JP3145551U - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP3145551U
JP3145551U JP2008005315U JP2008005315U JP3145551U JP 3145551 U JP3145551 U JP 3145551U JP 2008005315 U JP2008005315 U JP 2008005315U JP 2008005315 U JP2008005315 U JP 2008005315U JP 3145551 U JP3145551 U JP 3145551U
Authority
JP
Japan
Prior art keywords
evaporator
air conditioner
refrigerant
heat exchange
conditioner according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008005315U
Other languages
Japanese (ja)
Inventor
楊盛傑
Original Assignee
飛傑能源開發股▲分▼有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 飛傑能源開發股▲分▼有限公司 filed Critical 飛傑能源開發股▲分▼有限公司
Priority to JP2008005315U priority Critical patent/JP3145551U/en
Application granted granted Critical
Publication of JP3145551U publication Critical patent/JP3145551U/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

【課題】高湿度環境の凝結水が蒸発器において結霜、又は氷結することを回避できる空調装置を提供する。
【解決手段】コンプレッサー1、コンデンサー2、膨脹バルブ4、第一蒸発器5、第二蒸発器6を含み、コンプレッサー1により冷媒を圧縮して高温高圧の気態とし、コンデンサー2に導入して散熱して冷媒を液化し、さらに、膨脹バルブ4がコンデンサー2により送出される液態冷媒量を制限して極く少量として、第一蒸発器5及び第二蒸発器6をそれぞれ通過させて、吸熱気化させ、0℃〜4℃の作業温度区間を保持する第一蒸発器5を通過する空気中の湿気を凝結させて液態水として排出する。比較的乾燥した空気は0℃以下の作業温度に保持させた第二蒸発器6を通過させることで流動空気を迅速に冷却する。最後に、気化した低圧気態冷媒を再びコンプレッサー1に戻して循環させる。
【選択図】図2
An air conditioner capable of preventing condensed water in a high-humidity environment from being frozen or frozen in an evaporator.
The compressor includes a compressor, a condenser, an expansion valve, a first evaporator, and a second evaporator. The compressor compresses the refrigerant into a high-temperature and high-pressure state and introduces it into the condenser to dissipate heat. Then, the refrigerant is liquefied, and the expansion valve 4 limits the amount of liquid refrigerant delivered by the condenser 2 to a very small amount, and passes through the first evaporator 5 and the second evaporator 6 respectively, thereby absorbing heat. The moisture in the air that passes through the first evaporator 5 that maintains the working temperature interval of 0 ° C. to 4 ° C. is condensed and discharged as liquid water. The relatively dry air passes through the second evaporator 6 maintained at a working temperature of 0 ° C. or less, thereby quickly cooling the flowing air. Finally, the vaporized low-pressure gaseous refrigerant is returned to the compressor 1 and circulated.
[Selection] Figure 2

Description

本考案は冷凍機、又は空調機等の空調装置に関し、特に蒸発器の結霜、又は氷結を抑止できて全体の熱交換効率を効果的に向上させることができる空調装置に関するものである。   The present invention relates to an air conditioner such as a refrigerator or an air conditioner, and more particularly to an air conditioner that can suppress frost or icing of an evaporator and effectively improve the overall heat exchange efficiency.

