JP4892305B2 - Outside air conditioning air conditioner - Google Patents

Outside air conditioning air conditioner Download PDF

Info

Publication number
JP4892305B2
JP4892305B2 JP2006238874A JP2006238874A JP4892305B2 JP 4892305 B2 JP4892305 B2 JP 4892305B2 JP 2006238874 A JP2006238874 A JP 2006238874A JP 2006238874 A JP2006238874 A JP 2006238874A JP 4892305 B2 JP4892305 B2 JP 4892305B2
Authority
JP
Japan
Prior art keywords
air
coil
outside air
air conditioner
outside
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006238874A
Other languages
Japanese (ja)
Other versions
JP2008057938A (en
Inventor
正司 石田
Original Assignee
三機工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三機工業株式会社 filed Critical 三機工業株式会社
Priority to JP2006238874A priority Critical patent/JP4892305B2/en
Publication of JP2008057938A publication Critical patent/JP2008057938A/en
Application granted granted Critical
Publication of JP4892305B2 publication Critical patent/JP4892305B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、クリーンルーム等の空調装置に関するもので、外気を取り入れて所定の一定温度、一定湿度に調整された目標空気を供給する外気調整空調機に関する。   The present invention relates to an air conditioner such as a clean room, and more particularly to an outside air conditioning air conditioner that takes in outside air and supplies target air adjusted to a predetermined constant temperature and constant humidity.
クリーンルーム、電算室、半導体工場等の室内空調においては、一年を通して一定乾球温度で、かつ、一定湿度の空気(以下、室内目標空気という。)を調整し、その室内空気状態を維持する温調空気を供給する必要がある。その際に、室内循環空調機と外気調整空調機に温調処理を分割することが多い。この場合、外気調整空調機の取り入れる外気は、温度と共に湿度も一年を通じて大きく変化する。例えば、夏季には外気が高温、多湿で、冬季には外気が低温で乾燥している。このために、従来は外気調整空調機として、温調範囲の自由度を確保するために、及び湿度の安定性をより向上させるために、除湿再熱制御方式が採用されてきた。   In indoor air conditioning in clean rooms, computer rooms, semiconductor factories, etc., the temperature at which constant dry bulb temperature and constant humidity (hereinafter referred to as indoor target air) is adjusted throughout the year to maintain the indoor air condition. Air conditioning needs to be supplied. At that time, the temperature adjustment processing is often divided into an indoor circulation air conditioner and an outside air conditioning air conditioner. In this case, the temperature and humidity of the outside air taken in by the outside air conditioning air conditioner change greatly throughout the year. For example, the outside air is hot and humid in summer, and the outside air is dry at low temperature in winter. For this reason, a dehumidification reheat control system has been conventionally employed as an outside air conditioning air conditioner in order to ensure the degree of freedom of the temperature adjustment range and to further improve the stability of humidity.
更に、室内目標空気の必要とする空気状態を示す一定温湿度(温度と湿度)は比較的低温で乾いた空気(例えば、温度が摂氏23度、相対湿度45%で、この場合の露点温度は摂氏10度)状態である。従って、外気調整空調機は夏期の外気をこの露点温度(摂氏10度)まで冷却除湿する必要が有り、このために経済的なコイル列数における冷却コイルに必要な冷却水(又は冷媒)の温度は、摂氏6度〜摂氏7度にする必要がある。即ち、冷却水を摂氏6度〜摂氏7度にまで冷却する冷凍装置が必要となる。   Furthermore, the constant temperature and humidity (temperature and humidity) indicating the air condition required by the indoor target air is relatively low temperature and dry air (for example, the temperature is 23 degrees Celsius and the relative humidity is 45%. In this case, the dew point temperature is 10 degrees Celsius). Therefore, it is necessary for the outside air conditioning air conditioner to cool and dehumidify the outside air in the summer to the dew point temperature (10 degrees Celsius). For this reason, the temperature of the cooling water (or refrigerant) necessary for the cooling coils in the economical number of coil rows. Must be between 6 degrees Celsius and 7 degrees Celsius. That is, a refrigeration apparatus for cooling the cooling water to 6 degrees Celsius to 7 degrees Celsius is required.
ところで、室内の循環空気の空気状態としては、室内の生産装置や空気を循環するファン照明などの発熱により還気温度は上昇するが、例えばクリーンルームでは空気の塵埃ろ過のために大風量で循環しており、発熱の多い箇所でも5〜6℃差、つまり23℃−6℃=17℃程度の状態の空気を室内に吹出すことで発熱が処理でき、室内目標空気23℃45%RHの状態が維持できる。よって、この吹出空気を17℃まで冷却するには、経済的なコイル列数で考えても例えば10℃の往冷水温の冷水で、十分循環空調機に備わる気・水熱交換器で冷却できる。   By the way, as the air state of the indoor circulating air, the return air temperature rises due to heat generated by indoor production equipment and fan lighting that circulates the air, but in a clean room, for example, it circulates with a large air volume for air dust filtration. Even in places with high heat generation, heat generation can be processed by blowing out air in the state of 5 to 6 ° C difference, that is, about 23 ° C-6 ° C = 17 ° C, and indoor target air is 23 ° C and 45% RH Can be maintained. Therefore, in order to cool the blown air to 17 ° C., even if considering the economical number of coils, for example, it is possible to cool with cold water having a cold water temperature of 10 ° C. with a sufficient air / water heat exchanger provided in the circulating air conditioner. .
圧縮冷凍機の場合、その冷凍サイクルにおける冷媒の状態変化をモリエ線図(圧力P−比エンタルピ線図)で示すが、蒸発器において冷凍対象の冷水の水温を7℃→10℃にまで上げられるということは、冷媒の蒸発圧力を上昇させることを意味し、冷凍機の成績係数COP(冷房能力と消費エネルギ(圧縮機動力)との比)においては、圧縮機の仕事量減によりCOPが大きくなる。これは凝縮側圧力が同じで蒸発圧力が高くなり、圧縮機の必要圧縮仕事が減るためである。例えば7℃でCOPが5.5の冷凍機は、10℃ではCOPが8まで能力が大きくなる。換言すれば省エネルギで冷凍できる。 In the case of a compression refrigerator, the refrigerant state change in the refrigeration cycle is shown by a Mollier diagram (pressure P-specific enthalpy diagram), and the temperature of cold water to be frozen can be raised from 7 ° C. to 10 ° C. in the evaporator. This means that the evaporation pressure of the refrigerant is increased, and in the coefficient of performance COP of the refrigerator (the ratio between the cooling capacity and the energy consumption (compressor power)), the COP increases due to the reduction in the work of the compressor. Become. This is because the condensing pressure is the same and the evaporation pressure is high, reducing the required compression work of the compressor. For example, a refrigerator having a COP of 5.5 at 7 ° C. has a capacity up to 8 at 10 ° C. In other words, it can be frozen with energy saving.
