JP2011151056A - Semiconductor device, and method of manufacturing semiconductor device - Google Patents

Semiconductor device, and method of manufacturing semiconductor device Download PDF

Info

Publication number
JP2011151056A
JP2011151056A JP2010008796A JP2010008796A JP2011151056A JP 2011151056 A JP2011151056 A JP 2011151056A JP 2010008796 A JP2010008796 A JP 2010008796A JP 2010008796 A JP2010008796 A JP 2010008796A JP 2011151056 A JP2011151056 A JP 2011151056A
Authority
JP
Japan
Prior art keywords
semiconductor device
drain electrode
wiring board
region
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010008796A
Other languages
Japanese (ja)
Inventor
Kunihiro Takenaka
国浩 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2010008796A priority Critical patent/JP2011151056A/en
Publication of JP2011151056A publication Critical patent/JP2011151056A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Landscapes

  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device for maximally reducing the inclination of a semiconductor chip, and also to provide a method of manufacturing the semiconductor device. <P>SOLUTION: The semiconductor device is constituted in such a way that a region with a plurality of source electrodes formed therein and a region with a drain electrode formed therein are formed at substantially symmetrical positions via a semiconductor element. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、半導体装置及び半導体装置の製造方法に関するものである。   The present invention relates to a semiconductor device and a method for manufacturing the semiconductor device.

半導体チップの能動領域が形成された面をモジュール基板側に向け、半導体チップをはんだ層によりモジュール基板に実装するフリップチップ(フェイスダウン)実装は、例えば、特開2002−110871号に示されている。
特開2002−110871号公報
Flip chip (face-down) mounting in which the surface of the semiconductor chip on which the active region is formed faces the module substrate and the semiconductor chip is mounted on the module substrate with a solder layer is disclosed in, for example, Japanese Patent Laid-Open No. 2002-110871 .
JP 2002-110871 A

上記文献1のような半導体チップの表裏面をそれぞれモジュール基板に接続するような構成では、フリップチップ実装工程において、半導体チップに傾きが発生し易い。傾きが生じると、接続部のはんだ層に応力(ひずみ)が集中する。このような応力集中は、半導体装置の信頼性に影響を与える。特に、5mm角より小さいベアチップにおいては、半導体チップの傾きが発生し易い。従って、そのようなベアチップを用いた半導体装置では、信頼性への影響がより顕著になる。   In the configuration in which the front and back surfaces of the semiconductor chip are connected to the module substrate as in Document 1, the semiconductor chip is likely to be inclined in the flip chip mounting process. When the inclination occurs, stress (strain) concentrates on the solder layer of the connection portion. Such stress concentration affects the reliability of the semiconductor device. In particular, in a bare chip smaller than 5 mm square, the inclination of the semiconductor chip is likely to occur. Therefore, in a semiconductor device using such a bare chip, the influence on reliability becomes more remarkable.

本願発明の発明者は従来着目されていなかった課題に着目し、それを解決する後述の発明をなした。本願発明の目的は、半導体チップの傾きを最大限低減できる半導体装置及びその半導体装置の製造方法を提供することである。   The inventor of the present invention paid attention to a problem that has not been noticed in the past, and made an invention described later to solve it. An object of the present invention is to provide a semiconductor device capable of reducing the tilt of a semiconductor chip to the maximum and a method for manufacturing the semiconductor device.

上記目的を達成するため、本願の代表的な発明に係る半導体装置は、
第1の配線板と、
第1の面及び前記第1の面と反対側の第2の面を有し、前記第1の面には前記第1の配線板に第1のはんだ層を介して接続された複数のソース電極が形成され、前記第2の面にはドレイン電極が形成された半導体素子と、
前記ドレイン電極に第2のはんだ層を介して接続された第2の配線板とを備え、
前記複数のソース電極が形成された領域と前記ドレイン電極が形成された領域とは、前記半導体素子を介して実質的に対称な位置に配置されている。
In order to achieve the above object, a semiconductor device according to a representative invention of the present application is:
A first wiring board;
A plurality of sources having a first surface and a second surface opposite to the first surface, the first surface being connected to the first wiring board via a first solder layer A semiconductor element having an electrode formed thereon and a drain electrode formed on the second surface;
A second wiring board connected to the drain electrode via a second solder layer;
The region in which the plurality of source electrodes are formed and the region in which the drain electrode is formed are arranged at substantially symmetrical positions with the semiconductor element interposed therebetween.

