both micro forces of the van der Waals attractive force acting in the mixed liquid and the electrostatic repulsive force based on the overlap of the interfacial electric double layer ( L DLVO ) and calculating the average inter-surface distance (L Woodcock ) of the particulate material in the mixed liquid determined by the solid content concentration and particle size of the particulate material contained in the mixed liquid,
Dispersing the particulate material in the mixed liquid so that the average inter-surface distance of the particulate material in the mixed liquid is “L DLVO ≧ L Woodcock ”;
In the method for producing an aggregate, the mixed liquid is made into droplets of less than 100 μm, and the dispersion medium is evaporated from the droplets and dried.

また、参考発明は、上記製造方法により製造される、粒子径30μm未満、及び、アスペクト比が100以下の、金属酸化物の、板状・棒状・紡鐘状又は鱗片状の粒状物質(母粒子)、及び、粒子径0.1μm未満の、金属酸化物の粒状物質(子粒子)、より構成される、複合粒子であって、母粒子と子粒子が単独で凝集することなく、母粒子表面に子粒子が均一状態又は局所的に制御された不均一状態で被覆された形態・形状又は構造を有することを特徴とする複合粒子、である。
また、第2の発明は、上記第1の発明の製造方法により製造された凝集体にある。
In addition, the reference invention is a metal oxide plate-like, rod-like, bell-like or scale-like granular material (mother particle) produced by the above production method and having a particle diameter of less than 30 μm and an aspect ratio of 100 or less. ) And a particulate material (child particle) of metal oxide having a particle diameter of less than 0.1 μm, and the surface of the mother particle without agglomeration of the mother particle and the child particle alone The composite particles are characterized by having a shape, shape, or structure in which the child particles are coated in a uniform state or a locally controlled non-uniform state.
Moreover, 2nd invention exists in the aggregate manufactured by the manufacturing method of the said 1st invention.

また、上記の粒状物質を原料とする凝集体の材料特性において、可視光透過率と紫外線遮蔽率を評価指標として選択し、光学波長800nmの透過率の、400nmの透過率による減算(差)を、可視光透過率、光学波長400nmの透過率の、290nmの透過率による減算(差)を、紫外線遮蔽率、として、各指標を定義し、可視光透過率が20%以下、及び/又は、紫外線遮蔽率が40%以上であることが好ましい。   In addition, in the material characteristics of the aggregate using the above granular material as a raw material, the visible light transmittance and the ultraviolet shielding property are selected as evaluation indexes, and the subtraction (difference) of the transmittance at the optical wavelength of 800 nm by the transmittance at 400 nm is calculated. The visible light transmittance, the subtraction (difference) of the transmittance at the optical wavelength of 400 nm by the transmittance of 290 nm is defined as the ultraviolet shielding rate, each index is defined, and the visible light transmittance is 20% or less, and / or It is preferable that the ultraviolet shielding rate is 40% or more.

更に、参考発明は、上記の粒状物質・群の製造方法に使用するための装置であって、粒子径30μm未満、及び、アスペクト比が100以下の、金属酸化物の、板状・棒状・紡錘状又は鱗片状の粒状物質(母粒子)、及び、粒子径0.1μm未満の、金属酸化物の粒状物質(子粒子)、より構成される、粒状物質・群を、水系溶媒、アルコールないしエーテル系溶媒より選ばれる液状物質(分散媒体)中に分散し、全ての粒状物質群を含む液状物質(混合液体)を製造する手段、混合液体中の粒状物質の平均表面間距離を「LDLVO≧LWoodcock」となるように、混合液体中の粒状物質を高分散する手段、同時に、混合液体を100μm未満の液状物質(液滴)とする手段、液滴の温度を−100〜10000℃となるように、液状物質の乾燥を高速度化する手段を有し、母粒子と子粒子が単独で凝集することなく、母粒子表面に子粒子が均一状態又は局所的に制御された不均一状態で被覆された形態・形状又は構造を有する粒状物質・群製造用装置であることを特徴とする粒状物質・群の製造装置、である。 Further, the reference invention is an apparatus for use in the above-described method for producing a granular substance / group, and is a plate, rod, spindle made of metal oxide having a particle diameter of less than 30 μm and an aspect ratio of 100 or less. A granular substance / group composed of a granular or scale-like granular substance (mother particle) and a metal oxide granular substance (child particle) having a particle diameter of less than 0.1 μm, an aqueous solvent, alcohol or ether Means for producing a liquid substance (mixed liquid) that is dispersed in a liquid substance (dispersion medium) selected from a system solvent and containing all the granular substance groups, and the average distance between the surface of the granular substances in the mixed liquid is expressed as “L DLVO ≧ "L Woodcock " means to highly disperse the particulate material in the mixed liquid, at the same time, means to make the mixed liquid a liquid material (droplet) of less than 100 μm, the temperature of the droplet is -100 to 10000 ° C So that the liquid Means to accelerate the drying of the particulate material, and the mother particles are coated on the surface of the mother particles in a uniform state or in a locally controlled non-uniform state without agglomeration of the mother particles and the child particles alone. An apparatus for producing a granular substance / group, characterized in that it is a device for producing a granular substance / group having a form, shape or structure.

次に、本発明及び参考発明について、更に詳細に説明する。
本発明者らは、以上の着想を実現すべく鋭意検討した結果、具体的には、下記〔A〕〜〔E〕5点の手段を、同時に、又は連続的に、又は断続的に組み合わせることで、発明を具現化した;
Next, the present invention and the reference invention will be described in more detail.
As a result of intensive studies to achieve the above idea, the present inventors specifically combined the following five points [A] to [E] simultaneously, continuously, or intermittently. And embodied the invention;

1)〔A〕高アスペクト比のミクロンオーダーの板状粒子と、平均粒子径0.1μm以下の予め固形(結晶)化された金属酸化物製の添加物質を用い、当該粒状物質を、水系の液状物質(以下、分散媒体)中に分散し、全ての粒状物質を含む液状の物質(以下、混合物質)を製造する手段〔A〕 1) [A] A plate-like particle having a high aspect ratio of micron order and an additive substance made of a metal oxide that has been solidified (crystallized) with an average particle diameter of 0.1 μm or less, Means [A] for producing a liquid substance (hereinafter referred to as a mixed substance) dispersed in a liquid substance (hereinafter referred to as a dispersion medium) and containing all particulate substances

2)〔B〕混合物質中で第二成分に作用する、van der Waals引力と、界面電気二重層の重なりに基づく静電反発力との、両微小力間の相互作用によって定まる、混合物質中の第二成分相互の平均表面間距離(以下、LDLVO)を算出する手段〔B〕 2) [B] In a mixed substance, which is determined by the interaction between both micro forces of van der Waals attractive force acting on the second component in the mixed substance and electrostatic repulsive force based on the overlap of the interface electric double layer Means for calculating the average inter-surface distance (hereinafter referred to as L DLVO ) between the second components of [B]

3)〔C〕混合物質中に含まれる第二成分の固形分濃度と、第二成分の直径によって、混合物質中の第二成分相互の平均表面間距離(以下、LWoodcock)を算出する手段〔C〕
4)〔D〕混合物質中の第二成分相互の平均表面間距離をLDLVO≧LWoodcockとする手段〔D〕
5)〔E〕混合物質を100μm未満の液滴状物質にし、液滴状物質を−100〜10000℃の範囲の熱処理温度を与える装置に移動させる手段〔E〕
3) [C] Means for calculating the average surface distance between the second components in the mixed material (hereinafter referred to as L Woodcock ) based on the solid content concentration of the second component contained in the mixed material and the diameter of the second component [C]
4) [D] Means in which the average surface-to-surface distance between the second components in the mixed material is L DLVO ≧ L Woodcock [D]
5) [E] Means for converting the mixed material into droplets of less than 100 μm and moving the droplets to a device that provides a heat treatment temperature in the range of −100 to 10000 ° C. [E]

手段〔A〕、即ち、対象とする材料群や、液状物質への分散方法について、現状の技術レベルと粒子複合化技術への適用可能性に関し、装置工学的に再検討した。
その結果、化粧品・薬剤・工業用フィラー等の新材料開発の観点から、(ア)セリサイト(絹雲母)、(イ)分散媒体、(ウ)添加物質、(エ)水系の液状物質中への分散、の、4種類、に着目した。
With regard to the means [A], that is, the target material group and the dispersion method in the liquid substance, the present technology level and the applicability to the particle composite technology were reviewed in terms of equipment engineering.
As a result, from the viewpoint of the development of new materials such as cosmetics, pharmaceuticals, and industrial fillers, (a) sericite (sericite), (b) dispersion media, (c) additive substances, and (d) water-based liquid substances. We focused on four types of dispersion.

(ア)セリサイト(絹雲母)とは、絹雲母や白雲母、金雲母と総称される雲母族系粘土鉱物の野外名を示し、熱水の活動、変成岩中の作用、堆積岩の続成作用による生成等を成因とし、真珠光沢と滑性とを有することを特徴とする物質を示す。振草産セリサイト(組成がSiO60.0%以下、及びAl0.0%以上、及びKO6.0%以上、及び平均粒子径15μm以下)から成る含水ケイ酸アルミニウムカリウム、又は層状ケイ酸塩、又は雲母、又は粘土鉱物が、好適であるが、シリコン酸化物(珪酸等)とアルミニウム酸化物(アルミナ等)を主成分とする層状結晶構造を有する酸化物であれば、微量成分量が異なる物質でもよい。 (A) Sericite (sericite) is an outdoor name for micaceous clay minerals, collectively called sericite, muscovite, and phlogopite. Hydrothermal activity, action in metamorphic rocks, and diagenesis of sedimentary rocks. A substance characterized by having a pearly luster and slipperiness due to the production of Hydrous potassium aluminum silicate comprising sericite from turfgrass (composition of SiO 2 60.0% or less and Al 2 O 3 0.0% or more, and K 2 O 6.0% or more and an average particle size of 15 μm or less), Alternatively, a layered silicate, mica, or clay mineral is suitable, but if it is an oxide having a layered crystal structure mainly composed of silicon oxide (silicic acid, etc.) and aluminum oxide (alumina, etc.), Substances with different amounts of trace components may be used.

また、雲母及び粘土鉱物は、シリコン酸化物(珪酸等)とアルミニウム酸化物(アルミナ等)を主成分とする層状結晶構造を有する酸化物を示し、特に制限はない。更に、溶解度に関しても制限されるものではなく、非水溶性の雲母系粉体であっても、上記組成を有する物質であれば、任意の溶媒に対する易溶性の物質であっても、特に問題ではない。   Further, mica and clay mineral are oxides having a layered crystal structure mainly composed of silicon oxide (silicic acid or the like) and aluminum oxide (alumina or the like), and are not particularly limited. Further, the solubility is not limited, and even if it is a water-insoluble mica-based powder, even if it is a substance having the above composition, even if it is a substance that is easily soluble in any solvent, it is not a problem. Absent.

(イ)水系の液状物質(以下、分散媒体)とは、イオン交換水や蒸留水等を示し、原料の粒状物質(セリサイト)と添加物質とをイオン状態に溶解、又は粒状やコロイド状に分散させた溶液、又はスラリー等が例示されるが、特に制限されるものではない。   (I) Aqueous liquid material (hereinafter referred to as dispersion medium) refers to ion-exchanged water, distilled water, etc., and the raw material granular material (sericite) and additive material are dissolved in an ionic state, or in granular or colloidal form. Examples of the dispersed solution or slurry are not particularly limited.

(ウ)セリサイト粉体の形状又は構造を制御するための粒状物質又は液状物質又はガス状物質(以下、添加物質)は、例えば物質の状態(固体又は液体又は気体等)、材質(金属又は高分子又は酸化物又は非酸化物等)、大きさ、添加量等については特に制限はなく、金、銀、銅、白金、鉄、チタン等の金属系、チタン系化合物、ホウ素系化合物、亜鉛系化合物等の各種機能付与・促進剤、ポリエチレングリコール、ポリビニルアルコール、アラビアゴム等の各種高分子添加剤、各種界面活性剤、各種バインダー、加熱により分解してガス状物質を発生する性質を有する粒状物質又は液状物質又はガス状物質(アゾ系物質等の発泡剤等)、セリサイトやセリサイト以外の粘土鉱物系の板状粉体自身、等が例示される。   (C) The particulate material, liquid material or gaseous material (hereinafter referred to as additive material) for controlling the shape or structure of sericite powder is, for example, the state of the material (solid, liquid or gas, etc.), material (metal or There are no particular restrictions on the polymer, oxide, non-oxide, etc.), size, amount added, etc., metal such as gold, silver, copper, platinum, iron, titanium, titanium compound, boron compound, zinc Various functional imparting / accelerating agents such as polyethylene compounds, various polymer additives such as polyethylene glycol, polyvinyl alcohol, and gum arabic, various surfactants, various binders, and particulates that have the property of generating gaseous substances when decomposed by heating Examples thereof include substances, liquid substances, gaseous substances (foaming agents such as azo substances), sericite, and clay mineral-based plate-like powders other than sericite.

(エ)水系の液状物質中への分散とは、摩砕型の湿式撹拌ボールミル、即ち、縦向きの円筒形をなして、冷却水が通されるジャケットを備え、ビーズが充填されるステータと、ステータ軸心に配置されてステータ上部に回転可能に軸承され、上側部の軸心を中空な排出路としたシャフトと、該シャフトと一体となって回転するセパレータと、該セパレータ下のシャフトに径方向に向けて突出されるピンないしディスク状のローターと、ステータより上方に突出するシャフトに固着され、モータのプーリとベルト掛けされるプーリと、ステータ底部にシャフト軸端に対向して設けられ、ビーズ分離用のスクリーンを備えた原料スラリーの供給口と、ステータより突出するシャフト上端の開口端に装着されるロータリージョイントより成り、セパレータは、シャフト軸方向に一定の間隔を存して固着される一対のディスクと、両ディスクを連結するブレードよりなってインペラを構成し、シャフトと共に回転してディスク間に入り込んだビーズとスラリーに遠心力を付与し、その比重差によってビーズを分離、即ち、比重の比較的大なるビーズを径方向外方に飛ばす一方、比重の比較的小さなスラリーをディスク間に開口してシャフトの径方向に形成される導出孔より上記排出路に通して上方に排出させる媒体撹拌型粉砕装置を好適とするが、特に制限はない。   (D) Dispersion in a water-based liquid substance is a grinding-type wet-stirring ball mill, that is, a stator having a vertically-oriented cylindrical shape and having a jacket through which cooling water is passed and filled with beads. A shaft disposed on the stator shaft and rotatably supported on the upper portion of the stator, the shaft having an upper shaft center as a hollow discharge passage, a separator that rotates integrally with the shaft, and a shaft below the separator A pin or disk-shaped rotor that protrudes in the radial direction, a shaft that is fixed to a shaft that protrudes upward from the stator, a pulley that is belted with a motor pulley, and a shaft bottom end of the stator facing the shaft shaft end. The material slurry supply port with a screen for separating beads and a rotary joint attached to the opening end of the upper end of the shaft protruding from the stator The rotor is composed of a pair of disks fixed at a certain interval in the axial direction of the shaft and a blade connecting the two disks to form an impeller. The centrifugal force is applied to the beads, and the beads are separated by the difference in specific gravity, that is, beads having a relatively large specific gravity are blown outward in the radial direction, while a slurry having a relatively small specific gravity is opened between the disks to open the shaft in the radial direction. A medium agitation type pulverizing apparatus that discharges upward through the discharge passage from the outlet hole formed in is suitable, but there is no particular limitation.

例えば、ジョークラッシャーやボールミル・ジェットミル・振動ミル・遊星ミル等の粉砕機、JIS−Z8840等に示される水平円筒型やV型の、容器回転・機械撹拌・流動撹拌型の混合機、ロール・ブレード型の混錬機や押し出し成形装置、流動層(媒体型や振動型を含む)や回転ドラム・パン型・噴霧型の造粒機・乾燥機、ケーク・遠心型の分級・濾過・沈降・脱水機等の固液分離装置、サイクロンやバグフィルター等の篩い分け・集塵機、等が例示される。   For example, pulverizers such as jaw crushers, ball mills, jet mills, vibration mills, planetary mills, horizontal cylindrical types and V types as shown in JIS-Z8840, etc. Blade-type kneaders and extrusion molding machines, fluidized beds (including medium and vibration types), rotating drum / pan / spray type granulators / dryers, cake / centrifugal type classification / filtration / sedimentation / Examples include solid-liquid separators such as dehydrators, sieving / dust collectors such as cyclones and bag filters, and the like.

本発明者らは、種々の理論的・実験的検討によって、高アスペクト比のミクロンオーダーのセリサイト(絹雲母)と、平均粒子径0.1μm以下の予め固形(結晶)化されたチタニアナノ粒子を用い、蒸留水に、媒体撹拌型粉砕装置を分散(解砕)装置として適用するシステムを方法として好適とするが、材料種・方法に関して、特に制限されるものではない。   By various theoretical and experimental studies, the present inventors have obtained high-aspect-ratio micron-order sericite (sericite) and pre-solid (crystallized) titania nanoparticles having an average particle size of 0.1 μm or less. A system in which the medium stirring type pulverizer is applied to distilled water as a dispersion (disintegration) apparatus is suitable as a method, but the material type and method are not particularly limited.

