JP2007225260A - Refrigerating cycle device - Google Patents

Refrigerating cycle device Download PDF

Info

Publication number
JP2007225260A
JP2007225260A JP2006050208A JP2006050208A JP2007225260A JP 2007225260 A JP2007225260 A JP 2007225260A JP 2006050208 A JP2006050208 A JP 2006050208A JP 2006050208 A JP2006050208 A JP 2006050208A JP 2007225260 A JP2007225260 A JP 2007225260A
Authority
JP
Japan
Prior art keywords
refrigerant
cooling
cooling device
temperature
refrigeration cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006050208A
Other languages
Japanese (ja)
Other versions
JP4444220B2 (en
Inventor
Hajime Fujimoto
肇 藤本
Takashi Ikeda
隆 池田
Hiromitsu Moriyama
浩光 森山
Sosuke Murase
壮介 村瀬
Yuji Sata
裕士 佐多
Atsushi Kibe
篤史 岐部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006050208A priority Critical patent/JP4444220B2/en
Publication of JP2007225260A publication Critical patent/JP2007225260A/en
Application granted granted Critical
Publication of JP4444220B2 publication Critical patent/JP4444220B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • F24F2013/221Means for preventing condensation or evacuating condensate to avoid the formation of condensate, e.g. dew

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerating cycle device capable of preventing dew condensation of a liquid pipe more easily in comparison with large-scale construction such as applying thermal insulation treatment to the liquid pipe, when adding supercooling to the liquid pipe of the refrigerating cycle device to increase its cooling capacity. <P>SOLUTION: The refrigerating cycle device is provided with a first coolant circulation circuit connecting a first compressor 1, a first condenser 2, a first expansion valve 3 and a first evaporator 4 in order. It is provided with a cooling device 5 cooling a liquid coolant flowing from the first condenser 2 to the first expansion valve 3, a liquid pipe temperature sensor 6 detecting a temperature of the liquid pipe 15 sending the coolant cooled by the cooling device 5 to the first expansion valve 3, an ambient temperature sensor 7 detecting an ambient temperature of the liquid pipe 15, and a controller 8 controlling a cooling rate of the cooling device 5 on the basis of each detected value of the liquid pipe temperature sensor 6 and the ambient temperature sensor 7. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、冷凍装置や空調装置などの冷凍サイクル装置に関する。   The present invention relates to a refrigeration cycle apparatus such as a refrigeration apparatus or an air conditioner.

従来の冷凍サイクルを利用した装置において、その冷却能力を増大するための手段として、主冷媒回路に対して補助冷媒回路を設け、主冷媒回路の液管に過冷却を付加する手法が知られている(例えば、特許文献1参照)。   In a conventional apparatus using a refrigeration cycle, as a means for increasing the cooling capacity, a method of providing an auxiliary refrigerant circuit for the main refrigerant circuit and adding supercooling to the liquid pipe of the main refrigerant circuit is known. (For example, see Patent Document 1).

特許3376844号公報(図1など)Japanese Patent No. 3376844 (FIG. 1 etc.)

上記のように、主冷媒回路の液管に過冷却を付加する場合、過冷却の付加量を多くすることによって冷却または冷凍能力は増大するが、液管の温度が周囲の温度より低下してその表面に結露が発生しやすくなる。結露すると天井裏にカビ等が繁殖したり、場合によっては天井からの水漏れが発生するため、液管に断熱処理等を施す必要がある。しかしながら、冷凍サイクル装置が多く利用されているコンビニエンスストアやスーパーマーケットでは、冷凍サイクル装置の冷媒回路液管は、天井裏などに配置される場合が多く、また、その長さは店舗より100m程度もある場合があり、従ってその断熱処理は簡単ではなく工事費増大等の問題がある。また、既に工事が完了した店舗において、天井裏などの配管に断熱処理を追加するのは、施工性が悪く、工事に多くの時間やコストを費やしてしまう等の問題もある。   As described above, when supercooling is added to the liquid pipe of the main refrigerant circuit, the cooling or refrigeration capacity is increased by increasing the amount of supercooling, but the temperature of the liquid pipe is lower than the ambient temperature. Condensation is likely to occur on the surface. When condensation occurs, mold or the like propagates on the back of the ceiling, and in some cases, water leakage from the ceiling occurs. Therefore, it is necessary to insulate the liquid pipe. However, in convenience stores and supermarkets where refrigeration cycle devices are widely used, the refrigerant circuit liquid pipes of the refrigeration cycle devices are often placed on the ceiling or the like, and the length is about 100 m from the store. In some cases, the heat insulation treatment is not easy and there is a problem such as an increase in construction costs. In addition, in a store where construction has already been completed, adding heat insulation treatment to piping such as the back of the ceiling has problems such as poor workability and a lot of time and cost for the construction.

この発明は、上記のような課題を解決するためになされたものであり、冷凍サイクル装置の冷媒回路を構成する液管に冷却能力を増大させる過冷却を付加した場合において、該液管に断熱処理を施すなどの大がかりな工事を施すことなく、より簡単に該液管の結露を防止することができる冷凍サイクル装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and in the case where supercooling that increases the cooling capacity is added to the liquid pipe constituting the refrigerant circuit of the refrigeration cycle apparatus, the liquid pipe is insulated. It is an object of the present invention to provide a refrigeration cycle apparatus that can more easily prevent dew condensation of the liquid pipe without performing a large-scale construction such as processing.