また、本願の他の発明に係る半導体装置の製造方法は、
第1の配線板を準備する工程と、
半導体素子の複数のソース電極と前記第1の配線板とを第1リフローにより第1のはんだ層を介して接続する工程と、
その後、前記複数のソース電極が形成された面とは反対側の面に形成された前記半導体素子のドレイン電極に、第2の配線板を第2リフローにより第2のはんだ層を介して接続する工程とを備え、
前記複数のソース電極が形成された領域と前記ドレイン電極が形成された領域とは、前記半導体素子を介して実質的に対称な位置に配置されている。
In addition, a method for manufacturing a semiconductor device according to another invention of the present application is as follows:
Preparing a first wiring board;
Connecting a plurality of source electrodes of a semiconductor element and the first wiring board via a first solder layer by a first reflow;
Thereafter, a second wiring board is connected via a second solder layer to the drain electrode of the semiconductor element formed on the surface opposite to the surface on which the plurality of source electrodes are formed by a second reflow. A process,
The region in which the plurality of source electrodes are formed and the region in which the drain electrode is formed are arranged at substantially symmetrical positions with the semiconductor element interposed therebetween.

本願の代表的な発明によれば、半導体素子の傾きを最大限低減した半導体装置を実現できる。その結果、接続部であるはんだ層の熱疲労に対しての信頼性を向上できる。


According to the representative invention of the present application, a semiconductor device in which the inclination of the semiconductor element is reduced to the maximum can be realized. As a result, the reliability against thermal fatigue of the solder layer as the connection portion can be improved.


本発明の実施形態に係る半導体装置の実装構造の断面模式図Sectional schematic diagram of the mounting structure of the semiconductor device according to the embodiment of the present invention 図1の半導体装置のA−A’断面における上面模式図(ドレイン電極側)FIG. 1 is a schematic top view (drain electrode side) of the semiconductor device of FIG. 図1の半導体装置のA−A’断面における上面模式図(ソース電極側)1 is a schematic top view (source electrode side) of the semiconductor device of FIG. 実施形態に係るゲート電極の他のレイアウトAnother layout of the gate electrode according to the embodiment 実施形態及び比較例に用いられた半導体装置の上面模式図Schematic top view of semiconductor devices used in the embodiments and comparative examples 実施形態と比較例との比較結果Comparison results between the embodiment and the comparative example 他の実施形態に係る部分断面模式図Partial sectional schematic view according to another embodiment 他の実施形態に係る上面模式図Schematic top view according to another embodiment

以下、本発明の実施形態について図面を参照して説明する。本実施形態に係る図面については理解の容易化のため模式的に示されている。本実施形態では、一例として電力変換装置等に用いられる半導体装置に本発明を適用した例が示されているが、これに限定されるものではない。図1には、本実施形態に係る半導体装置の実装構造の断面模式図が示され、図2には図1の半導体装置のA−A’断面におけるドレイン電極側の上面模式図が示され、図3には図1の半導体装置のA−A’断面におけるソース電極側の上面模式図が示されている。本実施形態では、能動領域或いは回路領域が形成された半導体チップのことを半導体素子と呼称する場合があり、特に、樹脂によりその表面が封止されていない半導体チップ或いは半導体素子を樹脂封止型のものと区別してベアチップと呼称する。   Embodiments of the present invention will be described below with reference to the drawings. The drawings according to the present embodiment are schematically shown for easy understanding. In this embodiment, the example which applied this invention to the semiconductor device used for a power converter device etc. is shown as an example, However, It is not limited to this. FIG. 1 shows a schematic cross-sectional view of the mounting structure of the semiconductor device according to the present embodiment, and FIG. 2 shows a schematic top view on the drain electrode side in the AA ′ cross-section of the semiconductor device of FIG. FIG. 3 is a schematic top view on the source electrode side in the section AA ′ of the semiconductor device of FIG. In this embodiment, a semiconductor chip in which an active region or a circuit region is formed may be referred to as a semiconductor element. In particular, a semiconductor chip or a semiconductor element whose surface is not sealed with a resin is a resin-sealed type. It is called a bare chip to distinguish it from those.