手段〔B〕、即ち、液相プロセスの粒子分散理論について、現状の技術レベルと粒子複合化技術への適用可能性に関し、装置工学的に再検討した。
その結果、化粧品・薬剤・工業用フィラー等の新材料開発の観点から、粒子に働く微小力(分子間力、静電気力、液架橋力、毛管凝縮力、等)を検討し、(ア)van der Waals引力、(イ)界面電気二重層の重なりに基づく静電反発力、(ウ)両微小力間の相互作用によって定まる混合物質中の第二成分相互の平均表面間距離(以下、LDLVO)、の、3種類、に着目した。
Regarding the means [B], that is, the particle dispersion theory of the liquid phase process, the current technical level and the applicability to the particle composite technology were reviewed in terms of equipment engineering.
As a result, from the viewpoint of developing new materials such as cosmetics, drugs, and industrial fillers, we examined the micro forces (intermolecular force, electrostatic force, liquid crosslinking force, capillary condensing force, etc.) that act on the particles. der Waals attractive force, (a) electrostatic repulsive force based on the overlap of the interfacial electric double layer, (c) the average inter-surface distance between the second components in the mixed material determined by the interaction between both micro forces (hereinafter referred to as L DLVO) We focused on three types.

(ア)van der Waals(又はLondon−van der Waals)引力とは、電荷を持たない中性の原子・分子間等で働く凝集力の総称で、van der Waals引力ポテンシャルVAは、下記の理論計算式、
=−A×d÷24÷H
但し、
Aは、物質のHamaker定数(10−20J)
dは、平均粒子径(m)
Hは、引力が作用している粒子同士の平均表面間距離(m)
以上の計算式より、算出する。
(A) Van der Waals (or London-van der Waals) attractive force is a general term for cohesive force that works between neutral atoms and molecules that do not have an electric charge. Van der Waals attractive potential VA is calculated by the following theoretical calculation. formula,
V A = −A × d ÷ 24 ÷ H
However,
A is the Hammer constant of the substance (10-20J)
d is the average particle size (m)
H is the average inter-surface distance (m) between particles on which attractive force is acting
Calculate from the above formula.

(イ)界面電気二重層の重なりに基づく静電反発力とは、液状物質中に分散された粒子表面に界面電気二重層が形成され、粒子同士の電気二重層が重なり合って生じたイオン濃度変化(浸透圧発生)を下げようとして作用する斥力で、静電反発ポテンシャルVRは、下記の理論計算式、
=π×d×εr×ε0×Ψ0×ln{1+exp(−κH)}
但し、
εrは、空気中に置かれた粒子の誘電率(10−20J)
ε0は、真空の誘電率(F/m)
Ψ0は、電気二重層厚さ(Debye Length)で、通常ζ電位が用いられる
κは、その逆数が電気二重層厚さ(Debye Length)
以上の計算式より、算出する。
(B) Electrostatic repulsive force based on the overlap of interfacial electric double layer is the change in ion concentration caused by the formation of an interfacial electric double layer on the surface of particles dispersed in a liquid substance and the overlapping of the electric double layers of particles. The electrostatic repulsion potential VR is a repulsive force acting to lower (osmotic pressure generation), and is expressed by the following theoretical formula:
V R = π × d × εr × ε0 × Ψ0 2 × ln {1 + exp (−κH)}
However,
εr is the dielectric constant of particles placed in air (10 −20 J)
ε0 is the dielectric constant of vacuum (F / m)
Ψ0 is the electric double layer thickness (Debye Length), and usually ζ potential is used. Κ is the inverse of the electric double layer thickness (Debye Length).
Calculate from the above formula.

(ウ)両微小力((ア)van der Waals引力と(イ)静電反発力)間の相互作用によって定まる、混合物質中の第二成分相互の平均表面間距離(LDLVO)とは、van der Waals引力ポテンシャルVAと静電反発ポテンシャルVRは和(但し符号は逆符号なので実際は差)、即ち、ポテンシャル障壁VTが、下記の経験式、
+V <(10〜20)×σ×T
但し、
σは、ステファン=ボルツマン(Stefan−Boltmann)定数
Tは、絶対温度(K)
ポテンシャル障壁VTのピーク値(VTmax)が、以上の計算式を満たすよう、粒子同士の平均表面間距離H(以下、LDLVO)を算出する。
(C) Mean surface distance (L DLVO ) between the second components in the mixed material determined by the interaction between both micro forces ((a) van der Waals attraction and (b) electrostatic repulsion) The van der Waals attractive potential VA and the electrostatic repulsion potential VR are sums (however, since the sign is the opposite sign, it is actually a difference), that is, the potential barrier VT is expressed by the following empirical formula:
V A + V R <(10-20) × σ × T
However,
σ is Stefan-Boltmann constant T is absolute temperature (K)
The average inter-surface distance H between particles (hereinafter, L DLVO ) is calculated so that the peak value (V Tmax ) of the potential barrier VT satisfies the above formula.

一般に、微粒子になるほど、DLVO(Derjaguin, Landau, Verwey and Overbeek)理論で求められる静電反発により、ポテンシャル障壁が同じ表面電位でも小さくなり、静電反発作用による分散安定化は困難になる。そこで、理論計算例として、表面電位と対イオン濃度を同じにして、DLVO理論から計算されるvan der Waals引力と静電反発作用を考慮したポテンシャル曲線の計算例を、図6に示す(ナノメーター例として20nm、サブミクロン例として300nm、及び中間サイズとして100nm)。   In general, the smaller the particle size, the smaller the potential barrier even at the same surface potential due to electrostatic repulsion required by DLVO (Derjaguin, Landau, Verwey and Overbek) theory, and dispersion stabilization due to electrostatic repulsion becomes more difficult. Therefore, as a theoretical calculation example, FIG. 6 shows a calculation example of a potential curve in consideration of van der Waals attraction and electrostatic repulsion calculated from the DLVO theory with the same surface potential and counter ion concentration (nanometer). 20 nm as an example, 300 nm as a submicron example, and 100 nm as an intermediate size).

即ち、先ずサブミクロン以上の粒子では、粒子の分散に必要なポテンシャル障壁のピーク値VTmaxが、Boltzmann定数と絶対温度の積の10〜20倍以上あり、この表面電位条件で十分、分散可能である。一方、平均粒子径20nm等のナノ粒子では、ポテンシャル障壁が極めて低く、この条件では凝集を起こす。ナノ粒子の分散には百数十mV以上の高い表面電位が必要であるが、通常の方法では、こうした高い表面電位は得られない。 That is, for particles of submicron or larger, the peak value V Tmax of the potential barrier necessary for particle dispersion is 10 to 20 times the product of the Boltzmann constant and the absolute temperature, and it is sufficiently dispersible under this surface potential condition. is there. On the other hand, nanoparticles having an average particle diameter of 20 nm or the like have a very low potential barrier, and aggregation occurs under these conditions. Dispersion of nanoparticles requires a high surface potential of hundreds of mV or more, but such a high surface potential cannot be obtained by ordinary methods.

従って、現時点では、粒子分散理論において、母粒子表面を被覆可能な子粒子を量論組成で添加すると、粒子相互の物理的接触が発生し得るにも関わらず、恰も分散には限界がないかのように、粒子充填理論が全く顧慮されていない。その結果、現時点では、母粒子・子粒子夫々の凝集形成を回避できていないか、凝集を回避しようとすれば、量論比より過剰に少ない子粒子しか添加し得ない状況に留まっていること(図2)を、この理論計算結果は、示している。   Therefore, at present, in the particle dispersion theory, if the child particles that can cover the surface of the mother particles are added in a stoichiometric composition, there is no limit to the dispersion even though physical contact between the particles may occur. Thus, the particle packing theory is not considered at all. As a result, at present, it has not been possible to avoid the formation of agglomeration of each of the mother particles and the child particles, or if it is attempted to avoid the aggregation, only a small amount of child particles can be added in excess of the stoichiometric ratio. This theoretical calculation result is shown in FIG.

なお、van der Waals引力と、界面電気二重層の重なりに基づく静電反発力との、両微小力間の相互作用によって定まる、混合物質中の第二成分相互の平均表面間距離LDLVOを、DLVO理論により求める方法を例示したが、特に制限されるものではなく、目的の濃厚系スラリーと呼ばれる実際の製造現場の現実的な濃度条件下(例えば40wt(重量)%以上)での簡便な計算方法を供し得るものであれば、それに限定されない。 Note that the average inter-surface distance L DLVO between the second components in the mixed material, which is determined by the interaction between the two micro forces of the van der Waals attraction and the electrostatic repulsion based on the overlap of the interfacial electric double layer, Although the method calculated | required by the DLVO theory was illustrated, it does not restrict | limit in particular, The simple calculation on the realistic concentration conditions (for example, 40 wt (weight)% or more) of the actual manufacturing site called the target concentrated slurry As long as it can provide the method, it is not limited thereto.

手段〔C〕、即ち、固相プロセス(乾式成形)における(そして、それを応用した液相中の)粒子充填理論について、現状の技術レベルと粒子複合化技術への適用可能性に関し、装置工学的に再検討した。その結果、化粧品・薬剤・工業用フィラー等の新材料開発の観点から、粒子同士の平均表面間距離Hと平均粒子径d、その分散系に投入(充填)される粒子の濃度Fの、3種類の幾何学的関係(数学的モデル)を考慮すればよいことを見出した。
具体的には、例えば汎用的な六方細密充填による下記の理論計算式、
H=d×{(π÷3÷√2÷F)^(1/3)−1}
或いはWoodcockらが提案した計算式、
H=d×{√(1÷3÷π÷F+5/6)−1}
以上の計算式より、粒子の平均表面間距離を算出する。
Regarding the particle packing theory in the means [C], that is, in the solid phase process (dry molding) (and in the liquid phase to which it is applied), regarding the current technical level and applicability to the particle composite technology, Reexamined. As a result, from the viewpoint of developing new materials such as cosmetics, pharmaceuticals, and industrial fillers, the average surface distance H between particles and the average particle diameter d, and the concentration F of particles charged (filled) into the dispersion system are 3 It was found that the geometric relationship (mathematical model) of the kind should be considered.
Specifically, for example, the following theoretical calculation formula by general-purpose hexagonal close packing,
H = d × {(π ÷ 3 ÷ √2 ÷ F) ^ (1/3) −1}
Or the calculation formula proposed by Woodcock et al.
H = d × {√ (1 ÷ 3 ÷ π ÷ F + 5/6) −1}
The average inter-surface distance of the particles is calculated from the above formula.

図7に、Woodcock式による粒子平均表面間距離(以下、LWoodcock)の理論計算例を示す(図8と同様に、20、100、300nmとした)。即ち、先ずサブミクロン以上の粒子では、表面電位の常識的な操作条件下において、粒子濃度Fが50vol(体積)%以上にならないと、図6で示したDLVO理論で求められる粒子の分散に必要なポテンシャル障壁のピーク値とはならないことが読み取れる。一方、平均粒子径20nm等のナノ粒子では、許容し得る粒子濃度Fが数10vol%で、濃厚系スラリーと呼ばれる実際の製造現場の現実的な濃度条件(例えば40wt(重量)%以上)と比べ、極めて非常識な(所謂「希薄系」スラリー)値となることが予想される。 FIG. 7 shows an example of theoretical calculation of the average particle surface distance (hereinafter referred to as L Woodcock ) according to the Woodcock equation (similar to FIG. 8, it is set to 20, 100, and 300 nm). That is, for particles of submicron or more, it is necessary for the dispersion of the particles required by the DLVO theory shown in FIG. 6 unless the particle concentration F is 50 vol (volume)% or more under common-sense operating conditions of the surface potential. It can be seen that the peak value of the potential barrier is not reached. On the other hand, in the case of nanoparticles having an average particle size of 20 nm or the like, the allowable particle concentration F is several tens vol%, compared with the actual concentration conditions (for example, 40 wt (weight)% or more) at the actual manufacturing site called concentrated slurry. It is expected to be very insane (so-called “dilute” slurry) values.

なお、混合物質中に含まれる第二成分の固形分濃度と、第二成分の直径によって、混合物質中の第二成分相互の平均表面間距離LWoodcockを、六方細密充填モデルと、Woodcock式により求める方法を例示したが、特に制限されるものではなく、目的の濃厚系スラリーと呼ばれる実際の製造現場の現実的な濃度条件下(例えば40wt(重量)%以上)での簡便な計算方法を供し得るものであれば、それに限定されない。 Note that the average inter-surface distance L Woodcock between the second components in the mixed substance is determined by the hexagonal close packing model and the Woodcock equation according to the solid content concentration of the second component contained in the mixed substance and the diameter of the second component. Although the method to obtain | require was illustrated, it does not restrict | limit in particular, The simple calculation method on the realistic concentration conditions (for example, 40 wt (weight)% or more) of the actual manufacturing site called the target concentrated slurry is provided. If it can be obtained, it is not limited thereto.

手段〔D〕、即ち、混合物質中の第二成分相互の平均表面間距離について、現状の技術レベルと粒子複合化技術への適用可能性に関し、装置工学的に再検討した。その結果、化粧品・薬剤・工業用フィラー等の新材料開発の観点から、特に混合物質中の第二成分(即ち、分散系中の微細側の構成成分)に着目し、相互の平均表面間距離を、下記の条件とすればよいことを見出した。
DLVO ≧ LWoodcock
Regarding the means [D], that is, the average distance between the surfaces of the second components in the mixed material, the present technology level and applicability to the particle composite technology were reviewed in terms of equipment engineering. As a result, from the viewpoint of developing new materials such as cosmetics, drugs, and industrial fillers, paying attention to the second component in the mixed material (that is, the constituent component on the fine side in the dispersion), the mutual average inter-surface distance Has been found to satisfy the following conditions.
L DLVO ≧ L Woodcock

図8と9に、目的のナノメーターオーダー粒子のLDLVOを二種類の表面電位において、LWoodcockをナノメーターとサブミクロン、及び比較のためにナノメーターオーダー粒子の六方細密充填モデルの計算結果を合わせて例示する。なお、図8・9中には、DLVO理論による分散可能な閾値であるステファン=ボルツマン定数と絶対温度の積の例として、代表値15のラインを点線で表示した。 Figures 8 and 9 show the results of calculation of the target nanometer-order particle L DLVO at two surface potentials, L Woodcock as the nanometer and submicron, and the hexagonal close-packed model of the nanometer order particle for comparison. It illustrates together. In FIGS. 8 and 9, a line with a representative value of 15 is indicated by a dotted line as an example of a product of the Stefan = Boltzmann constant, which is a dispersible threshold according to the DLVO theory, and an absolute temperature.

即ち、ナノメーターオーダーの粒子では、表面電位の常識的な操作条件下において、第二成分相互の平均表面間距離が、分散限界の数nmレベルに達してしまう。そのような条件では、許容し得る粒子濃度Fが数10vol%(数vol%@Woodcock式〜30vol%@六方細密充填モデル)で、許容し得る限界となる。   That is, in the case of nanometer order particles, the average inter-surface distance between the second components reaches the level of several nanometers at the dispersion limit under common-sense operating conditions of the surface potential. Under such conditions, the allowable particle concentration F is several tens vol% (several vol% @ Woodcock equation to 30 vol% @ hexagonal close packing model), which is an acceptable limit.

しかしながら、本発明者らは、分散系中の微細側の構成成分に着目し、第二成分(子粒子)について、前記の手段〔D〕(LDLVO ≧ LWoodcock)を達成し、且つ、分散系中の主成分(母粒子)においては(及び、子粒子を添加した混合物質においても)、目的の濃厚系スラリーと呼ばれる実際の製造現場の現実的な濃度条件(例えば40wt(重量)%以上)にすればよいことを見出した。 However, the inventors pay attention to the constituent component on the fine side in the dispersion system, achieve the above means [D] (L DLVO ≧ L Woodcock ) for the second component (child particles), and disperse In the main component (mother particles) in the system (and also in the mixed material to which the child particles are added), the actual concentration conditions (for example, 40 wt (wt)% or more) at the actual manufacturing site called the target concentrated slurry ) Was found.

ここで、混合液体の体積%と重量%の変換法を、チタニアと雲母(セリサイト)複合系で例示する:
* チタニア重量%=20wt%(例:30÷(30+120)g)
* 固形分重量%=30wt%((30+120)÷(30+120+350)g)
* チタニア:雲母の平均真密度2.4g/cm(4g/cm×20wt%+2g/cm×80wt%)
* 固形分体積%=15vol%(2.4で除する)
Here, the conversion method of volume% and weight% of the mixed liquid is exemplified by a titania-mica (sericite) composite system:
* Titania weight% = 20 wt% (example: 30 ÷ (30 + 120) g)
* Solid content% by weight = 30 wt% ((30 + 120) ÷ (30 + 120 + 350) g)
* Titania: Average true density of mica 2.4 g / cm 3 (4 g / cm 3 × 20 wt% + 2 g / cm 3 × 80 wt%)
* Solid content volume% = 15 vol% (divide by 2.4)

以上、図8(及び図12・13)に示す通り、LDLVO〜LWoodcockとし、第二成分(子粒子)移動度を抑制すれば、局所制御の粒子複合化や、中空顆粒及び制御された陥没顆粒を製造できる(例:粒子径の粗大化や、シリカ表面処理で電気的中性化し、凝集度を向上させる、等)。 As described above, as shown in FIG. 8 (and FIGS. 12 and 13), if L DLVO to L Woodcock are used and the second component (child particle) mobility is suppressed, locally controlled particle complexation, hollow granules and controlled Sinking granules can be produced (eg, coarsening of the particle diameter, electrical neutralization by silica surface treatment, improving the degree of aggregation, etc.).