ここで、例えば半導体製造用クリーンルームでは、外気負荷は3割程度であり、他の循環空気側の負荷や生産装置(これも10℃以上の冷水冷却で十分である場合がほとんど)の負荷が7割である。また、外気負荷を夏のピーク負荷27℃WB→15℃、15℃→10℃に分割して2段の冷却を行うとすると、比エンタルピで(85−43)kg/kg(DA)と(43−30)kg/kg(DA)であり、7℃冷水が必要なつまり、15℃→10℃WBへの冷却除湿に必要な割合は、13/45=0.24であり、外気負荷の0.24の割合というと、外気負荷は建屋全体負荷の0.3の割合から、7℃冷水冷却の必要な割合は、建屋全体負荷の0.24×0.3=0.08の割合となる。 Here, for example, in a clean room for semiconductor manufacturing, the external air load is about 30%, and the load on the other circulating air side and the load on the production apparatus (this is also often sufficient for cooling with chilled water of 10 ° C. or higher) is 7 It is relatively expensive. Also, if the outside air load is divided into summer peak load 27 ° C WB → 15 ° C, 15 ° C → 10 ° C and two-stage cooling is performed, the specific enthalpy is (85-43) kg / kg (DA) ( 43-30) kg / kg (DA), which requires 7 ° C. cold water, that is, the ratio required for cooling dehumidification from 15 ° C. to 10 ° C. WB is 13/45 = 0.24, As for the ratio of 0.24, the outdoor air load is a ratio of 0.3 of the total building load, and the necessary ratio of 7 ° C. cold water cooling is the ratio of 0.24 × 0.3 = 0.08 of the total building load. Become.
1台の冷凍機で外気の冷却除湿も室の循環空気の冷却も行うには全て低温(摂氏6度〜摂氏7度)の冷却水となるよう全体の冷却水還水を冷凍するために不必要にエネルギを消費してしまう。そこで、2台の冷凍機を使用し、1台は上記の低温冷却水(摂氏6度〜摂氏7度)を得るための低温冷凍する冷凍機に利用し、他の1台は上記の低温冷却水よりも高温の冷却水を得るための高温冷水冷凍機として利用すれば、熱エネルギーロスの小さな空調システムを構築することができる。例えば先程の試算を受けて、このわずか8%の低温冷水負荷をまかなうターボ冷凍機を、92%をまかなう10℃冷水冷凍ターボ冷凍機に付加する空調システムを組めば、COPでみると5.5×8/100+8×92/100=7.8となり、建屋全体では大きく省エネルギとなる。たとえ、低温冷水冷凍機の小型化や形式変更によりCOPが低下しても、建屋全体ではCOPが向上するのは明らかである。 In order to cool and dehumidify the outside air and cool the circulating air in the room with a single refrigerator, it is not necessary to freeze the entire cooling water return water so that it becomes a cooling water of low temperature (6 degrees Celsius to 7 degrees Celsius). It consumes energy as necessary. Therefore, two refrigerators are used, one is used for a refrigerator that performs low-temperature freezing to obtain the above-described low-temperature cooling water (6 degrees Celsius to 7 degrees Celsius), and the other one is the above-described low-temperature cooling. If it is used as a high-temperature cold water refrigerator for obtaining cooling water having a temperature higher than that of water, an air conditioning system with a small heat energy loss can be constructed. For example, based on the previous calculation, if an air conditioning system that adds this turbo chiller that covers only 8% low-temperature chilled water load to a 10 ° C. chilled water refrigeration turbo chiller that covers 92%, it is 5.5 in terms of COP. × 8/100 + 8 × 92/100 = 7.8, which greatly saves energy in the entire building. Even if the COP is reduced by downsizing or changing the type of the low-temperature cold water refrigerator, it is clear that the COP is improved in the entire building.
なお、本出願人は従来装置よりもエネルギーロスの少ない外気調整空調機を発明し、既に特許出願している(特許文献1)。
特許願、特願2005−017028本出願は上記特許出願発明の改良発明である。以下に、上記特許出願発明の内容を必要な程度において説明する。図4はこの特許出願発明のシステムの全体図を示し、図5はこのシステムの外気調整空調機を示し、図6はこのシステムの湿り空気線図における状態遷移図を示す。
In addition, the present applicant has invented an outside air conditioning air conditioner with less energy loss than a conventional device, and has already filed a patent application (Patent Document 1).
Patent application, Japanese Patent Application No. 2005-017028 This application is an improvement of the above-mentioned patent application invention. Below, the content of the said patent application invention is demonstrated to a necessary extent. FIG. 4 shows an overall view of the system of the patent application invention, FIG. 5 shows an outside air conditioning air conditioner of this system, and FIG. 6 shows a state transition diagram in the humid air diagram of this system.
図4において、空調室50の内部にクリーン室51が設けられており、クリーン室51内に半導体製造装置等が設置されている。空調室50の内部クリーン室51の清浄度と室内温湿度を所定の状態に保持するため空気の循環を行っている。即ち、クリーン室51の天井にはファンフィルタユニット52が設けられ、クリーン室51の適当な個所、例えば床面にパンチング孔からなる開放口53が設けられている。クリーン室51の床面全面が開放穴53でもよい。クリーン室51内の空気の全部は開放穴53から出て、その大部分はコイルユニット54、ファンフィルタユニット52を経由して循環するように構成されている。開放穴53から出た空気の残り部分はダンパ付ファン55によって外部に放出される。また、外気調整空調機60から調整された空気がコイルユニット54の上流側に供給され、開放穴53からの大部分循環する還気と混合し、コイルユニット54で冷却した後にクリーン室51内に供給される。なお、コイルユニット54には冷凍機57からの冷水の一部が分岐管路Aを経由して循環するように構成されている。   In FIG. 4, a clean room 51 is provided inside the air conditioning room 50, and a semiconductor manufacturing apparatus or the like is installed in the clean room 51. Air is circulated in order to maintain the cleanliness of the internal clean room 51 of the air-conditioning room 50 and the room temperature and humidity in a predetermined state. That is, a fan filter unit 52 is provided on the ceiling of the clean chamber 51, and an opening 53 formed of a punching hole is provided at an appropriate location of the clean chamber 51, for example, the floor surface. The entire floor surface of the clean chamber 51 may be the open hole 53. All of the air in the clean chamber 51 exits from the open hole 53, and most of the air is configured to circulate via the coil unit 54 and the fan filter unit 52. The remaining portion of the air exiting from the opening hole 53 is discharged to the outside by the fan 55 with a damper. In addition, the air adjusted from the outside air conditioning air conditioner 60 is supplied to the upstream side of the coil unit 54, mixed with the return air that circulates mostly from the opening hole 53, cooled in the coil unit 54, and then into the clean chamber 51. Supplied. The coil unit 54 is configured such that a part of the cold water from the refrigerator 57 circulates through the branch pipe A.
