JP2011155788A - 電源システム - Google Patents

電源システム Download PDF

Info

Publication number
JP2011155788A
JP2011155788A JP2010016425A JP2010016425A JP2011155788A JP 2011155788 A JP2011155788 A JP 2011155788A JP 2010016425 A JP2010016425 A JP 2010016425A JP 2010016425 A JP2010016425 A JP 2010016425A JP 2011155788 A JP2011155788 A JP 2011155788A
Authority
JP
Japan
Prior art keywords
secondary battery
voltage
current
frequency
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010016425A
Other languages
English (en)
Inventor
Toshikazu Ono
敏和 大野
Hichirosai Oyobe
七郎斎 及部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010016425A priority Critical patent/JP2011155788A/ja
Publication of JP2011155788A publication Critical patent/JP2011155788A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Abstract

【課題】二次電池の出力電圧を変換する電圧変換器を備えた電源システムにおいて、二次電池の昇温制御時における構成部品の損傷を防止する。
【解決手段】制御装置30は、二次電池BATの低温時に、コンバータ12を通常より低いスイッチング周波数で動作させることによって、二次電池BATを通過するリプル電流の振幅を増大させる昇温制御を実行する。昇温制御時におけるスイッチング周波数は、バッテリ電流Ibの平均値の大きさに応じて可変に設定される。具体的には、平均電流の絶対値が大きくなる程、リプル電流の振幅を抑制するために、スイッチング周波数は高く設定される。
【選択図】図1