図9(及び図12・13)に示す通り、LDLVO>LWoodcockとし、第二成分(子粒子)移動度を増進すれば、均一な粒子複合化や、中実顆粒を製造できる(例:粒子径微細化や、アルミナ表面処理で電気的に極性化し、凝集度を抑制する、等)。本発明は、このような装置工学的な知見に基づいて具現化されたものである。 As shown in FIG. 9 (and FIGS. 12 and 13), if L DLVO > L Woodcock and the second component (child particle) mobility is increased, uniform particle composition and solid granules can be produced (example: For example, the particle size is refined and the surface is electrically polarized by alumina treatment to suppress the degree of aggregation. The present invention is embodied based on such device engineering knowledge.

手段〔E〕、即ち、「液状物質→粒状物質」転換プロセスについて、現状の技術レベルと粒子複合化技術への適用可能性に関し、装置工学的に再検討した。その結果、化粧品・薬剤・工業用フィラー等の新材料開発の観点から、(ア)混合物質→液滴状物質の転換プロセス、(イ)液滴状物質の熱処理プロセス、(ウ)液状物質→粒状物質の転換プロセス、の、3種類、に着目した。   Regarding the means [E], that is, the “liquid substance → particulate substance” conversion process, the current technical level and applicability to the particle composite technique were reviewed in terms of equipment engineering. As a result, from the viewpoint of developing new materials such as cosmetics, pharmaceuticals, and industrial fillers, (a) mixed substances → droplet-like substance conversion process, (b) liquid-like substance heat treatment process, (c) liquid substance → We paid attention to three types of conversion process of particulate matter.

(ア)混合物質→液滴状物質の転換プロセスは、回転円板方式、2流体式等のガスノズル方式等の各種噴霧法、超音波霧化法、静電噴霧法、等が例示される。中でも、3流体又は4流体ノズル法、即ち、対象のミクロンオーダー母粒子を理論上は1個だけ含有し得る数〜10数μmの液滴を生産性よく製造できる方法であって、供給口から液体を傾斜面に供給し、供給された液体を傾斜面に沿って高速流動させる空気流で薄く引き伸ばして薄膜流とし、薄膜流を傾斜面先端から気体中に噴射(噴霧)する際、尖鋭なエッジを特に境界として、その両面に設けられた2つ以上の傾斜面の途中に、2種以上の異なる液体を供給し、傾斜面に供給された液体を高速流動させる空気流で薄く引き伸ばして薄膜流とし、薄膜流を傾斜面先端のエッジから気体中に噴射(噴霧)することを特徴とする方法を、好適とする。   (A) Examples of the conversion process of the mixed substance → droplet-like substance include various spraying methods such as a rotating disk method, a gas nozzle method such as a two-fluid method, an ultrasonic atomization method, an electrostatic spraying method, and the like. Among them, the three-fluid or four-fluid nozzle method, that is, a method capable of producing a few to several tens of μm droplets that can theoretically contain only one target micron-order mother particle with high productivity, When a liquid is supplied to an inclined surface, the supplied liquid is thinly stretched with an air flow that flows at high speed along the inclined surface to form a thin film flow, and when the thin film flow is injected (sprayed) into the gas from the tip of the inclined surface, a sharp point is obtained. Two or more different liquids are supplied in the middle of two or more inclined surfaces provided on both sides with an edge as a boundary, and the thin film is stretched thinly with an air flow that causes the liquid supplied to the inclined surfaces to flow at high speed. The method is characterized in that a thin film flow is jetted (sprayed) into the gas from the edge of the tip of the inclined surface.

この噴霧法には、同心円状の薄膜流を円錐状(鉛筆状)コーン面に流す3流体ノズル法と、線状の2種以上の異なる液体を三角柱状(ナイフ状)斜面に流す4流体ノズル法がある。しかし、目的の濃厚系スラリーと呼ばれる実際の製造現場の現実的な濃度条件(例えば40wt(重量)%以上)を具現化できる方法であれば、任意の方法でよい。   This spraying method includes a three-fluid nozzle method in which a concentric thin film flow is flown on a conical (pencil-shaped) cone surface, and a four-fluid nozzle in which two or more kinds of linear liquids are flowed on a triangular prism (knife-shaped) slope. There is a law. However, any method may be used as long as it is a method capable of realizing a realistic concentration condition (for example, 40 wt (wt)% or more) of an actual manufacturing site called a target concentrated slurry.

なお、混合物質の調製において、材料を限定せずに、粉体の形状や構造を制御して高機能化を達成する製法の面から検討した場合、金属アルコキシドと粒子表面水酸基との加水分解反応、加湿雰囲気中の粒子表面に生成した水膜を用いた局所加水分解法、Harding(1972)らにより提案された電気二重層のζ電位の電荷符号差を利用したヘテロ凝集法、エマルション法、懸濁重合法等がある。   In the preparation of mixed substances, the hydrolysis reaction between the metal alkoxide and the particle surface hydroxyl group is not limited to the material, but is considered from the viewpoint of the production method to achieve high functionality by controlling the shape and structure of the powder. , Local hydrolysis using a water film formed on the surface of particles in a humidified atmosphere, heteroaggregation using the charge sign difference of ζ potential of the electric double layer proposed by Harding (1972) et al., Emulsion method, suspension There are turbid polymerization methods.

これらの所謂「液相プロセス」は、粘土鉱物を原料とした粉体、中でも板状又は鱗片状の粉体を適用した化粧品や薬剤分野においても、比較的多く見受けられる方法であり(マイクロカプセル製造、チタニア被覆による紫外線遮蔽等)、粉体の形状や構造の制御に関する代表的な液相法でもある。その製造原理は、水相と油相の反発に起因する構成成分の均一分散と、界面活性剤を利用した複合化とを利用するものである。比較的、粒子構造の制御性の高い方法として例示されるが、特に制限されるものではなく、汎用的な液相法に類型化される手法(例えば湿式の表面処理、シランカップリング、硫酸チタニルの加水分解法、ゾルゲル法等)等でも問題ない。   These so-called “liquid phase processes” are methods that are relatively common in the cosmetics and pharmaceutical fields to which powders made from clay minerals, especially plate-like or scale-like powders, are applied (microcapsule production). It is also a typical liquid phase method relating to the control of the shape and structure of the powder. The manufacturing principle uses uniform dispersion of constituent components resulting from the repulsion of the aqueous phase and the oil phase, and composite using a surfactant. It is exemplified as a method having a relatively high controllability of the particle structure, but is not particularly limited, and is classified into a general liquid phase method (for example, wet surface treatment, silane coupling, titanyl sulfate). There is no problem even if it is a hydrolysis method or a sol-gel method).

中でも電気二重層のζ電位の電荷符号差を利用したヘテロ凝集法(例えば非特許文献41〜43)は、Hardingらにより70年代に提案された汎用的な製法で、目的の濃厚系スラリーと呼ばれる実際の製造現場の現実的な濃度条件下(例えば40wt(重量)%以上)として信頼性が高く、静電「斥力」を母・子粒子の同種同士の均一分散に、静電「引力」を母・子粒子の異種同士の均一付着に、併用することを推奨できる。   Among them, the hetero-aggregation method (for example, Non-Patent Documents 41 to 43) using the charge sign difference of the ζ potential of the electric double layer is a general-purpose manufacturing method proposed by Harding et al. In the 1970s, and is called a target concentrated slurry. Highly reliable under realistic concentration conditions (for example, 40 wt (% by weight) or more) at the actual manufacturing site, electrostatic “repulsive force” is applied to uniform dispersion of the same type of mother and child particles, and electrostatic “attraction” is applied. It is recommended to use it together for uniform adhesion of different types of mother and child particles.

図10に、好適とする物質(材料)群のpHとζ電位の関係を例示する。粘土鉱物を原料とした板状又は鱗片状の粉体は、構成成分によって種々変化するが、凡そシリカ(SiO)とアルミナ(代表例としてγAlとαAl)の中間的な値を示す。一方、第二成分(子粒子)ナノメーターオーダー粒子として好適とするチタニアのζ電位も、(材質にもよるが)粘土鉱物に比較的近い値を示す。これは、静電「引力」を併用する観点からは不利である。 FIG. 10 illustrates the relationship between pH and ζ potential of a suitable substance (material) group. Plate-like or scale-like powders made from clay minerals vary depending on the constituents, but are roughly intermediate between silica (SiO 2 ) and alumina (typically γAl 2 O 3 and αAl 2 O 3 ). Indicates the value. On the other hand, the ζ potential of titania suitable as the second component (child particle) nanometer order particle is also relatively close to that of the clay mineral (depending on the material). This is disadvantageous from the viewpoint of using electrostatic "attraction" together.

そこで、チタニア粒子表面に、アルミナ(特にγAl等の多形アルミナ)被覆を施す方法が好適例として示される。しかし、他の材料系の選択によって、例えば粘土鉱物とチタニアのζ電位の電荷符号差の大きい系を選ぶ、アルミナ以外(例えば正に帯電させるのが有利ならば高分子被覆等)等、特に制限されるものではない。 Therefore, a method of coating the surface of titania particles with alumina (particularly polymorphic alumina such as γAl 2 O 3 ) is shown as a preferred example. However, depending on the selection of other material systems, for example, a system having a large charge sign difference between the ζ potential of clay mineral and titania, other than alumina (for example, polymer coating if positive charging is advantageous), etc. are particularly limited. Is not to be done.

(イ)液滴状物質の熱処理プロセスは、原料物質を溶解(又は分散)した液状物質の液滴を、液滴径を制御して温度コントロール場へ輸送し、液滴中の分散媒体の乾燥が液滴周囲から起こる物理現象を利用するものであればよく、噴霧乾燥法、噴霧熱分解法、ミスト熱分解法、超臨界法、凍結乾燥法、熱プラズマ法、気相反応法、等が例示されるが、特に制限されるものではない。   (A) In the heat treatment process of the liquid droplet material, the liquid material droplets in which the raw material is dissolved (or dispersed) are transported to the temperature control field while controlling the droplet diameter, and the dispersion medium in the droplets is dried. As long as it uses the physical phenomenon that occurs from around the droplet, spray drying, spray pyrolysis, mist pyrolysis, supercritical, freeze drying, thermal plasma, gas phase reaction, etc. Although illustrated, it is not particularly limited.

(ウ)液状物質→粒状物質の転換プロセスを具体化する場合に、使用される装置構成を例示する。量産性や連続生産性を考慮して、粉体の形状や構造の制御に関する製法を検討すると、気相合成法(気相法)が相対的に優れている。中でも、噴霧乾燥法、噴霧熱分解法、凍結乾燥法、超臨界法等、“噴霧法”を中心とする「液滴プロセス」は、乳糖や吸入製剤の工業化に成功している代表的な気相法である。   (C) An example of an apparatus configuration used when the conversion process of liquid substance → particulate substance is embodied. Considering mass productivity and continuous productivity, the gas phase synthesis method (gas phase method) is relatively superior when a production method for controlling the shape and structure of the powder is examined. Above all, the “droplet process” centered on the “spray method” such as spray drying method, spray pyrolysis method, freeze drying method, supercritical method, etc. is a typical example of success in industrializing lactose and inhalation preparations. It is a phase method.

即ち、水系の分散媒体に、構成成分の粒状物質を溶解・分散等した混合物質を作製し、これを噴霧→乾燥→析出→結晶化(固化)の各過程で、低温から加熱温度域に液滴が導入され、液滴から溶媒等が蒸発し、液滴の内部は液状物質状態で周囲から溶質が析出する際、溶解度の低い傾向を持つ溶質等が、先に析出する傾向を持つ(この時、他の溶質等は液滴の内部で、液状物質状態を保持している)。更に、液滴が加熱部を進行し、更に、溶媒が蒸発して溶質等の析出が進展すると、目的とする複合粒子が生成する。   That is, a mixed material is prepared by dissolving / dispersing the constituent granular materials in an aqueous dispersion medium, and this is liquidized from a low temperature to a heating temperature range in each process of spraying → drying → precipitation → crystallization (solidification). When the droplets are introduced, the solvent and the like evaporate from the droplets, and when the solute deposits from the surroundings in the liquid substance state, the solutes having a low solubility tend to precipitate first (this Other solutes, etc. are still in the liquid state inside the droplets). Furthermore, when the droplets travel through the heating section, and the solvent evaporates and precipitation of solutes progresses, target composite particles are generated.

液滴の搬送方法は、不活性ガス等のガス状物質の気流で液滴を搬送する方法を好適とするが、液滴加熱部に液滴の損失を少なくして搬送できる方法であれば、任意の方法でよい。   The method for transporting the droplets is preferably a method for transporting the droplets with a gas flow of a gaseous substance such as an inert gas. Any method may be used.

温度コントロール場、又は、同時又は連続的又は断続的に温度制御機能を付与可能な装置とは、石英、アルミナ、耐熱鋼等の反応管や反応壁を設け、雰囲気制御や、発生熱エネルギーの効率的利用が可能な密閉構造を好適とするが、反応に問題がなければ自由空間でもよい。   A temperature control field or a device that can be given a temperature control function simultaneously or continuously or intermittently is equipped with reaction tubes and reaction walls made of quartz, alumina, heat-resistant steel, etc. to control the atmosphere and the efficiency of generated heat energy A closed structure that can be used in a general manner is preferable, but a free space may be used if there is no problem in the reaction.

また、反応駆動力としては、原料の自励的な反応が経済性の点で最も望ましいが、反応促進と短時間化の目的で、気相析出反応(CVD)法で多用される外部加熱(電気炉加熱)法や、プラズマ、アーク、火炎(但し「火炎」とは、完全燃焼であり、水蒸気(HO)と二酸化炭素(CO)に完全に分解される現象をいう)、高還元比の部分燃焼(但し「還元比」とは、水蒸気+二酸化炭素と、水素(H)+一酸化炭素(CO)との比)、氷や液体窒素、超臨界状態の二酸化炭素、等を利用又は併用することを妨げるものではない。 As the reaction driving force, self-excited reaction of the raw material is most desirable from the economical viewpoint, but external heating (CVD) method frequently used for the purpose of promoting the reaction and shortening the reaction time ( Electric furnace heating) method, plasma, arc, flame (“flame” means complete combustion, a phenomenon that is completely decomposed into water vapor (H 2 O) and carbon dioxide (CO 2 )), high Partial combustion of the reduction ratio (where “reduction ratio” is the ratio of water vapor + carbon dioxide to hydrogen (H 2 ) + carbon monoxide (CO)), ice or liquid nitrogen, carbon dioxide in a supercritical state, etc. This does not preclude the use or combination of these.

製造された複合粒子又は上記凝集体の使用方法、及び上記複合粒子又は上記凝集体を利用した成形体や焼結体としては、化粧品材料を好適とするが、更に、半導体素子の保護・絶縁等を目的としたパッケージング(封止)材料、絶縁材料、電極・導電材料、電気粘性流体、化学機械研磨用スラリー、射出成形や鋳込み成形等のセラミック成形プロセス原料、基板材料、セラミック電子材料、セラミック構造材料、充填剤や嵩増剤等の各種フィラー系粉体、吸入療法用経肺薬剤、錠剤用薬剤粉体、等の材料系が例示される。   As a method of using the produced composite particles or aggregates, and a molded body or sintered body using the composite particles or aggregates, cosmetic materials are preferable, but further, protection and insulation of semiconductor elements, etc. Packaging (sealing) materials, insulating materials, electrodes / conductive materials, electrorheological fluids, chemical mechanical polishing slurries, ceramic molding process raw materials such as injection molding and casting, substrate materials, ceramic electronic materials, ceramics Examples of the material system include structural materials, various filler powders such as fillers and bulking agents, pulmonary drugs for inhalation therapy, and drug powders for tablets.

紫外線遮蔽能(及び可視光透過能)等の薬効(化粧)機能は、化粧品として人肌上に使用された状態を、模式的に再現(シミュレーション)可能なことを条件とする。例えば化粧品原料を、実際にファンデーション組成物として配合されているシリコーン等の溶媒に、フーバーマーラー等の顔料・塗料の濃度・色相・練肉性・稠度の比較・色合わせ試験機で混合・混錬し、ガラス基板等の間に、ドクターブレード等で分散させた試料フィルムが例示される。その光学特性の評価は、分光光度計(積分球ユニット装着は任意)、OPACITY CHARTS(LENETA社製等)のデジタル変角光沢計(スガ試験機社等)、黒・白色度(隠蔽率)色差計等、任意の方法でよい。   The medicinal (makeup) function such as the ultraviolet shielding ability (and visible light transmission ability) is based on the condition that the state used on the human skin as a cosmetic product can be schematically reproduced (simulated). For example, cosmetic raw materials are mixed and kneaded in a solvent such as silicone, which is actually blended as a foundation composition, with pigments and paints such as Hoover Mahler, paint concentration, hue, meatiness, consistency, and color matching tester And the sample film disperse | distributed with the doctor blade etc. between the glass substrates etc. is illustrated. The optical properties are evaluated by spectrophotometer (integrated sphere unit is optional), digital variable glossiness meter (Suga Test Instruments Co., Ltd.) of OPACITY CHARTS (manufactured by LENETA, etc.), black / whiteness (hiding ratio) color difference Any method, such as a total, may be used.

