JP2011153723A - Refrigerating cycle apparatus and heat pump water heater using the same - Google Patents

Refrigerating cycle apparatus and heat pump water heater using the same Download PDF

Info

Publication number
JP2011153723A
JP2011153723A JP2010013812A JP2010013812A JP2011153723A JP 2011153723 A JP2011153723 A JP 2011153723A JP 2010013812 A JP2010013812 A JP 2010013812A JP 2010013812 A JP2010013812 A JP 2010013812A JP 2011153723 A JP2011153723 A JP 2011153723A
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
cycle apparatus
heat
insulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010013812A
Other languages
Japanese (ja)
Inventor
Yoshiki Yamaoka
由樹 山岡
Akihiro Shigeta
明広 重田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010013812A priority Critical patent/JP2011153723A/en
Publication of JP2011153723A publication Critical patent/JP2011153723A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Thermal Insulation (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerating cycle apparatus that operates with high energy efficiency, by preventing heat leakage from a compressor, and by controlling heat transfer from a first refrigerant piping to a second refrigerant piping during defrosting operation. <P>SOLUTION: A refrigerating cycle apparatus includes: a refrigerant circuit 5 that is formed by sequentially connecting a compressor 1, a radiator 2, a decompression mechanism 3, and an evaporator 4 which exchanges heat between air and a refrigerant; a first refrigerant piping that is part of the refrigerant circuit 5 and supplies a refrigerant from the radiator 2 to the evaporator 4; and a second refrigerant piping that supplies a refrigerant from the evaporator 4 to the compressor 1. The refrigerating cycle apparatus is provided with a first heat insulating material 9 between the compressor 1 and the second circuit piping; a second heat insulating 10 between the fist refrigerant piping and the second refrigerating piping. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、冷凍サイクル装置に関するものである。   The present invention relates to a refrigeration cycle apparatus.

従来、この種の冷凍サイクル装置は、図6に示すようなヒートポンプ給湯機搭載の冷凍サイクル装置として代表的に利用される。したがって、以下では、ヒートポンプ給湯機搭載の冷凍サイクル装置を例にとって、その従来の構成と動作について説明する。   Conventionally, this type of refrigeration cycle apparatus is typically used as a refrigeration cycle apparatus equipped with a heat pump water heater as shown in FIG. Therefore, below, the conventional structure and operation | movement are demonstrated taking the example of the refrigerating-cycle apparatus carrying a heat pump water heater.

図6において、1は圧縮機、2は放熱器、3は膨張弁、4は蒸発器であり、これらはこの順で環状に構成され、冷媒回路5を形成している。また、6は膨張弁入口配管、7は膨張弁出口配管、8は吸入配管、22は圧縮機断熱材であり、各々が図5に示すように配されて筐体内に配されるのが代表的である。   In FIG. 6, 1 is a compressor, 2 is a radiator, 3 is an expansion valve, and 4 is an evaporator, which are configured in an annular shape in this order to form a refrigerant circuit 5. In addition, 6 is an expansion valve inlet pipe, 7 is an expansion valve outlet pipe, 8 is a suction pipe, and 22 is a compressor heat insulating material. Is.

以上のように構成されたヒートポンプ給湯機搭載の冷凍サイクル装置について、以下にその動作を説明する。   The operation of the refrigeration cycle apparatus equipped with the heat pump water heater configured as described above will be described below.

圧縮機1から吐出された高圧の冷媒は放熱器2へ供給され、放熱器2において水と熱交換を行って放熱した後に膨張弁3に供給される。膨張弁3にて減圧された後、蒸発器4に供給されて吸熱した後、圧縮機1へ吸入される。また、圧縮機断熱材22は圧縮機1を断熱し、放熱器2へ供給される冷媒の温度をより高く維持する。   The high-pressure refrigerant discharged from the compressor 1 is supplied to the radiator 2, and heat is exchanged with water in the radiator 2 to dissipate heat and then supplied to the expansion valve 3. After being depressurized by the expansion valve 3, it is supplied to the evaporator 4, absorbs heat, and then sucked into the compressor 1. Moreover, the compressor heat insulating material 22 insulates the compressor 1 and maintains the temperature of the refrigerant supplied to the radiator 2 higher.

冷凍サイクル装置のエネルギー効率を高くするためには、圧縮機断熱材22によって圧縮機1を断熱しているように、圧縮機1からの熱漏洩量を低減する必要がある(例えば、特許文献1参照)。   In order to increase the energy efficiency of the refrigeration cycle apparatus, it is necessary to reduce the amount of heat leakage from the compressor 1 so that the compressor 1 is thermally insulated by the compressor heat insulating material 22 (for example, Patent Document 1). reference).

特開2007−192440号公報JP 2007-192440 A

しかしながら、特許文献1に記載のヒートポンプ式給湯機に搭載の冷凍サイクル装置においては、高温の圧縮機1からの熱漏洩を抑制しているものの、蒸発器4に付着する霜を融解させて除去する除霜運転時においては、高温となる膨張弁入口配管6や膨張弁出口配管7から吸入配管8などの低温配管への熱移動が発生するにもかかわらず、これに対しては特に対策がなされていない。除霜運転時に、膨張弁入口配管6や膨張弁出口配管7から熱漏洩が発生すると、蒸発器4に供給される冷媒の熱エネルギーが小さくなるため、除霜運転が長時間化して冷凍サイクル装置のエネルギー効率を低下させてしまうという課題を有していた。   However, in the refrigeration cycle apparatus mounted on the heat pump type water heater described in Patent Document 1, although heat leakage from the high-temperature compressor 1 is suppressed, frost adhering to the evaporator 4 is melted and removed. In the defrosting operation, even though heat transfer from the expansion valve inlet pipe 6 or the expansion valve outlet pipe 7 which becomes high temperature to the low temperature pipe such as the suction pipe 8 occurs, a countermeasure is particularly taken against this. Not. If heat leakage occurs from the expansion valve inlet pipe 6 or the expansion valve outlet pipe 7 during the defrosting operation, the heat energy of the refrigerant supplied to the evaporator 4 is reduced, so that the defrosting operation takes longer and the refrigeration cycle apparatus It had the subject of reducing the energy efficiency of.

本発明は、前記従来の課題を解決するもので、圧縮機からの熱漏洩を抑制し、かつ、除霜運転時における冷媒配管間の熱移動を抑制することにより、高いエネルギー効率で運転を行うことができる冷凍サイクル装置を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and operates with high energy efficiency by suppressing heat leakage from the compressor and suppressing heat transfer between refrigerant pipes during defrosting operation. It is an object of the present invention to provide a refrigeration cycle apparatus that can perform such a process.