図1には、本実施形態の半導体装置100が示されている。この半導体装置100は半導体チップ1を備える。この半導体チップ1はMOS型トランジスタであり、周知の半導体プロセスにより形成されている。この半導体チップ1の第1の面側に形成された回路領域には、図3に示されるように複数のソース電極2及びゲート電極3が導電材料により形成されている。本実施形態では、図3に示される通り16個のソース電極2がマトリクス状に配置されており、この複数のソース電極2が配置された領域をソース電極形成領域20と定義している。すなわち、最外側に配置された、隣接するソース電極の最外部同士を直線で結んだ領域の内側を本実施形態ではソース電極形成領域と呼ぶ。ソース電極のマトリクス状配置は、設計の都合により適宜変更可能である。すなわち、行及び列数は適宜変更可能なものであり、本実施形態の4行、4列に限定されるものではない。また、図3に示された構成では、ゲート電極3はソース電極形成領域20の外側に形成されているが、図4に示されるようにゲート電極3がソース電極形成領域20の内側に形成される場合もある。   FIG. 1 shows a semiconductor device 100 of this embodiment. The semiconductor device 100 includes a semiconductor chip 1. The semiconductor chip 1 is a MOS transistor and is formed by a known semiconductor process. In the circuit region formed on the first surface side of the semiconductor chip 1, a plurality of source electrodes 2 and gate electrodes 3 are formed of a conductive material as shown in FIG. In the present embodiment, as shown in FIG. 3, 16 source electrodes 2 are arranged in a matrix, and a region where the plurality of source electrodes 2 are arranged is defined as a source electrode formation region 20. That is, the inner side of the region arranged on the outermost side and connecting the outermost portions of adjacent source electrodes with a straight line is referred to as a source electrode formation region in this embodiment. The matrix arrangement of the source electrodes can be appropriately changed depending on the design. That is, the number of rows and columns can be changed as appropriate, and is not limited to the four rows and four columns of the present embodiment. In the configuration shown in FIG. 3, the gate electrode 3 is formed outside the source electrode formation region 20, but the gate electrode 3 is formed inside the source electrode formation region 20 as shown in FIG. There is also a case.

ソース電極2及びゲート電極3は、はんだボール4を介して第1の配線板5上に形成された電極6にそれぞれ接続されている。第1の配線板5上には回路パターンが形成され、複数の電極6は所定の回路に電気的に接続されている。   The source electrode 2 and the gate electrode 3 are connected to the electrode 6 formed on the first wiring board 5 via the solder balls 4, respectively. A circuit pattern is formed on the first wiring board 5, and the plurality of electrodes 6 are electrically connected to a predetermined circuit.

半導体チップ1の第1の面と反対側の第2の面上には、ドレイン電極7が形成されている。このドレイン電極7は導電材料により構成され、ソース電極形成領域20と実質的に対称な領域に形成されている。すなわち、ドレイン電極7の形成された領域とソース電極形成領域20とは半導体チップ1を挟んで対向している。このドレイン電極7は、はんだ層10を介して第2の配線板8上に形成された電極9に接続されている。   A drain electrode 7 is formed on the second surface opposite to the first surface of the semiconductor chip 1. The drain electrode 7 is made of a conductive material, and is formed in a region that is substantially symmetrical with the source electrode formation region 20. That is, the region where the drain electrode 7 is formed and the source electrode forming region 20 are opposed to each other with the semiconductor chip 1 interposed therebetween. The drain electrode 7 is connected to an electrode 9 formed on the second wiring board 8 through a solder layer 10.

次に、この半導体装置100の実装工程について説明する。ここで行われる実装方法はフリップチップ(フェイスダウン)実装と呼ばれるものである。半導体チップ1を実装する場合、まず、回路面のソース電極2及びゲート電極3にはんだボール4を形成し、あらかじめこれらの電極に対応する位置に形成してある第1の配線板5の電極6に位置あわせした後、リフローすることで接合する。   Next, a mounting process of the semiconductor device 100 will be described. The mounting method performed here is called flip-chip (face-down) mounting. When mounting the semiconductor chip 1, first, solder balls 4 are formed on the source electrode 2 and the gate electrode 3 on the circuit surface, and the electrodes 6 of the first wiring board 5 formed in advance at positions corresponding to these electrodes. After aligning to, join by reflow.