従来の冷凍、又は空調装置を図1に示す。
従来の空調装置は、蒸発器50、コンデンサー2、コンプレッサー1、膨脹バルブ4(毛細管)及び乾燥器3(必要に応じて)を具備する。
コンプレッサー1により管路中の冷媒を圧縮して高温高圧の気態とし、高温高圧の冷媒はさらにコンデンサー2を経由して熱エネルギーを発散して常温液態となる。
さらに冷媒は乾燥器3を経て湿気を吸収された後、膨脹バルブ4(毛細管)によりその流量を制限されて蒸発器50へ導入される。
この時、該蒸発器50内において冷媒は吸熱気化され(ファンにより気流を駆動し、その吸熱動作を加速する)、その圧力を低下することに伴い、気化による低圧気態となる。
最後に、冷媒は再びコンプレッサー1に戻り、上記した冷媒の循環プロセスを繰り返す。
A conventional refrigeration or air conditioner is shown in FIG.
The conventional air conditioner includes an evaporator 50, a condenser 2, a compressor 1, an expansion valve 4 (capillary tube), and a dryer 3 (if necessary).
The refrigerant in the pipeline is compressed by the compressor 1 into a high-temperature and high-pressure gas state, and the high-temperature and high-pressure refrigerant further dissipates heat energy through the condenser 2 and becomes a normal temperature liquid state.
Further, after the moisture is absorbed through the dryer 3, the flow rate of the refrigerant is limited by the expansion valve 4 (capillary tube) and the refrigerant is introduced into the evaporator 50.
At this time, the refrigerant is endothermic and vaporized in the evaporator 50 (the airflow is driven by the fan to accelerate the endothermic operation), and the pressure is reduced to become a low pressure gas state due to vaporization.
Finally, the refrigerant returns to the compressor 1 again, and the above-described refrigerant circulation process is repeated.

従来の空調装置は、大気圧の環境下においては、空気中の水分が温度4℃時に凝結して液態の水となり、温度が0℃時には凝固して霜、又は冰となる。
したがって、従来の空調装置を高温多湿の環境下で使用する場合には、その蒸発器50の作業温度を4℃以上、又は0℃以下(冷凍用)に設定する必要がある。
しかしこれでは、全体的に使用範囲をひどく狭めてしまい、しかも凝固した霜、又は冰は、蒸発器50の表面と外部環境を隔絶し、熱交換動作を継続することを不能とするために、蒸発器50の熱交換効率を大きく低下させてしまう。これは使用上の重大な欠点となっている。
本考案は、従来の空調装置の上記した欠点に鑑みてなされたものである。
In a conventional air conditioner, in an atmospheric pressure environment, moisture in the air condenses into liquid water when the temperature is 4 ° C, and solidifies into frost or soot when the temperature is 0 ° C.
Therefore, when the conventional air conditioner is used in a hot and humid environment, it is necessary to set the working temperature of the evaporator 50 to 4 ° C. or higher or 0 ° C. or lower (for refrigeration).
However, in this case, the range of use is severely narrowed as a whole, and solidified frost or soot isolates the surface of the evaporator 50 from the external environment and makes it impossible to continue the heat exchange operation. The heat exchange efficiency of the evaporator 50 is greatly reduced. This is a serious drawback in use.
The present invention has been made in view of the above-described drawbacks of conventional air conditioners.

本考案が解決しようとする主要な課題は、水分が蒸発器の表面において凝固して霜、又は冰となることを防止することで、全体の熱交換効率を効果的に向上させることができる空調装置を提供することである。   The main problem to be solved by the present invention is that air conditioning that can effectively improve the overall heat exchange efficiency by preventing moisture from solidifying on the surface of the evaporator and becoming frost or soot. Is to provide a device.