上記目的を達成するために、本発明の冷凍サイクル装置は、圧縮機、放熱器、減圧機構、空気と冷媒とが熱交換をする蒸発器を順に接続して形成した冷媒回路と、前記冷媒回路
の一部を構成して前記放熱器から前記蒸発器へと冷媒を供給する第一冷媒配管と、前記蒸発器から前記圧縮機へと冷媒を供給する第二冷媒配管とを備え、前記圧縮機と前記第二冷媒配管との間に第一断熱材、前記第一冷媒配管と前記第二冷媒配管との間に第二断熱材を配設したことを特徴とするもので、圧縮機からの熱漏洩を抑制するだけでなく、除霜運転時において、第一冷媒配管から第二冷媒配管への熱移動も抑制し、蒸発器により多くの熱エネルギーを供給して除霜運転を短縮することが可能となる。
In order to achieve the above object, a refrigeration cycle apparatus of the present invention includes a compressor, a radiator, a decompression mechanism, a refrigerant circuit formed by sequentially connecting an evaporator that exchanges heat between air and a refrigerant, and the refrigerant circuit. A first refrigerant pipe that supplies a refrigerant from the radiator to the evaporator and a second refrigerant pipe that supplies a refrigerant from the evaporator to the compressor, the compressor A first heat insulating material between the first refrigerant pipe and the second refrigerant pipe, and a second heat insulating material between the first refrigerant pipe and the second refrigerant pipe. Not only suppressing heat leakage, but also suppressing heat transfer from the first refrigerant pipe to the second refrigerant pipe during the defrosting operation, and supplying more heat energy to the evaporator to shorten the defrosting operation. Is possible.

本発明によれば、圧縮機からの熱漏洩を抑制し、かつ、除霜運転時における冷媒配管間の熱移動を抑制することにより、高いエネルギー効率で運転を行うことができる冷凍サイクル装置を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the refrigerating-cycle apparatus which can be drive | operated with high energy efficiency by suppressing the heat leak from a compressor and suppressing the heat transfer between refrigerant | coolant piping at the time of a defrost operation is provided. it can.

本発明の実施の形態1におけるヒートポンプ給湯機に搭載の冷凍サイクル装置の水平方向断面図Horizontal direction sectional view of the refrigerating cycle device carried in the heat pump water heater in Embodiment 1 of the present invention. 本発明の実施の形態2におけるヒートポンプ給湯機に搭載の冷凍サイクル装置の水平方向断面図Horizontal direction sectional view of the refrigerating cycle device carried in the heat pump water heater in Embodiment 2 of the present invention. 本発明の実施の形態2におけるヒートポンプ給湯機に搭載の他の冷凍サイクル装置の水平方向断面図Horizontal sectional view of another refrigeration cycle device mounted on the heat pump water heater in Embodiment 2 of the present invention 本発明の実施の形態2におけるヒートポンプ給湯機に搭載の他の冷凍サイクル装置の水平方向断面図Horizontal sectional view of another refrigeration cycle device mounted on the heat pump water heater in Embodiment 2 of the present invention 従来のヒートポンプ給湯機に搭載の冷凍サイクル装置の水平方向断面図Horizontal sectional view of a refrigeration cycle system installed in a conventional heat pump water heater 従来のヒートポンプ給湯機に搭載の冷凍サイクル装置の回路図Circuit diagram of refrigeration cycle equipment installed in conventional heat pump water heater

第1の発明は、圧縮機、放熱器、減圧機構、空気と冷媒とが熱交換をする蒸発器を順に接続して形成した冷媒回路と、前記冷媒回路の一部を構成して前記放熱器から前記蒸発器へと冷媒を供給する第一冷媒配管と、前記蒸発器から前記圧縮機へと冷媒を供給する第二冷媒配管とを備え、前記圧縮機と前記第二冷媒配管との間に第一断熱材、前記第一冷媒配管と前記第二冷媒配管との間に第二断熱材を配設することにより、圧縮機からの熱漏洩を抑制することに加えて、除霜運転時において、高温の第一冷媒配管から低温の第二冷媒配管への熱移動を抑制して、蒸発器により多くの熱エネルギーを供給して除霜運転時間を短縮することが可能となり、高いエネルギー効率で冷凍サイクル装置を運転することができる。   1st invention comprises a refrigerant circuit formed by connecting in order a compressor, a radiator, a decompression mechanism, an evaporator in which air and a refrigerant exchange heat, and a part of the refrigerant circuit to constitute the radiator A first refrigerant pipe for supplying refrigerant from the evaporator to the compressor, and a second refrigerant pipe for supplying refrigerant from the evaporator to the compressor, and between the compressor and the second refrigerant pipe In addition to suppressing heat leakage from the compressor by disposing the second heat insulating material between the first heat insulating material and the first refrigerant piping and the second refrigerant piping, during the defrosting operation The heat transfer from the high-temperature first refrigerant pipe to the low-temperature second refrigerant pipe can be suppressed, and more heat energy can be supplied to the evaporator to shorten the defrosting operation time. The refrigeration cycle apparatus can be operated.

第2の発明は、特に、第1の発明に記載の第一冷媒配管を、放熱器から減圧機構に冷媒を供給する冷媒配管とすることにより、除霜運転時において、より高温である減圧機構入口配管から低温部への熱移動を抑制して、第一冷媒配管を減圧機構出口配管とするよりも除霜運転時間の短縮することができる。   In the second invention, in particular, the first refrigerant pipe described in the first invention is a refrigerant pipe that supplies the refrigerant from the radiator to the decompression mechanism, so that the decompression mechanism that has a higher temperature during the defrosting operation. The heat transfer from the inlet pipe to the low temperature part can be suppressed, and the defrosting operation time can be shortened compared to the case where the first refrigerant pipe is used as the decompression mechanism outlet pipe.