外気調整空調機60は外気取入口62、供給ダクト接続口である調整空気送風口63を出口端に備えたケース61内に予冷用冷水コイル64、予熱用温水コイル65、加湿器66、直膨式コイル67、再熱用コイル68及び送風ファン69が下流に向かって順次配置されている。なお、送風ファンは特別この場所である必要はなく、予冷用冷水コイル64から再熱用コイル68のいずれかの間にあってもよい。冷凍機57からの冷水はパイプ57aを介して予冷用冷水コイル64の入口に流入し、同冷水コイル64の出口からポンプ58を経由して冷凍機57に還流される。ボイラー70によって生成された蒸気は熱交換器72を経由して熱交換後ドレンとして還水管へ放出され、熱交換器72で温められた温水はポンプ73、予熱用温水コイル65を経由して循環する。   The outside air conditioning air conditioner 60 has a cold air coil 64 for precooling, a hot water coil 65 for preheating, a humidifier 66, and a direct expansion in a case 61 provided with an outside air inlet 62 and a regulated air blowing port 63 as a supply duct connection port at the outlet end. The type coil 67, the reheating coil 68, and the blower fan 69 are sequentially arranged downstream. Note that the blower fan does not need to be in this particular place, and may be located between any of the pre-cooling cold water coil 64 and the reheating coil 68. The cold water from the refrigerator 57 flows into the inlet of the precooling cold water coil 64 through the pipe 57 a, and is returned to the refrigerator 57 through the pump 58 from the outlet of the cold water coil 64. The steam generated by the boiler 70 is discharged to the return water pipe as drain after heat exchange via the heat exchanger 72, and the warm water heated by the heat exchanger 72 is circulated via the pump 73 and the preheating hot water coil 65. To do.
図5は直膨式コイル67、再熱用コイル68の従来システムの詳細を示す。図5に示すように、直膨式コイル67は、圧縮機81、第1凝縮器82、第1膨張弁83を含む第1閉回路を構成している。第1閉回路は冷凍サイクルを構成しており、液化した冷媒が第1膨張弁83から急膨張してガス化した冷媒が直膨式コイル67を流れる際に蒸発潜熱を奪って冷却するもので、小容量の低温冷凍として容易に低温を作り出せるという特徴がある。但し、エネルギ消費効率はターボ冷凍機に比べてよくないという欠点がある。しかし例えば1割未満の外気冷熱負荷をCOP3で運転しても、その他9割をCOP8で運転(全COP=0.1×3+0.9×8=7.5)したら、全体をターボで7℃を冷凍するCOP5.5より向上し、省エネとなることは明らかである。また、第1閉回路を制御し、かつ、後述する機能を持たせるために、直膨式コイル67と圧縮機81の間に調整弁86を挿入し、圧縮機81と第1凝縮器82との間に調節弁87を挿入し、第1凝縮器82と膨張弁83との間に調節弁88を挿入している。   FIG. 5 shows the details of the conventional system of the directly expanded coil 67 and the reheating coil 68. As shown in FIG. 5, the direct expansion coil 67 constitutes a first closed circuit including a compressor 81, a first condenser 82, and a first expansion valve 83. The first closed circuit constitutes a refrigeration cycle, and when the liquefied refrigerant suddenly expands from the first expansion valve 83 and the gasified refrigerant flows through the direct expansion coil 67, it takes away the latent heat of evaporation and cools it. As a small-capacity low-temperature refrigeration, it is easy to produce low temperatures. However, there is a drawback that the energy consumption efficiency is not as good as that of a turbo refrigerator. However, for example, even if less than 10% of the outside air cooling load is operated with COP3, the other 90% is operated with COP8 (total COP = 0.1 × 3 + 0.9 × 8 = 7.5). It is clear that it is more energy efficient than COP5.5, which freezes the water. Further, in order to control the first closed circuit and to have a function to be described later, an adjustment valve 86 is inserted between the direct expansion coil 67 and the compressor 81, and the compressor 81, the first condenser 82, A control valve 87 is inserted between the first condenser 82 and the expansion valve 83, and a control valve 88 is inserted between the first condenser 82 and the expansion valve 83.
第1閉回路の調節弁87の上流側と調節弁88の上流側との間にバイパス路を設けて、このバイパス路に調節弁89と再熱用コイル68を設けている。このバイパス路によって圧縮機81で圧縮した高温ガスの一部を再熱用コイル68に流すことにより、そこを通過する外気の加熱が可能になっている。また、再熱用コイル68は調節弁88の上流側の一部管路を通過して膨張弁90、蒸発器91、調節弁86、圧縮機81、調節弁89を経由する第2閉回路を構成している。第2閉回路の膨張弁90の上流側に調節弁92が挿入されている。更に、第1凝縮器82及び蒸発器91を連通するエネルギ回収用管路93が設けられている。なお、第2閉回路は第1閉回路とともにヒートポンプを構成し、再熱用コイル68に高温ガスを流すと共に圧縮機81による余剰の圧縮エネルギを冷熱エネルギとして回収するための回路である。   A bypass path is provided between the upstream side of the control valve 87 and the upstream side of the control valve 88 in the first closed circuit, and the control valve 89 and the reheating coil 68 are provided in the bypass path. By flowing a part of the high-temperature gas compressed by the compressor 81 through the bypass passage to the reheating coil 68, the outside air passing therethrough can be heated. The reheating coil 68 has a second closed circuit that passes through a partial pipeline upstream of the control valve 88 and passes through the expansion valve 90, the evaporator 91, the control valve 86, the compressor 81, and the control valve 89. It is composed. A control valve 92 is inserted upstream of the expansion valve 90 of the second closed circuit. Furthermore, an energy recovery conduit 93 that communicates the first condenser 82 and the evaporator 91 is provided. The second closed circuit constitutes a heat pump together with the first closed circuit, and is a circuit for flowing high-temperature gas through the reheating coil 68 and recovering excess compression energy from the compressor 81 as cold energy.
調節弁87、88、89、92はコントローラ(図示省略)によって開閉及び流量制御が行われている。調節弁87、88、89、92の開閉は、例えば、夏季のような湿度の高いウエットシーズンでは調節弁87,88,89を開き、調節弁92を閉じる。この場合には図の2重の矢印(実線及び点線)の流路を冷媒が矢印方向に流れる。実線は直膨式コイル67を流れる流路で、点線は再熱用コイル68を流れる流路を示す。また、冬季のような湿度の低いドライシーズンでは調節弁89、92を開き、調節弁87、88は閉じる。この場合冷媒は(1重の)実線の矢印に示す流路を矢印方向に流れる。   The control valves 87, 88, 89, and 92 are opened / closed and flow rate controlled by a controller (not shown). In order to open and close the control valves 87, 88, 89, 92, for example, in the wet season with high humidity such as summer, the control valves 87, 88, 89 are opened and the control valve 92 is closed. In this case, the refrigerant flows in the direction indicated by the arrows in the double arrows (solid line and dotted line) in the figure. A solid line indicates a flow path that flows through the directly expanded coil 67, and a dotted line indicates a flow path that flows through the reheating coil 68. In the dry season with low humidity such as winter, the control valves 89 and 92 are opened, and the control valves 87 and 88 are closed. In this case, the refrigerant flows in the direction of the arrow through the flow path indicated by the (single) solid arrow.