Description

この発明は電源システムに関し、より特定的には、二次電池と、リアクトルを構成要素とする電圧変換器とを含む電源システムにおける二次電池の昇温制御に関する。
電力変換装置の1つとして、リアクトルを用いて直流電圧を変換するチョッパ回路を含んで構成されたコンバータが用いられている。このようなチョッパ回路では、スイッチングされた電圧がリアクトルに印加されるので、リアクトルを流れる電流(以下、リアクトル電流とも称する)には、当該リアクトルのインダクタンスに応じた傾きの時間的変化が発生する。すなわち、リアクトル電流には、コンバータを構成する電力用半導体素子のスイッチング周波数に依存した交流電流(以下、リプル電流とも称す)が重畳する。
特開2006−006073号公報(特許文献1)には、二次電池の出力電圧を変換するように構成されたコンバータ(チョッパ回路)を用いて、二次電池の内部抵抗が大きくなる低温領域では、二次電池を昇温させることが記載されている。具体的には、電力用スイッチング素子のオンオフ制御に用いるキャリア周波数を変化させることによって、リプル電流の増加により二次電池の発熱量を増大させて、二次電池を昇温することが記載されている。
また、特開2008−178166号公報(特許文献2)および特開2008−259309号公報(特許文献3)には、電力変換器のスイッチング周波数とリプル電流の大きさとの間の一般的な関連が記載されている。具体的には、特許文献2には、永久磁石モータを制御するインバータのスイッチング周波数を低下させることにより、モータの各相コイルを流れるリプル電流が低減することが記載されている。また、特許文献3には、リアクトルを構成要素とするスイッチング電源装置において、スイッチング周波数の変更によって、出力電圧のリプルが許容範囲を超えるのを防止することが記載されている。
特開2006−006073号公報 特開2008−178166号公報 特開2008−259309号公報
しかしながら、特許文献1のように二次電池の昇温制御時にリプル電流を増大させると、コンバータを流れる電流の瞬時値も大きくなるので、過大な電流の通過によって構成部品の損傷が生じることが懸念される。特に、電源システムの起動時に昇温制御を実行する際には、負荷の状態に応じて二次電池の入出力電流が変化した際に、上記問題点が発生することが懸念される。
この発明はこのような問題点を解決するためになされたものであって、この発明の目的は、二次電池の出力電圧を変換する電圧変換器を備えた電源システムにおいて、二次電池の昇温制御時における構成部品の損傷を防止することである。
この発明による電源システムは、二次電池と、二次電池からの直流電圧を変換する電圧変換器と、電圧変換器を制御するための制御装置とを備える。電圧変換器は、キャリア周波数に従った周期でオンオフ制御される電力用スイッチング素子と、二次電池に対してスイッチング素子と直列に接続されたリアクトルとを含む。制御装置は、二次電池の昇温制御の要否を判定する判定部と、昇温制御が必要であると判定されたときに、キャリア周波数を、昇温制御の非実行時に使用する第1の周波数よりも低い第2の周波数(fx)に設定するための周波数調整部とを含む。そして、周波数調整部は、昇温制御中には、二次電池の電流の大きさに応じて、第2の周波数を可変に設定する。
この発明によれば、二次電池の出力電圧を変換する電圧変換器を備えた電源システムにおいて、二次電池の昇温制御時における構成部品の損傷を防止することができる。
この発明の実施の形態による電源システムが適用されるモータ駆動装置の概略ブロック図である。 図1に示した制御装置の機能ブロック図である。 図2に示したデューティ比制御部の動作を説明する波形図である。 インダクタ電流に含まれるリプル電流の概念図である。 二次電池の昇温制御時におけるリアクトル電流の波形を示す概念図である。 キャリア周波数とリアクトル電流との関係を説明する波形図である。 この発明の実施の形態による電源システムにおける負荷状態の変化に伴うリアクトル電流の変化を示す波形図である。
以下に、この発明の実施の形態について図面を参照して詳しく説明する。なお、図中同一符号は同一または相当部分を示す。
図1は、この発明の実施の形態による電源システムが適用されるモータ駆動装置の概略ブロック図である。
図1を参照して、モータ駆動装置100は、二次電池BATと、電池センサ10と、電圧センサ11,13と、電流センサ24と、システムリレーSR1,SR2と、コンデンサC1,C2と、コンバータ12と、インバータ14と、制御装置30とを備える。特に、二次電池BAT、コンバータ12、および、制御装置30のうちのコンバータ制御に関連する部分によって、「電源システム」が構成される。