次に、半導体チップ1のドレイン電極7を接合するため、半導体チップ1を実装した第1の配線板5に対して、はんだを配置し、あらかじめ半導体チップ1のドレイン電極に対応する位置に形成してある第2の配線板8の電極9に位置あわせし、再度、リフローすることで、はんだ層10を介して接合する。このようにして、半導体装置100の実装が完成する。   Next, in order to join the drain electrode 7 of the semiconductor chip 1, solder is disposed on the first wiring board 5 on which the semiconductor chip 1 is mounted and formed in advance at a position corresponding to the drain electrode of the semiconductor chip 1. The second wiring board 8 is aligned with the electrode 9 and reflowed again to be joined via the solder layer 10. In this way, the mounting of the semiconductor device 100 is completed.

一般的な半導体装置の実装の工程では、2回のリフローを経ていることから、2回目のリフロー時に、半導体チップ1に傾きが発生する可能性がある。すなわち、2回目のリフロー時に発生するはんだの表面張力により、半導体チップに1回目のリフローで形成したはんだボールをつぶす方向の力が発生する場合がある。特に、ソース電極及びゲート電極が、半導体チップの回路面全体に対して均等に形成されていない場合、ドレイン電極側で発生した表面張力を受けるはんだボールの面積が場所により異なることになり、2回目のリフロー時に、半導体チップに傾きが発生する場合がある。   In a general semiconductor device mounting process, since reflow is performed twice, there is a possibility that the semiconductor chip 1 may be inclined during the second reflow. In other words, the surface tension of the solder generated during the second reflow may cause a force in the direction of crushing the solder balls formed in the first reflow on the semiconductor chip. In particular, when the source electrode and the gate electrode are not formed uniformly over the entire circuit surface of the semiconductor chip, the area of the solder ball that receives the surface tension generated on the drain electrode side differs depending on the location, and the second time During the reflow process, the semiconductor chip may be tilted.

一方、本実施形態では、ドレイン電極7はソース電極形成領域20と実質的に対称な領域に形成されている。すなわち、ドレイン電極7の形成された領域とソース電極形成領域20とは半導体チップ1を挟んで対向している。ドレイン電極7と接合する第2の配線板8の電極9はソース電極形成領域21と等しい領域内に形成されている。つまり、ドレイン電極形成領域21とソース電極形成領域20は、半導体チップ1の厚み方向の中立面に対して対称に形成されている。従って、ドレイン電極側で発生した表面張力を複数のソース電極側で実質的に等しく受けることができるので、2回目のリフロー時に、半導体チップの傾きを最大限低減することができる。   On the other hand, in the present embodiment, the drain electrode 7 is formed in a region that is substantially symmetrical with the source electrode formation region 20. That is, the region where the drain electrode 7 is formed and the source electrode forming region 20 are opposed to each other with the semiconductor chip 1 interposed therebetween. The electrode 9 of the second wiring board 8 joined to the drain electrode 7 is formed in a region equal to the source electrode formation region 21. That is, the drain electrode formation region 21 and the source electrode formation region 20 are formed symmetrically with respect to the neutral plane in the thickness direction of the semiconductor chip 1. Accordingly, the surface tension generated on the drain electrode side can be substantially equally applied to the plurality of source electrode sides, so that the inclination of the semiconductor chip can be reduced to the maximum during the second reflow.

この場合、図3に示した破線で囲まれたソース電極形成領域20に相当する領域に等しい面積をドレイン電極形成領域21とし、半導体素子1のドレイン電極7およびそれと接合する第2の配線板8の電極9を形成するが、その際、半導体素子1のドレイン電極7に対しては、はんだが濡れ広がらないようレジスト処理を施した。このレジスト処理は、はんだの濡れ広がりを防止する目的であるため、あらかじめはんだ濡れ性の低いAlなどの金属を蒸着したり、または、配線板に形成するレジスト処理を施しても良い。   In this case, an area equal to the area corresponding to the source electrode forming area 20 surrounded by the broken line shown in FIG. 3 is used as the drain electrode forming area 21, and the drain electrode 7 of the semiconductor element 1 and the second wiring board 8 joined thereto. In this case, the drain electrode 7 of the semiconductor element 1 was subjected to a resist treatment so that the solder did not spread. Since this resist treatment is intended to prevent the solder from spreading, a metal such as Al having low solder wettability may be deposited in advance, or a resist treatment formed on a wiring board may be applied.