上記課題を解決するため、本考案は下記の空調装置を提供する。
空調装置はコンプレッサー、コンデンサー、膨脹バルブ、第一蒸発器、第二蒸発器を含み、
該コンプレッサーは冷媒を圧縮し高温高圧の気態とし、
該コンデンサーは該コンプレッサーの送出端に設置し、該コンプレッサーが圧縮した冷媒を導入し、散熱を行い、該冷媒を液態とすることができ、
該膨脹バルブは該コンデンサーの送出端に設置し、該コンデンサーが送出する冷媒を極めて小流量に制限し通過させ、
該第一蒸発器は該コンプレッサーの送入端と該膨脹バルブの送出端の間に設置し、該膨脹バルブの冷媒を導入通過させることができ、それを吸熱気化し、圧力を低下させ、しかも低圧気態とし、再び該コンプレッサーに戻し、しかも該第一蒸発器を0℃〜4℃の作業温度に保持し、
該第二蒸発器は該コンプレッサーの送入端と該膨脹バルブの送出端の間に設置し、しかも該第一蒸発器と並列接続し、該膨脹バルブの冷媒を導入通過させることができ、それを吸熱気化し、圧力を低下させ、しかも低圧気態とし、再び該コンプレッサーに戻し、しかも該第二蒸発器を0℃以下の作業温度に保持させる。
In order to solve the above problems, the present invention provides the following air conditioner.
The air conditioner includes a compressor, condenser, expansion valve, first evaporator, second evaporator,
The compressor compresses the refrigerant into a high-temperature and high-pressure state,
The condenser is installed at the delivery end of the compressor, introduces a refrigerant compressed by the compressor, dissipates heat, and makes the refrigerant liquid.
The expansion valve is installed at the delivery end of the condenser and allows the refrigerant delivered by the condenser to pass through with a very small flow rate;
The first evaporator is installed between the inlet end of the compressor and the outlet end of the expansion valve, and allows the refrigerant of the expansion valve to be introduced and passed through, which absorbs heat and reduces the pressure, Set to a low pressure state, returned to the compressor, and maintained the first evaporator at a working temperature of 0 ° C. to 4 ° C .;
The second evaporator is installed between the inlet end of the compressor and the outlet end of the expansion valve, and is connected in parallel with the first evaporator so that the refrigerant of the expansion valve can be introduced and passed through it. Is endothermized, the pressure is reduced, and the pressure is reduced to the low pressure state, and the pressure is returned to the compressor, and the second evaporator is kept at an operating temperature of 0 ° C. or lower.

本考案は蒸発器の結霜、又は氷結状況を低下させることができ、全体の熱交換効率を効果的に向上させることができる。   The present invention can reduce the frost or icing condition of the evaporator, and can effectively improve the overall heat exchange efficiency.

以下に図面を参照しながら本考案を実施するための最良の形態について詳細に説明する。
図2は本考案の第一実施例に係る空調装置のモデル図、図3は空調機セットの動作循環モデル図である。
The best mode for carrying out the present invention will be described below in detail with reference to the drawings.
FIG. 2 is a model diagram of the air conditioner according to the first embodiment of the present invention, and FIG. 3 is an operation circulation model diagram of the air conditioner set.

本考案の第一実施例に係る空調装置は、主に、コンプレッサー1、コンデンサー2、乾燥器3、膨脹バルブ4、第一蒸発器5、第二蒸発器6、冷媒制御ユニット7及び制御装置8を含む。
該コンプレッサー1は管路中の冷媒を圧縮し高温高圧の気態とし、該高温高圧の冷媒は該コンデンサー2を経て熱エネルギーを発散し、常温液態とし、該乾燥器3を経て湿気を吸収し、該膨脹バルブ4によりその流量を制限する。
The air conditioner according to the first embodiment of the present invention mainly includes a compressor 1, a condenser 2, a dryer 3, an expansion valve 4, a first evaporator 5, a second evaporator 6, a refrigerant control unit 7, and a control device 8. including.
The compressor 1 compresses the refrigerant in the pipe into a high-temperature and high-pressure gas state, and the high-temperature and high-pressure refrigerant dissipates heat energy through the condenser 2 to form a normal temperature liquid state and absorbs moisture through the dryer 3. The flow rate is limited by the expansion valve 4.

さらに、該冷媒制御ユニット7(三通制御バルブ71とすることができる)を経てそれぞれ第一、二蒸発器5、6に導入し、該冷媒制御ユニット7(三通制御バルブ71)により、それぞれ該第一、二蒸発器5、6へ流入する冷媒量を制御することができる。
該第一蒸発器5の作業温度を0℃〜4℃の間に設定し、該第二蒸発器6の作業温度を0℃以下に設定する。
Further, the refrigerant is introduced into the first and second evaporators 5 and 6 through the refrigerant control unit 7 (which can be a three-way control valve 71), and the refrigerant control unit 7 (three-way control valve 71) The amount of refrigerant flowing into the first and second evaporators 5 and 6 can be controlled.
The working temperature of the first evaporator 5 is set between 0 ° C. and 4 ° C., and the working temperature of the second evaporator 6 is set to 0 ° C. or lower.