交流モータM1は、ハイブリッド自動車、電気自動車または燃料電池自動車等の電動車両の駆動輪を駆動するためのトルクを発生するための駆動モータである。あるいは、このモータはエンジンにて駆動される発電機の機能を持つように、そして、エンジンに対して電動機として動作し、たとえば、エンジン始動を行ない得るようなものとしてハイブリッド自動車に組み込まれるようにしてもよい。
電流センサ24は、交流モータM1に流れるモータ電流MCRTを検出し、その検出したモータ電流MCRTを制御装置30へ出力する。なお、3相電流の瞬時値の和は零であることから、電流センサ24については2相のみに配置することとして、電流センサ24が非配置の相の電流については演算で求めることも可能である。
二次電池BATは、例えば、ニッケル水素電池またはリチウムイオン電池などからなる。なお、周知のように、二次電池BATには内部インピーダンス5が存在している。電池センサ10は、二次電池BATの状態値を測定する。電池センサ10は、二次電池BATに設けられるセンサ群を包括的に評価するものであり、少なくとも、電圧センサ、電流センサおよび温度センサを含む。電池センサ10によって検出された、二次電池BATの出力電圧Vb、入出力電流Ib(バッテリ電流Ibとも称する)および温度Tb(バッテリ温度Tbとも称する)は、制御装置30へ出力される。システムリレーSR1,SR2は、制御装置30からの信号SEによりオンオフされる。
コンバータ12は、リアクトルL1と、IGBT(Insulated Gate Bipolar Transistor)素子Q1,Q2と、ダイオードD1,D2とを含む。なお、本実施の形態において、IGBT素子は、電力用スイッチング素子(以下、単に「スイッチング素子」)の代表例として記載される。
リアクトルL1の一方端は、システムリレーSR1を介して、二次電池BATの正極と電気的に接続される。リアクトルL1の他方端は、IGBT素子Q1およびIGBT素子Q2の中間点に相当するノードN1と接続される。
IGBT素子Q1,Q2は、電源配線PLと接地配線GLとの間に、ノードN1を介して直列に接続される。そして、IGBT素子Q1のコレクタは電源配線PLに接続され、IGBT素子Q2のエミッタは接地配線GLに接続される。電源配線PLには、平滑コンデンサC2が接続されている。また、接地配線GLは、システムリレーSR2を介して二次電池BATの負極と電気的に接続される。なお、各IGBT素子Q1,Q2のコレクタ−エミッタ間には、逆並列ダイオードD1,D2がそれぞれ接続されている。
インバータ14は、U相アーム15と、V相アーム16と、W相アーム17とから成る。U相アーム15、V相アーム16、およびW相アーム17は、電源配線PLおよび接地配線GLの間に並列に設けられる。
U相アーム15は、直列接続されたIGBT素子Q3,Q4からなり、V相アーム16は、直列接続されたIGBT素子Q5,Q6から成り、W相アーム17は、直列接続されたIGBT素子Q7,Q8から成る。また、各IGBT素子Q3〜Q8のコレクタ−エミッタ間には、逆並列ダイオードD3〜D8がそれぞれ接続されている。
各相アームの中間点は、交流モータM1の各相コイルの各相端に接続されている。すなわち、交流モータM1は、3相の永久磁石モータであり、U,V,W相の3つのコイルの一端が中点に共通接続されて構成され、U相コイルの他端がIGBT素子Q3,Q4の中間点に、V相コイルの他端がIGBT素子Q5,Q6の中間点に、W相コイルの他端がIGBT素子Q7,Q8の中間点にそれぞれ接続されている。
コンデンサC1は、二次電池BATから供給された直流電圧Vbを平滑化する。電圧センサ11は、コンデンサC1の両端の電圧、すなわち、コンバータ12の入力電圧Vlを検出し、その検出した直流電圧Vlを制御装置30へ出力する。
コンバータ12は、二次電池BATからコンデンサC1へ供給される直流電圧Vlと、電源配線PLの直流電圧Vmの間で、双方向の直流電圧変換を実行する。より具体的には、コンバータ12は、制御装置30からの信号PWDに従って、IGBT素子Q1,Q2をオンオフ制御することによって、電源配線PLの直流電圧を制御する。基本的には、各スイッチング周期内でIGBT素子Q1およびQ2が相補的かつ交互にオンオフするように、コンバータ12は制御される。
直流電圧変換における電圧変換比(Vm/Vl)は、上記スイッチング周期に対するIGBT素子Q1,Q2のオン期間比(デューティ比)により制御される。なお、IGBT素子Q1およびQ2をオンおよびオフにそれぞれ固定すれば、Vm=Vl(電圧変換比=1.0)とすることもできる。
コンデンサC2は、コンバータ12から出力された電源配線PL上の直流電圧、すなわち、インバータ14の直流側電圧を平滑化する。電圧センサ13は、コンデンサC2の両端の電圧、すなわち、コンバータ12の出力電圧Vm(インバータ14への入力電圧に相当する。以下同じ。)を検出し、その検出した出力電圧Vmを制御装置30へ出力する。