図6はクリーン室の空気条件(R)として温度摂氏23度(乾球温度)、相対湿度45%の場合で、夏季の外気(S)が温度摂氏33度、相対湿度63%の場合、及び冬季の外気(W)が乾球温度摂氏0度、湿球温度摂氏(−3)度の場合について空調機による外気の状態変化を空気線図(湿り空気線図)で示したものである。空気条件R(室内目標空気に相当)の状態として露点温度は摂氏10度である。   FIG. 6 shows the case where the air condition (R) of the clean room is a temperature of 23 degrees Celsius (dry bulb temperature) and a relative humidity of 45%, and the summer outdoor air (S) is a temperature of 33 degrees Celsius and a relative humidity of 63%. FIG. 4 is an air diagram (wet air diagram) showing a change in the state of the outside air by the air conditioner when the outside air (W) in winter has a dry bulb temperature of 0 degrees Celsius and a wet bulb temperature of Celsius (−3) degrees. As a state of air condition R (corresponding to indoor target air), the dew point temperature is 10 degrees Celsius.
先ず、夏季状態では、取入れられた外気の状態Sは予冷用冷水コイル64によって飽和線に近い空気状態点Aまで冷やされ、更に飽和曲線に漸近しながら空気状態点E(摂氏15度、100%)まで冷却される。空気状態点Eは例えば冷水往温度10℃で経済的な列数コイルの予冷用冷水コイルで冷却可能な最大能力の点である。空気状態点Eの空気は更に直膨式冷却コイル11によって空気状態点Dまで冷却される。点Dの外気を再熱用コイル68によって点Rまで加熱してもよいが、空調室50の内部を循環する空気をコイル54で冷却するので、空気の混合により温度均一化が可能な温度差を持って循環空気の冷却を助けるよう混合するために点Qの温度(これが目標空気に相当)まで加熱すれば十分である。つまり、直膨式コイル67と再熱用コイル68とを同時に働かせている。次に、冬季の場合は、外気(W)が空気条件(R)を満たすように調整するために、最初に取入れた外気(W)を予熱用温水コイル65によって空気状態点Eまで加熱する。この後段の加湿器は水加湿であり断熱加湿を行うので、空気状態点Dの湿球温度と略同じ温度値まで加熱する。そして空気状態点Eの空気を点Dの空気状態点となるように加湿器66によって水加湿する。以後は夏季の場合と同様に点Qの温度まで加熱する。冬では再熱用コイル68のみ働かせるため第1閉回路と第2閉回路の流量調整がむずかしい。   First, in the summer state, the state S of the taken-in outside air is cooled to the air state point A close to the saturation line by the pre-cooling chilled water coil 64, and further the air state point E (15 degrees Celsius, 100% while gradually approaching the saturation curve). ) Until cooled. The air state point E is, for example, a point of maximum capacity that can be cooled by a cold water coil for pre-cooling of a row number coil that is economical at a cold water flow temperature of 10 ° C. The air at the air state point E is further cooled to the air state point D by the direct expansion type cooling coil 11. The outside air at the point D may be heated to the point R by the reheating coil 68, but the air circulating inside the air conditioning chamber 50 is cooled by the coil 54, so that the temperature difference can be made uniform by mixing the air. It is sufficient to heat to the temperature of point Q (which corresponds to the target air) to mix to help cool the circulating air. That is, the direct expansion coil 67 and the reheating coil 68 are simultaneously operated. Next, in the winter, in order to adjust the outside air (W) to satisfy the air condition (R), the outside air (W) introduced first is heated to the air state point E by the preheating hot water coil 65. The latter humidifier is water humidified and performs adiabatic humidification, so that the humidifier is heated to a temperature value substantially equal to the wet bulb temperature at the air state point D. Then, the air at the air state point E is water-humidified by the humidifier 66 so that it becomes the air state point at the point D. Thereafter, it is heated to the temperature of the point Q as in the summer. In winter, since only the reheating coil 68 is operated, it is difficult to adjust the flow rates of the first closed circuit and the second closed circuit.
以上に説明したように、特許文献1に記載の発明は、調節弁を設けて外気の状態によって管路の切換えを制御している。従って、複雑な配管と多数の調節弁が必要となり、初期コストが高くなる。また、外気の状態によって多数の弁を切換え運転しているためにシステムが安定するまで時間がかかり、調整した目標空気の状態が不安定になるという課題があった。そこで、本願発明はこれらの課題を解決するために以下の手段を採用した。   As described above, the invention described in Patent Document 1 is provided with a control valve to control the switching of the pipeline according to the state of the outside air. Therefore, complicated piping and a large number of control valves are required, which increases the initial cost. In addition, since a large number of valves are switched and operated depending on the state of the outside air, it takes time until the system is stabilized, and the adjusted target air state becomes unstable. Accordingly, the present invention employs the following means in order to solve these problems.
本発明は上記の課題を解決するための手段として以下の構成を採用している。即ち、請求項1に記載の発明は、外気を取り入れたのち、一年を通して一定乾球温度で一定湿度の室内目標空気と同じ露点温度の目標空気に調整する外気空調装置において、
外気取入口と目標空気送風口とを結ぶ風路に、予冷用冷水コイル、予熱用温水コイル及び加湿器とからなる前段空調装置と、直膨式コイル、再熱用コイル及び送風ファンとからなる後段空調装置とを具備し、
前記前段空調装置は外気取入口より外気を取り入れて、前記後段空調装置に送風する後段入口空気の状態所定の範囲内に入るように、前記予冷用冷水コイル、前記予熱用温水コイル、前記加湿器の運転を制御し、
前記後段空調装置は前記直膨式コイル、前記再熱用コイル、及び、圧縮機、膨張弁を含む閉回路からなる冷凍サイクルを構成し、該冷凍サイクルは年間を通して一定の定常運転により、前記目標空気を調整し、
前記所定の範囲は、室内目標空気と同一の比エンタルピであり、且つ相対湿度が80%〜100%の範囲にあることを特徴としている。
The present invention employs the following configuration as means for solving the above-described problems. That is, the invention according to claim 1 is an outside air conditioner that, after taking in outside air, adjusts to a target air having the same dew point temperature as a room target air having a constant dry bulb temperature and a constant humidity throughout the year .
The air passage connecting the outside air inlet and the target air blowing port, consisting of pre-cooling cold water coil, a front air-conditioning system comprising a hot water coil and the humidifier for preheating, directly expanded coil, a reheat coil and blower fan A rear air conditioner,
The front air conditioner incorporating the outside air from the outside air inlet such that said rear stage inlet air state to be blown downstream air conditioner is within a predetermined range, the pre-cooling cold water coil, the preheating hot water coil, the humidifying Control the operation of the