同時に、該第一蒸発器5は比較的小さな面積の熱交換フィンを備える。
しかもその熱交換フィンは空気流動の方向に沿って比較的長い長さを備える。こうして空気と接触する時間を拡大する。
該第二蒸発器6は横方向に比較的大きな面積の熱交換フィンを備える。
こうして空気と接触する時間を拡大する。
At the same time, the first evaporator 5 comprises heat exchange fins with a relatively small area.
Moreover, the heat exchange fin has a relatively long length along the direction of air flow. Thus, the time for contact with air is increased.
The second evaporator 6 includes heat exchange fins having a relatively large area in the lateral direction.
Thus, the time for contact with air is increased.

但し、その熱交換フィンは空気流動の方向に沿って比較的短い長さを備えていて、空気との接触時間が過度に長くなり、残留する水分が凝固して結霜、又は氷結することを回避可能である。   However, the heat exchange fin has a relatively short length along the direction of air flow, the contact time with air becomes excessively long, and the remaining moisture solidifies and freezes or freezes. It can be avoided.

該環境温度計81は該第一、二蒸発器5、6傍らの環境空間中に設置し、空調環境中の温度情報を該制御装置8に伝送、分析し、該制御装置8が該冷媒制御ユニット7の動作を制御する。   The environmental thermometer 81 is installed in the environmental space next to the first and second evaporators 5 and 6, transmits and analyzes temperature information in the air-conditioned environment to the control device 8, and the control device 8 controls the refrigerant. The operation of the unit 7 is controlled.

上記した構造は操作時に、外部動力(ファンとすることができる)により空気を導引し、順番に該第一、二蒸発器5、6を通過させ、同時に、該冷媒制御ユニット7(三通制御バルブ71)はそれぞれ該第一、二蒸発器5、6を通過する冷媒流量を制御する。   In the above-described structure, air is drawn by external power (which can be a fan) during operation, and sequentially passes through the first and second evaporators 5 and 6, and at the same time, the refrigerant control unit 7 (three-way) The control valve 71) controls the flow rate of the refrigerant passing through the first and second evaporators 5 and 6, respectively.

該第一蒸発器5の作業温度は0℃〜4℃で、しかもその長いほうの熱交換フィンは空気との接触時間を拡大することができるため、外部の湿った空気が第一蒸発器5を通過する時、空気中の水分を凝結させて水滴とすることができる。   The working temperature of the first evaporator 5 is 0 ° C. to 4 ° C., and the longer heat exchange fin can extend the contact time with the air, so that the external moist air is used as the first evaporator 5. When passing through, water in the air can be condensed to form water droplets.

下方へと滴下した水滴は、予め設置した集水板9の上に落ち、排水管91を通じて排出される。
こうして空気中の水分含量を効果的に低下させ、適当に空気を乾燥させる効果を達成することができる。
The water drops dripped downward fall on the pre-installed water collecting plate 9 and are discharged through the drain pipe 91.
In this way, it is possible to effectively reduce the moisture content in the air and achieve the effect of appropriately drying the air.

これと同時に、該環境温度計81は該第一蒸発器5を通過する空気温度を随時感知可能で、感知結果を該制御装置8にフィードバックし分析し、該第一蒸発器5が確実に安定した作業温度を保持できるようにする。   At the same time, the environmental thermometer 81 can detect the temperature of the air passing through the first evaporator 5 at any time, and feeds back and analyzes the detection result to the control device 8 to ensure that the first evaporator 5 is stable. To maintain the working temperature.

さらにこれにより、比較的乾燥した空気は0℃以下の作業温度を有する第二蒸発器6を継続して通過する。   Furthermore, this allows relatively dry air to continue to pass through the second evaporator 6 having an operating temperature of 0 ° C. or less.

しかもその横方向に比較的大きな面積の熱交換フィンは、空気との接触面積を拡大することができるため、通過する空気を迅速に冷却することができ(周囲の環境温度を低下させる)、しかも凝結水が原因の蒸発器の結霜又は氷結の状況を完全に回避することができる。   Moreover, the heat exchange fin having a relatively large area in the lateral direction can enlarge the contact area with the air, so that the passing air can be cooled quickly (reducing the ambient environmental temperature), and The evaporator frost or icing situation caused by condensed water can be completely avoided.