インバータ14は、制御装置30からの信号PWMIに基づいて、電源配線PL上の直流電圧を交流電圧に変換して交流モータM1を駆動する。これにより、交流モータM1は、トルク指令値TRによって指定されたトルクを発生するように駆動される。
また、モータ駆動装置100が搭載された電動車両の回生制動時、制御装置30からの信号PWMIは、交流モータM1が発電した交流電圧を、インバータ14が直流電圧に変換するように生成される。そして、インバータ14によって変換された直流電圧は、コンデンサC2およびコンバータ12を介して二次電池BATへ供給される。すなわち、回生電力によって二次電池BATを充電することができる。
なお、ここで言う回生制動とは、電動車両を運転するドライバーによるフットブレーキ操作があった場合の回生発電を伴う制動や、フットブレーキを操作しないものの、走行中にアクセルペダルをオフすることで回生発電をさせながら車両を減速(または加速の中止)させることを含む。
制御装置30は、電子制御ユニット(ECU:Electronic Control Unit)により構成され、予め記憶されたプログラムを図示しないCPU(Central Processing Unit)で実行することによるソフトウェア処理および/または専用の電子回路によるハードウェア処理により、モータ駆動装置100の動作を制御する。
代表的な機能として、制御装置30は、トルク指令値TRおよびモータ回転数MRN、電圧センサ11からの直流電圧Vl、電圧センサ13からの出力電圧Vm、および電流センサ24からのモータ電流MCRTに基づいて、コンバータ12を駆動するための信号PWDとインバータ14を駆動するための信号PWMIとを生成し、その生成した信号PWDおよび信号PWMIをそれぞれコンバータ12およびインバータ14へ出力する。
信号PWDは、コンバータ12による直流電圧変換を制御するための信号であり、具体的には、IGBT素子Q1,Q2のオンオフを制御する信号である。制御装置30は、コンバータ12の出力電圧Vmを電圧指令値Vdccomに合致させるように、信号PWD
を生成する。信号PWDの生成方法については後述する。また、制御装置30は、コンバータ12のIGBT素子Q1,Q2のオンオフ制御に用いるキャリア周波数の調整を行なう。キャリア周波数の調整方法については、後述する。
信号PWMIは、インバータ14による直流/交流電圧変換を制御するための信号であり、具体的には、IGBT素子Q3〜Q8のオンオフを制御する信号である。制御装置30は、交流モータM1の出力トルクをトルク指令値TRに合致させるように、信号PWMIを生成する。トルク指令値TRが正のときには、交流モータM1によって、電動車両の駆動力を発生できる。
トルク指令値TRは、電動車両が回生制動モードに入ったときには負値に設定される。この際に、制御装置30は、交流モータM1が負トルクの発生により発電した回生電力(交流電圧)を直流電圧に変換するように信号PWMIを生成する。インバータ14によって変換された直流電圧は、制御装置30からの信号PWDに従って、コンバータ12により降圧されて、二次電池BATの充電に用いられる。
さらに、制御装置30は、モータ駆動装置100の起動・停止指令に従って、システムリレーSR1,SR2をオンオフするための信号SEを生成してシステムリレーSR1,SR2へ出力する。
図2は、図1に示した制御装置30の機能ブロック図である。図2に示された各機能ブロックについては、当該ブロックに相当する機能を有する電子回路(ハードウェア)で構成してもよいし、予め設定されたプログラムに従ってECUがソフトウェア処理を実行することにより実現してもよい。
図2を参照して、制御装置30は、モータ制御用相電圧演算部40と、インバータ用PWM信号変換部42と、インバータ入力電圧指令演算部50と、フィードバック電圧指令演算部52と、デューティ比制御部54と、判定部56と、周波数調整部57とを含む。
モータ制御用相電圧演算部40は、コンバータ12の出力電圧Vm、すなわち、インバータ14への入力電圧を電圧センサ13から受け、交流モータM1の各相に流れるモータ電流MCRTを電流センサ24から受け、トルク指令値TRを外部ECUから受ける。そして、モータ制御用相電圧演算部40は、これらの入力される信号に基づいて、交流モータM1の各相のコイルに印加する電圧を計算し、その計算した結果をインバータ用PWM信号変換部42へ供給する。
インバータ用PWM信号変換部42は、モータ制御用相電圧演算部40から受けた計算結果に基づいて、実際にインバータ14の各IGBT素子Q3〜Q8をオンオフする信号PWMIを生成し、その生成した信号PWMIをインバータ14の各IGBT素子Q3〜Q8へ出力する。
各IGBT素子Q3〜Q8が信号PWMIに従ってスイッチング制御されることによって、交流モータM1が指令されたトルクを出すように交流モータM1の各相に流す電流が制御される。このようにして、モータ駆動電流が制御されることによって、トルク指令値TRに応じたモータトルクが出力される。