第3の発明は、特に、第1の発明に記載の第一冷媒配管を、減圧機構から蒸発器に冷媒を供給する冷媒配管とすることにより、除霜運転時において、高温の減圧機構出口配管から低温の第二冷媒配管への熱移動を抑制して除霜運転時間の短縮することができるとともに、加熱運転時において、中温の第二冷媒配管から低温の減圧機構出口配管への熱移動を抑制して、第一冷媒配管を減圧機構入口配管とするよりも高いエネルギー効率で冷凍サイクル装置を運転することができる。   In the third invention, in particular, the first refrigerant pipe described in the first invention is a refrigerant pipe that supplies the refrigerant from the decompression mechanism to the evaporator, so that the high-temperature decompression mechanism outlet pipe is used during the defrosting operation. Heat transfer from the low-temperature second refrigerant pipe to the defrosting operation time can be shortened, and during the heating operation, the heat transfer from the medium-temperature second refrigerant pipe to the low-temperature decompression mechanism outlet pipe can be reduced. Therefore, the refrigeration cycle apparatus can be operated with higher energy efficiency than when the first refrigerant pipe is used as the pressure reducing mechanism inlet pipe.

第4の発明は、特に、第1〜3のいずれか1つの発明において、圧縮機と第一冷媒配管との平均距離L1と、圧縮機と第二冷媒配管との平均距離L2とがL1>L2の関係を有することにより、加熱運転時において、圧縮機から第一断熱材を介して漏洩する熱エネル
ギーを第二冷媒配管で受熱して、蒸発器出口における冷媒の過熱度を小さくしながらも圧縮機に吸入される冷媒の過熱度を大きくして、第1〜3の発明における冷凍サイクル装置よりも、加熱運転時のエネルギー効率を高くすることができる。
In particular, according to a fourth invention, in any one of the first to third inventions, an average distance L1 between the compressor and the first refrigerant pipe and an average distance L2 between the compressor and the second refrigerant pipe are L1>. By having the relationship of L2, the heat energy leaking from the compressor through the first heat insulating material is received by the second refrigerant pipe during the heating operation, and the degree of superheat of the refrigerant at the evaporator outlet is reduced. The degree of superheat of the refrigerant sucked into the compressor can be increased, and the energy efficiency during the heating operation can be increased as compared with the refrigeration cycle apparatuses according to the first to third inventions.

第5の発明は、特に、第4の発明において、第二断熱材を圧縮機の全体もしくはその一部を囲い込むように配設することにより、除霜運転時において、高温の第一冷媒配管から低温の第二冷媒配管への熱移動を抑制して除霜運転時間を短縮することができるとともに、加熱運転時において、第一断熱材と第二断熱材の間隙に形成される空間の雰囲気温度を高くして、第二冷媒配管を流通する冷媒の温度を高くすることができ、第4の発明における冷凍サイクル装置よりも、加熱運転時のエネルギー効率を高くすることができる。   According to a fifth aspect of the invention, in particular, in the fourth aspect of the invention, the second heat insulating material is disposed so as to surround the whole or a part of the compressor, so that the high-temperature first refrigerant pipe is used during the defrosting operation. It is possible to reduce the defrosting operation time by suppressing the heat transfer from the first to the low-temperature second refrigerant pipe, and the atmosphere of the space formed in the gap between the first heat insulating material and the second heat insulating material during the heating operation The temperature of the refrigerant flowing through the second refrigerant pipe can be increased by increasing the temperature, and the energy efficiency during the heating operation can be increased as compared with the refrigeration cycle apparatus in the fourth invention.

第6の発明は、特に、第4または5のいずれかの発明において、第二冷媒配管を内部熱交換器から吸入配管の一部もしくは内部熱交換器の一部とすることにより、除霜運転時における高温の第一冷媒配管からから低温の第二冷媒配管への熱移動を抑制して除霜運転時間を短縮することができるとともに、加熱運転時において、圧縮機に吸入される冷媒の過熱度を高くすることができるため、蒸発器出口の冷媒の過熱度を小さくして蒸発器の熱交換効率を高くすることができ、第4または第5の発明における冷凍サイクル装置よりも、加熱運転時のエネルギー効率を高くすることができる。   In a sixth aspect of the present invention, in particular, in the fourth or fifth aspect of the invention, the second refrigerant pipe is changed from the internal heat exchanger to a part of the suction pipe or a part of the internal heat exchanger, thereby performing the defrosting operation. The heat transfer from the high-temperature first refrigerant pipe to the low-temperature second refrigerant pipe at the time can be suppressed and the defrosting operation time can be shortened, and overheating of the refrigerant sucked into the compressor during the heating operation Since the degree of superheat of the refrigerant at the outlet of the evaporator can be reduced to increase the heat exchange efficiency of the evaporator, the heating operation can be performed more than the refrigeration cycle apparatus in the fourth or fifth invention. The energy efficiency of time can be increased.

第7の発明は、特に、第4〜6のいずれか1つの発明において、前記第一断熱材の厚さt1、熱伝導率k1と前記第二断熱材の厚さt2、熱伝導率k2とが、t1/k1<t2/k2の関係を有することにより、除霜運転時における高温の第一冷媒配管から低温の第二冷媒配管への熱移動を抑制して除霜運転時間を短縮することができるとともに、加熱運転時において、第一断熱材と第二断熱材の間隙に形成される空間の雰囲気温度をより高くすることができ、蒸発器出口における冷媒の過熱度を小さくすることができるため、第4〜6の発明における冷凍サイクル装置よりも、加熱運転時のエネルギー効率を高くすることができる。   In particular, according to a seventh invention, in any one of the fourth to sixth inventions, the thickness t1, the thermal conductivity k1 of the first heat insulating material, the thickness t2, the thermal conductivity k2 of the second heat insulating material, However, by having a relationship of t1 / k1 <t2 / k2, the heat transfer from the high-temperature first refrigerant pipe to the low-temperature second refrigerant pipe during the defrosting operation is suppressed to shorten the defrosting operation time. In addition, during the heating operation, the atmospheric temperature of the space formed in the gap between the first heat insulating material and the second heat insulating material can be increased, and the degree of superheating of the refrigerant at the evaporator outlet can be reduced. Therefore, the energy efficiency at the time of heating operation can be made higher than that of the refrigeration cycle apparatus in the fourth to sixth inventions.

第8の発明は、特に、第1〜7のいずれか1つの発明に記載の第二断熱材を、真空断熱材とすることにより、断熱材を薄くすることができ、グラスウール、パイルトンや発砲樹脂系の熱伝導率が大きい断熱材を用いて断熱するときよりも、断熱によるエネルギー効率向上の効果を得ながらも配管の配置などに第一冷媒配管や第二冷媒配管周辺の空間を有効に利用することができる。   In the eighth aspect of the invention, in particular, by using the second heat insulating material described in any one of the first to seventh aspects as a vacuum heat insulating material, the heat insulating material can be thinned, and glass wool, pileton or foaming resin can be used. Effective use of the space around the first and second refrigerant pipes for piping arrangement, etc. while obtaining the effect of improving energy efficiency by heat insulation, compared to the case of using heat insulation with high thermal conductivity of the system can do.