図4は本考案第二実施例の空調装置モデル図、図5は空調機セットの動作循環モデル図である。   FIG. 4 is an air conditioner model diagram of the second embodiment of the present invention, and FIG. 5 is an operation circulation model diagram of the air conditioner set.

本考案の第二実施例に係る空調装置は主に、前記第一実施例の構造を基礎とし、相同のコンプレッサー1、コンデンサー2、乾燥器3、膨脹バルブ4、第一蒸発器5及び第二蒸発器6を含む。
第一実施例との差異は以下の通りである。
The air conditioner according to the second embodiment of the present invention is mainly based on the structure of the first embodiment, and includes a homologous compressor 1, condenser 2, dryer 3, expansion valve 4, first evaporator 5 and second. An evaporator 6 is included.
Differences from the first embodiment are as follows.

本例では冷媒が流れる制御ユニット70が二個の制御バルブ72、73をそれぞれ該第一、二蒸発器5、6の送入端に設置して構成している。
使用時には、該制御装置80を利用し、それぞれ該二個の制御バルブ72、73の動作を制御し、該第一、二蒸発器5、6を流れる冷媒流量を調整し、こうしてもう一つの冷媒制御構造を形成する。
その他、各部品の動作及び達成可能な機能と効果は、既述した第一実施例と同様である。
In this example, the control unit 70 through which the refrigerant flows is configured by installing two control valves 72 and 73 at the inlet ends of the first and second evaporators 5 and 6, respectively.
In use, the control device 80 is used to control the operation of the two control valves 72 and 73, respectively, to adjust the flow rate of the refrigerant flowing through the first and second evaporators 5 and 6, and thus another refrigerant. Form a control structure.
In addition, the operation of each component and the achievable functions and effects are the same as those of the first embodiment described above.

上記したように、本考案の空調装置は確実に結霜、又は氷結を防止可能であり、熱交換効率のさらなる向上が図れる。   As described above, the air conditioner of the present invention can reliably prevent frost formation or icing, and further improve the heat exchange efficiency.

本考案は具体的実施例を上記の通り開示したが、これらは最適実施例に過ぎず、本考案を限定するものではない。当該技術を熟知する者なら誰でも、本考案の製品と領域を脱しない範囲内で各種の変動や潤色を加えることができ、したがって本考案の保護範囲は、実用新案請求の範囲で指定した内容を基準とする。   Although the present invention has disclosed specific embodiments as described above, these are only optimum embodiments and do not limit the present invention. Anyone who is familiar with the technology can add various variations and coloration within a range that does not depart from the product and scope of the present invention. Based on

公知の冷凍又は空調装置のモデル図である。It is a model diagram of a known refrigeration or air conditioner. 本考案第一実施例に係る空調装置のモデル図である。1 is a model diagram of an air conditioner according to a first embodiment of the present invention. 本考案第一実施例に係る空調装置の動作循環モデル図である。It is an operation | movement circulation model figure of the air conditioner which concerns on this invention 1st Example. 本考案第二実施例に係る空調装置のモデル図である。It is a model figure of the air conditioner which concerns on this invention 2nd Example. 本考案第二実施例に係る空調装置の動作循環モデル図である。It is an operation | movement circulation model figure of the air conditioner which concerns on this invention 2nd Example.

符号の説明Explanation of symbols

1 コンプレッサー
2 コンデンサー
3 乾燥器
4 膨脹バルブ
5 第一蒸発器
50 蒸発器
51、61 制御バルブ
6 第二蒸発器
7、70 冷媒制御ユニット
71 三通制御バルブ
72、73 制御バルブ
8、80 制御装置
81 環境温度計
9 集水板
91 排水管
DESCRIPTION OF SYMBOLS 1 Compressor 2 Condenser 3 Dryer 4 Expansion valve 5 First evaporator 50 Evaporator 51, 61 Control valve 6 Second evaporator 7, 70 Refrigerant control unit 71 Three-way control valve 72, 73 Control valve 8, 80 Control device 81 Environmental thermometer 9 Water collecting plate 91 Drain pipe