この発明の冷凍サイクル装置は、第1圧縮機、第1凝縮器、第1減圧装置、及び第1蒸発器が順に接続された第1冷媒循環回路を備えた冷凍サイクル装置であって、前記第1凝縮器から前記第1減圧装置へ流れる液冷媒を冷却する冷却装置と、前記冷却装置で冷却された冷媒を前記第1減圧装置へ送る冷媒配管の温度を第1の検出値として検出する配管温度検出手段と、前記冷却装置で冷却された冷媒を前記第1減圧装置へ送る冷媒配管の周囲温度を第2の検出値として検出する周囲温度検出手段と、前記第1及び第2の検出値に基づいて、前記冷却装置の冷却量を制御する制御器と、を備えたものである。
また、前記冷却装置で冷却された冷媒を前記第1減圧装置へ送る冷媒配管の周囲湿度を第3の検出値として検出する周囲湿度検出手段をさらに備え、前記制御器は、前記第1、第2及び第3の検出値に基づいて、前記冷却装置の冷却量を制御するものである。
The refrigeration cycle apparatus of the present invention is a refrigeration cycle apparatus including a first refrigerant circulation circuit in which a first compressor, a first condenser, a first decompression device, and a first evaporator are connected in order, A cooling device that cools the liquid refrigerant flowing from one condenser to the first pressure reducing device, and a pipe that detects, as a first detection value, a temperature of a refrigerant pipe that sends the refrigerant cooled by the cooling device to the first pressure reducing device. Temperature detection means; ambient temperature detection means for detecting an ambient temperature of a refrigerant pipe that sends the refrigerant cooled by the cooling device to the first decompression device as a second detection value; and the first and second detection values. And a controller for controlling the cooling amount of the cooling device.
The controller further includes ambient humidity detection means for detecting ambient humidity of a refrigerant pipe that sends the refrigerant cooled by the cooling device to the first decompression device as a third detection value, and the controller includes the first and first controllers. The cooling amount of the cooling device is controlled based on the second and third detection values.

この発明の冷凍サイクル装置によれば、配管温度検出手段の検出値が周囲温度検出手段の検出値より最低限低くならないように、制御器により冷却装置の冷却動作を制御することで、第1冷媒循環回路を構成する液管での結露発生を防止しながら、冷却能力の増強を図ることができる。
また、周囲温度検出手段と周囲湿度検出手段の検出値から露点温度を求め、配管温度検出手段の検出値がその露点温度より最低限低くならないように、制御器により冷却装置の冷却動作を制御することで、第1冷媒循環回路を構成する液管での結露発生を防止しながら、冷却能力の増強を図ることができる。
According to the refrigeration cycle apparatus of the present invention, the controller controls the cooling operation of the cooling device by the controller so that the detection value of the pipe temperature detection means does not become lower than the detection value of the ambient temperature detection means. The cooling capacity can be enhanced while preventing the occurrence of condensation in the liquid pipes constituting the circulation circuit.
Also, the dew point temperature is obtained from the detected values of the ambient temperature detecting means and the ambient humidity detecting means, and the cooling operation of the cooling device is controlled by the controller so that the detected value of the pipe temperature detecting means is not lower than the dew point temperature. Thus, it is possible to enhance the cooling capacity while preventing the occurrence of dew condensation in the liquid pipe constituting the first refrigerant circulation circuit.

実施の形態1.
図1はこの発明の実施の形態1における冷凍サイクル装置の冷媒回路の概略構成を示す図である。この冷凍サイクル装置は、主冷媒回路として、第1圧縮機1、第1凝縮器2、減圧装置としての第1膨張弁3、及び第1蒸発器4が配管で順に接続された第1冷媒循環回路(主冷媒回路)を備えている。
Embodiment 1 FIG.
1 is a diagram showing a schematic configuration of a refrigerant circuit of a refrigeration cycle apparatus according to Embodiment 1 of the present invention. In this refrigeration cycle apparatus, a first refrigerant circulation circuit in which a first compressor 1, a first condenser 2, a first expansion valve 3 as a pressure reducing device, and a first evaporator 4 are connected in order by a pipe as a main refrigerant circuit. A circuit (main refrigerant circuit) is provided.

また、第1凝縮器2と第1膨張弁3との間には、その間を流れる冷媒を冷却する冷却装置5が配置されている。なお、第1冷媒循環回路の第1凝縮器2と第1膨張弁3との間は、第1圧縮機1で圧縮され第1凝縮器2で液化された高圧の液冷媒が通るので、この明細書では、第1凝縮器2と第1膨張弁3との間の配管を液管15とも呼ぶ。   A cooling device 5 is disposed between the first condenser 2 and the first expansion valve 3 for cooling the refrigerant flowing therebetween. Since the high-pressure liquid refrigerant compressed by the first compressor 1 and liquefied by the first condenser 2 passes between the first condenser 2 and the first expansion valve 3 in the first refrigerant circulation circuit. In the specification, the pipe between the first condenser 2 and the first expansion valve 3 is also referred to as a liquid pipe 15.