一般に、フィルム状試料の紫外線・可視光線等の透過率測定において、紫外〜可視光〜赤外線領域下の反射・屈折・散乱・遮蔽効果(能力)は、物質(例えばチタニアや酸化亜鉛等)固有のバンドギャップに基づく光吸収効果と、フィルム中に分散した化粧品原料の一次粒子径と二次粒子径(分散径又は凝集度)に基づく屈折効果や散乱(遮蔽)効果等との相乗効果に依存する。紫外線遮蔽能(及び可視光透過能)等の薬効(化粧)機能の評価は、これらの諸効果の分解能を満足するものであれば、何ら限定されるものではない。   In general, in the measurement of transmittance of film-like samples such as ultraviolet rays and visible rays, the reflection, refraction, scattering, and shielding effect (ability) under the ultraviolet to visible light to infrared region is specific to the substance (for example, titania or zinc oxide). Depends on the synergistic effect of the light absorption effect based on the band gap and the refraction effect and the scattering (shielding) effect based on the primary particle size and secondary particle size (dispersion size or degree of aggregation) of the cosmetic raw material dispersed in the film. . The evaluation of the medicinal effect (makeup) function such as the ultraviolet shielding ability (and visible light transmission ability) is not limited as long as it satisfies the resolution of these various effects.

質感、皺等の凹凸隠蔽性や、滑沢性・使用感等の顔料(化粧)機能は、粒子1個に働く付着力の直接測定で得られた生データではなく、個々の粒子の集合体である粉体層(所謂バルク粉体層)を対象とし、粉体層で得られた数値を重量や表面積で規格化するものであった。即ち、計算値であり、直接測定で得られた生データではない方法や装置である。   Pigment (makeup) functions such as texture, wrinkle concealment, smoothness, and feeling of use are not raw data obtained by direct measurement of the adhesive force acting on each particle, but an aggregate of individual particles The numerical values obtained from the powder layer were normalized by weight and surface area. That is, a method or device that is a calculated value and not raw data obtained by direct measurement.

例えば、堆積した粉体層の自由表面と水平面とが成す角度である安息角や、スパチュラ角や差角、ISO企画化も行われたJenikeセルによる剪断応力試験法、Mohr応力円の破壊包絡線を基に計算する内部摩擦角、Carrの提唱に基づいた流動性と噴流性に係る経験的指数、重量又は体積基準での固め・緩め嵩密度、両者の比である圧縮度、引張り破断試験法、錠剤破断試験法、曲げ試験法、更に、化学分析的な手法として、比表面積や粉体帯電量、粒子径とアスペクト比(=化粧品業界では通常、板状粒子の最大長と厚みの比)、粉体層の親水/疎水バランス、電子顕微鏡観察、篩い分けや静電気評価、複数モニターによるアンケート調査(所謂官能評価)、人造皮膚模型(バイオスキン)による人肌上に使用された状態を模式的に再現(シミュレーション)した粉体特性評価、等が例示される。   For example, the angle of repose, the angle between the free surface of the deposited powder layer and the horizontal plane, the spatula angle, the difference angle, the shear stress test method using the Jenike cell with ISO planning, the fracture envelope of the Mohr stress circle Calculated based on the internal friction angle, empirical index on fluidity and jetting based on Carr's proposal, solidification / relaxation bulk density on weight or volume basis, compression ratio, ratio of both, tensile fracture test method , Tablet rupture test method, bending test method, and chemical analysis methods such as specific surface area, powder charge amount, particle diameter and aspect ratio (= the ratio of the maximum length and thickness of plate-like particles in the cosmetic industry) , Hydrophilic / hydrophobic balance of powder layer, electron microscope observation, screening and static electricity evaluation, questionnaire survey with multiple monitors (so-called sensory evaluation), artificial skin model (bio skin) used on human skin Reproduction (Simulation) powder was characterization, etc. are exemplified.

好適例として、滑沢性・使用感等の顔料機能の定量化の方法は、Jenikeセル等による剪断応力試験法に基づく内部摩擦角評価を挙げるが、目的の濃厚系スラリーと呼ばれる実際の製造現場の現実的な濃度条件(例えば40wt(重量)%以上)を具現化できる方法であれば、任意の方法でよい。   As a preferred example, the method of quantifying pigment functions such as lubricity and feeling of use includes evaluation of the internal friction angle based on the shear stress test method by Jenike cell etc., but the actual production site called the target concentrated slurry Any method may be used as long as it can realize the realistic concentration conditions (for example, 40 wt.% Or more).

以下のような効果が奏される。
(1)粒子1個及び/又は粒子群(粉体層や粒子充填層、成形体、圧粉体等を含む)の外部形態や内部構造の制御法、及びその複合粒子及び凝集体と、制御装置に関して、1)体質顔料、2)パール顔料、3)粒子複合化法、の3つの観点において、既往技術が持つ技術的問題、即ち、
1)粒子・粉体の均一分散(Breaking Down)と、緻密充填・成形(Building Up)とを、同時に制御した構成、が不可、
2)液相中の粒子分散理論と、ナノ粒子充填理論とに係る、粉体工学的理論を同時に制御条件として数式化した、技術項目の抽出、が不可、
3)機能性化粧品で必須の、顔料機能(演色性や滑沢性等)と薬効機能(紫外線遮蔽等)の相乗が、が不可、
という、以上の3つの欠点を克服し得る。
(2)そして、更には、
1)複合粒子又は上記凝集体の集合体(粉体層や粒子充填層、成形体、圧粉体等を含む)の、光学波長800nmの透過率の、400nmの透過率による減算(差)を、可視光透過率、光学波長400nmの透過率の、290nmの透過率による減算(差)を、紫外線遮蔽率、として、各指標を定義した時、可視光透過率が20%以下、紫外線遮蔽率が40%以上、
2)当該複合粒子又は上記凝集体の集合体の、滑沢性・使用感指標の内部摩擦角が、15°以下、
3)高コストな人為的操作を要せず、経済的にも問題のない操作条件(工程の改善)、
4)特に、平均粒子径15μm以下、且つアスペクト比(=平均粒子径÷平均粒子厚)100以下の含水ケイ酸アルミニウムカリウム、又は層状ケイ酸塩、又は雲母、又は粘土鉱物製の板状の粒状物質原料と、平均粒子径0.1μm以下の予め固形(結晶)化された金属酸化物製の添加物質に好適な、発明としての技術的構成要素、
という、4つの目的を達成し得るという、格段の効果が奏される。
(3)その結果、板状粒子を母粒子、予め固形(結晶)化されたナノメーターオーダー粒子を子粒子とした複合粒子において、母粒子・子粒子の凝集フリー、且つ、母粒子表面に子粒子が微細均一に複合化し得るという、現状では不可能であった新規な形態制御法、及びその複合粒子と、制御装置を所与し得る。
(4)粉体工学の理論的な粒子複合化法を実材料向けの方法論として具現化し、近年需要が高まっている濃厚系スラリーと呼ばれる実際の製造現場の現実的な濃度条件下(例えば40wt(重量)%以上)でのオーダードミクスチャー(均一な複合+凝集フリー)製法や、フィラーや化粧品として使用される雲母系粒状物質の技術分野を拡大するものとして、有用である。
The following effects are produced.
(1) Control method of external form and internal structure of one particle and / or particle group (including powder layer, particle packed layer, molded body, green compact, etc.), and its composite particles and aggregates, and control Regarding the equipment, the technical problems of the existing technology from the three viewpoints of 1) extender pigment, 2) pearl pigment, and 3) particle composite method,
1) A configuration in which particle / powder uniform dispersion (Breaking Down) and dense filling / molding (Building Up) are controlled simultaneously is impossible.
2) It is impossible to extract technical items based on the powder dispersion theory in the liquid phase and the nanoparticle packing theory as simultaneous control conditions.
3) Synergy of pigment function (color rendering property, lubricity, etc.) and medicinal function (ultraviolet ray shielding, etc.) essential for functional cosmetics is impossible.
The above three drawbacks can be overcome.
(2) And, further,
1) Subtraction (difference) of the transmittance at an optical wavelength of 800 nm of a composite particle or an aggregate of the above-mentioned aggregates (including a powder layer, a particle packed layer, a molded body, a green compact, etc.) by a transmittance of 400 nm. When each index is defined by subtracting (difference) from the transmittance at 290 nm to the visible light transmittance, the transmittance at the optical wavelength of 400 nm, the ultraviolet light shielding rate, the visible light transmittance is 20% or less, and the ultraviolet shielding rate Is over 40%,
2) The internal friction angle of the lubricity / use feeling index of the composite particle or the aggregate of the aggregate is 15 ° or less,
3) Operation conditions that do not require costly human operation and are economically acceptable (improvement of the process),
4) In particular, hydrated aluminum potassium silicate having a mean particle diameter of 15 μm or less and an aspect ratio (= average particle diameter ÷ average particle thickness) of 100 or less, or lamellar silicate, mica, or plate-like granules made of clay mineral A technical component suitable as an invention suitable for a material raw material and a pre-solidified (crystallized) metal oxide additive having an average particle size of 0.1 μm or less,
The remarkable effect that the four purposes can be achieved is achieved.
(3) As a result, in the composite particles in which the plate-like particles are the mother particles and the nanometer order particles previously solidified (crystallized) are the child particles, the aggregation of the mother particles and the child particles is free, and the child particles are formed on the surface of the mother particles. It is possible to provide a novel shape control method, a composite particle, and a control device, which are impossible at present, that the particles can be finely and uniformly compounded.
(4) Realizing the theoretical particle compounding method of powder engineering as a methodology for real materials, and realistic concentration conditions (for example, 40 wt ( It is useful for expanding the technical field of mica-based particulate materials used as fillers and cosmetics, as well as an ordered mixture (uniform composite + aggregation-free) manufacturing method (by weight)%).