ここで、本実施形態の半導体装置と、半導体チップの第2の面上全面にドレイン電極が形成された一般的な半導体装置とを比較した結果を図5及び図6を参照して説明する。この比較では、長辺:3.9mm、短辺:2.8mm、厚さ:0.28mmの半導体チップに、直径0.2mmのソース電極を図5に示すピッチでマトリクス状に配置し、半導体チップ1を介してソース電極形成領域20と対称な領域(ドレイン電極形成領域21)にドレイン電極が形成されたものを本実施形態とし、半導体チップの第2の面上全面(図5の二点鎖線で示すドレイン電極形成領域21’)にドレイン電極が形成されたものを比較例とした。   Here, a result of comparison between the semiconductor device of the present embodiment and a general semiconductor device in which the drain electrode is formed on the entire second surface of the semiconductor chip will be described with reference to FIGS. In this comparison, a semiconductor electrode having a long side: 3.9 mm, a short side: 2.8 mm, and a thickness: 0.28 mm is arranged with a source electrode having a diameter of 0.2 mm arranged in a matrix at a pitch shown in FIG. In this embodiment, the drain electrode is formed in a region (drain electrode formation region 21) symmetrical to the source electrode formation region 20 through the chip 1, and the entire surface on the second surface of the semiconductor chip (two points in FIG. 5). A comparative example is one in which a drain electrode is formed in a drain electrode forming region 21 ′) indicated by a chain line.

本実施形態及び比較例の半導体装置を製作後、半導体装置を立てた状態で、埋め込み樹脂により封止した後、その樹脂を硬化させた。その後、耐水研磨紙にて観察位置まで研磨し、断面を観察した。ドレイン電極の一端から他端までにおいて、各々半導体チップの高さを観察し、本実施形態における半導体チップの高さ(H)を1とした場合の比較例における半導体チップの高さ(H’)を比で表したものを図6に示した。   After manufacturing the semiconductor devices of this embodiment and the comparative example, the resin was cured after sealing with an embedded resin in a state where the semiconductor device was erected. Then, it grind | polished to the observation position with the water resistant abrasive paper, and observed the cross section. From one end to the other end of the drain electrode, the height of the semiconductor chip is observed, and the height (H ′) of the semiconductor chip in the comparative example when the height (H) of the semiconductor chip in this embodiment is 1. The ratio is shown in FIG.

図6によれば、本実施形態の構成は、比較例の構成に比べて半導体チップの傾きが格段に低減されていることが分かる。すなわち、本実施形態によれば、半導体チップの傾きを最大限低減した半導体装置を実現できる。その結果、接続部であるはんだ層の熱疲労に対しての信頼性の向上が期待できる。特に、モータをドライブするためのインバータ回路等、大きな発熱を伴う部位に本実施形態の構成を適用すれば、はんだ接合部の熱疲労を低減でき、信頼性の高いモータドライブ装置を実現することができる。   According to FIG. 6, it can be seen that the configuration of this embodiment has a significantly reduced inclination of the semiconductor chip compared to the configuration of the comparative example. That is, according to this embodiment, a semiconductor device in which the inclination of the semiconductor chip is reduced to the maximum can be realized. As a result, an improvement in reliability against thermal fatigue of the solder layer that is the connecting portion can be expected. In particular, if the configuration of this embodiment is applied to a part that generates a large amount of heat, such as an inverter circuit for driving a motor, thermal fatigue of the solder joint can be reduced, and a highly reliable motor drive device can be realized. it can.