また、冷却装置5と第1膨張弁3との間には、その部分の配管温度(液管15の温度)を検出する配管温度検出手段としての液管温度センサ6、その部分の周囲温度を検出する周囲温度検出手段としての周囲温度センサ7、及びその部分の周囲湿度を検出する周囲湿度検出手段としての周囲湿度センサ9が備えられている。なお、周囲湿度センサ9は、後述する実施の形態2で使用されるものであり、実施の形態1においてはなくてもよい。
さらに、液管温度センサ6、周囲温度センサ7、及び周囲湿度センサ9の検出値を取り込み、それらの値に基づいて、冷却装置5の冷却量を制御する制御器8が備えられている。なお、ここでは、液管温度センサ6、周囲温度センサ7、及び周囲湿度センサ9をそれぞれ1個使用した例を示しているが、それらを複数個利用する構成としてもよい。
Further, between the cooling device 5 and the first expansion valve 3, a liquid pipe temperature sensor 6 as a pipe temperature detecting means for detecting the pipe temperature of that part (temperature of the liquid pipe 15), and the ambient temperature of that part. An ambient temperature sensor 7 as an ambient temperature detection means for detecting, and an ambient humidity sensor 9 as an ambient humidity detection means for detecting the ambient humidity of the portion are provided. The ambient humidity sensor 9 is used in the second embodiment to be described later, and may not be in the first embodiment.
Furthermore, a controller 8 is provided that takes in the detection values of the liquid pipe temperature sensor 6, the ambient temperature sensor 7, and the ambient humidity sensor 9, and controls the cooling amount of the cooling device 5 based on these values. Here, an example is shown in which one liquid tube temperature sensor 6, one ambient temperature sensor 7, and one ambient humidity sensor 9 are used. However, a plurality of them may be used.

次に図1の冷凍サイクル装置の動作を説明する。第1冷媒循環回路内の冷媒は第1圧縮機1にて高温高圧の過熱ガスに圧縮された後、第1凝縮器2にて空気や水などの媒体と熱交換を行うことで、高温高圧の液冷媒に凝縮される。第1凝縮器2を出た液冷媒は、冷却装置5により、高圧で過冷却が付加された液冷媒とされる。そして、その冷媒は第1膨張弁3に通されて低温低圧の気液2相冷媒となり、その冷媒は第1蒸発器4内で周囲の空気や水と熱交換されて低温低圧の過熱ガスの状態となり、再度第1圧縮機1に吸入される。   Next, the operation of the refrigeration cycle apparatus of FIG. 1 will be described. The refrigerant in the first refrigerant circulation circuit is compressed into a high-temperature and high-pressure superheated gas by the first compressor 1, and then heat-exchanged with a medium such as air or water in the first condenser 2. The liquid refrigerant is condensed. The liquid refrigerant that has exited the first condenser 2 is converted into a liquid refrigerant that has been supercooled at high pressure by the cooling device 5. Then, the refrigerant is passed through the first expansion valve 3 to become a low-temperature and low-pressure gas-liquid two-phase refrigerant, and the refrigerant is heat-exchanged with surrounding air and water in the first evaporator 4 to generate a low-temperature and low-pressure superheated gas. It will be in a state and will be sucked into the first compressor 1 again.

このように、上記冷凍サイクル装置では、液管15を流れる冷媒に対して、冷却装置5により過冷却を付加することで、冷凍サイクル装置の能力を増大させることが可能となっている。ただし、液管15の過冷却によって、その液管温度が周囲の露点温度を下回ると、液管15の表面から結露が発生し、液管15が配置されている天井裏などに結露水が垂れることになる。これを回避するために、実施の形態1の冷凍サイクル装置には、以下のような手段が採用されている。   As described above, in the refrigeration cycle apparatus, it is possible to increase the capacity of the refrigeration cycle apparatus by adding supercooling to the refrigerant flowing through the liquid pipe 15 by the cooling apparatus 5. However, if the liquid pipe temperature falls below the surrounding dew point due to overcooling of the liquid pipe 15, condensation occurs from the surface of the liquid pipe 15, and the dew condensation water hangs down on the ceiling behind the liquid pipe 15. It will be. In order to avoid this, the following means is employed in the refrigeration cycle apparatus of the first embodiment.