第9の発明は、圧縮機駆動時、冷媒回路の高圧は超臨界圧力で運転することにより、断熱による熱漏洩抑制に加えて、冷媒が凝縮せず高温部でも被加熱流体と十分な温度差をもつことができ、高いエネルギー効率で冷凍サイクルを運転して高温の水や空気を生成することができる。   In the ninth aspect of the invention, when the compressor is driven, the refrigerant circuit is operated at a supercritical pressure so that the heat leakage is suppressed by heat insulation, and the refrigerant does not condense and has a sufficient temperature difference from the fluid to be heated even in a high temperature part. The refrigeration cycle can be operated with high energy efficiency to generate hot water and air.

第10の発明は、特に、第9の発明に記載の冷媒として、二酸化炭素を用いることにより、冷媒が漏洩しても燃焼の危険がなく、安心して冷凍サイクル装置を運転することができる。   In the tenth invention, in particular, by using carbon dioxide as the refrigerant described in the ninth invention, there is no danger of combustion even if the refrigerant leaks, and the refrigeration cycle apparatus can be operated with peace of mind.

第11の発明は、特に、第1〜10のいずれか1つの発明に記載の冷凍サイクル装置を搭載したヒートポンプ給湯機である。   The eleventh aspect of the invention is a heat pump water heater equipped with the refrigeration cycle apparatus according to any one of the first to tenth aspects of the invention.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の第1の実施の形態におけるヒートポンプ給湯機に搭載の冷凍サイクル装置の水平方向の断面図である。
(Embodiment 1)
FIG. 1 is a horizontal cross-sectional view of a refrigeration cycle apparatus mounted on a heat pump water heater in a first embodiment of the present invention.

図1において、9は第一断熱材、10は第二断熱材である。膨張弁入口配管6および膨張弁出口配管7は、圧縮機1との平均距離L1が、吸入配管8と圧縮機1との平均距離L2よりも大きくなるように配設される。   In FIG. 1, 9 is a first heat insulating material and 10 is a second heat insulating material. The expansion valve inlet pipe 6 and the expansion valve outlet pipe 7 are arranged such that the average distance L1 between the compressor 1 and the average distance L2 between the suction pipe 8 and the compressor 1 is larger.

また、第一断熱材9は、図1に示すように、圧縮機1の周囲に巻きつけられて配設され、第二断熱材10は真空断熱材であって、膨張弁入口配管6と吸入配管8との間隙、または、膨張弁出口配管7と吸入配管8の間隙に配設される。また、冷媒回路5は、従来の冷凍サイクル装置と同様に図5に示されるように構成され、冷媒回路5中は冷媒として二酸化炭素が循環する。   Further, as shown in FIG. 1, the first heat insulating material 9 is wound around the compressor 1 and disposed, and the second heat insulating material 10 is a vacuum heat insulating material, which is connected to the expansion valve inlet pipe 6 and the suction pipe. It is disposed in the gap between the pipes 8 or in the gap between the expansion valve outlet pipe 7 and the suction pipe 8. Further, the refrigerant circuit 5 is configured as shown in FIG. 5 similarly to the conventional refrigeration cycle apparatus, and carbon dioxide circulates as a refrigerant in the refrigerant circuit 5.

以上のように構成された冷凍サイクル装置について、以下その動作、作用を説明する。   About the refrigerating-cycle apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

冷凍サイクル装置が除霜運転状態にあるとき、第一断熱材9は圧縮機1(約50〜100℃)から周囲(約10〜30℃)への熱漏洩を抑制し、第二断熱材10は、膨張弁入口配管6(約25〜50℃)や膨張弁出口配管7(約5〜15℃)から吸入配管8(約0℃)への熱移動を抑制する。   When the refrigeration cycle apparatus is in the defrosting operation state, the first heat insulating material 9 suppresses heat leakage from the compressor 1 (about 50 to 100 ° C.) to the surroundings (about 10 to 30 ° C.). Suppresses heat transfer from the expansion valve inlet pipe 6 (about 25 to 50 ° C.) and the expansion valve outlet pipe 7 (about 5 to 15 ° C.) to the suction pipe 8 (about 0 ° C.).

一方、冷凍サイクル装置が加熱運転状態にあるとき、第一断熱材9は除霜運転時と同様に高温の圧縮機1(約90〜120℃)から周囲(約10〜30℃)への熱漏洩を抑制し、第二断熱材10は、除霜運転時と逆に吸入配管8(約5〜15℃)から膨張弁出口配管7(約―5〜7℃)への熱移動を抑制する。また、吸入配管8(約5〜15℃)は膨張弁入口配管6および膨張弁出口配管7よりも圧縮機1の近傍(約10〜30℃)に配設されることによって、第一断熱材9を介して圧縮機1から漏洩する熱エネルギーを受熱して冷媒の過熱度を大きくしている。   On the other hand, when the refrigeration cycle apparatus is in the heating operation state, the first heat insulating material 9 is heated from the high-temperature compressor 1 (about 90 to 120 ° C.) to the surroundings (about 10 to 30 ° C.) as in the defrosting operation. Leakage is suppressed, and the second heat insulating material 10 suppresses heat transfer from the suction pipe 8 (about 5 to 15 ° C.) to the expansion valve outlet pipe 7 (about −5 to 7 ° C.) contrary to the defrosting operation. . In addition, the suction pipe 8 (about 5 to 15 ° C.) is disposed closer to the compressor 1 (about 10 to 30 ° C.) than the expansion valve inlet pipe 6 and the expansion valve outlet pipe 7, whereby the first heat insulating material. The thermal energy leaking from the compressor 1 is received via 9 to increase the degree of superheat of the refrigerant.

このように第一断熱材9および第二断熱材10を配設して上述のように熱漏洩および熱移動を抑制することによって、除霜運転時においては、圧縮機1から吐出された後の冷媒からの放熱を抑制して蒸発器4に供給される冷媒の熱エネルギーを大きく維持して蒸発器4に付着した霜を速く融解させて除去し、加熱運転時においては、放熱器2に供給される冷媒の温度を高くするとともに、蒸発器4の出口における冷媒の過熱度を小さくしながらも圧縮機1に吸入される冷媒の過熱度を大きくするように作用する。   Thus, by arrange | positioning the 1st heat insulating material 9 and the 2nd heat insulating material 10, and suppressing a heat leak and heat transfer as mentioned above, in the time of a defrost operation, after being discharged from the compressor 1 The heat energy of the refrigerant supplied to the evaporator 4 is kept large by suppressing the heat radiation from the refrigerant, and the frost adhering to the evaporator 4 is quickly melted and removed, and is supplied to the radiator 2 during the heating operation. In addition to increasing the temperature of the refrigerant to be discharged, the refrigerant acts to increase the degree of superheating of the refrigerant sucked into the compressor 1 while decreasing the degree of superheating of the refrigerant at the outlet of the evaporator 4.