The latter-stage air conditioner constitutes a refrigeration cycle comprising a closed circuit including the direct expansion coil, the reheating coil, a compressor, and an expansion valve, and the refrigeration cycle performs the target operation through constant steady operation throughout the year. Adjust the air,
The predetermined range has the same specific enthalpy as the indoor target air, and the relative humidity is in the range of 80% to 100% .
請求項2に記載の発明は、請求項1に記載の発明において、前記所定の範囲は、外気の比エンタルピが前記目標空気の比エンタルピよりも高い場合は相対湿度が100%であり、外気の比エンタルピが前記目標空気の比エンタルピよりも低い場合は相対湿度が略90%よりも飽和線に近いものであるとしたことを特徴としている。
According to a second aspect of the present invention, in the first aspect of the present invention, when the specific enthalpy of the outside air is higher than the specific enthalpy of the target air, the relative humidity is 100%. When the specific enthalpy is lower than the specific enthalpy of the target air, the relative humidity is closer to the saturation line than about 90% .
本発明によれば、後段空調装置の運転を年間にわたり一定の冷凍サイクル状態の条件にすることが可能になるため、回路構成が簡単になり、同時に流路の切換をするための調節弁が不要となる。また、冷媒の直膨式コイル及び再熱用コイルとの熱交換の変動がなく常に一定の熱交換状態が通年にわたり実現できる。従って、配管等の初期コストが安くなるだけでなく、安定した運転操作が容易になるという効果が得られる。また、このことから、目標空気の温湿度が容易に一定になるという効果が得られる。   According to the present invention, since the operation of the rear-stage air conditioner can be made into a condition of a constant refrigeration cycle state for a year, the circuit configuration is simplified, and a control valve for switching the flow path is unnecessary at the same time. It becomes. In addition, there is no fluctuation in heat exchange between the direct expansion coil and the reheating coil of the refrigerant, and a constant heat exchange state can always be realized throughout the year. Accordingly, not only the initial cost of piping and the like is reduced, but also an effect that stable operation is facilitated can be obtained. Moreover, from this, the effect that the temperature and humidity of the target air can be easily made constant can be obtained.
図1は本願発明の実施形態の全体構成を示し、図2はこの実施形態の湿り空気線図における状態の遷移図を示す。図1に示すように、前段空調装置10は予冷用冷却コイル64、予熱用温水コイル65、加湿器66から構成され、後段空調装置20は直膨式コイル67、再熱用コイル68及び送風ファン69から構成されている。なお送風機は後段のどこにあってもよく、さらに前段にあってもよい。前段空調装置で調整された外気(以下、後段入口空気という。)が後段空調装置入口に送風される。   FIG. 1 shows the overall configuration of an embodiment of the present invention, and FIG. 2 shows a state transition diagram in the wet air diagram of this embodiment. As shown in FIG. 1, the pre-stage air conditioner 10 includes a pre-cooling cooling coil 64, a pre-heating hot water coil 65, and a humidifier 66, and the post-stage air conditioner 20 includes a direct expansion coil 67, a re-heating coil 68, and a blower fan. 69. Note that the blower may be located anywhere in the rear stage, and further in the front stage. The outside air adjusted by the front air conditioner (hereinafter referred to as rear inlet air) is blown to the rear air conditioner inlet.
予冷用冷却コイル64は取り入れた外気の比エンタルピが目標空気の比エンタルピよりも大きい場合(ウエットシーズンのとき)に外気を冷却する。この冷却温度は温度計11により検出し、制御器12より冷凍機57(図4参照)からの冷却水流量を制御弁64aにより制御する。例えば、外気の状態が図2に示す「S」にある場合は、点Sから空気状態点Aを経由して空気状態点Eに至るまで冷却する。ウエットシーズンの場合は予熱用温水コイル65、加湿器66は休止状態にする。なお空気中水溶性ガス除去を加湿器に機能として持たせる場合には加湿器66を動作させることがあるが、点Eは略飽和状態で空気状態点はEのままである。   The cooling coil 64 for pre-cooling cools the outside air when the specific enthalpy of the taken-in outside air is larger than the specific enthalpy of the target air (during the wet season). This cooling temperature is detected by the thermometer 11, and the flow rate of cooling water from the refrigerator 57 (see FIG. 4) is controlled by the controller 12 by the control valve 64a. For example, when the state of the outside air is “S” shown in FIG. 2, cooling is performed from the point S to the air state point E via the air state point A. In the wet season, the preheating hot water coil 65 and the humidifier 66 are in a resting state. Note that when the humidifier is provided with a function of removing water-soluble gas in the air, the humidifier 66 may be operated, but the point E is substantially saturated and the air state point remains E.
予熱用温水コイル65、加湿器66は外気の比エンタルピが目標空気の比エンタルピよりも小さい場合(ドライシーズンのとき)に外気を加熱、加湿する。予熱用温水コイル65による加熱は、後段入口空気の露点温度は湿球温度計15で検出し、制御器16により熱交換器72(図4参照)からの温水流量を制御弁65aにより制御する。例えば、外気の状態が図2に示す「W」にある場合は、点Wから点Fに至るまでつまり、空気状態点Gの湿球温度と略同じ温度値まで加熱する。加湿器66は水加湿(ワッシャ)であり断熱加湿するので、等湿球温度線(等エンタルピ線上に略等しい)に沿ってその中の空気の状態を変化させる。加湿器66は相対湿度が、好ましくは略90%以上になるように設計(構成)しておく。この結果、例えば、図2の状態Fにある空気は状態Gになる。ドライシーズンの場合は冷却用冷水コイル64を休止状態にする。この結果、ウエットシーズンの場合とドライシーズンの場合の何れも後段入口空気の比エンタルピが「Ie」線上の空気状態点E又は空気状態点Gにある。   The preheating hot water coil 65 and the humidifier 66 heat and humidify the outside air when the specific enthalpy of the outside air is smaller than the specific enthalpy of the target air (during the dry season). In the heating by the preheating hot water coil 65, the dew point temperature of the rear stage inlet air is detected by the wet bulb thermometer 15, and the controller 16 controls the flow rate of hot water from the heat exchanger 72 (see FIG. 4) by the control valve 65a. For example, when the state of the outside air is “W” shown in FIG. 2, heating is performed from point W to point F, that is, to a temperature value substantially the same as the wet bulb temperature at the air state point G. The humidifier 66 is a water humidifier (washer) and adiabatically humidifies, so that the state of the air in the humidifier 66 changes along the isohumidity bulb temperature line (substantially equal to the isoenthalpy line). The humidifier 66 is designed (configured) so that the relative humidity is preferably about 90% or more. As a result, for example, the air in the state F of FIG. In the dry season, the cooling cold water coil 64 is put into a resting state. As a result, in both the wet season and the dry season, the specific enthalpy of the rear-stage inlet air is at the air state point E or the air state point G on the “Ie” line.