図2は実施の形態1における制御器8の作用の一例を示すフローチャートである。これによれば、制御器8は、冷凍サイクル装置が起動すると(S1)、その動作中、液管温度センサ6及び周囲温度センサ7の各検出値を取り込んで(S2)、それらの値を比較する(S3)。そして、液管15の温度がその周囲の温度と等しい場合には、冷却装置5に対して特別な制御を行わず、現状のまま運転を継続する(S4−1)。これに対して、液管15の温度がその周囲の温度より低い場合には、冷却装置5の運転の停止または減速を行うように制御する(S4−2)。一方、液管15の温度がその周囲の温度より高い場合には、冷却装置5の運転の開始または増速を行うように制御する(S4−3)。
なお、図2では、冷却装置5の冷却量制御の判断を3つの場合に分けて行ったが、液管温度≦周囲温度の場合には、冷却装置5の運転の停止または減速を行い、液管温度>周囲温度の場合には、冷却装置5の運転の開始または増速を行うように制御してもよい。
また、冷却装置5のハンチングを避けるため、現状維持の条件として、
周囲温度<液官温度<周囲温度+α、と裕度を持たせるようにしてもよい(αは予め定めた温度)。
FIG. 2 is a flowchart showing an example of the operation of the controller 8 in the first embodiment. According to this, when the refrigeration cycle apparatus is activated (S1), the controller 8 takes in the detected values of the liquid pipe temperature sensor 6 and the ambient temperature sensor 7 during the operation (S2), and compares these values. (S3). And when the temperature of the liquid pipe | tube 15 is equal to the temperature of the circumference | surroundings, operation is continued as it is, without performing special control with respect to the cooling device 5 (S4-1). On the other hand, when the temperature of the liquid pipe 15 is lower than the surrounding temperature, control is performed so that the operation of the cooling device 5 is stopped or decelerated (S4-2). On the other hand, when the temperature of the liquid pipe 15 is higher than the surrounding temperature, control is performed so that the operation of the cooling device 5 is started or accelerated (S4-3).
In FIG. 2, the determination of the cooling amount control of the cooling device 5 is performed in three cases. However, when the liquid pipe temperature ≦ the ambient temperature, the operation of the cooling device 5 is stopped or decelerated, When the tube temperature> the ambient temperature, the operation of the cooling device 5 may be controlled to start or increase in speed.
In order to avoid hunting of the cooling device 5, as a condition for maintaining the current state,
A tolerance may be given such that ambient temperature <liquid crystal temperature <ambient temperature + α (α is a predetermined temperature).

以上の様に制御される実施の形態1の冷凍サイクル装置によれば、液管15に結露を発生させずに、過冷却を確保することができる。このため、天井裏にカビ等が繁殖することや、天井からの水漏れが発生することを防止できる。また、液管15に結露が発生しない範囲内で過冷却を取ることができるので、天井裏などに配置された液管に断熱処理を施すなどの大がかりな工事も不要となり、装置の設置工事費を安価にすることが可能となる。さらに、既に配管が施工された既存店舗の冷凍サイクル装置に対しても、過冷却用の冷却装置5の適用が容易に可能となる。   According to the refrigeration cycle apparatus of the first embodiment controlled as described above, it is possible to ensure supercooling without causing condensation in the liquid pipe 15. For this reason, it is possible to prevent mold and the like from propagating on the back of the ceiling and water leakage from the ceiling. In addition, since the liquid pipe 15 can be supercooled within a range where condensation does not occur, a large-scale work such as a heat insulation treatment is not required for the liquid pipe disposed on the ceiling or the like, and the installation cost of the apparatus is not required. Can be made inexpensive. Furthermore, the supercooling cooling device 5 can be easily applied to a refrigeration cycle device in an existing store where piping has already been installed.

実施の形態2.
実施の形態2は、液管15周囲の温度と湿度から露点温度を決定または算出し、その露点温度と液管温度との比較を行って、その結果に基づいて冷却装置5を制御するようにしたものである。
図3は実施の形態2における制御器8の作用の一例を示すフローチャートである。これによれば、制御器8は、冷凍サイクル装置が起動すると(S11)、その動作中、液管温度センサ6、周囲温度センサ7及び周囲湿度センサ9の各検出値を取り込む(S12)。そして、周囲温度センサ7と周囲湿度センサ9の各検出値から露点温度を決定または算出する。なお、露点温度は気温と相対湿度から水蒸気圧を求め、その水蒸気圧を飽和水蒸気圧とする温度を求めることにより得ることができる。従って、その算出式を予め用意しておき、周囲温度センサ7と周囲湿度センサ9の各検出値をその算出式に代入することで、露点温度を求めることができる。
Embodiment 2. FIG.
In the second embodiment, the dew point temperature is determined or calculated from the temperature and humidity around the liquid pipe 15, the dew point temperature is compared with the liquid pipe temperature, and the cooling device 5 is controlled based on the result. It is a thing.
FIG. 3 is a flowchart showing an example of the operation of the controller 8 in the second embodiment. According to this, when the refrigeration cycle apparatus is activated (S11), the controller 8 takes in the detected values of the liquid pipe temperature sensor 6, the ambient temperature sensor 7, and the ambient humidity sensor 9 during the operation (S12). Then, the dew point temperature is determined or calculated from the detected values of the ambient temperature sensor 7 and the ambient humidity sensor 9. The dew point temperature can be obtained by obtaining the water vapor pressure from the air temperature and relative humidity and obtaining the temperature at which the water vapor pressure is the saturated water vapor pressure. Therefore, the dew point temperature can be obtained by preparing the calculation formula in advance and substituting the detection values of the ambient temperature sensor 7 and the ambient humidity sensor 9 into the calculation formula.