本発明・参考発明と既往技術との差異性を明示した技術位置付けマップである。It is a technology positioning map that clearly shows the difference between the present invention / reference invention and the existing technology. 本発明・参考発明と先願発明との各構成と関係及び違い(差異性)を示すパテントマップである。It is a patent map which shows each structure, relationship, and difference (difference) between the present invention / reference invention and the prior invention. 本発明・参考発明の技術的概要の一覧図である(先願発明との差異性を明示)。It is a list of technical outlines of the present invention and reference invention (the difference from the prior invention is clearly shown). 本発明・参考発明のSTF(新規性・制御条件)を図示した一覧図である。It is the list figure which illustrated STF (novelty and control condition) of this invention and reference invention. 実施例・参考例の全内容の一覧図である。It is a list figure of all the contents of an example and a reference example. 本発明・参考発明の技術的特徴の前半(液相中の表面ポテンシャル制御)の制御機構である(DLVO理論から計算されるvan der Waals引力と静電反発作用を考慮したポテンシャル曲線の計算例、(1)20nm、(2)100nm、(3)300nm)。The control mechanism of the first half of the technical features of the present invention / reference invention (surface potential control in the liquid phase) (calculation example of potential curve considering van der Waals attraction and electrostatic repulsion calculated from DLVO theory) (1) 20 nm, (2) 100 nm, (3) 300 nm). 本発明・参考発明の技術的特徴の後半(粒子充填の表面間距離制御)の制御機構である(Woodcock式による粒子平均表面間距離LWoodcock理論計算例、(1)20nm、(2)100nm、(3)300nm)。This is the control mechanism of the latter half of the technical features of the present invention / reference invention (particle-to-surface distance control of particle filling) (particle average surface distance L Woodcock theoretical calculation example by Woodcock equation, (1) 20 nm, (2) 100 nm, (3) 300 nm). 本発明・参考発明の技術的特徴の(表面ポテンシャルと表面間距離制御の融合)の制御機構である((1)ナノメーターオーダー粒子のLDLVO(25・50mVの二種類の表面電位)、(2)サブミクロン粒子・ナノ粒子・ナノ粒子の六方細密充填モデル各々のLWoodcock)。It is a control mechanism of the technical feature of the present invention / reference invention (fusion of surface potential and inter-surface distance control) ((1) L DLVO of nanometer order particles (two types of surface potentials of 25 and 50 mV)), ( 2) L Woodcock of each hexagonal close packed model of submicron particles / nanoparticles / nanoparticles). 本発明・参考発明の技術的特徴の「LDLVO ≧ LWoodcock」の50nmの場合である。This is a case where the technical feature of the present invention / reference invention is “L DLVO ≧ L Woodcock ” of 50 nm. 本発明・参考発明の技術的特徴の(微小力制御)のうち2種の静電気力の制御機構である(本願で好適とする物質(材料)群のpHとζ電位の関係、粘土・カオリン・γアルミナ・αアルミナ・シリカ)。Among the technical features of the present invention / reference invention (micro force control), there are two types of electrostatic force control mechanisms (relationship between pH and ζ potential of substances (materials) suitable for the present application, clay, kaolin, (γ alumina, α alumina, silica). 参考例の前半(均一及び局所制御の粒子複合化)結果である。It is the first half of the reference example (particle composite of uniform and local control). 参考例の前半(均一及び局所制御の粒子複合化)の制御機構(移動度の制御)とSTF「LDLVO ≧ LWoodcock」の関係を図示した一覧図である。It is the list figure which illustrated the control mechanism (control of mobility) and STF " LDLVO > = LWoodcock " of the first half of the reference example (uniform and local control particle composite). 実施例(中実及び中空顆粒化)の制御機構(移動度の制御)と技術的特徴の「LDLVO ≧ LWoodcock」の関係を図示した一覧図である。It is the list figure which illustrated the relationship of the control mechanism (control of mobility) of an Example (solid and hollow granulation) and the technical feature " LDLVO > = LWoodcock ". 実施例及び参考例の可視光透過性と紫外線遮蔽性の向上結果・一覧である。It is an improvement result and a list | wrist of the visible light transmittance | permeability and ultraviolet-ray shielding property of an Example and a reference example. 参考例1の走査型電子顕微鏡写真を示す。 (<1−1>チタニア20wt%・微粒子酸化チタンのラボレベル調製)。The scanning electron micrograph of the reference example 1 is shown. (<1-1> titania 20 wt%, laboratory level preparation of fine particle titanium oxide). 参考例2の走査型電子顕微鏡写真を示す。 (<1−2>チタニア25wt%・微粒子酸化チタンのラボレベル調製)。The scanning electron micrograph of the reference example 2 is shown. (<1-2> titania 25 wt%, laboratory level preparation of fine particle titanium oxide). 参考例3の走査型電子顕微鏡写真を示す。 (<1−3>チタニア50wt%・微粒子酸化チタンのラボレベル調製)。The scanning electron micrograph of the reference example 3 is shown. (<1-3> titania 50 wt%, preparation of laboratory level of fine particle titanium oxide). 参考例4の走査型電子顕微鏡写真を示す。 (<1−4>チタニア15wt%・微粒子酸化チタンのラボレベル調製)。The scanning electron micrograph of the reference example 4 is shown. (<1-4> titania 15 wt%, lab level preparation of fine particle titanium oxide). <1>微粒子酸化チタンのラボレベル調製[参考例1]〜[参考例4]の可視光透過性と紫外線遮蔽性の向上結果である。<1> Lab level preparation of fine particle titanium oxide [Reference Example 1] to [Reference Example 4] are the results of improving the visible light transmittance and the ultraviolet shielding property. 参考例5の走査型電子顕微鏡写真を示す。 (<2−1>静置1週間(チタニア20wt%)・生産仕様の調製)。The scanning electron micrograph of Reference Example 5 is shown. (<2-1> standing for 1 week (titania 20 wt%) / preparation of production specifications). 参考例6の走査型電子顕微鏡写真を示す。 (<2−2>静置1週間で量産型(チタニア25wt%)・生産仕様の調製)。The scanning electron micrograph of Reference Example 6 is shown. (<2-2> Mass production type (titania 25 wt%) and preparation of production specifications in one week of standing). <2>生産仕様の調製(スラリー静置と処理量)[参考例5〜6]の可視光透過性と紫外線遮蔽性の向上結果である。<2> Production specifications (slurry standing and treatment amount) [Reference Examples 5 to 6] are the results of improving the visible light transmittance and the ultraviolet shielding property. 参考例7の走査型電子顕微鏡写真を示す。 (<3−1>エタノール10wt%混合分散媒・分散化と防菌の有機溶媒併用)。The scanning electron micrograph of Reference Example 7 is shown. (<3-1> Ethanol 10 wt% mixed dispersion medium / dispersion and antibacterial organic solvent combined use). 参考例8の走査型電子顕微鏡写真を示す。 (<3−2>エタノール10wt%誘電率調整添加剤・分散化と防菌の有機溶媒併用)。The scanning electron micrograph of Reference Example 8 is shown. (<3-2> Ethanol 10 wt% dielectric constant adjusting additive / dispersion and antibacterial organic solvent combined use). 参考例9の走査型電子顕微鏡写真を示す。 (<3−3>エタノール100wt%・分散化と防菌の有機溶媒併用)。The scanning electron micrograph of Reference Example 9 is shown. (<3-3> 100 wt% ethanol / dispersion and antibacterial organic solvent combined use). <3>分散化と防菌の有機溶媒エタノール併用[参考例7〜9]の可視光透過性と紫外線遮蔽性の向上結果である。<3> It is an improvement result of visible light transmittance and ultraviolet shielding property of the organic solvent ethanol combined use [Reference Examples 7 to 9] for dispersion and bacteria prevention. 参考例10の走査型電子顕微鏡写真を示す。 (<4>微細プラズマ溶融ビーズ・媒体撹拌制御の強化)。The scanning electron micrograph of Reference Example 10 is shown. (<4> Strengthening of fine plasma melt bead / medium stirring control) 参考例11の走査型電子顕微鏡写真を示す。 (<5−1>薄膜流のエッジ境界あり・噴霧量の増量化(4流体ノズル法))。The scanning electron micrograph of Reference Example 11 is shown. (<5-1> There is an edge boundary of the thin film flow, and the spray amount is increased (four-fluid nozzle method)). 参考例12の走査型電子顕微鏡写真を示す。 (<5−2>薄膜流のエッジ境界なし・噴霧量の増量化(4流体ノズル法))。The scanning electron micrograph of the reference example 12 is shown. (<5-2> No edge boundary in thin film flow, increase in spray amount (4-fluid nozzle method)). 参考例13の走査型電子顕微鏡写真を示す。 (<5−3>生産仕様の調製・噴霧量の増量化(4流体ノズル法))。The scanning electron micrograph of Reference Example 13 is shown. (<5-3> Preparation of production specifications and increase in spray amount (four-fluid nozzle method)). <5>噴霧量の増量化4流体ノズル法[参考例11〜13]の可視光透過性と紫外線遮蔽性の向上結果である。<5> Increase in spray amount This is a result of improving the visible light transmittance and the ultraviolet shielding property of the four-fluid nozzle method [Reference Examples 11 to 13]. 参考例14の走査型電子顕微鏡写真を示す。 (<6−1>微粒ナノ粒子・微粒子酸化チタンの種類(粒子径及び外部形状))。The scanning electron micrograph of Reference Example 14 is shown. (<6-1> Types of fine nanoparticles and fine titanium oxide (particle diameter and external shape)). 参考例15の走査型電子顕微鏡写真を示す。 (<6−2>大球ナノ粒子・微粒子酸化チタンの種類(粒子径及び外部形状))。The scanning electron micrograph of Reference Example 15 is shown. (<6-2> Types of large spherical nanoparticle / fine particle titanium oxide (particle diameter and external shape)). 参考例16の走査型電子顕微鏡写真を示す。 (<6−3>紡錘状ナノ粒子・微粒子酸化チタンの種類(粒子径及び外部形状))。The scanning electron micrograph of Reference Example 16 is shown. (<6-3> Types of spindle-shaped nanoparticles / fine-particle titanium oxide (particle diameter and external shape)). <4>媒体撹拌の強化微細ビーズ15μm[参考例10]<6>微粒子酸化チタン種類:粒子径と形状[参考例14〜16]の可視光透過性と紫外線遮蔽性の向上結果である。<4> Enhanced Medium Stirring Fine Beads 15 μm [Reference Example 10] <6> Fine Titanium Oxide Type: Particle Size and Shape [Reference Examples 14 to 16] These are the results of improving the visible light transmittance and ultraviolet shielding properties. 参考例17の走査型電子顕微鏡写真を示す。 (<7−1>媒体との親和性を制御(疎水化)・母粒子の表面電荷制御)。The scanning electron micrograph of Reference Example 17 is shown. (<7-1> Control of affinity with medium (hydrophobization) / control of surface charge of mother particles). 参考例18の走査型電子顕微鏡写真を示す。 (<7−2>端面・卓面を共に正電荷・母粒子の表面電荷制御)。The scanning electron micrograph of Reference Example 18 is shown. (<7-2> Positive charge on both end face and table face, surface charge control of mother particle). <7>母粒子電荷制御:合成雲母とアルミナ[参考例17〜18]の可視光透過性と紫外線遮蔽性の向上結果である。<7> Mother particle charge control: results of improvement in visible light transmittance and ultraviolet shielding property of synthetic mica and alumina [Reference Examples 17 to 18]. 実施例1の走査型電子顕微鏡写真を示す。 (<8−1>中実顆粒、5ミクロンレベル)。The scanning electron micrograph of Example 1 is shown. (<8-1> solid granules, 5 micron level). 実施例2の走査型電子顕微鏡写真、偏光顕微鏡の透過像、水中での膨潤可逆変化結果を示す。 (<8−2>中空顆粒、5ミクロンレベル)。The scanning electron micrograph of Example 2, the transmission image of a polarizing microscope, and the swelling reversible change result in water are shown. (<8-2> hollow granules, 5 micron level). 実施例2の、粒径制御した走査型電子顕微鏡写真を示す。 (<8−2>中空顆粒、5ミクロンレベル)。The scanning electron micrograph which controlled the particle size of Example 2 is shown. (<8-2> hollow granules, 5 micron level). 実施例3の、円盤回転数で粒径制御した写真と粒子径分布を示す。 (<8−3>中空顆粒、50ミクロンレベル)。The photograph and particle size distribution of Example 3 which controlled the particle size by the disk rotation speed are shown. (<8-3> hollow granules, 50 micron level). 実施例3の、粒径制御した走査型電子顕微鏡写真を示す。 (<8−3>中空顆粒、50ミクロンレベル)。The scanning electron micrograph which controlled the particle size of Example 3 is shown. (<8-3> hollow granules, 50 micron level). 比較例1の走査型電子顕微鏡写真を示す。 (<9>汎用的な機械的複合化法(固相法)による混合粉体)。The scanning electron micrograph of the comparative example 1 is shown. (<9> Mixed powder by general-purpose mechanical compounding method (solid phase method)). 比較例2の走査型電子顕微鏡写真を示す。 (<10−1>微粒ナノ粒子・汎用的な噴霧法(2流体ノズル法))。The scanning electron micrograph of the comparative example 2 is shown. (<10-1> fine nanoparticle, general-purpose spraying method (two-fluid nozzle method)). 比較例3の走査型電子顕微鏡写真を示す。 (<10−2>親水良分散性のナノ粒子・汎用的な噴霧法(2流体ノズル法))。The scanning electron micrograph of the comparative example 3 is shown. (<10-2> Hydrophilic and well-dispersible nanoparticles, general-purpose spraying method (two-fluid nozzle method)). <9>汎用的・機械的複合化法による混合粉体[比較例1]<10>汎用的な噴霧法(2流体ノズル法)の混合粉体[比較例2〜3]の可視光透過性と紫外線遮蔽性の結果である。<9> Mixed powder by general-purpose / mechanical composite method [Comparative Example 1] <10> Visible light transmittance of mixed powder [Comparative Examples 2-3] of general-purpose spraying method (two-fluid nozzle method) And UV shielding results. 比較例4の走査型電子顕微鏡写真を示す。 (<11−1>表面電荷制御無し原料・参考発明の制御を一部だけ汎用法に戻す)。The scanning electron micrograph of the comparative example 4 is shown. (<11-1> Raw material without surface charge control. Control of the reference invention is partially returned to the general-purpose method). 比較例5の走査型電子顕微鏡写真を示す。 (<11−2>良分散ナノ粒子+電荷制御無し雲母・参考発明の制御を一部だけ汎用法に戻す)。The scanning electron micrograph of the comparative example 5 is shown. (<11-2> well-dispersed nanoparticles + mica with no charge control-part of the control of the reference invention is returned to the general-purpose method). 比較例6の走査型電子顕微鏡写真を示す。 (<11−3>紡錘状チタニア20wt%・参考発明の制御を一部だけ汎用法に戻す)。The scanning electron micrograph of the comparative example 6 is shown. (<11-3> Spindle-shaped titania 20 wt%. The control of the reference invention is partially returned to the general-purpose method). 比較例7の走査型電子顕微鏡写真を示す。 (<11−4>紡錘状チタニア30wt%・参考発明の制御を一部だけ汎用法に戻す)。The scanning electron micrograph of the comparative example 7 is shown. (<11-4> Spindle-shaped titania 30 wt%. The control of the reference invention is partially returned to the general-purpose method). <10>汎用的な噴霧法(2流体ノズル法)の混合粉体[比較例2〜3]の可視光透過性と紫外線遮蔽性の結果である。<10> The results of the visible light transmittance and the ultraviolet shielding property of the mixed powder [Comparative Examples 2 to 3] of a general spray method (two-fluid nozzle method). 比較例8の走査型電子顕微鏡写真を示す。 (<11−5>ホモミキサーによる中空顆粒、5ミクロンレベル)。The scanning electron micrograph of the comparative example 8 is shown. (<11-5> Hollow granules by homomixer, 5 micron level).

次に、実施例・参考例・比較例により本発明及び参考発明を具体的に説明するが、以下の実施例・参考例・比較例によって、何ら限定されるものではない。   Next, the present invention and the reference invention will be specifically described by way of examples, reference examples, and comparative examples, but are not limited by the following examples, reference examples, and comparative examples.

実施例・参考例・比較例において、新規性評価の制御因子(特別な技術的特徴)として、分散や複合を支配する微小力や、一個の粒子に着目した粉体一次特性、主に凝集体や粉体層に着目した粉体二次特性(複合粒子と顆粒体という形態・構造制御)を選択し、下記のように整理した(図4〜10)。   In Examples / Reference Examples / Comparative Examples, as a control factor (special technical feature) of novelty evaluation, fine force governing dispersion and composite, primary characteristics of powder focusing on one particle, mainly agglomerates And secondary powder characteristics (morphological / structure control of composite particles and granules) focusing on the powder layer were selected and arranged as follows (FIGS. 4 to 10).

(1)制御の最上位概念
母粒子と子粒子の平均表面間距離LDLVOとLWoodcock
(2)制御の目標となる調製因子=微小力(反発力、凝集力)
1)van der Waals凝集力(混合液体中、静置された母粒子・子粒子において)
2)静電ホモ反発力(混合液体中)
3)液架橋凝集力(液滴内や液滴形成過程、静置された母粒子・子粒子において)
4)静電ヘテロ凝集力(混合液体中から、液滴内において)
(1) Top-level concept of control Average surface-to-surface distance L DLVO and L Woodcock of mother particle and child particle
(2) Preparation factor to be controlled = micro force (repulsive force, cohesive force)
1) van der Waals cohesive force (in the mixed liquid, in the stationary mother particle / child particle)
2) Electrostatic homo repulsive force (in mixed liquid)
3) Liquid cross-linking cohesion (in the droplet, in the droplet formation process, in the stationary mother particle / child particle)
4) Electrostatic hetero-cohesive force (from mixed liquid to inside droplet)

(3)直接的に制御される粉体一次特性
1)一次粒子径と粒子径分布(母粒子と子粒子の)
2)表面処理(親水と疎水の、母粒子と子粒子の、但し一次粒子の、湿式や乾式法で)
3)表面電位(正又は負、但し一次粒子の、板状粒子の端面(正)と卓面(負)夫々の)
(3) Directly controlled powder primary characteristics 1) Primary particle size and particle size distribution (for parent and child particles)
2) Surface treatment (hydrophilic and hydrophobic, mother and child particles, but primary particles, wet or dry)
3) Surface potential (positive or negative, but the primary particle's edge (positive) and table (negative) respectively)

(4)直接的に制御される二次特性
1)複合度(子粒子の表面被覆率と均一度)
2)二次粒子径や凝集体径、凝集径分布(母粒子と子粒子、特に子粒子の)
3)凝集体強度(又は母粒子や子粒子の分散度、板状粒子のカードハウス構造強度)
4)表面処理(親水と疎水の、母粒子と子粒子の、但し二次粒子全体の、湿式や乾式法で)
(4) Secondary characteristics controlled directly 1) Complexity (surface coverage and uniformity of child particles)
2) Secondary particle size, aggregate size, aggregate size distribution (for mother and child particles, especially child particles)
3) Aggregate strength (or dispersion degree of mother particles and child particles, card house structure strength of plate-like particles)
4) Surface treatment (both hydrophilic and hydrophobic, mother and child particles, but secondary particles as a whole, wet or dry)

本参考例では、静電「斥力」を、母・子粒子の同種同士の均一分散に用い、静電「引力」を、母・子粒子の異種同士の均一付着に併用する。そこで、このような微小力制御の一手法として、アルミナ表面処理の微粒子酸化チタンを用いた。   In this reference example, electrostatic “repulsive force” is used for uniform dispersion of the same kind of mother and child particles, and electrostatic “attraction” is used in combination for uniform adhesion of different kinds of mother and child particles. Therefore, as one method for controlling such a micro force, fine particle titanium oxide with an alumina surface treatment was used.

特に微小力において、参考例・比較例で実際に調節した操作条件は、母粒子と子粒子の一次特性、分散度の制御方法、混合液体の乾燥方法、液滴の形成方法で、下記のようにまとめられる(図4・5)。   The operating conditions actually adjusted in the reference examples and comparative examples, particularly for micro forces, are the primary characteristics of the mother particles and the child particles, the method of controlling the degree of dispersion, the method of drying the mixed liquid, and the method of forming droplets as follows: (Figs. 4 and 5).

(1)板状粒子の表面電位(又は母粒子の分散度、母粒子の一次特性)
1)天然又は合成雲母(端面(正)と卓面(負))と板状アルミナ(端面も卓面も正電荷)端面も卓面も正電荷〜端面正卓面負〜端面負卓面正〜端面も卓面も負電荷
2)天然雲母の精製時の凝集剤(ポリ塩化アルミニウム(PAC)等)=カチオン量
(1) Surface potential of plate-like particles (or dispersion of mother particles, primary characteristics of mother particles)
1) Natural or synthetic mica (end face (positive) and table face (negative)) and plate-like alumina (end face and table face both positive charge) both end face and table face are positive charge-end face positive table face negative-end face negative table face positive ~ Negative charge on both the end face and the table face 2) Flocculants (polyaluminum chloride (PAC), etc.) during the purification of natural mica = cation amount

(2)子粒子の凝集体径と強度(又は子粒子の分散度。子粒子の一次特性)
1)子粒子の一次粒子径
20以下〜30〜40〜50nm以上
2)子粒子の表面処理(無処理、シリカ、アルミナ、水酸化アルミニウム、アルギン酸)正電荷〜中性〜負電荷
(2) Agglomerate size and strength of child particles (or degree of dispersion of child particles. Primary characteristics of child particles)
1) Primary particle diameter of child particle 20 or less to 30 to 40 to 50 nm or more 2) Surface treatment of child particle (no treatment, silica, alumina, aluminum hydroxide, alginic acid) positive charge to neutral to negative charge

(3)分散度の制御方法(即ち混合液体の分散方法、媒体撹拌ミル法、濾過、凝集剤の有無)
1)ビーズ直径(混合液体の単位体積あたりに占めるビーズ量「ビーズ濃度」)
15以下〜30μm〜汎用ボールミル〜ミル未使用
2)調製した混合液体(スラリー)の量
量産〜試作レベル〜ラボレベル〜バッチ処理
3)混合液体の静置時間(期間)許容度
数日以上静置〜連続処理〜同時処理〜1プロセス
4)混合液体の固形分濃度(母粒子+子粒子の分散媒に対する重量%)
濃厚系スラリー(40wt%以上)〜希薄系スラリー(40wt%未満)
5)分散媒の誘電率(静電反発力に比例、ヘテロ凝集力に反比例)
水・エタノール・両者の混合媒体、混合液体へのエタノールの添加量(0〜100%)
6)混合液体の乾燥方法(又は粒子の固化方法)
液適法、電気炉法、濾過・乾燥法
(3) Dispersion degree control method (that is, mixed liquid dispersion method, medium stirring mill method, filtration, presence of coagulant)
1) Bead diameter (the amount of beads occupied per unit volume of the mixed liquid “bead concentration”)
15 or less to 30 μm to general-purpose ball mill to mill unused 2) Amount of prepared mixed liquid (slurry) Mass production to trial level to lab level to batch processing 3) Allowed standing time (period) of mixed liquid to stand for several days or more ~ Continuous treatment ~ Simultaneous treatment ~ 1 process 4) Solid content concentration of liquid mixture (% by weight of dispersion medium of mother particles + child particles)
Thick slurry (40 wt% or more) to dilute slurry (less than 40 wt%)
5) Dielectric constant of dispersion medium (proportional to electrostatic repulsion, inversely proportional to hetero cohesion)
Addition amount of ethanol to water / ethanol / mixed medium and mixed liquid (0-100%)
6) Drying method of mixed liquid (or solidifying method of particles)
Liquid method, electric furnace method, filtration / drying method

(4)液滴の形成方法
1)3又は4流体ノズル
2)4流体ノズルの種類=薄膜流を流す傾斜面先端のエッジの有無(有=○、無=△)
3)2流体ノズル(=10数μmの液滴)
4)回転円盤法(=数10〜数100μmの液滴)
5)濾過・乾燥法(汎用法、液相状態→言わば数100μm以上の液滴の意)
(4) Droplet formation method 1) 3 or 4 fluid nozzle 2) Type of 4 fluid nozzle = Presence / absence of edge of inclined surface through which thin film flow flows (Yes = ○, No = Δ)
3) 2-fluid nozzle (= droplet of several tens of μm)
4) Rotating disk method (= drops of several tens to several hundreds μm)
5) Filtration / drying method (general-purpose method, liquid phase state → so-called droplets of several hundred μm or more)

また、効果(成果)の評価指標として、上記の粒状物質を原料として作製した粒子集合体の特性、可視光透過率、紫外線遮蔽率、粉体層滑沢性、熱伝導性を、選択した。可視光透過率、紫外線遮蔽率について、下記のように規格化した(図14)。   In addition, as an evaluation index of the effect (result), the characteristics, visible light transmittance, ultraviolet ray shielding rate, powder layer lubricity, and thermal conductivity of the particle aggregate produced using the above granular material as a raw material were selected. The visible light transmittance and the ultraviolet shielding rate were standardized as follows (FIG. 14).