さらに、図7を参照して他の実施形態について説明する。この実施形態における電極9’及びはんだ層10’はそれぞれ上述の電極9及びはんだ層10に対応し、ドレイン電極7側よりも第2の配線板8側において拡張部Eの分だけ外方に拡がって形成されている。この拡張部Eは、はんだフィレットと称され、本実施形態では、はんだフィレットがドレイン電極の外側に形成するため、下向きの力がドレイン電極に発生し難い。それにより、半導体チップの傾きをさらに低減することができる。発明者の知見では、電極9’をドレイン電極7よりも10%程度大きくすると好適である。また、図8に示すように半導体チップ1の角部に対応する箇所に電極の拡張部を設けても同様の効果を奏する。   Furthermore, another embodiment will be described with reference to FIG. The electrode 9 ′ and the solder layer 10 ′ in this embodiment correspond to the electrode 9 and the solder layer 10 described above, respectively, and spread outwardly by the extended portion E on the second wiring board 8 side rather than the drain electrode 7 side. Is formed. The extended portion E is called a solder fillet, and in this embodiment, the solder fillet is formed outside the drain electrode, so that a downward force is hardly generated in the drain electrode. Thereby, the inclination of the semiconductor chip can be further reduced. According to the inventor's knowledge, it is preferable that the electrode 9 ′ is about 10% larger than the drain electrode 7. Also, as shown in FIG. 8, the same effect can be obtained by providing an extended portion of the electrode at a location corresponding to the corner of the semiconductor chip 1.

本発明は、フリップチップ実装タイプの半導体装置に適用できる。   The present invention can be applied to a flip-chip mounting type semiconductor device.

1 半導体チップ
2 ソース電極
3 ゲート電極
4 はんだボール
5 第1の配線板
6 電極
7 ドレイン電極
8 第2の配線板
9 電極
10 はんだ層
20 ソース電極形成領域
21 ドレイン電極形成領域
DESCRIPTION OF SYMBOLS 1 Semiconductor chip 2 Source electrode 3 Gate electrode 4 Solder ball 5 First wiring board 6 Electrode 7 Drain electrode 8 Second wiring board 9 Electrode 10 Solder layer 20 Source electrode formation area 21 Drain electrode formation area

Claims (6)

第1の配線板と、
第1の面及び前記第1の面と反対側の第2の面を有し、前期第1の面には前記第1の配線板に第1のはんだ層を介して接続された複数のソース電極が形成され、前記第2の面にはドレイン電極が形成された半導体素子と、
前記ドレイン電極に第2のはんだ層を介して接続された第2の配線板とを備え、
前記複数のソース電極が形成された領域と前記ドレイン電極が形成された領域とは、前記半導体素子を介して実質的に対称な位置に配置されていることを特徴とする半導体装置。
A first wiring board;
A plurality of sources having a first surface and a second surface opposite to the first surface, wherein the first surface is connected to the first wiring board via a first solder layer on the first surface. A semiconductor element having an electrode formed thereon and a drain electrode formed on the second surface;
A second wiring board connected to the drain electrode via a second solder layer;
The region where the plurality of source electrodes are formed and the region where the drain electrodes are formed are arranged at substantially symmetrical positions with the semiconductor element interposed therebetween.
前記第2のはんだ層は、前記ドレイン電極側よりも前記第2の配線板側において外方に拡がっていることを特徴とする請求項1記載の半導体装置。   The semiconductor device according to claim 1, wherein the second solder layer extends outward on the second wiring board side than on the drain electrode side. 前記半導体素子はベアチップであることを特徴とする請求項1または2記載の半導体装置。   The semiconductor device according to claim 1, wherein the semiconductor element is a bare chip. 請求項1乃至3記載の半導体装置により構成されたインバータ装置を用いてモータを駆動することを特徴とするモータドライブ装置。   A motor drive device, wherein a motor is driven using an inverter device configured by the semiconductor device according to claim 1. 第1の配線板を準備する工程と、
半導体素子の複数のソース電極と前記第1の配線板とを第1リフローにより第1のはんだ層を介して接続する工程と、
その後、前記複数のソース電極が形成された面とは反対側の面に形成された前記半導体素子のドレイン電極に、第2の配線板を第2リフローにより第2のはんだ層を介して接続する工程とを備え、
前記複数のソース電極が形成された領域と前記ドレイン電極が形成された領域とは、前記半導体素子を介して実質的に対称な位置に配置されていることを特徴とする半導体装置の製造方法。
Preparing a first wiring board;
Connecting a plurality of source electrodes of a semiconductor element and the first wiring board via a first solder layer by a first reflow;
Thereafter, a second wiring board is connected via a second solder layer to the drain electrode of the semiconductor element formed on the surface opposite to the surface on which the plurality of source electrodes are formed by a second reflow. A process,
The method for manufacturing a semiconductor device, wherein the region in which the plurality of source electrodes are formed and the region in which the drain electrode is formed are disposed at substantially symmetrical positions with the semiconductor element interposed therebetween.
前記第2のはんだ層は、前記ドレイン電極側よりも前記第2の配線板側において外方に拡がっていることを特徴とする請求項5記載の半導体装置の製造方法。

6. The method of manufacturing a semiconductor device according to claim 5, wherein the second solder layer extends outward on the second wiring board side than on the drain electrode side.