続いて、S13で算出した露点温度と液管温度センサ6で検出した液管温度とを比較する(S14)。ここで、液管15の温度が露点温度と等しい場合には、冷却装置5に対して特別な制御を行わず、現状のまま運転を継続する(S15−1)。これに対して、液管15の温度がその露点温度より低い場合には、冷却装置5の運転の停止または減速を行うように制御する(S15−2)。一方、液管15の温度が露点温度より高い場合には、冷却装置5の運転の開始または増速を行うように制御する(S15−3)。
なお、図3では、冷却装置5の冷却量制御の判断を3つの場合に分けて行ったが、液管温度≦露点温度の場合には、冷却装置5の運転の停止または減速を行い、液管温度>露点温度の場合には、冷却装置5の運転の開始または増速を行うように制御してもよい。
また、冷却装置5のハンチングを避けるため、現状維持の条件として、
露点温度<液官温度<露点温度+α、と裕度を持たせるようにしてもよい(αは予め定めた温度)。
Subsequently, the dew point temperature calculated in S13 is compared with the liquid tube temperature detected by the liquid tube temperature sensor 6 (S14). Here, when the temperature of the liquid pipe 15 is equal to the dew point temperature, no special control is performed on the cooling device 5, and the operation is continued as it is (S15-1). On the other hand, when the temperature of the liquid pipe 15 is lower than the dew point temperature, control is performed to stop or decelerate the operation of the cooling device 5 (S15-2). On the other hand, when the temperature of the liquid pipe 15 is higher than the dew point temperature, control is performed so as to start or increase the operation of the cooling device 5 (S15-3).
In FIG. 3, the determination of the cooling amount control of the cooling device 5 is divided into three cases. However, when the liquid pipe temperature ≦ dew point temperature, the operation of the cooling device 5 is stopped or decelerated, When the tube temperature> the dew point temperature, the operation of the cooling device 5 may be started or accelerated.
In order to avoid hunting of the cooling device 5, as a condition for maintaining the current state,
The tolerance may be given as follows: dew point temperature <fluid temperature <dew point temperature + α (α is a predetermined temperature).

実施の形態2の場合にも、実施の形態1と同様の効果を上げることができる。なお、液管15周囲の露点温度は周囲の外気温度に比べると必ず低いため、実施の形態2による冷却装置の制御の方が、実施の形態1の制御よりも液管15の過冷却を多くとることができ、過冷却による能力増強をより発揮させることができる。   Also in the case of the second embodiment, the same effect as in the first embodiment can be achieved. Since the dew point temperature around the liquid pipe 15 is necessarily lower than the ambient outside air temperature, the control of the cooling device according to the second embodiment causes more subcooling of the liquid pipe 15 than the control according to the first embodiment. It is possible to increase the capacity by supercooling.

実施の形態3.
ここでは、液管15を冷却する冷却装置5の具体例を説明する。なお、冷却装置5は以下に説明するものに限られるものではなく、液管15の内部を流れる液冷媒を冷却できる他の装置(例えば、氷や水を利用した冷却装置など)を適宜利用してよい。
Embodiment 3 FIG.
Here, a specific example of the cooling device 5 that cools the liquid pipe 15 will be described. The cooling device 5 is not limited to the one described below, and other devices (for example, a cooling device using ice or water) that can cool the liquid refrigerant flowing inside the liquid pipe 15 are appropriately used. It's okay.

図4はこの発明の実施の形態3に係る冷凍サイクル装置の冷媒回路図である。図4において、第1冷媒循環回路の構成は実施の形態1、2と同じである。これに対して、実施の形態1、2で冷却装置5としていたものを、ここでは、第2圧縮機10、第2凝縮器11、第2減圧装置としての第2膨張弁12、及び冷媒と冷媒との間で熱交換を行う熱交換器13が順に接続された第2冷媒循環回路を有した冷凍サイクルから構成したものである。熱交換器13は、第1冷媒循環回路の第1凝縮器2と第1膨張弁3との間を流れる冷媒と、第2冷媒循環回路の第2膨張弁12と第2圧縮機10との間を流れる冷媒との間で、熱交換を行うように配置されている。   4 is a refrigerant circuit diagram of a refrigeration cycle apparatus according to Embodiment 3 of the present invention. In FIG. 4, the configuration of the first refrigerant circulation circuit is the same as in the first and second embodiments. On the other hand, what was used as the cooling device 5 in the first and second embodiments is here the second compressor 10, the second condenser 11, the second expansion valve 12 as the second decompression device, and the refrigerant. It is comprised from the refrigerating cycle which has the 2nd refrigerant circulation circuit to which the heat exchanger 13 which heat-exchanges with a refrigerant | coolant was connected in order. The heat exchanger 13 includes a refrigerant flowing between the first condenser 2 and the first expansion valve 3 in the first refrigerant circulation circuit, and the second expansion valve 12 and the second compressor 10 in the second refrigerant circulation circuit. It arrange | positions so that heat exchange may be performed between the refrigerant | coolants which flow through.