以上のように、本実施の形態においては吸入配管8が膨張弁入口配管6および膨張弁出口配管7よりも圧縮機1の近傍に配設され、圧縮機1と吸入配管8との間に第一断熱材9、膨張弁入口配管6および膨張弁出口配管7と吸入配管8との間に第二断熱材10を配設することにより、除霜運転時においては、蒸発器4に供給される冷媒の熱エネルギーを大きく維持して蒸発器4に付着した霜を速く融解させて除去し、加熱運転時においては、放熱器2に供給される冷媒の温度を高くするとともに、蒸発器4の出口における冷媒の過熱度を小さくしながらも圧縮機1に吸入される冷媒の過熱度を大きくするように作用する。   As described above, in the present embodiment, the suction pipe 8 is disposed closer to the compressor 1 than the expansion valve inlet pipe 6 and the expansion valve outlet pipe 7, and the suction pipe 8 is disposed between the compressor 1 and the suction pipe 8. By disposing the second heat insulating material 10 between the one heat insulating material 9, the expansion valve inlet piping 6, the expansion valve outlet piping 7, and the suction piping 8, the defrosting operation is supplied to the evaporator 4. While maintaining the heat energy of the refrigerant large, the frost adhering to the evaporator 4 is rapidly melted and removed, and during the heating operation, the temperature of the refrigerant supplied to the radiator 2 is increased and the outlet of the evaporator 4 is increased. The refrigerant acts to increase the superheat degree of the refrigerant sucked into the compressor 1 while reducing the superheat degree of the refrigerant.

これによって、冷凍サイクル装置の総運転時間に占める除霜運転時間の割合を小さくすることができるとともに、加熱運転時において圧縮機1からの熱漏洩の抑制および蒸発器の熱交換効率向上を可能とし、冷凍サイクル装置を高いエネルギー効率で運転することができる。   As a result, the ratio of the defrosting operation time to the total operation time of the refrigeration cycle apparatus can be reduced, and the heat leakage from the compressor 1 can be suppressed and the heat exchange efficiency of the evaporator can be improved during the heating operation. The refrigeration cycle apparatus can be operated with high energy efficiency.

なお、本実施の形態においては、吸入配管8が膨張弁入口配管6および膨張弁出口配管7よりも圧縮機1の近傍に配設されるものとしたが、膨張弁入口配管6および膨張弁出口
配管7が吸入配管8よりも圧縮機1の近傍、または同様に近傍に配設されるものであっても、除霜運転時における膨張弁入口配管6および膨張弁出口配管7から吸入配管8への熱移動を抑制して、除霜運転時間の短縮の効果は得ることができる。
In the present embodiment, the suction pipe 8 is arranged closer to the compressor 1 than the expansion valve inlet pipe 6 and the expansion valve outlet pipe 7, but the expansion valve inlet pipe 6 and the expansion valve outlet are arranged. Even if the pipe 7 is disposed nearer to the compressor 1 than the suction pipe 8 or similarly, the expansion valve inlet pipe 6 and the expansion valve outlet pipe 7 to the suction pipe 8 during the defrosting operation. Thus, the effect of shortening the defrosting operation time can be obtained.

なお、本実施の形態においては、第二断熱材10を真空断熱材としたが、グラスウール、パイルトンもしくは発泡系樹脂であってもよい。なお、第一断熱材9および第二断熱材10はともに、吸音材と一体となった断熱吸音材であってもよい。   In the present embodiment, the second heat insulating material 10 is a vacuum heat insulating material, but glass wool, pileton or foamed resin may be used. The first heat insulating material 9 and the second heat insulating material 10 may both be heat insulating sound absorbing materials integrated with the sound absorbing material.

(実施の形態2)
図2は、本発明の第2の実施の形態におけるヒートポンプ給湯機に搭載の冷凍サイクル装置の水平方向の断面図である。図2に示すように、第二断熱材10は圧縮機1の周囲空間を囲うように配設され、図には示さないが、第二断熱材10は圧縮機1の鉛直方向上方にも配設されている。
(Embodiment 2)
FIG. 2 is a horizontal cross-sectional view of the refrigeration cycle apparatus mounted on the heat pump water heater in the second embodiment of the present invention. As shown in FIG. 2, the second heat insulating material 10 is disposed so as to surround the surrounding space of the compressor 1, and is not shown in the drawing, but the second heat insulating material 10 is also arranged above the compressor 1 in the vertical direction. It is installed.

また、冷媒回路5は従来の冷凍サイクル装置および(実施の形態1)に記載の冷凍サイクルと同様に図6に示されるように構成され、冷媒回路5中は冷媒として二酸化炭素が循環する。   Further, the refrigerant circuit 5 is configured as shown in FIG. 6 similarly to the conventional refrigeration cycle apparatus and the refrigeration cycle described in (Embodiment 1), and carbon dioxide circulates as a refrigerant in the refrigerant circuit 5.

以上のように構成された冷凍サイクル装置について、以下その動作、作用を説明する。   About the refrigerating-cycle apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

冷凍サイクル装置が除霜運転状態にあるときの動作は(実施の形態1)に記載の冷凍サイクル装置と同様であるので詳細は省略するが、第二断熱材10は、膨張弁入口配管6(約25〜50℃)や膨張弁出口配管7(約5〜15℃)から吸入配管8(約0℃)への熱移動を抑制している。   Since the operation when the refrigeration cycle apparatus is in the defrosting operation state is the same as that of the refrigeration cycle apparatus described in (Embodiment 1), the details thereof will be omitted, but the second heat insulating material 10 is provided with the expansion valve inlet pipe 6 ( The heat transfer from the expansion valve outlet pipe 7 (about 5 to 15 ° C.) to the suction pipe 8 (about 0 ° C.) is suppressed.