Claims (17)

空調装置であって、
少なくともコンプレッサー、コンデンサー、膨脹バルブ、第一蒸発器、第二蒸発器を含み、
該コンプレッサーは冷媒を圧縮し高温高圧の気態とし、
該コンデンサーはコンプレッサーの送出端に設置し、コンプレッサーが圧縮した冷媒を導入して散熱を行って該冷媒を液態とすることが可能であり、
前記膨脹バルブはコンデンサーの送出端に設置し、コンデンサーが送出する冷媒を極めて小流量に制限して通過させ、
前記第一蒸発器はコンプレッサーの送入端と膨脹バルブの送出端との間に設置し、該膨脹バルブの冷媒を導入通過させることで、冷媒を吸熱気化して、圧力を低下させることで低圧気態とし、再びコンプレッサーに戻し、しかも該第一蒸発器を0℃〜4℃の作業温度に保持し、
前記第二蒸発器はコンプレッサーの送入端と膨脹バルブの送出端との間に設置し、第一蒸発器と並列に接続し、膨脹バルブの冷媒を導入通過させることで冷媒を吸熱気化し、圧力を低下させて低圧気態とし、再び該コンプレッサーに戻して第二蒸発器を0℃以下の作業温度に保持させることを特徴とする、
空調装置。
An air conditioner,
Including at least a compressor, condenser, expansion valve, first evaporator, second evaporator,
The compressor compresses the refrigerant into a high-temperature and high-pressure state,
The condenser is installed at the delivery end of the compressor, and the refrigerant compressed by the compressor can be introduced to dissipate heat to make the refrigerant liquid.
The expansion valve is installed at the delivery end of the condenser and allows the refrigerant delivered by the condenser to pass through with a very small flow rate,
The first evaporator is installed between the inlet end of the compressor and the outlet end of the expansion valve. By introducing and passing the refrigerant of the expansion valve, the refrigerant is absorbed by heat, and the pressure is reduced. And return to the compressor, and maintain the first evaporator at a working temperature of 0 ° C. to 4 ° C.,
The second evaporator is installed between the inlet end of the compressor and the outlet end of the expansion valve, is connected in parallel with the first evaporator, and the refrigerant is absorbed and vaporized by introducing and passing the refrigerant of the expansion valve, The pressure is reduced to a low pressure state, the pressure is returned to the compressor again, and the second evaporator is maintained at an operating temperature of 0 ° C. or lower.
Air conditioner.
前記第一、二蒸発器と該膨脹バルブとの間には冷媒制御ユニットを設置し、該第一、二蒸発器を通過する冷媒量をそれぞれ制御することを特徴とする、請求項1記載の空調装置。   The refrigerant control unit is installed between the first and second evaporators and the expansion valve to control the amount of refrigerant passing through the first and second evaporators, respectively. Air conditioner. 前記冷媒制御ユニットは制御装置の操作を受けて制御することを特徴とする、請求項2記載の空調装置。   The air conditioner according to claim 2, wherein the refrigerant control unit is controlled by an operation of a control device. 前記第一蒸発器は空気流動ルートの末端において環境温度計を設置し、該環境温度計は該第一蒸発器を通過する空気温度を感知可能で、該制御装置が該冷媒制御ユニットを制御する参考数値として提供することを特徴とする、請求項3記載の空調装置。   The first evaporator is provided with an environmental thermometer at the end of the air flow route, the environmental thermometer can sense the temperature of air passing through the first evaporator, and the control device controls the refrigerant control unit. The air conditioner according to claim 3, wherein the air conditioner is provided as a reference numerical value. 前記冷媒制御ユニットは三通制御バルブであることを特徴とする、請求項2又は3又は4記載の空調装置。   The air conditioner according to claim 2, 3 or 4, wherein the refrigerant control unit is a three-way control valve. 前記冷媒制御ユニットは二個の制御バルブをそれぞれ該第一、二蒸発器の送入端に設置し組成することを特徴とする、請求項2又は3又は4記載の空調装置。   The air conditioner according to claim 2, 3 or 4, wherein the refrigerant control unit is configured by installing two control valves at the inlet ends of the first and second evaporators, respectively. 前記第一蒸発器下方には凝結水を収集可能な集水板を設置し、該集水板は外部へと導出する排水管を備えることを特徴とする、請求項1又は2又は3又は4記載の空調装置。   