次に、直膨張式コイル67、再熱用コイル68及び送風ファン69はウエットシーズンの場合もドライシーズンの場合も常に一定の定常運転を行う。即ち、直膨張式コイル67は圧縮機81、制御弁87、凝縮器82、制御弁88、膨張弁83からなるサイクルを経由して冷媒が流れ、後段入口空気を比エンタルピ「Ie」から比エンタルピ「Id」まで冷却する。これによって、比エンタルピ「Ie」線上にある点「E」の後段入口空気も点「G」にある後段入口空気も飽和して、飽和曲線上の点「D」に至る。また、再熱用コイル68は圧縮機81で圧縮されて高温になった冷媒の一部が分岐して制御弁89、再熱用コイル68、制御弁88、膨張弁83を介して流れ、直膨張式コイル67から出た後段入口空気を加熱する。この加熱により、飽和曲線上の点「D」にある湿り空気は点Qまで加熱されて所望の目標空気となる。なお、送風ファン69は一定回転し、一定風量の目標空気を流す。   Next, the direct expansion coil 67, the reheating coil 68, and the blower fan 69 always perform constant steady operation in both the wet season and the dry season. That is, in the direct expansion coil 67, the refrigerant flows through a cycle including the compressor 81, the control valve 87, the condenser 82, the control valve 88, and the expansion valve 83, and the rear inlet air is changed from the specific enthalpy “Ie” to the specific enthalpy. Cool to “Id”. As a result, the post-stage inlet air at the point “E” on the specific enthalpy “Ie” line and the post-stage inlet air at the point “G” are saturated to the point “D” on the saturation curve. In addition, the reheating coil 68 is branched by a part of the refrigerant that has been compressed by the compressor 81 and becomes high temperature, and flows through the control valve 89, the reheating coil 68, the control valve 88, and the expansion valve 83. The rear stage inlet air coming out of the expansion coil 67 is heated. By this heating, the humid air at the point “D” on the saturation curve is heated to the point Q to become the desired target air. Note that the blower fan 69 rotates at a constant speed, and flows a target air with a constant air volume.
図3は比エンタルピ「Ie」線上にある相対湿度の異なる点について、直膨張式コイル67によって冷却した場合の遷移図を示している。相対湿度「H0」の場合は絶対湿度が点Dの絶対湿度に等しく、理想的には点Dに達すると思われる。しかし、実際には過冷却等の現象が発生し、点Dに到達できない。相対湿度「H1」の場合はかろうじて点Dに到達できる限界である。相対湿度「H2」、相対湿度「H3」の場合は飽和曲線に達した後に点Dに到達している。本願の目的からすれば、相対湿度はH2でもH3でもよいわけであるが、相対湿度が低すぎると加湿器66において空気中水溶性ガス除去としてアンモニア等の水溶性ガスを除去できない。また逆に高い相対湿度を要求すると加湿器の設計、製作が困難になる。従って、冬期ピーク加湿時に相対湿度は加湿器66の出口で90%位が望ましく、本実施形態はこれを採用した場合について説明した。   FIG. 3 shows a transition diagram in the case of cooling by the direct expansion coil 67 at different relative humidity points on the specific enthalpy “Ie” line. In the case of the relative humidity “H0”, the absolute humidity is equal to the absolute humidity at the point D and ideally reaches the point D. However, actually, a phenomenon such as supercooling occurs, and the point D cannot be reached. In the case of relative humidity “H1”, this is the limit at which point D can be reached. In the case of relative humidity “H2” and relative humidity “H3”, the point D is reached after reaching the saturation curve. For the purpose of the present application, the relative humidity may be H2 or H3. However, if the relative humidity is too low, the humidifier 66 cannot remove the water-soluble gas such as ammonia as the water-soluble gas in the air. Conversely, if a high relative humidity is required, it becomes difficult to design and manufacture the humidifier. Accordingly, the relative humidity is desirably about 90% at the outlet of the humidifier 66 during winter peak humidification, and this embodiment has been described with respect to the case where this is adopted.
以上に説明した実施形態では、通年を通じて後段空調機を一定条件で運転できる。このために回路の切換えが不要となり、設備のコストが安価になるだけでなく、制御が簡単になり、目標空気の条件が安定して満たされる。また、ドライシーズンにおける後段入口空気の相対湿度を90%として設計しているのでアンモニア等の水溶性ガスを容易に除去できると共に加湿器の設計等も容易にできる。   In the embodiment described above, the latter-stage air conditioner can be operated under constant conditions throughout the year. This eliminates the need for circuit switching, which not only lowers the cost of the equipment, but also simplifies the control and stably satisfies the target air conditions. Further, since the relative humidity of the rear-stage inlet air in the dry season is designed to be 90%, water-soluble gas such as ammonia can be easily removed and the humidifier can be easily designed.
なお、本発明の技術的範囲は上記に説明した実施形態(又は実施例)に限定されるものではない。例えば、露点E(図2参照)は目標空気(R)の比エンタルピ線上になくてもよい。また、後段入口空気の相対湿度が90%以外であっても本発明の技術的範囲に属する。   The technical scope of the present invention is not limited to the embodiment (or example) described above. For example, the dew point E (see FIG. 2) may not be on the specific enthalpy line of the target air (R). Further, even if the relative humidity of the rear stage inlet air is other than 90%, it belongs to the technical scope of the present invention.
本発明を実施した実施形態の要部の構成を示す。The structure of the principal part of embodiment which implemented this invention is shown. 本実施形態の湿り空気線図における状態遷移図を示す。The state transition diagram in the humid air line figure of this embodiment is shown. 本実施形態の加湿器における相対湿度の選択基準を説明した図である。It is a figure explaining the selection criteria of relative humidity in the humidifier of this embodiment. 従来装置の全体図を示す。An overall view of a conventional apparatus is shown. 従来装置の要部の説明図を示す。Explanatory drawing of the principal part of a conventional apparatus is shown. 従来装置の状態遷移図を示す。The state transition diagram of a conventional apparatus is shown.
符号の説明Explanation of symbols
10 前段空調装置
11 温度計
12 温度制御器
15 湿球温度計
16 温度制御器
20 後段空調装置
64 予例用冷水コイル
65 予熱用温水コイル
66 加湿器
67 直膨式冷却コイル
68 再熱用コイル
69 送風ファン
DESCRIPTION OF SYMBOLS 10 Pre-stage air conditioner 11 Thermometer 12 Temperature controller 15 Wet bulb thermometer 16 Temperature controller 20 Rear-stage air conditioner 64 Preliminary cold water coil 65 Preheat hot water coil 66 Humidifier 67 Direct expansion type cooling coil 68 Reheat coil 69 Blower fan