一方、インバータ入力電圧指令演算部50は、トルク指令値TRおよびモータ回転数MRNに基づいてインバータ入力電圧の最適値(目標値)、すなわち、コンバータ12の電圧指令値Vdccomを演算する。演算された電圧指令値Vdccomは、フィードバック電圧指令演算部52へ出力される。
フィードバック電圧指令演算部52は、電圧センサ11からの直流電圧Vlと、電圧センサ13からのコンバータ12の出力電圧Vmと、インバータ入力電圧指令演算部50からの電圧指令値Vdccomとに基づいて、フィードバック電圧指令Vcnを演算する。演算されたフィードバック電圧指令Vcnは、デューティ比制御部54へ出力される。
図3を参照して、デューティ比制御部54は、フィードバック電圧指令演算部52からのフィードバック電圧指令Vcnと搬送波CWとの電圧比較に基づいて、信号PWDを生成する。搬送波CWの周期Tc、すなわちキャリア周波数は、図2の周波数調整部57により後述のように調整される。
図3を参照して、デューティ比制御部54は、フィードバック電圧指令演算部52からのフィードバック電圧指令Vcnと搬送波CWとの電圧比較に基づいて、信号PWDを生成する。搬送波CWの周期Tc、すなわちキャリア周波数は、図2の周波数調整部57により後述のように調整される。
図3の例では、一定周期Tcの搬送波CWに対して、フィードバック電圧指令Vcnの方が高い期間では、下アームのIGBT素子Q2がオンされる一方で、上アームのスイッチング素子Q1がオフされる。反対に、フィードバック電圧指令Vcnが搬送波CWよりも低い期間では、上アームのIGBT素子Q1がオンされる一方で、下アームのスイッチング素子Q2がオフされる。
なお、コンバータ12では、下アームのIGBT素子Q2のオンデューティを大きくすると、リアクトルL1における電力蓄積が大きくなるため、出力電圧Vmが上昇する。一方、上アームのIGBT素子Q1のオンデューティを大きくすることにより出力電圧Vmが低下する。したがって、フィードバック電圧指令VcnによってIGBT素子Q1,Q2のデューティ比を制御することで、電源配線PLの直流電圧Vmを、電圧指令値Vdccomに従って、二次電池BATの出力電圧と同等またはそれよりも高い電圧に制御可能である。
再び図2を参照して、デューティ比制御部54により生成された信号PWDは、コンバータ12内に設けられた、IGBT素子Q1,Q2の制御電極(ゲート)を駆動するための駆動回路(図示せず)へ出力される。
判定部56は、電池センサ10の出力、代表的にはバッテリ温度Tbに基づいて、二次電池BATの昇温制御の要否を判定する。一般的に、二次電池BATは、低温領域では内部抵抗が上昇する特性を有するため、かかる低温領域では、二次電池BATの出力電圧および入出力電力のが確保が困難になるとともに、内部損失増大によって効率も悪化する。したがって、厳寒期における電動車両の運転開始直後等には、二次電池BATを速やかに昇温させて、内部抵抗を低下させることが必要となる。
したがって、たとえば、判定部56は、バッテリ温度Tbが所定の判定温度Tthより低いときに昇温制御を要求するべく要求フラグFwuをオンする一方で、Tb≧Tthのときには、昇温制御が不要であると判定して要求フラグFwuをオフする。一般的に、内部抵抗の温度特性は電池の種類等によって異なるため、二次電池BATの温度特性(内部抵抗値、あるいは、温度変化に対する内部抵抗の変化率等)に応じて、判定温度Tthは適宜設定することができる。
周波数調整部57は、要求フラグFwuに応じて、キャリア周波数fc(fc=1/Tc)を変化させる。具体的には、二次電池の昇温制御時には、キャリア周波数fcを、通常時の周波数foよりも低い周波数fxに設定する。
特性記憶部59は、二次電池の昇温制御時に、バッテリ電流Ibに応じた適正な周波数fxを求めるための、予め求められた特性を記憶する。この特性は、バッテリ電流Ibの平均値と、適切な周波数fxとの対応関係を示すマップあるいは演算式により構成される。周波数調整部57は、昇温制御時には、バッテリ電流Ibの平均値の大きさに応じて、特性記憶部59に記憶された上記対応関係に従って、周波数fxを可変に設定する。
ここで、通常動作時および昇温動作時におけるリアクトル電流の挙動について詳細に説明する。
図4には、コンバータ12の通常動作時、すなわち、二次電池の昇温制御の非実行時におけるリアクトル電流波形が示される。
図4を参照して、リアクトル電流ILは、下アームのIGBT素子Q2のオン期間に上昇する一方で、上アームのIGBT素子Q1のオン期間には低下する挙動を一定周期で繰返すので、キャリア周波数に従ったリプル電流が発生する。通常時には、キャリア周波数fc=foに設定されるので、図3に示したデューティ制御に従って、リアクトル電流ILには周期To(周波数fo)のリプル電流が発生する。このように、リアクトル電流ILは、直流電流成分にリプル電流が重畳された態様となる。この直流電流成分とバッテリ電圧Vbとの積が、二次電池BATから入出力される直流電力に相当する。