(1)規格化・可視光透過率
光学波長800nmの透過率の、400nmの透過率による減算(差)を、可視光透過率とし、可視光透過率が20%以下を効果として評価
(1) Normalization / Visible light transmittance Subtracting (difference) from the transmittance at an optical wavelength of 800 nm by the transmittance at 400 nm is regarded as the visible light transmittance, and the visible light transmittance is evaluated to be 20% or less as an effect.

(2)規格化・紫外線遮蔽率
光学波長400nmの透過率の、290nmの透過率による減算(差)を、紫外線遮蔽率とし、紫外線遮蔽率が40%以上を効果として評価
(2) Normalization and UV shielding rate Subtraction (difference) of the transmittance at an optical wavelength of 400 nm by the transmittance at 290 nm is regarded as the UV shielding rate, and the UV shielding rate of 40% or more is evaluated as an effect.

以下の実施例・参考例においては、材料系の代表的な酸化物系粉体として、母粒子に天然・合成のセリサイト、板状アルミナ(商品名「セラフ」)を、子粒子にチタニアを、夫々使用した。   In the following examples and reference examples, natural and synthetic sericite and plate-like alumina (trade name “Seraph”) are used as mother particles, and titania is used as child particles. , Used each.

参考例1Reference example 1

<1>「微粒子酸化チタンのラボレベル調製」([参考例1〜4]で共通、図11〜19)
<1−1>「チタニア重量%(定義は[0094]〜[0100])20wt%」
微粒子酸化チタン(テイカ株式会社製MT−500H、アルミナ表面処理品、光回折/散乱径30nm)30gを精製水350gに加えマグネチックスターラーで分散した。湿式媒体ミル法(寿工業株式会社製UAM−015型ビーズミル)で、プラズマ溶融ビーズ(直径30μm、イットリウム(Y)強化型ZrO製)を用い、30分間分散し、子粒子スラリーを調製した。
<1> “Lab level preparation of fine particle titanium oxide” (common to [Reference Examples 1 to 4], FIGS. 11 to 19)
<1-1> “Titania weight% (definitions [0094] to [0100]) 20 wt%”
30 g of fine particle titanium oxide (MT-500H manufactured by Teika Co., Ltd., alumina surface-treated product, light diffraction / scattering diameter 30 nm) was added to 350 g of purified water and dispersed with a magnetic stirrer. Using a wet medium mill method (UAM-015 type bead mill manufactured by Kotobuki Kogyo Co., Ltd.), plasma melting beads (diameter 30 μm, made of yttrium (Y) reinforced ZrO 2 ) were used for 30 minutes to prepare a child particle slurry.

絹雲母(愛知県北設楽郡東栄町振草産、天然雲母の精製時の凝集剤(ポリ塩化アルミニウム(PAC))未使用、光回折/散乱径7μm)120gを、子粒子スラリーに加え、更に30分間分散した。   Add 120 g of sericite (from Shinei, Toei-cho, Kitasakuraku-gun, Aichi Prefecture, flocculant (polyaluminum chloride (PAC)) not used in the purification of natural mica, light diffraction / scattering diameter 7 μm) to the child particle slurry, and further for 30 minutes Distributed.

混合スラリーを、噴霧乾燥機(藤崎電機株式会社製MDL−050B型、ノズルPN3005型、3流体ノズル法)にて乾燥し、サイクロン法で回収された粉体を、参考例1(複合粉体1)とした。   The mixed slurry was dried with a spray dryer (MDL-050B type manufactured by Fujisaki Electric Co., Ltd., nozzle PN3005 type, three-fluid nozzle method), and the powder recovered by the cyclone method was used as Reference Example 1 (Composite Powder 1). ).

ここで第二成分(子粒子)について、前記の手段〔D〕(LDLVO ≧ LWoodcock)を確認した(前記の混合液体の体積%と重量%の変換法参照)。チタニア真密度(単分散したと仮定する)4.26g/ccより、系に投入されたチタニア体積VTiO2は、
TiO2 =30÷4.26≒7(cc)
となる。
Here, with respect to the second component (child particles), the above-mentioned means [D] (L DLVO ≧ L Woodcock ) was confirmed (see the conversion method of volume% and weight% of the mixed liquid). From the titania true density (assuming monodisperse) 4.26 g / cc, the titania volume V TiO2 charged into the system is
V TiO2 = 30 ÷ 4.26 ≒ 7 (cc)
It becomes.

蒸留水350g=350ccに、ビーズミル系内で循環している水の量200g=200ccを加味すると、系に投入したチタニア体積(vol)割合% TiO2は、
TiO2 =7÷(7+350+200)≒0.013(1vol%)
となる。
When the amount of water circulating in the bead mill system 200 g = 200 cc is added to the distilled water 350 g = 350 cc, the titania volume (vol) ratio% V TiO2 charged into the system is
% V TiO2 = 7 ÷ (7 + 350 + 200) ≈0.013 (1 vol%)
It becomes.

従って、図8と9で示した、表面電位の常識的な操作条件下において、ナノメーターオーダーの第二成分(子粒子)に許容し得る閾値のうち、より厳格側の数vol%@Woodcock式(相互の平均表面間距離が数nmレベル)を満たす(なお、六方細密充填モデルでは、数10vol%(〜30vol%)まで許容され、ヘテロ凝集法を併用した参考例1では、まだ余裕があると言える)。   Therefore, under the common-sense operating conditions of the surface potential shown in FIGS. 8 and 9, among the threshold values allowable for the second component (child particles) in the nanometer order, the stricter number vol% @ Woodcock equation (In the case of the hexagonal close packing model, several tens vol% (˜30 vol%) is allowed in the hexagonal close packing model, and the reference example 1 using the heteroaggregation method still has a margin. Can be said).

図11ないし図15に示す通り、得られた粉体の複合状態等を、透過型電子顕微鏡TEM及び走査型電子顕微鏡SEMで確認した。   As shown in FIGS. 11 to 15, the composite state and the like of the obtained powder were confirmed with a transmission electron microscope TEM and a scanning electron microscope SEM.

図12と13は、前記説明及び図8と9で示した「LDLVO ≧ LWoodcock」を用い、均一・局所不均一の複合粒子と、中実・中空顆粒を製造した結果である。 12 and 13 show the results of producing uniform / local non-uniform composite particles and solid / hollow granules using the above description and “L DLVO ≧ L Woodcock ” shown in FIGS. 8 and 9.

表1に示す通り、可視光透過率と紫外線遮蔽率の測定を、以下の方法で行った。粉体が5wt%になるように、表1に示す組成でシリコーン中分散フィルムを作製した。得られたフィルムを紫外可視分光光度計(島津製作所製UV−160A型、積分球・未使用)の受光部直前に設置し、290〜800nmの紫外〜可視光の透過率(%)を測定した。   As shown in Table 1, the visible light transmittance and the ultraviolet shielding rate were measured by the following methods. A dispersion film in silicone was produced with the composition shown in Table 1 so that the powder was 5 wt%. The obtained film was placed immediately before the light receiving part of an ultraviolet-visible spectrophotometer (Shimadzu Corporation UV-160A type, integrating sphere, unused), and the transmittance (%) of ultraviolet to visible light at 290 to 800 nm was measured. .

夫々の粉体に対して、400nmと290nmとの透過率の差を紫外線遮蔽力、800nmと400nmとの差を可視光遮蔽力として、規格化した。図14に、規格化紫外線遮蔽率、規格化可視光透過率、及び290nmの透過率を整理した。   For each powder, the difference in transmittance between 400 nm and 290 nm was normalized as the ultraviolet shielding power, and the difference between 800 nm and 400 nm was normalized as the visible light shielding power. In FIG. 14, the normalized ultraviolet shielding rate, the normalized visible light transmittance, and the transmittance at 290 nm are arranged.

また複合粉体の酸化チタン含有量を、蛍光X線分析装置で、絹雲母由来の無水ケイ酸のピークと比較することで、定量した。   In addition, the titanium oxide content of the composite powder was quantified by comparing with the peak of silicic anhydride derived from sericite with a fluorescent X-ray analyzer.

参考例2Reference example 2

<1−2>「チタニア重量%25wt%」
微粒子酸化チタン(テイカ株式会社製MT−500H、アルミナ表面処理品、光回折/散乱径30nm)37.5g、絹雲母(愛知県北設楽郡東栄町振草産、天然雲母の精製時の凝集剤(ポリ塩化アルミニウム(PAC))未使用)112.5gを用い、参考例1と同様に調製した。図16に、走査型電子顕微鏡SEMを示す。
<1-2> “Titania weight% 25 wt%”
Fine particle titanium oxide (MT-500H manufactured by Teika Co., Ltd., alumina surface treatment product, light diffraction / scattering diameter 30 nm) 37.5 g, sericite (from Shincho, Toei-cho, Kitashiraku-gun, Aichi Prefecture) flocculant during purification of natural mica (poly Aluminum chloride (PAC)) (not used) was prepared in the same manner as in Reference Example 1 using 112.5 g. FIG. 16 shows a scanning electron microscope SEM.

参考例3Reference example 3

<1−3>「チタニア重量%50wt%」
微粒子酸化チタン(テイカ株式会社製MT−500H、アルミナ表面処理品、光回折/散乱径30nm)75g、絹雲母(愛知県北設楽郡東栄町振草産、天然雲母の精製時の凝集剤(ポリ塩化アルミニウム(PAC))未使用)75gを用い、参考例1と同様に調製した。図17に、走査型電子顕微鏡SEMを示す。
<1-3> “Titania weight% 50 wt%”
Fine particle titanium oxide (MT-500H manufactured by Teika Co., Ltd., alumina surface treatment product, light diffraction / scattering diameter 30 nm), 75 m, sericite (from Shincho, Toei-cho, Kitasaraku-gun, Aichi Prefecture) flocculant during purification of natural mica (polyaluminum chloride) (PAC)) Unused) 75 g was prepared in the same manner as in Reference Example 1. FIG. 17 shows a scanning electron microscope SEM.

参考例4Reference example 4

<1−4>「チタニア重量%15wt%」
微粒子酸化チタン(テイカ株式会社製MT−500H、アルミナ表面処理品、光回折/散乱径30nm)22.5g、絹雲母(愛知県北設楽郡東栄町振草産、天然雲母の精製時の凝集剤(ポリ塩化アルミニウム(PAC))未使用)127.5gを用い、参考例1と同様に調製した。
<1-4> “Titania weight% 15 wt%”
Fine particle titanium oxide (MT-500H manufactured by Teika Co., Ltd., alumina surface treatment product, light diffraction / scattering diameter 30 nm) 22.5 g, sericite (produced in Shinei, Toei-cho, Kitashiraku-gun, Aichi Prefecture), flocculant during purification of natural mica (poly Aluminum chloride (PAC)) (not used) was prepared in the same manner as in Reference Example 1 using 127.5 g.

(図8と9で示した)「LDLVO ≧ LWoodcock」を用い、均一及び局所不均一の粒子複合化を行った。これにより、微小力調整による母粒子と子粒子の移動度の制御が可能となり、任意の複合化を実施できた。 Using “L DLVO ≧ L Woodcock ” (shown in FIGS. 8 and 9), uniform and local non-uniform particle complexation was performed. As a result, the mobility of the mother particles and the child particles can be controlled by adjusting the micro force, and any combination can be implemented.

図11に、代表的な絹雲母−チタニア複合粒子の、断面TEM写真と、WDS面分析マップ、線分析及びEDSスペクトルを示す。中央の塊上に分布したAl−Si−O系化合物の周りを、外殻状にTi−O系化合物が分布しており、均一な粒子複合化が行われていることがわかる。   FIG. 11 shows a cross-sectional TEM photograph, a WDS surface analysis map, a line analysis, and an EDS spectrum of typical sericite-titania composite particles. It can be seen that the Ti—O compound is distributed in the form of an outer shell around the Al—Si—O compound distributed on the central lump, and uniform particle formation is performed.

図12は、図8・9のLDLVO≒LWoodcock範囲で、ナノ粒子表面電位の制御性を高め、静電ヘテロ凝集力により均一及び局所不均一の複合粒子を製造した結果である。参考発明の理論通り、構造制御性が高いことがわかる。 FIG. 12 shows the result of producing uniform and locally non-uniform composite particles by electrostatic heterocohesion force in the range of L DLVO ≈L Woodcock in FIGS. As can be seen from the theory of the reference invention, the structure controllability is high.

また図12及び図15〜18に示す通り、子粒子添加量等により、母粒子表面の複合量を任意に制御できる。また参考発明の粒子平均表面間距離を用いた制御法は、子粒子制御性が高く、SEM基板上に遊離したチタニア粒子等、複合の制御性の悪さを示す痕跡は確認されない。   Further, as shown in FIGS. 12 and 15 to 18, the composite amount on the surface of the mother particle can be arbitrarily controlled by the added amount of the child particles. Further, the control method using the average particle surface distance of the reference invention has high controllability of child particles, and no traces showing poor controllability of composites such as titania particles released on the SEM substrate are confirmed.

その結果、図14及び19に示す通り、規格化可視光透過率は、安定して低値を維持し、広範囲の光波長まで高い透明性を示す。また規格化紫外線遮蔽率は、高値を示し、紫外線領域での高い遮蔽性を表している。   As a result, as shown in FIGS. 14 and 19, the normalized visible light transmittance stably maintains a low value and exhibits high transparency up to a wide range of light wavelengths. Further, the normalized ultraviolet shielding rate shows a high value and represents a high shielding property in the ultraviolet region.

参考例5Reference Example 5

<2>「生産仕様の調製(スラリー静置と処理量)」([参考例5〜6]で共通、図20〜22)
<2−1>「静置1週間(チタニア重量%20wt%)」
参考例1の混合スラリー調製後、1週間静置した後、参考例1と同様に調製した。図20に、走査型電子顕微鏡SEMを示す。
<2> “Preparation of production specifications (slurry standing and processing amount)” (common to [Reference Examples 5 to 6], FIGS. 20 to 22)
<2-1> “Standing for 1 week (titania weight% 20 wt%)”
After preparing the mixed slurry of Reference Example 1, the mixture was allowed to stand for 1 week, and then prepared in the same manner as Reference Example 1. FIG. 20 shows a scanning electron microscope SEM.

参考例6Reference Example 6

<2−2>「静置1週間で量産型(チタニア重量%25wt%)」
微粒子酸化チタン300g、精製水4800g、プロペラミキサー分散、湿式媒体ミル法(寿工業株式会社製UAM−1型ビーズミル)、絹雲母(凝集剤(ポリ塩化アルミニウム(PAC))未使用)900gを用い、1週間静置した後、参考例1と同様に調製した。図21に、走査型電子顕微鏡SEMを示す。
<2-2> “Standing in 1 week for mass production (titania weight% 25 wt%)”
Using fine particle titanium oxide 300g, purified water 4800g, propeller mixer dispersion, wet medium mill method (UAM-1 type bead mill manufactured by Kotobuki Industries Co., Ltd.), sericite (coagulant (polyaluminum chloride (PAC)) unused) 900g, After standing for 1 week, it was prepared in the same manner as in Reference Example 1. FIG. 21 shows a scanning electron microscope SEM.

参考例7Reference Example 7

<3>「分散化と防菌の有機溶媒エタノール併用」([参考例7〜9]で共通、図23〜26)
<3−1>「エタノール10wt%混合分散媒(チタニア重量%20wt%)」
精製水280gとエタノール(和光純薬工業、99%)約70gの混合分散媒を用い、参考例1と同様に調製した。図23に、走査型電子顕微鏡SEMを示す。
なお、エタノール重量%は、前記と同様に、混合液体全量に対する比とした。
<3> “Combination of Dispersion and Antibacterial Organic Solvent Ethanol” (Common to [Reference Examples 7 to 9], FIGS. 23 to 26)
<3-1> “Ethanol 10 wt% mixed dispersion medium (titania weight% 20 wt%)”
It was prepared in the same manner as in Reference Example 1 using a mixed dispersion medium of 280 g of purified water and about 70 g of ethanol (Wako Pure Chemical Industries, 99%). FIG. 23 shows a scanning electron microscope SEM.
In addition, ethanol weight% was made into the ratio with respect to the total amount of liquid mixture similarly to the above.

参考例8Reference Example 8

<3−2>「エタノール10wt%誘電率調整添加剤(チタニア重量%20wt%)」
参考例1の混合スラリー調製した後、エタノール約70gを誘電率調整剤として添加後15分間分散し、参考例1及び7と同様に調製した。図24に、走査型電子顕微鏡SEMを示す。
<3-2> “Ethanol 10 wt% dielectric constant adjusting additive (titania weight% 20 wt%)”
After preparing the mixed slurry of Reference Example 1, about 70 g of ethanol was added as a dielectric constant adjuster and dispersed for 15 minutes, and the mixture was prepared in the same manner as Reference Examples 1 and 7. FIG. 24 shows a scanning electron microscope SEM.