一方、冷凍サイクル装置が加熱運転状態にあるとき、第一断熱材9は(実施の形態1)に記載の冷凍サイクル装置と同様に高温の圧縮機1(約90〜120℃)から周囲(約20〜50℃)への熱漏洩を抑制しているが、第二断熱材10は吸入配管8(約5〜15℃)から膨張弁出口配管7(約―5〜7℃)への熱移動を抑制することに加えて、第一断熱材9と第二断熱材10の間隙に存在する空気の対流による移動を防止して、この間隙の雰囲気温度(約20〜50℃)を高くしている。   On the other hand, when the refrigeration cycle apparatus is in the heating operation state, the first heat insulating material 9 is moved from the high-temperature compressor 1 (about 90 to 120 ° C.) to the surroundings (about Although the heat leakage to 20 to 50 ° C. is suppressed, the second heat insulating material 10 transfers heat from the suction pipe 8 (about 5 to 15 ° C.) to the expansion valve outlet pipe 7 (about −5 to 7 ° C.). In addition to suppressing the above, the movement of the air existing in the gap between the first heat insulating material 9 and the second heat insulating material 10 is prevented, and the atmospheric temperature (about 20 to 50 ° C.) of the gap is increased. Yes.

これに加えて、(実施の形態1)に記載の冷凍サイクル装置と同様に吸入配管8が膨張弁入口配管6や膨張弁出口配管7よりも圧縮機1の近傍(約20〜50℃)に配設されることにより、第一断熱材9を介して圧縮機1から漏洩する熱エネルギーをより多く受熱して冷媒の過熱度を大きくしている。   In addition, the suction pipe 8 is closer to the compressor 1 (about 20 to 50 ° C.) than the expansion valve inlet pipe 6 and the expansion valve outlet pipe 7 as in the refrigeration cycle apparatus described in the first embodiment. By being arranged, more heat energy leaking from the compressor 1 via the first heat insulating material 9 is received, and the degree of superheat of the refrigerant is increased.

このように第一断熱材9および第二断熱材10を配設して上述のように熱漏洩および熱移動を抑制することによって、除霜運転時においては、圧縮機1から吐出された後の冷媒からの放熱を抑制して蒸発器4に供給される冷媒の熱エネルギーを大きく維持して蒸発器4に付着した霜を速く融解させて除去し、加熱運転時においては、放熱器2に供給される冷媒の温度を高くするとともに、蒸発器4の出口における冷媒の過熱度を小さくしながらも圧縮機1に吸入される冷媒の過熱度を大きくするように作用する。   Thus, by arrange | positioning the 1st heat insulating material 9 and the 2nd heat insulating material 10, and suppressing a heat leak and heat transfer as mentioned above, in the time of a defrost operation, after being discharged from the compressor 1 The heat energy of the refrigerant supplied to the evaporator 4 is kept large by suppressing the heat radiation from the refrigerant, and the frost adhering to the evaporator 4 is quickly melted and removed, and is supplied to the radiator 2 during the heating operation. In addition to increasing the temperature of the refrigerant to be discharged, the refrigerant acts to increase the degree of superheating of the refrigerant sucked into the compressor 1 while decreasing the degree of superheating of the refrigerant at the outlet of the evaporator 4.

以上のように、本実施の形態においては吸入配管8が膨張弁入口配管6および膨張弁出口配管7よりも圧縮機1の近傍に配設され、圧縮機1と吸入配管8との間に第一断熱材9、膨張弁入口配管6および膨張弁出口配管7と吸入配管8との間に第二断熱材10を配設することにより、除霜運転時においては、蒸発器4に供給される冷媒の熱エネルギーを大きく維持して蒸発器4に付着した霜を速く融解させて除去し、加熱運転時においては、放熱器2に供給される冷媒の温度を高くするとともに、蒸発器4の出口における冷媒の過熱
度を小さくしながらも圧縮機1に吸入される冷媒の過熱度を大きくするように作用する。
As described above, in the present embodiment, the suction pipe 8 is disposed closer to the compressor 1 than the expansion valve inlet pipe 6 and the expansion valve outlet pipe 7, and the suction pipe 8 is disposed between the compressor 1 and the suction pipe 8. By disposing the second heat insulating material 10 between the one heat insulating material 9, the expansion valve inlet piping 6, the expansion valve outlet piping 7, and the suction piping 8, the defrosting operation is supplied to the evaporator 4. While maintaining the heat energy of the refrigerant large, the frost adhering to the evaporator 4 is rapidly melted and removed, and during the heating operation, the temperature of the refrigerant supplied to the radiator 2 is increased and the outlet of the evaporator 4 is increased. The refrigerant acts to increase the superheat degree of the refrigerant sucked into the compressor 1 while reducing the superheat degree of the refrigerant.

これによって、冷凍サイクル装置の総運転時間に占める除霜運転時間の割合を小さくすることができるとともに、加熱運転時において圧縮機1からの熱漏洩の抑制および蒸発器の熱交換効率向上を可能とし、冷凍サイクル装置を高いエネルギー効率で運転することができる。   As a result, the ratio of the defrosting operation time to the total operation time of the refrigeration cycle apparatus can be reduced, and the heat leakage from the compressor 1 can be suppressed and the heat exchange efficiency of the evaporator can be improved during the heating operation. The refrigeration cycle apparatus can be operated with high energy efficiency.

なお、本実施の形態の吸入配管8は図3に示すように配設された内部熱交換器21であってもよい。   In addition, the suction pipe 8 of this Embodiment may be the internal heat exchanger 21 arrange | positioned as shown in FIG.

一般に、加熱運転時において、内部熱交換器21において低圧側冷媒と熱交換を行う高圧側冷媒の温度(約5〜30℃)は、第一断熱材9と第二断熱材10との間隙の雰囲気温度(約20〜50℃)よりも低い。   In general, during the heating operation, the temperature of the high-pressure side refrigerant that exchanges heat with the low-pressure side refrigerant in the internal heat exchanger 21 (about 5 to 30 ° C.) is the gap between the first heat insulating material 9 and the second heat insulating material 10. Lower than ambient temperature (about 20-50 ° C.).