通常時のキャリア周波数foは、電磁騒音がユーザに感知され難いように、可聴周波数帯を考慮して設計される。一例としては、foは10〜20kHz程度とされる。
図5に示されるように、二次電池の昇温制御時には、キャリア周波数を通常時よりも低い周波数fx(fx=1/Tx)とすることによって、リアクトル電流ILのリプル電流振幅を増大させる。IGBT素子Q1,Q2に対して、リアクトルL1および二次電池BATは、直列に接続されているため、リアクトル電流ILに生じたリプル電流は、バッテリ電流Ibにも生じて、二次電池BATの内部インピーダンス5を通過する。
リプル電流の振幅増大に伴って電流2乗値が増大することにより、内部インピーダンス5での発熱量が増大するので、この結果として、二次電池BATの昇温を促進することができる。
二次電池の昇温制御の際には、電源配線PLに接続されたコンデンサC2は、二次電池BATからの放電電力を一時的に蓄える電力バッファとして用いることができる。この結果、昇温制御時には、インバータ14および交流モータM1により構成される負荷に対して電力を入出力することなく、リアクトル電流ILを交流電流として発生させることができる。すなわち、負荷である交流モータM1が起動されていないときにも、バッテリ電流Ibのリプルによる発熱を、二次電池BATの内部に発生させることができる。
ここで、図6を用いて、キャリア周波数とリプル電流振幅との関係を説明する。
図6を参照して、下アームのIGBT素子Q2のオン期間(IGBT素子Q1のオフ期間)には、リアクトルL1のインダクタンスLと直流電圧Vlとで決まる傾き(Vl/L)でリアクトル電流ILが上昇する。一方、上アームのIGBT素子Q1のオン期間には、インダクタンスLと電圧差(Vm−Vl)とで決まる傾き((Vl−Vm)/L)でリアクトル電流ILが低下する。このため、キャリア周波数をfoからfxに低下させる、すなわち、キャリア周期をToからTxへ拡大することによって、リアクトル電流ILの上昇または低下期間が拡大するので、リプル電流振幅Irpが増大する。
また、二次電池の昇温制御時には、キャリア周波数fcを可変に設定することによって、リプル電流振幅Irpが変化することが理解される。リプル電流振幅Irpを拡大することによって、二次電池BATの温度上昇を促進できる一方で、リアクトル電流ILの瞬時値が増大することになる。これにより、コンバータ12の構成部品の許容最大電流Imax、代表的には、IGBT素子Q1,Q2の定格最大電流を超えた過電流が発生することにより、コンバータ12に機器損傷が生じる可能性がある。
このような過電流は、負荷の状態変化に応じて発生することが懸念される。図7には、負荷状態の変化に伴うリアクトル電流の変化が示される。
図7を参照して、時刻taまでは、負荷(交流モータ)M1が停止しており、二次電池BATからは電力が出力されない。このため、昇温制御によって、バッテリ電流Ibにリプルが生じるが、その平均電流Ib♯=0である。しかしながら、当該リプル電流の2乗値に応じた発熱により、二次電池BATの温度が上昇する。
時刻taから負荷(交流モータ)M1が作動すると、交流モータM1の力行動作時には二次電池BATから電力が出力されるため、バッテリ電流Ibが正方向に増加する。すなわち、平均電流Ib♯>0となる。一方、交流モータM1の回生動作時には二次電池BATが充電されるため、バッテリ電流Ibが負方向に増加する。すなわち、平均電流Ib♯<0となる。
負荷の作動時においても、バッテリ温度Tbが判定温度Tthより低い間は、早期の昇温のために、二次電池の昇温制御を継続することが好ましい。しかしながら、|Ib♯|>0となった状態で、スイッチング周波数の低下を継続すると、平均電流Ib♯にリプル電流が重畳された、バッテリ電流Ib(瞬時値)が、コンバータ12の構成部品の許容最大電流Imaxを超える可能性が、通常時よりも高くなる。許容最大電流Imaxは、たとえば、IGBT素子Q1,Q2の定格最大電流に相当する。このような過電流が発生することにより、コンバータ12に機器損傷が生じる可能性がある。
一方で、上述のように、二次電池BATでの発熱量は、バッテリ電流Ibの2乗値に比例するため、平均電流|Ib♯|が大きくなると、リプル電流振幅Irpが小さくても発熱量を確保できる。
したがって、本実施の形態による電源システムでは、周波数調整部57は、二次電池の昇温制御時に用いるスイッチング周波数fxを、平均電流の大きさ(|Ib♯|)に応じて可変に設定する。なお、平均電流Ib♯については、バッテリ電流Ibのセンサ検出値をローパスフィルタ処理することによって求めることが可能である。