次に、図4の冷凍サイクル装置の第2冷媒循環回路を利用した過冷却動作について説明する。第2冷媒循環回路において、冷媒は第2圧縮機10にて高温高圧の過熱ガスに圧縮された後、第2凝縮器11にて空気や水などの媒体と熱交換を行うことで、高温高圧の液冷媒に凝縮される。そして、その液冷媒を第2膨張弁12に通すことで低温低圧の気液2相冷媒の状態となり、熱交換器13の低圧側流路に入る。低温低圧の気液2相冷媒は、そこで熱交換器13の高圧側流路を流れる第1冷媒循環回路の液冷媒と熱交換することで低温低圧の過熱ガスの状態となり、再度第2圧縮機10に吸入される。   Next, the supercooling operation using the second refrigerant circulation circuit of the refrigeration cycle apparatus of FIG. 4 will be described. In the second refrigerant circulation circuit, the refrigerant is compressed into a high-temperature and high-pressure superheated gas by the second compressor 10, and then heat-exchanged with a medium such as air or water in the second condenser 11, whereby high-temperature and high-pressure is performed. The liquid refrigerant is condensed. Then, by passing the liquid refrigerant through the second expansion valve 12, it becomes a low-temperature and low-pressure gas-liquid two-phase refrigerant state and enters the low-pressure side flow path of the heat exchanger 13. The low-temperature and low-pressure gas-liquid two-phase refrigerant exchanges heat with the liquid refrigerant in the first refrigerant circulation circuit that flows through the high-pressure side passage of the heat exchanger 13 to become a low-temperature and low-pressure superheated gas state. 10 is inhaled.

上記のように、第2冷媒循環回路の熱交換器13によって、第1冷媒循環回路の液管15を流れる液冷媒が冷却されその過冷却が確保される。
なお、実施の形態3においても、液管15の結露防止のために行う冷却量の制御は、実施の形態1、2と同様にして行われる。その場合、実施の形態3においては、制御器8により、第2圧縮機10の運転周波数を制御する、あるいは第2圧縮機10の始動と停止を制御することで、第2冷媒循環回路による冷却量の制御を容易に行うことができる。
As described above, the liquid refrigerant flowing through the liquid pipe 15 of the first refrigerant circulation circuit is cooled by the heat exchanger 13 of the second refrigerant circulation circuit, and the supercooling is ensured.
In the third embodiment, the cooling amount control for preventing condensation of the liquid pipe 15 is performed in the same manner as in the first and second embodiments. In that case, in the third embodiment, the controller 8 controls the operating frequency of the second compressor 10 or controls the start and stop of the second compressor 10, thereby cooling by the second refrigerant circulation circuit. The amount can be easily controlled.

ところで、第1冷媒循環回路と第2冷媒循環回路を共に運転する場合、第2冷媒循環回路の蒸発温度が第1冷媒循環回路の蒸発温度より高くなるようすると、第1冷媒循環回路だけを運転している場合に比べて、常に効率の良い運転を行うことができる。
従って、制御器8により、第1冷媒循環回路と第2冷媒循環回路の冷媒蒸発温度を監視し、第2冷媒循環回路の蒸発温度が第1冷媒循環回路の蒸発温度より常に高くなるように、制御器8により第1圧縮機1と第2圧縮機10との運転状態を制御する構成とすると、冷凍サイクル装置の運転効率も良くなる。
By the way, when operating both the first refrigerant circuit and the second refrigerant circuit, if the evaporation temperature of the second refrigerant circuit is higher than the evaporation temperature of the first refrigerant circuit, only the first refrigerant circuit is operated. Compared with the case where it is carrying out, it can always perform efficient operation.
Therefore, the controller 8 monitors the refrigerant evaporation temperatures of the first refrigerant circulation circuit and the second refrigerant circulation circuit, so that the evaporation temperature of the second refrigerant circulation circuit is always higher than the evaporation temperature of the first refrigerant circulation circuit. When the controller 8 is configured to control the operation state of the first compressor 1 and the second compressor 10, the operation efficiency of the refrigeration cycle apparatus is improved.

なお、上記各実施の形態において、制御器8が液管15の結露防止のために冷却装置5の運転を制限した場合には、冷凍サイクル装置の利用側において、冷却装置5の運転が制限されていることがわかるような表示または警告を出すようにするのが好ましい。また、そのような表示や警告が出た場合には、たとえば第1圧縮機1に対してその作用を増大させる運転を行うように制御して、冷凍サイクル装置の能力不足を補うようにしてもよい。   In each of the above-described embodiments, when the controller 8 restricts the operation of the cooling device 5 to prevent condensation of the liquid pipe 15, the operation of the cooling device 5 is restricted on the use side of the refrigeration cycle device. It is preferable to give a display or warning so that it can be seen. Further, when such a display or warning is issued, for example, the first compressor 1 is controlled so as to increase its operation so as to compensate for the lack of capacity of the refrigeration cycle apparatus. Good.

この発明の実施の形態1、2に係る冷凍サイクル装置の冷媒回路図である。It is a refrigerant circuit figure of the refrigerating cycle device concerning Embodiments 1 and 2 of this invention. 実施の形態1における制御器の作用を示すフローチャートである。3 is a flowchart showing the operation of the controller in the first embodiment. 実施の形態2における制御器の作用を示すフローチャートである。10 is a flowchart showing the operation of the controller in the second embodiment. この発明の実施の形態3に係る冷凍サイクル装置の冷媒回路図である。It is a refrigerant circuit figure of the refrigerating cycle device concerning Embodiment 3 of this invention.