このようにすることにより、除霜運転時においては、圧縮機1から吐出された後の冷媒からの放熱を抑制して蒸発器4に供給される冷媒の熱エネルギーを大きく維持して蒸発器4に付着した霜を速く融解させて除去するように作用することに加えて、特に、加熱運転時において、蒸発器4の出口から圧縮機1に供給される冷媒は、内部熱交換器21において高圧側冷媒より受熱し、その下流、もしくは内部熱交換器21の低圧側冷媒配管において第一断熱材9と第二断熱材10との間隙の雰囲気から受熱して、蒸発器4の出口における冷媒の過熱度を小さくしながらも、圧縮機1に吸入される冷媒の過熱度を大きくするように作用して、冷凍サイクル装置を高いエネルギー効率で運転することができる。   By doing in this way, at the time of defrosting operation, the heat energy of the refrigerant | coolant supplied to the evaporator 4 is largely maintained by suppressing the heat radiation from the refrigerant | coolant discharged from the compressor 1, and the evaporator 4 is maintained. In addition to acting to quickly melt and remove frost adhering to the refrigerant, the refrigerant supplied to the compressor 1 from the outlet of the evaporator 4 is high-pressure in the internal heat exchanger 21 particularly during heating operation. The refrigerant receives heat from the side refrigerant, receives heat from the atmosphere in the gap between the first heat insulating material 9 and the second heat insulating material 10 in the downstream or in the low pressure side refrigerant piping of the internal heat exchanger 21, and flows the refrigerant at the outlet of the evaporator 4. The refrigeration cycle apparatus can be operated with high energy efficiency by acting to increase the superheat degree of the refrigerant sucked into the compressor 1 while reducing the superheat degree.

また、本実施の形態の第一断熱材9と第二断熱材10は、t1/k1<t2/k2の関係を有して、図4に示すように配設されてもよい。   Moreover, the 1st heat insulating material 9 and the 2nd heat insulating material 10 of this Embodiment have a relationship of t1 / k1 <t2 / k2, and may be arrange | positioned as shown in FIG.

除霜運転時においては、圧縮機1から吐出された後の冷媒からの放熱を抑制して蒸発器4に供給される冷媒の熱エネルギーを大きく維持して蒸発器4に付着した霜を速く融解させて除去するように作用することに加えて、特に、加熱運転時において、第一断熱材9と第二断熱材10との間隙の雰囲気温度(約35〜70℃)を高くして、吸入配管8が雰囲気から受熱する熱エネルギー量を大きくし、蒸発器4の出口における冷媒の過熱度を小さくしながらも、圧縮機1からの方の熱漏洩を効果的に抑制するように作用して、冷凍サイクル装置を高いエネルギー効率で運転することができる。   During the defrosting operation, heat release from the refrigerant discharged from the compressor 1 is suppressed, and the heat energy of the refrigerant supplied to the evaporator 4 is kept large, and the frost attached to the evaporator 4 is melted quickly. In addition to acting so as to be removed, in particular, during the heating operation, the atmospheric temperature (about 35 to 70 ° C.) of the gap between the first heat insulating material 9 and the second heat insulating material 10 is increased to perform suction. While the pipe 8 increases the amount of heat energy received from the atmosphere and reduces the degree of superheat of the refrigerant at the outlet of the evaporator 4, it acts to effectively suppress the heat leakage from the compressor 1. The refrigeration cycle apparatus can be operated with high energy efficiency.

以上のように、本発明にかかる冷凍サイクル装置は、加熱運転時において圧縮機などの高温部からの熱漏洩および熱移動を抑制することができ、また、蒸発器を高い熱交換効率で利用できるとともに、除霜運転時において除霜運転時間を短縮することができ、冷凍サイクル装置を高いエネルギー効率で運転することが可能となるので、ヒートポンプ給湯機や温水暖房装置など、放熱側を利用する冷凍サイクル装置のエネルギー効率向上の用途にも適用できる。   As described above, the refrigeration cycle apparatus according to the present invention can suppress heat leakage and heat transfer from a high-temperature part such as a compressor during heating operation, and can use the evaporator with high heat exchange efficiency. At the same time, the defrosting operation time can be shortened during the defrosting operation, and the refrigeration cycle apparatus can be operated with high energy efficiency. Therefore, the refrigeration using the heat radiation side, such as a heat pump water heater or a hot water heater. It can also be applied to improve the energy efficiency of cycle equipment.

1 圧縮機
2 放熱器
3 膨張弁
4 蒸発器
5 冷媒回路
6 膨張弁入口配管
7 膨張弁出口配管
8 吸入配管
9 第一断熱材
10 第二断熱材
21 内部熱交換器
DESCRIPTION OF SYMBOLS 1 Compressor 2 Radiator 3 Expansion valve 4 Evaporator 5 Refrigerant circuit 6 Expansion valve inlet piping 7 Expansion valve outlet piping 8 Suction piping 9 1st heat insulating material 10 2nd heat insulating material 21 Internal heat exchanger

Claims (11)