あるいは、負荷からの要求パワーが把握可能である場合には、当該要求パワーをバッテリ電圧Vbで除算することによって、概略的に平均電流Ib♯およびその絶対値を、演算によって求めることができる。
|Ib♯|の各水準と、バッテリ電流Ibの瞬時値が許容最大電流Imaxを超えないようなスイッチング周波数との対応関係を予め求めておくとともに、特性記憶部59にこの対応関係を記憶する。たとえば、この対応関係は、実機実験に基づいて予め決定した、|Ib♯|に対するスイッチング周波数をマップ化したものである。あるいは、(Ibmax−|Ib♯|)/2が許容されるリプル電流振幅Irpに相当することから、リプル電流の傾き(|Vl−Vm|/L)を考慮して、許容されるスイッチング周期Tx(スイッチング周波数fx)を逆算する演算式を設定することも可能である。したがって、予め設定したこのような演算式を、上記対応関係として特性記憶部59に記憶することも可能である。概略的には、|Ib♯|が大きくなる程、リプル電流振幅Irpを抑制するために、周波数fxは相対的に高く設定されることになる。
周波数調整部57は、昇温制御時には、|Ib♯|に応じて、特性記憶部59に記憶された上記対応関係に従って、スイッチング周波数fxを可変に設定する。これにより、|Ib♯|が大きくなると、スイッチング周波数fxを高めることによりリプル電流振幅Irpが抑制される。したがって、昇温制御の効果を損なうことなく、昇温制御の際におけるコンバータ12の構成部品の損傷を防止することができる。
なお、周波数調整部57は、バッテリ電流Ibとバッテリ電圧Vbとの積で示されるバッテリ電力に応じて、スイッチング周波数fxを可変に設定してもよい。バッテリ電流Ibのリプルと、バッテリ電圧Vbのリプルとは逆位相であるため、両者の積(Pb=Ib×Vb)を求めることにより、平均値(Pb♯)が求め易くなる。なお、バッテリ電力の平均値Pb♯は、バッテリ電流の平均値Ib♯に主に依存しているので、Pb♯の算出は、概念上、Ib♯の算出に含まれることを確認的に記載する。
この場合には、特性記憶部59は、バッテリ電力Pbの大きさ|Pb♯|の各水準と、バッテリ電流Ibの瞬時値が許容最大電流Imaxを超えないようなスイッチング周波数との対応関係を記憶する。あるいは、負荷からの要求パワーが把握可能である場合には、当該要求パワーに基づいて、簡易にスイッチング周波数fxを可変に設定することも可能である。
本実施の形態と本発明の構成との対応関係については、コンバータ12が本発明での「電圧変換器」に対応し、制御装置30が本発明での「制御装置」に対応する。また、図2のデューティ比制御部54、判定部56、および周波数調整部57は、「デューティ比制御部」、「判定部」および「周波数調整部」にそれぞれ対応する。
また、本実施の形態では、モータ駆動システムの負荷となる交流モータについて、電動車両(ハイブリッド自動車、電気自動車、燃料電池自動車等)に車両駆動用として搭載された永久磁石モータを想定したが、それ以外の機器に用いられる任意の交流電動機を負荷とする構成についても、本願発明を適用可能である。また、電圧変換器についても、リアクトルを含んだ構成であれば、その回路構成を特に限定することなく本発明の適用が可能である点について確認的に記載する。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
本発明は、二次電池と、リアクトルを構成要素とする電圧変換器とを含む電源システムに適用することができる。
5 内部インピーダンス、10 電池センサ、11,13 電圧センサ、12 コンバータ、14 インバータ、15,16,17 アーム、24 電流センサ、30 制御装置、40 モータ制御用相電圧演算部、42 PWM信号変換部、50 インバータ入力電圧指令演算部、52 フィードバック電圧指令演算部、54 デューティ比制御部、56 判定部、57 周波数調整部、59 特性記憶部、100 モータ駆動装置、BAT 二次電池、C1,C2 コンデンサ、CW 搬送波、D1〜D8 ダイオード、Fwu 要求フラグ(昇温制御)、GL 接地配線、IL リアクトル電流、Ib バッテリ電流、Ib♯ 平均電流(バッテリ電流)、Imax 許容最大電流、Irp リプル電流振幅、L1 リアクトル、M1 交流モータ、MCRT モータ電流、MRN モータ回転数、PL 電源配線、PWD,PWMI,SE 信号、PWM インバータ用、Pb バッテリ電力、Q1〜Q8 スイッチング素子、SR1,SR2,SR1,SR2 システムリレー、TR トルク指令値、Tb バッテリ温度、Tc,To,Tx スイッチング周期、Tth 判定温度、Vb バッテリ電圧、Vcn フィードバック電圧指令、Vdccom 電圧指令値、Vl 直流電圧(コンバータ入力電圧)、Vm 直流電圧(コンバータ出力電圧)、Vm 直流電圧、fc キャリア周波数、fo キャリア周波数(通常時)、fx キャリア周波数(昇温制御時)。