JP2010008796A 2010-01-19 2010-01-19 Semiconductor device, and method of manufacturing semiconductor device Pending JP2011151056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010008796A JP2011151056A (en) 2010-01-19 2010-01-19 Semiconductor device, and method of manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010008796A JP2011151056A (en) 2010-01-19 2010-01-19 Semiconductor device, and method of manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
JP2011151056A true JP2011151056A (en) 2011-08-04

Family

ID=44537815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010008796A Pending JP2011151056A (en) 2010-01-19 2010-01-19 Semiconductor device, and method of manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2011151056A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001274191A (en) * 2000-03-28 2001-10-05 Toyota Central Res & Dev Lab Inc Semiconductor device and method of manufacturing the same
JP2004172448A (en) * 2002-11-21 2004-06-17 Renesas Technology Corp Semiconductor device
JP2008140857A (en) * 2006-11-30 2008-06-19 National Institute Of Advanced Industrial & Technology Semiconductor device and manufacturing method thereof
JP2008258499A (en) * 2007-04-06 2008-10-23 Sanyo Electric Co Ltd Electrode structure and semiconductor device
JP2009129974A (en) * 2007-11-20 2009-06-11 Yaskawa Electric Corp Power module and motor drive device using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001274191A (en) * 2000-03-28 2001-10-05 Toyota Central Res & Dev Lab Inc Semiconductor device and method of manufacturing the same
JP2004172448A (en) * 2002-11-21 2004-06-17 Renesas Technology Corp Semiconductor device
JP2008140857A (en) * 2006-11-30 2008-06-19 National Institute Of Advanced Industrial & Technology Semiconductor device and manufacturing method thereof
JP2008258499A (en) * 2007-04-06 2008-10-23 Sanyo Electric Co Ltd Electrode structure and semiconductor device
JP2009129974A (en) * 2007-11-20 2009-06-11 Yaskawa Electric Corp Power module and motor drive device using the same

Similar Documents

Publication Publication Date Title
KR100757345B1 (en) Flip chip package and method of manufacturing the same
JP2005252230A (en) Semiconductor device
US20170236789A1 (en) Semiconductor device
US11658099B2 (en) Flip chip curved sidewall self-alignment features for substrate and method for manufacturing the self-alignment features
JP4738996B2 (en) Semiconductor device
JP6118652B2 (en) Semiconductor chip and semiconductor device
JP2007081374A (en) Semiconductor package equipped with solder mask defined (smd) bonding pad and non-solder mask defined (nsmd) bonding pad, printed circuit board, and semiconductor module
CN103000591A (en) Ring structure for chip packaging
JP2006294656A (en) Semiconductor device
KR101740878B1 (en) Semiconductor device
US9105463B2 (en) Semiconductor device
JP2007258469A (en) Semiconductor integrated circuit apparatus
JP2007266150A (en) Thermally conductive bonding material, semiconductor package, heat spreader, semiconductor chip, and method of joining semiconductor chip and heat spreader
JP4341187B2 (en) Semiconductor device
JP2010123602A (en) Semiconductor device and method of manufacturing the same
JP2010118522A (en) Semiconductor device and method for manufacturing the semiconductor device
JP2007149829A (en) Electronic component mounting substrate
JPWO2011021364A1 (en) Semiconductor device and manufacturing method thereof
JP2009124099A (en) Electrode structure for semiconductor chip
JP2011151056A (en) Semiconductor device, and method of manufacturing semiconductor device
JP5387056B2 (en) Printed wiring board
TWI550767B (en) Trace design for bump-on-trace (bot) assembly
JP5573897B2 (en) Bonding structure and mounting structure using the same
WO2012070168A1 (en) Semiconductor chip and semiconductor device
JP2008159911A (en) Mounting board and electronic apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120229

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140311