Claims (2)

  1. 外気を取り入れたのち、一年を通して一定乾球温度で一定湿度の室内目標空気と同じ露点温度の目標空気に調整する外気空調装置において、
    外気取入口と目標空気送風口とを結ぶ風路に、予冷用冷水コイル、予熱用温水コイル及び加湿器とからなる前段空調装置と、直膨式コイル、再熱用コイル及び送風ファンとからなる後段空調装置とを具備し、
    前記前段空調装置は外気取入口より外気を取り入れて、前記後段空調装置に送風する後段入口空気の状態所定の範囲内に入るように、前記予冷用冷水コイル、前記予熱用温水コイル、前記加湿器の運転を制御し、
    前記後段空調装置は前記直膨式コイル、前記再熱用コイル、及び、圧縮機、膨張弁を含む閉回路からなる冷凍サイクルを構成し、該冷凍サイクルは年間を通して一定の定常運転により、前記目標空気を調整し、
    前記所定の範囲は、室内目標空気と同一の比エンタルピであり、且つ相対湿度が80%〜100%の範囲にあることを特徴とする外気調整空調機。
    In the outside air conditioner that adjusts to the target air with the same dew point temperature as the indoor target air with constant dry bulb temperature and constant humidity throughout the year after taking in the outside air,
    The air passage connecting the outside air inlet and the target air blowing port, consisting of pre-cooling cold water coil, a front air-conditioning system comprising a hot water coil and the humidifier for preheating, directly expanded coil, a reheat coil and blower fan A rear air conditioner,
    The front air conditioner incorporating the outside air from the outside air inlet such that said rear stage inlet air state to be blown downstream air conditioner is within a predetermined range, the pre-cooling cold water coil, the preheating hot water coil, the humidifying Control the operation of the
    The latter-stage air conditioner constitutes a refrigeration cycle comprising a closed circuit including the direct expansion coil, the reheating coil, a compressor, and an expansion valve, and the refrigeration cycle performs the target operation through constant steady operation throughout the year. Adjust the air,
    The predetermined range has the same specific enthalpy as the indoor target air, and the relative humidity is in the range of 80% to 100% .
  2. 前記所定の範囲は、外気の比エンタルピが前記目標空気の比エンタルピよりも高い場合は相対湿度が100%であり、外気の比エンタルピが前記目標空気の比エンタルピよりも低い場合は相対湿度が略90%よりも飽和線に近いものであるとしたことを特徴とする請求項1に記載の外気調整空調機。
    The predetermined range is such that when the specific enthalpy of the outside air is higher than the specific enthalpy of the target air, the relative humidity is 100%, and when the specific enthalpy of the outside air is lower than the specific enthalpy of the target air, the relative humidity is approximately. The outside-air-conditioning air conditioner according to claim 1, wherein the air-conditioning air conditioner is closer to a saturation line than 90% .
JP2006238874A 2006-09-04 2006-09-04 Outside air conditioning air conditioner Active JP4892305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006238874A JP4892305B2 (en) 2006-09-04 2006-09-04 Outside air conditioning air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006238874A JP4892305B2 (en) 2006-09-04 2006-09-04 Outside air conditioning air conditioner