Claims (1)

  1. 二次電池と、
    前記二次電池からの直流電圧を変換する電圧変換器と、
    前記電圧変換器を制御するための制御装置とを備え、
    前記電圧変換器は、
    キャリア周波数に従った周期でオンオフ制御される電力用スイッチング素子と、
    前記二次電池に対して前記スイッチング素子と直列に接続されたリアクトルとを含み、
    前記制御装置は、
    前記二次電池の昇温制御の要否を判定する判定部と、
    前記昇温制御が必要であると判定されたときに、前記キャリア周波数を、前記昇温制御の非実行時に使用する第1の周波数よりも低い第2の周波数に設定するための周波数調整部とを含み、
    前記周波数調整部は、前記昇温制御中には、前記二次電池の電流の大きさに応じて、前記第2の周波数を可変に設定する、電源システム。
JP2010016425A 2010-01-28 2010-01-28 電源システム Withdrawn JP2011155788A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010016425A JP2011155788A (ja) 2010-01-28 2010-01-28 電源システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010016425A JP2011155788A (ja) 2010-01-28 2010-01-28 電源システム

Publications (1)

Publication Number Publication Date
JP2011155788A true JP2011155788A (ja) 2011-08-11

Family

ID=44541319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010016425A Withdrawn JP2011155788A (ja) 2010-01-28 2010-01-28 電源システム

Country Status (1)

Country Link
JP (1) JP2011155788A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013187919A (ja) * 2012-03-05 2013-09-19 Nippon Soken Inc 電力変換装置
JP2013187920A (ja) * 2012-03-05 2013-09-19 Nippon Soken Inc バッテリ充電装置
US8755973B2 (en) 2012-01-13 2014-06-17 Denso Corporation Vehicular power supply system
JP2017143656A (ja) * 2016-02-10 2017-08-17 トヨタ自動車株式会社 電源装置
JP2021044949A (ja) * 2019-09-11 2021-03-18 株式会社Soken 電力変換装置
EP4030612A4 (en) * 2019-09-09 2022-09-07 Mitsubishi Electric Corporation CURRENT TRANSFORMING DEVICE
WO2022209794A1 (ja) * 2021-03-30 2022-10-06 株式会社デンソー 電力変換装置の制御装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8755973B2 (en) 2012-01-13 2014-06-17 Denso Corporation Vehicular power supply system
JP2013187919A (ja) * 2012-03-05 2013-09-19 Nippon Soken Inc 電力変換装置
JP2013187920A (ja) * 2012-03-05 2013-09-19 Nippon Soken Inc バッテリ充電装置
JP2017143656A (ja) * 2016-02-10 2017-08-17 トヨタ自動車株式会社 電源装置
EP4030612A4 (en) * 2019-09-09 2022-09-07 Mitsubishi Electric Corporation CURRENT TRANSFORMING DEVICE
US11936306B2 (en) 2019-09-09 2024-03-19 Mitsubishi Electric Corporation Power conversion device
JP2021044949A (ja) * 2019-09-11 2021-03-18 株式会社Soken 電力変換装置
JP7169952B2 (ja) 2019-09-11 2022-11-11 株式会社Soken 電力変換装置
WO2022209794A1 (ja) * 2021-03-30 2022-10-06 株式会社デンソー 電力変換装置の制御装置
JP7468435B2 (ja) 2021-03-30 2024-04-16 株式会社デンソー 電力変換装置の制御装置

Similar Documents

Publication Publication Date Title
US8027181B2 (en) Load drive device and vehicle equipped with the same
JP5397532B2 (ja) 電源装置
JP5454685B2 (ja) モータ駆動装置およびそれを搭載する車両
US10236803B2 (en) Hybrid-vehicle variable-voltage traction motor drive
JP5297953B2 (ja) 電動車両の電動機駆動システム
US7379313B2 (en) Voltage conversion device
JP4640200B2 (ja) 電圧変換装置および電圧変換器の制御方法
JP5482574B2 (ja) 交流電動機の制御システム
JP2007166874A (ja) 電圧変換装置
JP2006320039A (ja) モータ駆動システムの制御装置
EP2733844A1 (en) Vehicle and method for controlling vehicle
JP2009189181A (ja) モータ駆動システムおよびその制御方法ならびに電動車両
WO2005013471A1 (en) Voltage conversion device and computer-readable recording medium having program recorded thereon for computer to control voltage conversion
JP2011155788A (ja) 電源システム
JP2010246207A (ja) 交流電動機の制御装置
JP2011091952A (ja) 電源システム
JP5352330B2 (ja) モータ駆動制御装置
JP2010098819A (ja) 電圧変換装置および電圧変換装置の制御方法
JP2010200527A (ja) モータ駆動システムの制御装置
JP5375679B2 (ja) モータ駆動システムの制御装置
JP2010035279A (ja) 電源システムおよび電動車両
JP5062245B2 (ja) 負荷駆動装置およびそれを備える車両
JP5352326B2 (ja) モータ駆動制御装置
JP2011101554A (ja) コンバータの制御装置
JP2010220306A (ja) モータの制御装置

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130402