符号の説明Explanation of symbols

1 第1圧縮機、2 第1凝縮器、3 第1膨張弁、4 第1蒸発器、5 冷却装置、6 液管温度センサ、7 周囲温度センサ、8 制御器、9 周囲湿度センサ、10 第2圧縮機、11 第2凝縮器、12 第2膨張弁、13 熱交換器、15 液管。
DESCRIPTION OF SYMBOLS 1 1st compressor, 2nd 1st condenser, 3rd 1st expansion valve, 4th 1st evaporator, 5 cooling device, 6 liquid pipe temperature sensor, 7 ambient temperature sensor, 8 controller, 9 ambient humidity sensor, 10th 2 compressors, 11 second condenser, 12 second expansion valve, 13 heat exchanger, 15 liquid pipe.

Claims (8)

第1圧縮機、第1凝縮器、第1減圧装置、及び第1蒸発器が順に接続された第1冷媒循環回路を備えた冷凍サイクル装置であって、
前記第1凝縮器から前記第1減圧装置へ流れる液冷媒を冷却する冷却装置と、
前記冷却装置で冷却された冷媒を前記第1減圧装置へ送る冷媒配管の温度を第1の検出値として検出する配管温度検出手段と、
前記冷却装置で冷却された冷媒を前記第1減圧装置へ送る冷媒配管の周囲温度を第2の検出値として検出する周囲温度検出手段と、
前記第1及び第2の検出値に基づいて、前記冷却装置の冷却量を制御する制御器と、を備えたことを特徴とする冷凍サイクル装置。
A refrigeration cycle apparatus including a first refrigerant circulation circuit in which a first compressor, a first condenser, a first decompression device, and a first evaporator are connected in order,
A cooling device for cooling the liquid refrigerant flowing from the first condenser to the first decompression device;
A pipe temperature detecting means for detecting, as a first detection value, a temperature of a refrigerant pipe that sends the refrigerant cooled by the cooling device to the first pressure reducing device;
Ambient temperature detection means for detecting the ambient temperature of the refrigerant pipe that sends the refrigerant cooled by the cooling device to the first decompression device as a second detection value;
A refrigeration cycle apparatus comprising: a controller that controls a cooling amount of the cooling device based on the first and second detection values.
前記制御器は、前記第1の検出値が前記第2の検出値より低くならないように、前記冷却装置の冷却動作を制御していることを特徴とする請求項1記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to claim 1, wherein the controller controls a cooling operation of the cooling device so that the first detection value does not become lower than the second detection value. 前記冷却装置で冷却された冷媒を前記第1減圧装置へ送る冷媒配管の周囲湿度を第3の検出値として検出する周囲湿度検出手段をさらに備え、
前記制御器は、前記第1、第2及び第3の検出値に基づいて、前記冷却装置の冷却量を制御するものであることを特徴とする請求項1記載の冷凍サイクル装置。
Ambient humidity detection means for detecting the ambient humidity of the refrigerant pipe that sends the refrigerant cooled by the cooling device to the first decompression device as a third detection value,
The refrigeration cycle apparatus according to claim 1, wherein the controller controls a cooling amount of the cooling device based on the first, second, and third detection values.
前記制御器は、前記第2の検出値と前記第3の検出値から露点温度を決定し、前記第1の検出値が前記露点温度より低くならないように、前記冷却装置の冷却動作を制御していることを特徴とする請求項3記載の冷凍サイクル装置。   The controller determines a dew point temperature from the second detection value and the third detection value, and controls a cooling operation of the cooling device so that the first detection value does not become lower than the dew point temperature. The refrigeration cycle apparatus according to claim 3, wherein the refrigeration cycle apparatus is provided. 前記冷却装置は、第2圧縮機、第2凝縮器、第2減圧装置、及び冷媒と冷媒との間で熱交換を行う熱交換器が順に接続された第2冷媒循環回路を有し、
前記熱交換器が、前記第1冷媒循環回路の前記第1凝縮器と前記第1減圧装置との間を流れる冷媒と、前記第2冷媒循環回路の前記第2減圧装置と前記第2圧縮機との間を流れる冷媒との間で、熱交換を行うように配置されていることを特徴とする請求項1〜4のいずれかに記載の冷凍サイクル装置。
The cooling device has a second refrigerant circuit in which a second compressor, a second condenser, a second decompression device, and a heat exchanger that performs heat exchange between the refrigerant and the refrigerant are connected in order,
The heat exchanger includes a refrigerant flowing between the first condenser of the first refrigerant circulation circuit and the first decompression device, the second decompression device and the second compressor of the second refrigerant circulation circuit. It arrange | positions so that heat exchange may be performed between the refrigerant | coolants which flow between between.
前記制御器による前記冷却装置の冷却量制御は、前記第2圧縮機の運転周波数を制御するものであることを特徴とする請求項5記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to claim 5, wherein the cooling amount control of the cooling device by the controller controls an operating frequency of the second compressor. 前記制御器による前記冷却装置の冷却量制御は、前記第2圧縮機の始動と停止を制御するものであることを特徴とする請求項5記載の冷凍サイクル装置。   6. The refrigeration cycle apparatus according to claim 5, wherein the cooling amount control of the cooling device by the controller controls starting and stopping of the second compressor. 前記第2冷媒循環回路の蒸発温度が前記第1冷媒循環回路の蒸発温度より高くなるように、前記制御器を制御することを特徴とする請求項5記載の冷凍サイクル装置。
The refrigeration cycle apparatus according to claim 5, wherein the controller is controlled such that an evaporation temperature of the second refrigerant circulation circuit is higher than an evaporation temperature of the first refrigerant circulation circuit.
JP2006050208A 2006-02-27 2006-02-27 Refrigeration cycle equipment Active JP4444220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006050208A JP4444220B2 (en) 2006-02-27 2006-02-27 Refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006050208A JP4444220B2 (en) 2006-02-27 2006-02-27 Refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JP2007225260A true JP2007225260A (en) 2007-09-06
JP4444220B2 JP4444220B2 (en) 2010-03-31