Publications (2)

Publication Number Publication Date
JP2008057938A JP2008057938A (en) 2008-03-13
JP4892305B2 true JP4892305B2 (en) 2012-03-07

Family

ID=39240886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006238874A Active JP4892305B2 (en) 2006-09-04 2006-09-04 Outside air conditioning air conditioner

Country Status (1)

Country Link
JP (1) JP4892305B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5099843B2 (en) * 2008-06-26 2012-12-19 オリオン機械株式会社 Temperature and humidity control device
JP5346828B2 (en) * 2009-02-02 2013-11-20 中部電力株式会社 Air conditioning system
JP5204702B2 (en) * 2009-03-23 2013-06-05 大成建設株式会社 Air conditioning system in a building with many heat generating devices
JP6047722B2 (en) * 2012-07-06 2016-12-21 オリオン機械株式会社 Precision temperature controller
JP6384706B2 (en) * 2013-12-26 2018-09-05 清水建設株式会社 Clean room air conditioning system
US10317120B2 (en) 2014-05-13 2019-06-11 Mitsubishi Electric Corporation Air conditioning system with indoor and ventilation circuits
JP2015224810A (en) * 2014-05-27 2015-12-14 清水建設株式会社 Air conditioning system
KR101552980B1 (en) 2014-07-24 2015-09-14 에이치에스지(주) Water source dehumidifier and dryer
CN104197478B (en) * 2014-08-15 2017-01-18 贵州汇通华城股份有限公司 Machine room air conditioner energy-saving control system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001280657A (en) * 2000-03-29 2001-10-10 Hitachi Plant Eng & Constr Co Ltd Air conditioner
JP2004190972A (en) * 2002-12-12 2004-07-08 Dainippon Screen Mfg Co Ltd Air conditioning system for clean room and method of air conditioning clean room
JP4555097B2 (en) * 2005-01-25 2010-09-29 三機工業株式会社 Clean room air conditioner

Also Published As

Publication number Publication date
JP2008057938A (en) 2008-03-13

Similar Documents

Publication Publication Date Title
JP4892305B2 (en) Outside air conditioning air conditioner
JP4555097B2 (en) Clean room air conditioner
JP4595654B2 (en) Refrigeration cycle equipment
JP2008070097A (en) Dehumidifying air conditioner
JP2006029598A (en) Air conditioner, and its control method
CN104848497A (en) Air conditioner
CN103890495A (en) Refrigeration and air-conditioning device, and humidity adjustment device
JP6485881B2 (en) Dehumidifying system for dry rooms
JP2006317012A (en) Air conditioner
CN207471687U (en) Air-conditioning system and the air conditioner with the air-conditioning system
JP4647399B2 (en) Ventilation air conditioner
CN202581623U (en) Humidity independent control fresh air processor for radiation air-conditioning system
KR20050049954A (en) Condenser having low temperture flow path in air conditioner outdoor unit
JP3145551U (en) Air conditioner
JP2008121997A (en) Air conditioner
CN204227586U (en) A kind of two low-temperature receiver latent heat process low-temperature air conditioner unit
CN100523657C (en) Freezing air-conditioning apparatus
JP5229274B2 (en) Refrigeration cycle equipment
CN214250050U (en) Heat recovery air conditioning system
JP2008121995A (en) Air conditioner
JP5641004B2 (en) Refrigeration cycle equipment
JP2020041796A (en) Air conditioner with dehumidifying function and control method thereof
KR101230149B1 (en) Air conditioning apparatus
KR102257544B1 (en) Energy enhanced air-conditioning system and control method thereof
CN213178883U (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111219

R150 Certificate of patent or registration of utility model

Ref document number: 4892305

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250