圧縮機、放熱器、減圧機構、空気と冷媒とが熱交換をする蒸発器を順に接続して形成した冷媒回路と、前記冷媒回路の一部を構成して前記放熱器から前記蒸発器へと冷媒を供給する第一冷媒配管と、前記蒸発器から前記圧縮機へと冷媒を供給する第二冷媒配管とを備え、前記圧縮機と前記第二冷媒配管との間に第一断熱材、前記第一冷媒配管と前記第二冷媒配管との間に第二断熱材を配設したことを特徴とする冷凍サイクル装置。 A compressor, a radiator, a decompression mechanism, a refrigerant circuit formed by sequentially connecting an evaporator that exchanges heat between air and a refrigerant, and a part of the refrigerant circuit to form the refrigerant to the evaporator A first refrigerant pipe for supplying refrigerant; and a second refrigerant pipe for supplying refrigerant from the evaporator to the compressor; a first heat insulating material between the compressor and the second refrigerant pipe; A refrigeration cycle apparatus, wherein a second heat insulating material is disposed between a first refrigerant pipe and the second refrigerant pipe. 前記第一冷媒配管は、前記放熱器から前記減圧機構に冷媒を供給する冷媒配管であることを特徴とする請求項1に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 1, wherein the first refrigerant pipe is a refrigerant pipe that supplies a refrigerant from the radiator to the decompression mechanism. 前記第一冷媒配管は、前記減圧機構から前記蒸発器に冷媒を供給する冷媒配管であることを特徴とする請求項1に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 1, wherein the first refrigerant pipe is a refrigerant pipe that supplies a refrigerant from the pressure reducing mechanism to the evaporator. 前記圧縮機と前記第一冷媒配管との平均距離L1と、前記圧縮機と前記第二冷媒配管との平均距離L2とがL1>L2の関係を有することを特徴とする請求項1〜3のいずれか1項に記載の冷凍サイクル装置。 The average distance L1 between the compressor and the first refrigerant pipe and the average distance L2 between the compressor and the second refrigerant pipe have a relationship of L1> L2. The refrigeration cycle apparatus according to any one of the above. 前記第二断熱材は、前記圧縮機の全体もしくは一部を囲い込むようにすることを特徴とする請求項4に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 4, wherein the second heat insulating material surrounds the whole or a part of the compressor. 高圧側冷媒と低圧側冷媒とが冷媒回路内で熱交換を行うものであって、前記蒸発器から前記圧縮機へと供給される冷媒が高圧側冷媒と熱交換を行う内部熱交換器を備え、前記第二冷媒配管は前記内部熱交換器の低圧側配管の一部、もしくは、前記内部熱交換器から前記圧縮機へと冷媒を供給する冷媒配管であることを特徴とする請求項4または5に記載の冷凍サイクル装置。 The high-pressure side refrigerant and the low-pressure side refrigerant exchange heat in the refrigerant circuit, and the refrigerant supplied from the evaporator to the compressor includes an internal heat exchanger that exchanges heat with the high-pressure side refrigerant. The second refrigerant pipe is a part of a low-pressure side pipe of the internal heat exchanger or a refrigerant pipe for supplying a refrigerant from the internal heat exchanger to the compressor. 5. The refrigeration cycle apparatus according to 5. 前記第一断熱材の厚さt1、熱伝導率k1と前記第二断熱材の厚さt2、熱伝導率k2とが、t1/k1<t2/k2の関係を有することを特徴とする請求項4〜6のいずれか1項に記載の冷凍サイクル装置。 The thickness t1, the thermal conductivity k1 of the first heat insulating material and the thickness t2, the thermal conductivity k2 of the second heat insulating material have a relationship of t1 / k1 <t2 / k2. The refrigeration cycle apparatus according to any one of 4 to 6. 前記第二断熱材は、真空断熱材であることを特徴とする請求項1〜7のいずれか1項に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 7, wherein the second heat insulating material is a vacuum heat insulating material. 圧縮機駆動時、冷媒回路の高圧は超臨界圧力で運転することを特徴とする請求項1〜8のいずれか1項に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 8, wherein when the compressor is driven, the refrigerant circuit is operated at a supercritical pressure. 冷媒として、二酸化炭素を用いることを特徴とする請求項9記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 9, wherein carbon dioxide is used as the refrigerant. 請求項1〜10のいずれか1項に記載の冷凍サイクル装置を搭載したヒートポンプ給湯機。 A heat pump water heater equipped with the refrigeration cycle apparatus according to any one of claims 1 to 10.
JP2010013812A 2010-01-26 2010-01-26 Refrigerating cycle apparatus and heat pump water heater using the same Pending JP2011153723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010013812A JP2011153723A (en) 2010-01-26 2010-01-26 Refrigerating cycle apparatus and heat pump water heater using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010013812A JP2011153723A (en) 2010-01-26 2010-01-26 Refrigerating cycle apparatus and heat pump water heater using the same

Publications (1)

Publication Number Publication Date
JP2011153723A true JP2011153723A (en) 2011-08-11

Family

ID=44539829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010013812A Pending JP2011153723A (en) 2010-01-26 2010-01-26 Refrigerating cycle apparatus and heat pump water heater using the same

Country Status (1)

Country Link
JP (1) JP2011153723A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000065444A (en) * 1998-08-18 2000-03-03 Maeda Corp Waste heat utilization method for refrigerator and refrigerator
JP2006336943A (en) * 2005-06-02 2006-12-14 Matsushita Electric Ind Co Ltd Refrigeration system, and cold insulation box
JP2007192440A (en) * 2006-01-18 2007-08-02 Matsushita Electric Ind Co Ltd Heat pump water heater
JP2008085528A (en) * 2006-09-27 2008-04-10 Onkyo Corp Dynamic speaker and speaker system
JP2008133978A (en) * 2006-11-27 2008-06-12 Daikin Ind Ltd Refrigerating device
JP2008249312A (en) * 2007-03-30 2008-10-16 Hitachi Appliances Inc Heat pump water heater
JP2009085566A (en) * 2007-10-03 2009-04-23 Panasonic Corp Storage water heater

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000065444A (en) * 1998-08-18 2000-03-03 Maeda Corp Waste heat utilization method for refrigerator and refrigerator
JP2006336943A (en) * 2005-06-02 2006-12-14 Matsushita Electric Ind Co Ltd Refrigeration system, and cold insulation box
JP2007192440A (en) * 2006-01-18 2007-08-02 Matsushita Electric Ind Co Ltd Heat pump water heater
JP2008085528A (en) * 2006-09-27 2008-04-10 Onkyo Corp Dynamic speaker and speaker system
JP2008133978A (en) * 2006-11-27 2008-06-12 Daikin Ind Ltd Refrigerating device
JP2008249312A (en) * 2007-03-30 2008-10-16 Hitachi Appliances Inc Heat pump water heater
JP2009085566A (en) * 2007-10-03 2009-04-23 Panasonic Corp Storage water heater

Similar Documents

Publication Publication Date Title
US20120312045A1 (en) Water supply apparatus
JP2005221088A (en) Heat pump type water heater
WO2012161457A3 (en) Heat pump system
CN103648252A (en) Cooling system for electrical device
JP2007225260A (en) Refrigerating cycle device
KR20130105460A (en) Heat pump
JP5685886B2 (en) Water heater
KR101069886B1 (en) Air conditon apparatus for ship
JP5637903B2 (en) Hot water system
JP2008051370A (en) Water cooling type refrigerating system and cold storage equipped with the same
JP2011153723A (en) Refrigerating cycle apparatus and heat pump water heater using the same
JP5445170B2 (en) Heat pump water heater
JP2010085054A (en) Outdoor unit for air-conditioning apparatus
JP5413594B2 (en) Heat pump type water heater
JP6007455B1 (en) Cold heat supply apparatus and cold heat supply method
KR20090119557A (en) Muffler for air conditioner in vehicle with heat exchange function
JP6455752B2 (en) Refrigeration system
KR100686583B1 (en) Heat Pump with Defrosting Function using Heat Pipe to be attached on the Fan Motor
JPWO2016185689A1 (en) Air conditioning and hot water supply system
TWM496734U (en) Air conditioner compressor device with integrated utilization of heat and mechanical dynamic energy
JP2016166714A (en) Heat generation unit
JP5800842B2 (en) Refrigeration equipment
KR101279929B1 (en) Dualpipe heat exchange system using cold reserve technique
JP2022174869A (en) Multi-component refrigeration cycle equipment
JP2014020581A (en) Heat pump device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120702

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130627

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131008