参考例9Reference Example 9

<3−3>「エタノール100wt%(チタニア重量%20wt%)」
精製水の代わりに、エタノール約350gを用い、更にビーズミル系内をエタノールで置換し、参考例1及び7と同様に調製した。図25に、走査型電子顕微鏡SEMを示す。
<3-3> “Ethanol 100 wt% (titania weight% 20 wt%)”
In place of purified water, about 350 g of ethanol was used, and the inside of the bead mill system was further replaced with ethanol. FIG. 25 shows a scanning electron microscope SEM.

参考例10Reference Example 10

<4>「媒体撹拌の強化、微細ビーズ15μm」([参考例参考例10]図27、35)
Y強化ZrOビーズ(直径15μm)を用い、参考例1と同様に調製した。図27に、走査型電子顕微鏡SEMを示す。
<4> “Enhanced medium agitation, fine beads 15 μm” ([Reference Example Reference Example 10] FIGS. 27 and 35)
Y-reinforced ZrO 2 beads (diameter: 15 μm) were used and prepared in the same manner as in Reference Example 1. FIG. 27 shows a scanning electron microscope SEM.

参考例11Reference Example 11

<5>「噴霧量の増量化、4流体ノズル法」([参考例11〜13]で共通、図28〜31)
<5−1>「微粒子酸化チタンのラボレベル調製(薄膜流のエッジ境界あり)」
参考例1の混合スラリー調製後、噴霧乾燥機(藤崎電機株式会社製MDL−050B型、ノズルSE4003型、薄膜流のエッジ境界あり4流体ノズル法)で、参考例1と同様に調製した。図28に、走査型電子顕微鏡SEMを示す。
<5> “Increasing spray amount, 4-fluid nozzle method” (common to [Reference Examples 11 to 13], FIGS. 28 to 31)
<5-1> “Lab level preparation of fine particle titanium oxide (with edge boundary of thin film flow)”
After preparing the mixed slurry of Reference Example 1, it was prepared in the same manner as Reference Example 1 with a spray dryer (MDL-050B type manufactured by Fujisaki Electric Co., Ltd., nozzle SE4003 type, four-fluid nozzle method with edge boundary of thin film flow). FIG. 28 shows a scanning electron microscope SEM.

参考例12Reference Example 12

<5−2>「微粒子酸化チタンのラボレベル調製(薄膜流のエッジ境界なし)」
参考例1の混合スラリー調製後、噴霧乾燥機(大川原化工機株式会社製NL−5型、ツインジェットノズル、薄膜流のエッジ境界なし4流体ノズル法)で、参考例1と同様に調製した。図29に、走査型電子顕微鏡SEMを示す。
<5-2>"Lab level preparation of fine particle titanium oxide (no edge boundary in thin film flow)"
After preparing the mixed slurry of Reference Example 1, it was prepared in the same manner as Reference Example 1 with a spray dryer (NL-5 type manufactured by Okawara Kako Co., Ltd., twin jet nozzle, four-fluid nozzle method without edge boundary of thin film flow). FIG. 29 shows a scanning electron microscope SEM.

参考例13Reference Example 13

<5−3>「生産仕様の調製」
微粒子酸化チタン270g、精製水3950g、プロペラミキサー分散、湿式媒体ミル法(寿工業株式会社製UAM−1型ビーズミル)、絹雲母(凝集剤(ポリ塩化アルミニウム(PAC))未使用)1080gを用い、1週間静置した後、噴霧乾燥機(藤崎電機株式会社製MDL−050B型、ノズルSE4003型、4流体ノズル法)で、参考例1と同様に調製した。図30に、走査型電子顕微鏡SEMを示す。
<5-3> “Preparation of production specifications”
Using fine particle titanium oxide 270 g, purified water 3950 g, propeller mixer dispersion, wet medium mill method (UAM-1 type bead mill manufactured by Kotobuki Industries Co., Ltd.), sericite (coagulant (polyaluminum chloride (PAC)) unused) 1080 g, After standing for 1 week, it was prepared in the same manner as in Reference Example 1 using a spray dryer (MDL-050B type manufactured by Fujisaki Electric Co., Ltd., nozzle SE4003 type, 4-fluid nozzle method). FIG. 30 shows a scanning electron microscope SEM.

参考例14Reference Example 14

<6>「微粒子酸化チタン種類:粒子径と形状」([参考例14〜16]で共通、図32〜35)
<6−1>「微粒の球状チタニア(チタニア重量%20wt%)」
微粒子酸化チタン(石原産業株式会社製TTO−51(A)、アルミナ表面処理品、光回折/散乱径20nm)を用い、参考例1と同様に調製した。図32に、走査型電子顕微鏡SEMを示す。
<6> “Types of fine particle titanium oxide: particle diameter and shape” (common to [Reference Examples 14 to 16], FIGS. 32 to 35)
<6-1> “Fine spherical titania (titania weight% 20 wt%)”
Prepared in the same manner as in Reference Example 1 using fine particle titanium oxide (TTO-51 (A) manufactured by Ishihara Sangyo Co., Ltd., alumina surface-treated product, light diffraction / scattering diameter 20 nm). FIG. 32 shows a scanning electron microscope SEM.

参考例15Reference Example 15

<6−2>「相対的に大粒径の球状チタニア(チタニア重量%20wt%)」
微粒子酸化チタン(石原産業株式会社製TTO−55(A)、アルミナ表面処理品、光回折/散乱径40nm)を用い、参考例1と同様に調製した。図33に、走査型電子顕微鏡SEMを示す。
<6-2> “Spherical titania with relatively large particle size (titania weight% 20 wt%)”
Prepared in the same manner as in Reference Example 1 using fine particle titanium oxide (TTO-55 (A) manufactured by Ishihara Sangyo Co., Ltd., alumina surface-treated product, light diffraction / scattering diameter 40 nm). FIG. 33 shows a scanning electron microscope SEM.

参考例16Reference Example 16

<6−3>「紡錘状チタニア+微細化したプラズマ溶融ビーズ(直径15μm)」
微粒子酸化チタン(石原産業株式会社製TTO−S−3、アルミナ表面処理品、紡錘状(短軸20×長軸80nm)、Y強化ZrOビーズ(直径15μm)を用い、参考例1と同様に調製した。図34に、走査型電子顕微鏡SEMを示す。
<6-3> “Spindle-like titania + refined plasma fusion beads (diameter 15 μm)”
Fine particle titanium oxide (TTO-S-3, manufactured by Ishihara Sangyo Co., Ltd., alumina surface-treated product, spindle shape (short axis 20 × long axis 80 nm), Y-reinforced ZrO 2 beads (diameter 15 μm) were used as in Reference Example 1. 34 shows a scanning electron microscope SEM.

参考例17Reference Example 17

<7>「母粒子電荷制御:合成雲母とアルミナ」([参考例17〜18]で共通、図36〜38)
<7−1>「合成雲母(チタニア重量%20wt%)」
母粒子による電荷調整法として、媒体との親和性を制御(疎水化)する方法を利用し、結晶水を含有しない合成雲母(トピー工業株式会社製PDM−8W、光回折/散乱径10μm)を用いて、参考例1と同様に調製した。図36に、走査型電子顕微鏡SEMを示す。
<7> “Mother Particle Charge Control: Synthetic Mica and Alumina” (common to [Reference Examples 17 to 18], FIGS. 36 to 38)
<7-1> “Synthetic mica (titania weight% 20 wt%)”
As a charge adjustment method using mother particles, a method for controlling (hydrophobizing) affinity with a medium is used, and synthetic mica containing no crystal water (PDM-8W manufactured by Topy Industries, Ltd., light diffraction / scattering diameter 10 μm) is used. And prepared in the same manner as in Reference Example 1. FIG. 36 shows a scanning electron microscope SEM.

参考例18Reference Example 18

<7−2>「表面電荷(板状アルミナ)調製品(チタニア重量%20wt%)」
母粒子の端面・卓面を共に正に制御する方法として、板状アルミナ(キンセイマティック株式会社製セラフYFA05070、光回折/散乱径5μm)を用い、参考例1と同様に調製した。図37に、走査型電子顕微鏡SEMを示す。
<7-2> “Surface charge (plate-like alumina) preparation (titania weight% 20 wt%)”
As a method for positively controlling both the end surface and the table surface of the mother particles, plate-like alumina (Seraph YFA05070 manufactured by Kinseimatic Co., Ltd., light diffraction / scattering diameter: 5 μm) was used and prepared in the same manner as in Reference Example 1. FIG. 37 shows a scanning electron microscope SEM.

<8>「微粒子酸化チタンの中実・中空顆粒」([実施例1〜3]で共通、図39〜43)
<8−1>「中実顆粒、5ミクロンレベル(小液滴径、3流体ノズル法)」
小粒子化及び、中性化して静電反発力を低下させ、凝集度を高め、凝縮過程のナノ粒子の移動度を抑制するため、微粒子酸化チタン(テイカ株式会社製MT−100HP、含水ケイ酸表面処理、光回折/散乱径15nm)を70g用いた(以下の実施例では、板状粒子は用いない)。
その後、参考例1と同様にビーズミル・噴霧乾燥等で、調製した。図39に、走査型電子顕微鏡SEMを示す。
<8> “Solid / Hollow Granules of Fine Particle Titanium Oxide” (Common to [Examples 1 to 3], FIGS. 39 to 43)
<8-1>"Solid granules, 5 micron level (small droplet diameter, 3 fluid nozzle method)"
To reduce the electrostatic repulsion force by reducing the particle size and neutralizing, increase the degree of aggregation, and suppress the mobility of nanoparticles in the condensation process, fine particle titanium oxide (MT-100HP manufactured by Teika Co., Ltd., hydrous silicic acid) 70 g of surface treatment, light diffraction / scattering diameter 15 nm) was used (in the following examples, plate-like particles are not used).
Then, it prepared by bead mill, spray drying, etc. similarly to the reference example 1. FIG. 39 shows a scanning electron microscope SEM.

<8−2>「中空顆粒、5ミクロンレベル(小液滴径、3流体ノズル法)」
大粒子化及び、負極性化して静電反発力を高め、凝集度を抑制し、凝縮過程のナノ粒子の移動度を高めるため、微粒子酸化チタン(昭和電工株式会社製マックスライトTS−04、無水ケイ酸表面処理品(表面・負電荷)、光回折/散乱径40nm)を用い、参考例1及び実施例1と同様に調製した。
<8-2> “Hollow granules, 5 micron level (small droplet diameter, 3 fluid nozzle method)”
In order to increase the electrostatic repulsive force by increasing the particle size and negative polarity, to suppress the degree of aggregation, and to increase the mobility of nanoparticles in the condensation process, fine titanium oxide (Maxlite TS-04 manufactured by Showa Denko KK, anhydrous It was prepared in the same manner as in Reference Example 1 and Example 1 using a silicic acid surface-treated product (surface / negative charge), light diffraction / scattering diameter 40 nm).

また凝縮過程のナノ粒子の移動度を制御して顆粒径を調整するため、媒体撹拌条件を制御因子に選択し、ビーズ径を15〜50μm、処理時間を30分〜4時間と調節した。図40、41に、実施例2の走査型電子顕微鏡写真、偏光顕微鏡の透過像、水中での膨潤可逆変化結果を示す。   Moreover, in order to control the mobility of the nanoparticles in the condensation process to adjust the granule diameter, the medium stirring condition was selected as a control factor, the bead diameter was adjusted to 15 to 50 μm, and the treatment time was adjusted to 30 minutes to 4 hours. 40 and 41 show a scanning electron micrograph of Example 2, a transmission image of a polarizing microscope, and the result of reversible swelling change in water.

<8−3>「中空顆粒、50ミクロンレベル(大液滴径、回転円盤噴霧法)」
顆粒の大粒径化のため、微粒子酸化チタン(昭和電工株式会社製マックスライトTS−04、無水ケイ酸表面処理品(表面・負電荷)、光回折/散乱径40nm)を70g用い、噴霧乾燥機(大川原化工機製型、回転円盤法)で、参考例1及び実施例1と同様に調製した。図43に、走査型電子顕微鏡SEMを示す。
<8-3> “Hollow granules, 50 micron level (large droplet diameter, rotating disk spray method)”
In order to increase the particle size of the granules, 70 g of fine particle titanium oxide (Maxlite TS-04, Showa Denko KK, silica surface treatment product (surface / negative charge), light diffraction / scattering diameter 40 nm) is used and spray dried. It was prepared in the same manner as in Reference Example 1 and Example 1 using a machine (Okawara Kako Mold, rotary disk method). FIG. 43 shows a scanning electron microscope SEM.

以上の実施例に関して、図13は、図8のLDLVO≒LWoodcock範囲と図9のLDLVO>LWoodcock範囲で、ナノ粒子移動度を調節し、表面凝縮(凝結)と体積凝縮を任意に制御して、中実・中空顆粒を製造した結果である。本発明の理論通り、構造制御性が高いことがわかる。 For the above example, FIG. 13 is a graph of FIG. 8 where L DLVO ≒ L Woodcock range and L DLVO > L Woodcock range of FIG. 9 are used to adjust the nanoparticle mobility and to arbitrarily perform surface condensation (condensation) and volume condensation. This is the result of producing solid and hollow granules under control. As can be seen from the theory of the present invention, the structure controllability is high.

図39〜42で明らかなように、中実・中空顆粒を任意に製造できる。
図40で明らかなように、水中で膨潤化(膨張)させ、その構造変化を空気中⇔水中で可逆的に行うことが可能な、可逆性膨潤粉体を製造できる。
As is apparent from FIGS. 39 to 42, solid and hollow granules can be produced arbitrarily.
As is clear from FIG. 40, a reversible swollen powder that can be swollen (expanded) in water and reversibly changed in brine in air can be produced.

図42で明らかなように、回転円盤の回転数を制御因子にして、中実顆粒の顆粒体径を任意に制御できる。
図40〜43で明らかなように、可逆性膨潤機能を持つ中空顆粒を、任意の顆粒体径で製造できる。
As is clear from FIG. 42, the granule diameter of the solid granules can be arbitrarily controlled using the rotational speed of the rotating disk as a control factor.
As is apparent from FIGS. 40 to 43, hollow granules having a reversible swelling function can be produced with an arbitrary granule size.

(比較例1)
<9>「汎用的・機械的複合化法による混合粉体」([比較例1]図44、47)
微粒子酸化チタン(テイカ株式会社製、MT−500B、表面処理なし、光回折/散乱径35nm)、絹雲母(愛知県北設楽郡東栄町振草産、天然雲母の精製時の凝集剤(ポリ塩化アルミニウム(PAC))「使用」の通常市販品、光回折/散乱径7μm)、分散プロセス用にヘンシェルミキサー及びハンマーミル(不二パウダル製ラボミルLM05)を用い、参考例1と同様に調製した。図44に、走査型電子顕微鏡SEMを示す。
(Comparative Example 1)
<9> “Mixed powder by general-purpose / mechanical composite method” ([Comparative Example 1] FIGS. 44 and 47)
Fine particle titanium oxide (manufactured by Teika Co., Ltd., MT-500B, no surface treatment, light diffraction / scattering diameter 35 nm), sericite (from Toshincho, Kitasakura-gun, Aichi Prefecture), flocculant during purification of natural mica (polyaluminum chloride ( PAC)) “Usage”, a commercially available product, light diffraction / scattering diameter 7 μm), a Henschel mixer and a hammer mill (Labo Mill LM05 manufactured by Fuji Powder Co., Ltd.) were used in the same manner as Reference Example 1 for the dispersion process. FIG. 44 shows a scanning electron microscope SEM.

(比較例2)
<10>「汎用的な噴霧法(2流体ノズル法)の混合粉体」([比較例2〜3]で共通、図45〜46)
<10−1>「微粒子酸化チタンのラボレベル調製」
微粒子酸化チタン(テイカ株式会社製MT−500H、アルミナ表面処理品、光回折/散乱径30nm)、噴霧乾燥機(ヤマト科学製パルビスミニスプレーGB−22型、2流体ノズル法)を用い、参考例1と同様に調製した。図45に、走査型電子顕微鏡SEMを示す。
(Comparative Example 2)
<10> “Mixed powder of general-purpose spraying method (two-fluid nozzle method)” (common to [Comparative Examples 2-3], FIGS. 45 to 46)
<10-1> “Lab level preparation of fine particle titanium oxide”
Use fine particle titanium oxide (MT-500H manufactured by Teika Co., Ltd., alumina surface-treated product, light diffraction / scattering diameter 30 nm), spray dryer (Palvis Mini Spray GB-22, manufactured by Yamato Scientific, 2 fluid nozzle method) for reference Prepared as in Example 1. FIG. 45 shows a scanning electron microscope SEM.

(比較例3)
<10−2>「微粒子酸化チタンの種類(親水・良分散性のナノ粒子)」
微粒子酸化チタン(昭和電工株式会社製マックスライトTS−04、無水ケイ酸表面処理品(表面・負電荷)、光回折/散乱径40nm)、噴霧乾燥機(ヤマト科学製パルビスミニスプレーGB−22型、2流体ノズル法)を用い、参考例1と同様に調製した。図46に、走査型電子顕微鏡SEMを示す。
(Comparative Example 3)
<10-2> “Types of fine particle titanium oxide (hydrophilic and well-dispersed nanoparticles)”
Fine particle titanium oxide (Maxlite TS-04 manufactured by Showa Denko KK, Silicic anhydride surface-treated product (surface / negative charge), light diffraction / scattering diameter 40 nm), spray dryer (Palvis Mini Spray GB-22 manufactured by Yamato Scientific) Using a mold, two-fluid nozzle method). FIG. 46 shows a scanning electron microscope SEM.