A water collecting plate capable of collecting condensed water is installed below the first evaporator, and the water collecting plate is provided with a drain pipe that leads out to the outside. The air conditioner described. 前記第一蒸発器下方には凝結水を収集可能な集水板を設置し、該集水板は外部へと導出する排水管を備えることを特徴とする、請求項5記載の空調装置。   6. The air conditioner according to claim 5, wherein a water collecting plate capable of collecting condensed water is installed below the first evaporator, and the water collecting plate is provided with a drain pipe leading to the outside. 前記第一蒸発器下方には凝結水を収集可能な集水板を設置し、該集水板は外部へと導出する排水管を備えることを特徴とする請求項6記載の空調装置。   The air conditioner according to claim 6, wherein a water collecting plate capable of collecting condensed water is installed below the first evaporator, and the water collecting plate is provided with a drain pipe leading to the outside. 前記第一蒸発器は比較的小さな面積の熱交換フィンを備え、その熱交換フィンは空気流動の方向に沿って比較的長い長さを備えることを特徴とする、請求項1又は2又は3又は4記載の空調装置。   The first evaporator comprises heat exchange fins having a relatively small area, and the heat exchange fins have a relatively long length along the direction of air flow. 4. The air conditioner according to 4. 前記第一蒸発器は比較的小さな面積の熱交換フィンを備え、その熱交換フィンは空気流動の方向に沿って比較的長い長さを備えることを特徴とする、請求項5記載の空調装置。   The air conditioner according to claim 5, wherein the first evaporator includes a heat exchange fin having a relatively small area, and the heat exchange fin has a relatively long length along a direction of air flow. 前記第一蒸発器は比較的小さな面積の熱交換フィンを備え、その熱交換フィンは空気流動の方向に沿って比較的長い長さを備えることを特徴とする、請求項6記載の空調装置。   The air conditioner according to claim 6, wherein the first evaporator includes a heat exchange fin having a relatively small area, and the heat exchange fin has a relatively long length along a direction of air flow. 前記第一蒸発器は比較的小さな面積の熱交換フィンを備え、その熱交換フィンは空気流動の方向に沿って比較的長い長さを備えることを特徴とする、請求項7記載の空調装置。   The air conditioner according to claim 7, wherein the first evaporator includes a heat exchange fin having a relatively small area, and the heat exchange fin has a relatively long length along a direction of air flow. 前記第二蒸発器は比較的大きな面積の熱交換フィンを備え、その熱交換フィンは空気流動の方向に沿って比較的短い長さを備えることを特徴とする、請求項1又は2又は3又は4記載の空調装置。   The second evaporator comprises heat exchange fins having a relatively large area, and the heat exchange fins have a relatively short length along the direction of air flow. 4. The air conditioner according to 4. 前記第二蒸発器は比較的大きな面積の熱交換フィンを備え、その熱交換フィンは空気流動の方向に沿って比較的短い長さを備えることを特徴とする、請求項5記載の空調装置。   The air conditioner according to claim 5, wherein the second evaporator includes a heat exchange fin having a relatively large area, and the heat exchange fin has a relatively short length along a direction of air flow. 前記第二蒸発器は比較的大きな面積の熱交換フィンを備え、その熱交換フィンは空気流動の方向に沿って比較的短い長さを備えることを特徴とする、請求項6記載の空調装置。   The air conditioner according to claim 6, wherein the second evaporator includes a heat exchange fin having a relatively large area, and the heat exchange fin has a relatively short length along a direction of air flow. 前記第二蒸発器は比較的大きな面積の熱交換フィンを備え、その熱交換フィンは空気流動の方向に沿って比較的短い長さを備えることを特徴とする、請求項7記載の空調装置。   The air conditioner according to claim 7, wherein the second evaporator includes a heat exchange fin having a relatively large area, and the heat exchange fin has a relatively short length along a direction of air flow.
JP2008005315U 2008-07-31 2008-07-31 Air conditioner Expired - Fee Related JP3145551U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008005315U JP3145551U (en) 2008-07-31 2008-07-31 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008005315U JP3145551U (en) 2008-07-31 2008-07-31 Air conditioner