Family

ID=38547237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006050208A Active JP4444220B2 (en) 2006-02-27 2006-02-27 Refrigeration cycle equipment

Country Status (1)

Country Link
JP (1) JP4444220B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009264614A (en) * 2008-04-22 2009-11-12 Fuji Electric Holdings Co Ltd Heat exchange system
JP2014153036A (en) * 2013-02-13 2014-08-25 Mitsubishi Electric Corp Refrigerator
JP2015072091A (en) * 2013-10-03 2015-04-16 三菱電機株式会社 Refrigerating device
JP2015111047A (en) * 2015-03-27 2015-06-18 三菱電機株式会社 Refrigerating machine
EP3012544A1 (en) * 2009-04-03 2016-04-27 Eaton-Williams Group Limited A cooling unit
JP2016156557A (en) * 2015-02-24 2016-09-01 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Refrigeration cycle device
JP2016169896A (en) * 2015-03-12 2016-09-23 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Refrigerator
KR20190089434A (en) * 2018-01-22 2019-07-31 엘지전자 주식회사 Air-conditioner and Method thereof
EP3502585A4 (en) * 2016-08-17 2019-08-28 Mitsubishi Electric Corporation Heat pump system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009264614A (en) * 2008-04-22 2009-11-12 Fuji Electric Holdings Co Ltd Heat exchange system
EP3012544A1 (en) * 2009-04-03 2016-04-27 Eaton-Williams Group Limited A cooling unit
JP2014153036A (en) * 2013-02-13 2014-08-25 Mitsubishi Electric Corp Refrigerator
JP2015072091A (en) * 2013-10-03 2015-04-16 三菱電機株式会社 Refrigerating device
JP2016156557A (en) * 2015-02-24 2016-09-01 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Refrigeration cycle device
JP2016169896A (en) * 2015-03-12 2016-09-23 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Refrigerator
JP2015111047A (en) * 2015-03-27 2015-06-18 三菱電機株式会社 Refrigerating machine
EP3502585A4 (en) * 2016-08-17 2019-08-28 Mitsubishi Electric Corporation Heat pump system
KR20190089434A (en) * 2018-01-22 2019-07-31 엘지전자 주식회사 Air-conditioner and Method thereof
KR102104448B1 (en) * 2018-01-22 2020-04-24 엘지전자 주식회사 Air-conditioner and Method thereof

Also Published As

Publication number Publication date
JP4444220B2 (en) 2010-03-31

Similar Documents

Publication Publication Date Title
JP4444220B2 (en) Refrigeration cycle equipment
JP5404333B2 (en) Heat source system
EP3098540B1 (en) Heat pump apparatus
WO2007013382A1 (en) Refrigerating air conditioner
JP2014102050A (en) Refrigeration device
KR20130050639A (en) Non-azeotropic mixed refrigerent cycle and refrigerator
JP2012078065A (en) Air conditioner
JP2016156557A (en) Refrigeration cycle device
JPWO2016009516A1 (en) Refrigeration air conditioner
JP2008039208A (en) Cooling air supplying equipment
JP3145551U (en) Air conditioner
JP2006207989A (en) Refrigeration and freezing heat source unit, freezing device, and freezing air conditioner
JP6316452B2 (en) Refrigeration cycle equipment
JP4292525B2 (en) Refrigerant amount detection method for vapor compression refrigeration cycle
JPH11351680A (en) Cooling equipment
JP2012237518A (en) Air conditioner
JP5836844B2 (en) Refrigeration equipment
JPWO2016002023A1 (en) Heat source device and heat source system including the heat source device
KR20140072626A (en) Cryogenic refrigeration system with protecting means for compressor
JP2012127542A (en) Air conditioning device
CN219139306U (en) Cooling system for self-cooling of industrial air conditioner compressor
KR100911221B1 (en) Air conditioning system for communication equipment and controlling method thereof
KR20140111382A (en) Air conditioning system for automotive vehicles
JP2018009768A (en) Refrigeration system
KR100447195B1 (en) cooling apparatus and method of controling the apparatus in the refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100113

R150 Certificate of patent or registration of utility model

Ref document number: 4444220

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250