(比較例4)
<11>「参考発明の制御を一部だけ汎用法に戻した事例」([比較例4〜8]で共通、図47〜53)
<11−1>「表面電荷を制御しない微粒子酸化チタンと絹雲母」
微粒子酸化チタン(テイカ株式会社製、MT−500B、表面処理なし、光回折/散乱径35nm)、絹雲母(愛知県北設楽郡東栄町振草産、天然雲母の精製時の凝集剤(ポリ塩化アルミニウム(PAC))を使用し、カチオン調節で表面電荷を制御しない通常市販品、光回折/散乱径7μm)を用い、参考例1と同様に調製した。図48に、走査型電子顕微鏡SEMを示す。
(Comparative Example 4)
<11> “Example of partially returning the control of the reference invention to the general-purpose method” (common to [Comparative Examples 4 to 8], FIGS. 47 to 53)
<11-1> “Fine particle titanium oxide and sericite that do not control surface charge”
Fine particle titanium oxide (manufactured by Teica Co., Ltd., MT-500B, no surface treatment, light diffraction / scattering diameter 35 nm), sericite (produced in Shinsakucho, Toei-cho, Kitashiraku-gun, Aichi Prefecture), flocculant (polyaluminum chloride ( PAC)) was used and was prepared in the same manner as in Reference Example 1, using a commercially available product that does not control the surface charge by cation control, light diffraction / scattering diameter 7 μm). FIG. 48 shows a scanning electron microscope SEM.

(比較例5)
<11−2>「親水・良分散性のナノ粒子と、表面電荷を制御しない絹雲母」
微粒子酸化チタン(テイカ株式会社製MT−100HP、含水ケイ酸表面処理、光回折/散乱径15nm)、絹雲母(愛知県北設楽郡東栄町振草産の通常市販品、光回折/散乱径7μm)を用い、参考例1と同様に調製した。図49に、走査型電子顕微鏡SEMを示す。
(Comparative Example 5)
<11-2> “Hydrophilic and well-dispersed nanoparticles and sericite that does not control surface charge”
Fine titanium oxide (MT-100HP manufactured by Teika Co., Ltd., hydrous silicic acid surface treatment, light diffraction / scattering diameter 15 nm), sericite (ordinary commercial product from Tosaka-cho, Tosaka-cho, Aichi Prefecture, light diffraction / scattering diameter 7 μm) And prepared as in Reference Example 1. FIG. 49 shows a scanning electron microscope SEM.

(比較例6)(←[参考例16]の反例)
<11−3>「紡錘状チタニア、チタニア重量%20wt%」
微粒子酸化チタン(石原産業株式会社製TTO−S−3、アルミナ表面処理品、紡錘状(短軸20×長軸80nm)を用い、参考例1と同様に調製した。図50に、走査型電子顕微鏡SEMを示す。
(Comparative Example 6) (← Counter example of [Reference Example 16])
<11-3> “Spindle-like titania, titania weight% 20 wt%”
Using fine particle titanium oxide (TTO-S-3 manufactured by Ishihara Sangyo Co., Ltd., alumina surface treatment product, spindle shape (short axis 20 × long axis 80 nm), it was prepared in the same manner as in Reference Example 1. FIG. A microscope SEM is shown.

(比較例7)(←[参考例16]の反例)
<11−4>「紡錘状チタニア、チタニア重量%30wt%」
微粒子酸化チタン(石原産業株式会社製TTO−S−3、アルミナ表面処理品、紡錘状(短軸20×長軸80nm)を45g、絹雲母(愛知県北設楽郡東栄町振草産、天然雲母の精製時の凝集剤(ポリ塩化アルミニウム(PAC))未使用)を105g用い、参考例1と同様に調製した。図51に、走査型電子顕微鏡SEMを示す。
(Comparative Example 7) (← Counter example of [Reference Example 16])
<11-4> “Spindle-like titania, titania weight% 30 wt%”
Fine particle titanium oxide (TTO-S-3 manufactured by Ishihara Sangyo Co., Ltd., alumina surface-treated product, 45 g of spindle shape (short axis 20 × long axis 80 nm), sericite (produced in Shinei, Toei-cho, Kitashiraku-gun, Aichi Prefecture, refined natural mica) 10 g of the flocculant (polyaluminum chloride (PAC) unused) was prepared in the same manner as in Reference Example 1. Fig. 51 shows a scanning electron microscope SEM.

(比較例8)
<11−5>「ホモミキサーによる中空顆粒、5ミクロンレベル」
分散機としてホモミキサー(特殊機化工業製TKホモミキサーAM−M2.5型)を用い、参考例1及び実施例1と同様に調製した。図53に、走査型電子顕微鏡SEMを示す。
(Comparative Example 8)
<11-5> “Hollow granules by homomixer, 5 micron level”
A homomixer (TK homomixer AM-M2.5 manufactured by Tokushu Kika Kogyo Co., Ltd.) was used as a disperser and prepared in the same manner as in Reference Example 1 and Example 1. FIG. 53 shows a scanning electron microscope SEM.

上記比較例に関して、図46、48〜51、53で明らかなように、汎用法や本発明の制御を不完全に行った場合、子粒子の凝集や、不完全な複合化で残存した孤立粒子が発生する等、構造制御性に問題が起こる。   As apparent from FIGS. 46, 48 to 51, and 53 regarding the above comparative example, when the general-purpose method or the control of the present invention is incompletely performed, the isolated particles remaining due to aggregation of the child particles or incomplete complexation. Problems occur in the structure controllability such as

図47・52で明らかなように、光学特性(進歩性)においても、十分な可視光透過率と紫外線遮蔽率が得られず、その規格化した値及び両者のマージンも小さく、特性向上が得られない。   As is clear from FIGS. 47 and 52, also in the optical characteristics (inventive step), sufficient visible light transmittance and ultraviolet shielding ratio cannot be obtained, the normalized values and the margin of both are small, and the characteristics are improved. I can't.

以上説明したように、板状粒子を母粒子、予め固形(結晶)化されたナノメーターオーダー粒子を子粒子とした複合粒子において、母粒子・子粒子の凝集フリー、且つ、母粒子表面に子粒子が微細均一に複合化し得るという、現状では不可能であった新規な形態制御法、及びその粒状物質と、制御装置を所与し得る。また、化粧品、食品、薬剤、工業用フィラー、膨潤性粉体、セラミックス圧粉体・成形体・焼結体等の粉体形態の製品の、格段の材料特性の向上を達成できる。参考発明は、粉体工学の理論的な粒子複合化法を実材料向けの方法論として具現化し、濃厚系スラリー(例えば40wt(重量)%以上)でのオーダードミクスチャー製法や、フィラーや化粧品として使用される雲母系粒状物質の技術分野を拡大するものとして、有用である。   As described above, in the composite particles in which the plate-like particles are the mother particles and the nanometer order particles previously solidified (crystallized) are the child particles, the aggregation of the mother particles / child particles is free and the child particles are formed on the surface of the mother particles. It is possible to provide a new form control method, its particulate material, and a control device, which were impossible at present, that the particles can be finely and uniformly combined. In addition, the material properties of powder products such as cosmetics, foods, pharmaceuticals, industrial fillers, swellable powders, ceramic green compacts, molded bodies and sintered bodies can be significantly improved. The reference invention embodies the theoretical particle compounding method of powder engineering as a methodology for actual materials, and is used as an ordered mixture manufacturing method with thick slurry (for example, 40 wt.% Or more), as a filler or cosmetics. It is useful as an extension of the technical field of mica-based particulate matter.

Claims (10)

粒子径0.1μm未満の金属酸化物の粒状物質が凝集してなる中実又は中空の凝集体の製造方法において、
上記粒状物質を、水系溶媒、アルコールないしエーテル系溶媒より選ばれる分散媒体中に分散し、上記粒状物質を含む混合液体を製造し、
上記混合液体中で作用するvan der Waals引力と、界面電気二重層の重なりに基づく静電反発力との両微小力間の相互作用によって定まる上記混合液体中の上記粒状物質の平均表面間距離(LDLVO)を算出すると共に、上記混合液体中に含まれる上記粒状物質の固形分濃度と粒子径とによって定まる上記混合液体中の上記粒状物質の平均表面間距離(LWoodcock)を算出し、
上記混合液体中の粒状物質の平均表面間距離が「LDLVO≧LWoodcock」となるように上記混合液体中の上記粒状物質を分散させると共に、
上記混合液体を100μm未満の液滴とし、該液滴から上記分散媒体を蒸発させて乾燥させることを特徴とする凝集体の製造方法。
In the method for producing a solid or hollow aggregate obtained by agglomerating a metal oxide particulate material having a particle diameter of less than 0.1 μm,
Dispersing the particulate material in a dispersion medium selected from an aqueous solvent, alcohol or ether solvent to produce a mixed liquid containing the particulate material,
The average inter-surface distance of the particulate matter in the mixed liquid determined by the interaction between both micro forces of the van der Waals attractive force acting in the mixed liquid and the electrostatic repulsive force based on the overlap of the interfacial electric double layer ( L DLVO ) and calculating the average inter-surface distance (L Woodcock ) of the particulate material in the mixed liquid determined by the solid content concentration and particle size of the particulate material contained in the mixed liquid,
Dispersing the particulate material in the mixed liquid so that the average inter-surface distance of the particulate material in the mixed liquid is “L DLVO ≧ L Woodcock ”;
A method for producing an agglomerate, wherein the mixed liquid is made into droplets of less than 100 μm, and the dispersion medium is evaporated from the droplets and dried.
請求項1に記載の製造方法において、上記混合液体中の上記粒状物質の分散を、ビーズミルで行うことを特徴とする凝集体の製造方法。   The method for producing an aggregate according to claim 1, wherein the dispersion of the particulate material in the mixed liquid is performed by a bead mill. 請求項1又は2に記載の製造方法において、上記液適の乾燥は、噴霧乾燥法により行うことを特徴とする凝集体の製造方法。   The method for producing an agglomerate according to claim 1 or 2, wherein the suitable drying is performed by a spray drying method. 請求項1〜3のいずれか一項に記載の製造方法において、上記粒状物質は、アルミナ、シリカ、チタニア、ジルコニア、酸化亜鉛、酸化鉄、硫酸バリウム、窒化ホウ素、炭素系有機物より選ばれるいずれかからなることを特徴とする凝集体の製造方法。   The manufacturing method according to any one of claims 1 to 3, wherein the particulate material is selected from alumina, silica, titania, zirconia, zinc oxide, iron oxide, barium sulfate, boron nitride, and carbon-based organic matter. The manufacturing method of the aggregate characterized by comprising. 請求項1〜4のいずれか一項に記載の製造方法において、上記粒状物質として、表面の電荷が中性な粒子を用いることにより、中実の上記凝集体を得ることを特徴とする凝集体の製造方法。   5. The production method according to claim 1, wherein the solid aggregate is obtained by using particles having a neutral surface charge as the particulate material. Manufacturing method. 請求項5に記載の製造方法において、上記粒状物質は、含水ケイ酸で表面処理された微粒子酸化チタンであることを特徴とする凝集体の製造方法。   6. The method for producing an aggregate according to claim 5, wherein the particulate material is fine particle titanium oxide surface-treated with hydrous silicic acid. 請求項1〜4のいずれか一項に記載の製造方法において、上記粒状物質として、表面が正電荷又は負電荷を帯びた粒子を用いることにより、中空の上記凝集体を得ることを特徴とする凝集体の製造方法。   In the manufacturing method as described in any one of Claims 1-4, the said aggregate with a hollow is obtained by using the particle | grains in which the surface is tinged with the positive charge or the negative charge as the said granular substance. A method for producing an aggregate. 請求項7に記載の製造方法において、上記粒状物質は、無水ケイ酸で表面処理された微粒子酸化チタンであることを特徴とする凝集体の製造方法。   8. The method for producing an aggregate according to claim 7, wherein the particulate material is fine particle titanium oxide surface-treated with silicic anhydride. 請求項1〜8のいずれか一項に記載された製造方法により製造された凝集体。   The aggregate manufactured by the manufacturing method as described in any one of Claims 1-8. 請求項9に記載の凝集体は、化粧品、薬剤、工業用フィラー、セラミックス圧粉体・成形体・焼結体より選ばれるいずれかの製品への原料粉体として用いられることを特徴とする凝集体。   The aggregate according to claim 9 is used as a raw material powder for any product selected from cosmetics, drugs, industrial fillers, ceramic green compacts, molded bodies, and sintered bodies. Aggregation.
JP2011102545A 2011-04-29 2011-04-29 Method for producing aggregate Active JP5594782B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011102545A JP5594782B2 (en) 2011-04-29 2011-04-29 Method for producing aggregate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011102545A JP5594782B2 (en) 2011-04-29 2011-04-29 Method for producing aggregate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009238461A Division JP4797100B2 (en) 2009-10-15 2009-10-15 Composite particle manufacturing method and manufacturing apparatus thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013231067A Division JP5682982B2 (en) 2013-11-07 2013-11-07 Hollow granules

Publications (2)

Publication Number Publication Date
JP2011157271A true JP2011157271A (en) 2011-08-18
JP5594782B2 JP5594782B2 (en) 2014-09-24

Family

ID=44589563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011102545A Active JP5594782B2 (en) 2011-04-29 2011-04-29 Method for producing aggregate

Country Status (1)

Country Link
JP (1) JP5594782B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015151357A (en) * 2014-02-13 2015-08-24 日本メナード化粧品株式会社 composite powder
JP2021038140A (en) * 2014-02-05 2021-03-11 三菱ケミカル株式会社 Boron nitride aggregated particle, method for producing boron nitride aggregated particle, resin composition containing boron nitride aggregated particle, and molding

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5682982B2 (en) * 2013-11-07 2015-03-11 独立行政法人産業技術総合研究所 Hollow granules

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06199502A (en) * 1990-12-28 1994-07-19 Kao Corp Production of metal oxide particulte and device therefor
JPH11158036A (en) * 1997-12-01 1999-06-15 Kanebo Ltd Cosmetic and makeup
JP2009003083A (en) * 2007-06-20 2009-01-08 Kyocera Mita Corp Electrophotographic toner and image forming apparatus using same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06199502A (en) * 1990-12-28 1994-07-19 Kao Corp Production of metal oxide particulte and device therefor
JPH11158036A (en) * 1997-12-01 1999-06-15 Kanebo Ltd Cosmetic and makeup
JP2009003083A (en) * 2007-06-20 2009-01-08 Kyocera Mita Corp Electrophotographic toner and image forming apparatus using same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013043430; 浅井巌等: 'ナノ粒子の表面電位や凝集性を利用した微粒子複合化技術の開発' 2009年度色材研究発表会講演要旨集 Vol.2009th, 20091013, p92-93 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021038140A (en) * 2014-02-05 2021-03-11 三菱ケミカル株式会社 Boron nitride aggregated particle, method for producing boron nitride aggregated particle, resin composition containing boron nitride aggregated particle, and molding
JP7455047B2 (en) 2014-02-05 2024-03-25 三菱ケミカル株式会社 Boron nitride aggregated particles, method for producing boron nitride aggregated particles, resin composition containing boron nitride aggregated particles, and molded article
JP2015151357A (en) * 2014-02-13 2015-08-24 日本メナード化粧品株式会社 composite powder

Also Published As

Publication number Publication date
JP5594782B2 (en) 2014-09-24

Similar Documents

Publication Publication Date Title
JP4869377B2 (en) Lipophilic surface-treated powder having easy dispersibility and cosmetics containing the powder
EP2997954B1 (en) Resin powder including ultraviolet scattering agent, production method therefor, and cosmetic
TW486369B (en) Ultraviolet shielding fine particles, method for producing the same, and cosmetics
JP4797100B2 (en) Composite particle manufacturing method and manufacturing apparatus thereof
US20130121936A1 (en) Single Step Milling and Surface Coating Process for Preparing Stable Nanodispersions
US20080317794A1 (en) Agglomerate Particles, Method for Producing Nanocomposites, and the Use Thereof
US8691251B2 (en) Core-shell particles with a high content of glycerol, their production and use
JP6966861B2 (en) Pigment mixture
JP5578572B2 (en) Composite particles
JP7088183B2 (en) Powder modifiers and composite powders, as well as make-up cosmetics
JPH09132514A (en) Flaky fine powder and cosmetic
JP5682982B2 (en) Hollow granules
Vinod et al. Inorganic nanoparticles in cosmetics
JP5594782B2 (en) Method for producing aggregate
JP6231983B2 (en) Method for producing coated inorganic particles
JP2017071526A (en) Silica balloon material having excellent suspension profile for solvent
JP2007077087A (en) Pearlescent pigment
KR20220027995A (en) Method for producing Nε-long-chain acyl lysine crystals and composition containing the crystals
EP1587883B1 (en) Surface modification method for inorganic oxide powder, powder produced by the method and use of the powder
JP2002201382A (en) Zinc oxide microparticle for ultraviolet screening
KR20120009519A (en) Composite pigment for cosmetic compositions and manufacturing method and manufacturing apparatus thereof
JP3606400B2 (en) Method for producing powder composition
CN101919798A (en) Dense silicon dioxide coated pearl powder
KR100508961B1 (en) a composition powder with surface treatment and manufacturing method thereof
JP2014009228A (en) Cosmetic including aqueous dispersion of particulates

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140729

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140731

R150 Certificate of patent or registration of utility model

Ref document number: 5594782

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250