Publications (1)

Publication Number Publication Date
JP3145551U true JP3145551U (en) 2008-10-09

Family

ID=43295316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008005315U Expired - Fee Related JP3145551U (en) 2008-07-31 2008-07-31 Air conditioner

Country Status (1)

Country Link
JP (1) JP3145551U (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015152266A (en) * 2014-02-17 2015-08-24 三菱電機株式会社 air-cooled heat pump unit
CN105377596A (en) * 2013-06-08 2016-03-02 大众汽车有限公司 Air-conditioning system for a motor vehicle and method for operating said air-conditioning system
CN109595721A (en) * 2018-12-12 2019-04-09 江苏翼兰博特新能源科技有限公司 A kind of leaving air temp control air-conditioning
KR20200054766A (en) * 2018-11-12 2020-05-20 엘지전자 주식회사 Air conditioner and method for controlling the same
CN114517981A (en) * 2022-01-27 2022-05-20 李文辉 Air conditioner heat exchange system with less frosting

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105377596A (en) * 2013-06-08 2016-03-02 大众汽车有限公司 Air-conditioning system for a motor vehicle and method for operating said air-conditioning system
US20160303945A1 (en) * 2013-06-08 2016-10-20 Volkswagen Aktiengesellschaft Air-conditioning system for a motor vehicle and method for operating said air-conditioning system
CN111731071A (en) * 2013-06-08 2020-10-02 大众汽车有限公司 Air conditioning device for a motor vehicle and method for operating the same
JP2015152266A (en) * 2014-02-17 2015-08-24 三菱電機株式会社 air-cooled heat pump unit
KR20200054766A (en) * 2018-11-12 2020-05-20 엘지전자 주식회사 Air conditioner and method for controlling the same
CN109595721A (en) * 2018-12-12 2019-04-09 江苏翼兰博特新能源科技有限公司 A kind of leaving air temp control air-conditioning
CN114517981A (en) * 2022-01-27 2022-05-20 李文辉 Air conditioner heat exchange system with less frosting

Similar Documents

Publication Publication Date Title
US7984621B2 (en) Air conditioning system for communication equipment and controlling method thereof
JP4892305B2 (en) Outside air conditioning air conditioner
CN201852342U (en) Wet curtain evaporative cooling air-cooled condensing unit
Zhou et al. Experimental study on combined defrosting performance of heat pump air conditioning system for pure electric vehicle in low temperature
CN102620361A (en) Heat pump air conditioner with dehumidifying function and control method thereof
CN207751204U (en) Environmental test chamber dehumidifying, refrigeration system
JP3145551U (en) Air conditioner
WO2019091240A1 (en) Heating circulation system for air conditioning, and air conditioner
CN103673138A (en) Air conditioner and control method thereof
CN104848497A (en) Air conditioner
CN201314725Y (en) Heat pump type room air conditioner
JP2008039208A (en) Cooling air supplying equipment
KR101138970B1 (en) Defrosting system using air cooling refrigerant evaporator and condenser
CN202521763U (en) Heat pump air conditioner with dehumidification function
CN106705494A (en) Air source heat pump energy conservation system with function of preventing air side heat exchanger from freezing
CN1325006A (en) Heat pump system
CN101650094B (en) Refrigerating air-conditioner device
CN101957089A (en) Refrigerating device of air conditioner and household air conditioning system thereof
CN105874278A (en) Air-conditioning device
CN108278791B (en) Air source air conditioning system with double heat storage devices and defrosting method
CN202066256U (en) Air-cooled air conditioning system
JP5643982B2 (en) Temperature / humidity adjusting device and temperature / humidity adjusting method
JP5229274B2 (en) Refrigeration cycle equipment
CN101315226A (en) Air conditioner circulating system
CN2397415Y (en) Temp.-regulating dehumidifier

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees