JP2011150837A - Circuit connection member, conductive particles, and manufacturing method of conductive particles - Google Patents
Circuit connection member, conductive particles, and manufacturing method of conductive particles Download PDFInfo
- Publication number
- JP2011150837A JP2011150837A JP2010009955A JP2010009955A JP2011150837A JP 2011150837 A JP2011150837 A JP 2011150837A JP 2010009955 A JP2010009955 A JP 2010009955A JP 2010009955 A JP2010009955 A JP 2010009955A JP 2011150837 A JP2011150837 A JP 2011150837A
- Authority
- JP
- Japan
- Prior art keywords
- particles
- conductive
- particle
- circuit connection
- connection member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Adhesive Tapes (AREA)
- Adhesives Or Adhesive Processes (AREA)
- Powder Metallurgy (AREA)
- Manufacturing Of Electrical Connectors (AREA)
- Wire Bonding (AREA)
- Conductive Materials (AREA)
- Non-Insulated Conductors (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
本発明は、回路接続部材、導電性粒子および導電性粒子の製造方法に関する。さらに詳しくは、回路素子相互間の電気的接続やプリント回路基板の検査装置におけるコネクターとして好ましく用いられる、異方導電性シートおよび異方導電性コネクターなどの回路接続部材、それに用いる導電性粒子ならびに導電性粒子の製造方法に関する。 The present invention relates to a circuit connecting member, conductive particles, and a method for producing conductive particles. More specifically, circuit connection members, such as anisotropic conductive sheets and anisotropic conductive connectors, which are preferably used as electrical connections between circuit elements and connectors in printed circuit board inspection apparatuses, conductive particles used therein and conductive The present invention relates to a method for producing conductive particles.
異方導電性シートは、厚み方向にのみ導電性を示すもの、または厚み方向に加圧されたときに厚み方向にのみ導電性を示すものである。異方導電性シートは、ハンダ付けまたは機械的嵌合などの手段を用いずにコンパクトな電気的接続を行うことが可能であること、および機械的な衝撃やひずみを吸収してソフトな接続が可能であることなどの特長を有する。このため異方導電性シートは、電子計算機、電子式デジタル時計、電子カメラおよびコンピューターキーボードなどの分野において、回路素子、例えばプリント回路基板とリードレスチップキャリアー、液晶パネルなどとの相互間の電気的接続を実現するためのコネクターとして広く用いられている。 An anisotropic conductive sheet exhibits conductivity only in the thickness direction, or exhibits conductivity only in the thickness direction when pressed in the thickness direction. Anisotropic conductive sheets can be compactly connected without using soldering or mechanical fitting, and have soft connections that absorb mechanical shocks and strains. Features such as being possible. For this reason, anisotropic conductive sheets are used in the fields of electronic calculators, electronic digital watches, electronic cameras, computer keyboards, etc., as electrical elements between circuit elements such as printed circuit boards and leadless chip carriers, liquid crystal panels, etc. Widely used as a connector for realizing connection.
また、プリント回路基板などの回路基板の電気的検査においては、検査対象である回路基板の一面に形成された被検査電極と、検査用回路基板の表面に形成された接続用電極との電気的接続を行うために、回路基板の被検査電極領域と検査用回路基板の接続用電極領域との間に異方導電性シートを介在させることが行われている。 In an electrical inspection of a circuit board such as a printed circuit board, an electrical connection between an electrode to be inspected formed on one surface of the circuit board to be inspected and an electrode for connection formed on the surface of the circuit board for inspection In order to make the connection, an anisotropic conductive sheet is interposed between the inspected electrode region of the circuit board and the connecting electrode region of the circuit board for inspection.
従来、このような異方導電性シートとしては、種々の構成を有するものが知られている。特許文献1には、導電性金属が被覆された導電性粒子が厚み方向に配向された状態で含有されてなる異方導電性シートが開示されている。特許文献2には、絶縁性シート体が、熱膨張係数の小さい弾性高分子材料により構成されていることを特徴とする異方導電性シートが開示されている。特許文献3には、異方導電性シート中に含まれる導電性粒子が、数平均粒子径がa[μm]である導電性粒子Aと、数平均粒子径がb[μm]である導電性粒子Bとを含有してなり、前記導電性粒子Aの数平均粒子径a[μm]と、前記導電性粒子Bの数平均粒子径b[μm]との粒子径比(a/b)が4〜9であることを特徴とする異方導電性シートが開示されている。特許文献4には、異方導電性シート中に含まれる導電性粒子の表面に、潤滑剤または離型剤が塗布されていることを特徴とする異方導電性シートが開示されている。特許文献5には、異方導電性シート中に含まれる導電性粒子が、数平均粒子径が5〜100μm、BET比表面積が0.01×103〜0.7×103m2/kg、硫黄元素濃度が0.1質量%以下、酸素元素濃度が0.5質量%以下、炭素元素濃度が0.1質量%以下であることを特徴とする異方導電性シートが開示されている。
Conventionally, what has various composition is known as such an anisotropically conductive sheet.
上記のように、従来、種々の構成を有する異方導電性シートが知られている。
ところで、接続・検査対象の回路基板は、通常は平坦ではなく、段差を有していたり屈曲していたりする。特に、携帯電話などの素子を小スペースに接続するには、この段差や屈曲がより大きくなる傾向にある。
As described above, conventionally, anisotropic conductive sheets having various configurations are known.
By the way, a circuit board to be connected / inspected is usually not flat but has a step or is bent. In particular, in order to connect an element such as a mobile phone to a small space, this step or bend tends to become larger.
したがって、回路接続部材には、シートの押込み量(シートの変位量)に対する電気抵抗値の安定性(押込み耐性)、つまり、シートの厚み方向に係る負荷量に対して電気抵抗値が一定である性能が求められている。 Therefore, the circuit connecting member has a constant electrical resistance value with respect to the stability (indentation resistance) of the electrical resistance value with respect to the sheet pressing amount (sheet displacement amount), that is, the load amount in the thickness direction of the sheet. Performance is required.
しかしながら、従来の回路接続部材は、上記押込み耐性が充分ではなかった。即ち本発明の課題は、充分な押込み耐性を有する回路接続部材を提供することを課題とする。 However, the conventional circuit connecting member does not have sufficient indentation resistance. That is, an object of the present invention is to provide a circuit connecting member having sufficient indentation resistance.
本発明者らは上記課題を解決するため鋭意検討を行った。その結果、特定の形状を有する導電性粒子を用いることにより上記課題を解決できることを見出し、本発明を完成するに至った。
即ち本発明およびその好ましい態様は、以下の[1]〜[14]に関する。
The present inventors have intensively studied to solve the above problems. As a result, it has been found that the above problems can be solved by using conductive particles having a specific shape, and the present invention has been completed.
That is, the present invention and preferred embodiments thereof relate to the following [1] to [14].
[1]高分子材料と導電性粒子とを含有するシート形成材料から形成されるシート状の回路接続部材であって、前記導電性粒子は、粒子本体に貫通孔が形成されていることを特徴とする回路接続部材。 [1] A sheet-like circuit connecting member formed from a sheet forming material containing a polymer material and conductive particles, wherein the conductive particles have a through-hole formed in a particle body. A circuit connecting member.
[2]前記粒子本体が、円盤状、板状または球状である[1]に記載の回路接続部材。
[3]前記導電性粒子が、導電性強磁性粒子である[1]または[2]に記載の回路接続部材。
[2] The circuit connection member according to [1], wherein the particle body has a disk shape, a plate shape, or a spherical shape.
[3] The circuit connection member according to [1] or [2], wherein the conductive particles are conductive ferromagnetic particles.
[4]前記導電性強磁性粒子が、単体の金属粒子、2種以上の金属が混合されてなる複合粒子、前記金属粒子もしくは複合粒子を金属で被覆してなる被覆粒子、有機もしくは無機材料を金属で被覆してなる被覆粒子、または前記単体の金属粒子、複合粒子および被覆粒子から選ばれる2種以上の混合粒子である[3]に記載の回路接続部材。 [4] The conductive ferromagnetic particles are single metal particles, composite particles in which two or more metals are mixed, coated particles formed by coating the metal particles or composite particles with metal, organic or inorganic materials. [3] The circuit connection member according to [3], which is a coated particle formed by coating with a metal, or two or more kinds of mixed particles selected from the single metal particles, composite particles, and coated particles.
[5]前記回路接続部材中の全構成部の体積分率を100%とするとき、前記導電性粒子の含有割合(体積分率)が3〜30%である[1]〜[4]の何れか一項に記載の回路接続部材。 [5] When the volume fraction of all components in the circuit connecting member is 100%, the content ratio (volume fraction) of the conductive particles is 3 to 30%. The circuit connection member as described in any one of Claims.
[6]前記導電性粒子を含有する多数の導電部と、これらを相互に絶縁する絶縁部とからなるシート状の回路接続部材である[1]〜[4]の何れか一項に記載の回路接続部材。 [6] The sheet-like circuit connection member according to any one of [1] to [4], which is a sheet-like circuit connection member including a plurality of conductive portions containing the conductive particles and insulating portions that insulate them from each other. Circuit connection member.
[7]前記導電部が、厚み方向に伸びる多数の導電部であり、かつ前記導電性粒子の集合体および高分子材料から形成される[6]に記載の回路接続部材。
[8]前記回路接続部材中の全構成部の体積分率を100%とするとき、前記導電部の体積分率が5〜80%である[6]または[7]に記載の回路接続部材。
[7] The circuit connection member according to [6], wherein the conductive portion is a large number of conductive portions extending in a thickness direction, and is formed from an aggregate of the conductive particles and a polymer material.
[8] The circuit connection member according to [6] or [7], wherein the volume fraction of the conductive portion is 5 to 80% when the volume fraction of all components in the circuit connection member is 100%. .
[9]回路接続部材に用いられる導電性粒子であって、粒子本体に貫通孔が形成されていることを特徴とする回路接続部材用の導電性粒子。
[10]前記粒子本体が、円盤状、板状または球状である[9]に記載の導電性粒子。
[9] Conductive particles for circuit connection members used for circuit connection members, wherein through holes are formed in the particle body.
[10] The conductive particle according to [9], wherein the particle main body has a disk shape, a plate shape, or a spherical shape.
[11]導電性強磁性粒子である[9]または[10]に記載の導電性粒子。
[12]単体の金属粒子、2種以上の金属が混合されてなる複合粒子、前記金属粒子もしくは複合粒子を金属で被覆してなる被覆粒子、有機もしくは無機材料を金属で被覆してなる被覆粒子、または前記単体の金属粒子、複合粒子および被覆粒子から選ばれる2種以上の混合粒子である[11]に記載の導電性粒子。
[11] The conductive particle according to [9] or [10], which is a conductive ferromagnetic particle.
[12] Single metal particles, composite particles in which two or more metals are mixed, coated particles formed by coating the metal particles or composite particles with metal, coated particles formed by coating organic or inorganic materials with metal Alternatively, the conductive particles according to [11], wherein the conductive particles are two or more kinds of mixed particles selected from the single metal particles, composite particles, and coated particles.
[13][9]〜[12]の何れか一項に記載の導電性粒子の製造方法であって、下記(1)、(2a)および(3)に示す工程を順次行うことを特徴とする導電性粒子の製造方法。
(1)基板上に、前記導電性粒子の形状に対応するレジストパターンを形成する工程。
(2a)前記レジストパターン間に、導電性粒子形成材料を析出させる工程。
(3)前記レジストパターンおよび前記基板を除去する工程。
[13] The method for producing conductive particles according to any one of [9] to [12], wherein the following steps (1), (2a), and (3) are sequentially performed: A method for producing conductive particles.
(1) A step of forming a resist pattern corresponding to the shape of the conductive particles on the substrate.
(2a) A step of depositing a conductive particle forming material between the resist patterns.
(3) A step of removing the resist pattern and the substrate.
[14][12]に記載の有機または無機材料を金属で被覆してなる被覆粒子である導電性粒子の製造方法であって、下記(1)、(2b)、(3)および(4)に示す工程を順次行うことを特徴とする導電性粒子の製造方法。
(1)基板上に、前記導電性粒子の形状に対応するレジストパターンを形成する工程。
(2b)前記レジストパターン間に、有機または無機材料からなる粒子を形成する工程。
(3)前記レジストパターンおよび前記基板を除去する工程。
(4)得られた粒子の表面の一部または全部を金属で被覆する工程。
[14] A method for producing conductive particles, which are coated particles obtained by coating the organic or inorganic material according to [12] with a metal, the following (1), (2b), (3) and (4) A process for producing conductive particles, wherein the steps shown in FIG.
(1) A step of forming a resist pattern corresponding to the shape of the conductive particles on the substrate.
(2b) A step of forming particles made of an organic or inorganic material between the resist patterns.
(3) A step of removing the resist pattern and the substrate.
(4) A step of coating a part or all of the surface of the obtained particles with a metal.
本発明によれば、充分な押込み耐性を有する回路接続部材が提供される。また、このような回路接続部材を提供することを可能とする、回路接続部材用の導電性粒子およびその製造方法も提供される。 According to the present invention, a circuit connecting member having sufficient indentation resistance is provided. Moreover, the electroconductive particle for circuit connection members which makes it possible to provide such a circuit connection member, and its manufacturing method are also provided.
以下、本発明の特徴である回路接続部材用の導電性粒子およびその製造方法について説明した後、本発明の回路接続部材(例えば、分散型/偏在型回路接続部材)の詳細を説明する。 Hereinafter, after describing the conductive particles for circuit connection members and the manufacturing method thereof, which are the features of the present invention, details of the circuit connection members of the present invention (for example, distributed / unevenly distributed circuit connection members) will be described.
〔回路接続部材用の導電性粒子〕
以下、図面を参照しつつ、本発明の回路接続部材用の導電性粒子を説明する。
図1は本発明の一実施例に係る導電性粒子を示したものである。
[Conductive particles for circuit connection members]
Hereinafter, the conductive particles for a circuit connection member of the present invention will be described with reference to the drawings.
FIG. 1 shows conductive particles according to an embodiment of the present invention.
本発明の回路接続部材用の導電性粒子2は、その粒子本体2aに貫通孔4が形成されている。導電性粒子2は、図1(A)に示したように円盤状の導電性粒子の他に、図1(B)に示したように円盤状の粒子本体2aの両側に軸状部分2bが一体的に延出された導電性粒子、図1(C)に示したように粒子本体2aが矩形の平板状の導電性粒子、図1(D)に示したようにリング状に形成された導電性粒子((D1)はリング状の導電性粒子の斜視図、(D2)はDD’線断面図である。)、さらには粒子本体2aが球状に形成された導電性粒子であってもよい。要は、導電性粒子本体2aの中央部に貫通孔4が形成されていれば粒子本体2aの形状はいかなるものであってもよい。また、貫通孔4は円形あるいは楕円形であってもよい。
In the
ここで、貫通孔4の軸芯に沿う方向を「軸方向」とし、貫通孔4の軸に対して垂直な方向を「径方向」とする。例えば、導電性粒子が円盤状または板状粒子である場合には、その軸方向の長さは、導電性粒子の厚みとなる。また、「円盤状」、「板状」とは、図1(E1)に示したように粒子の厚み方向の本体断面が四角形であることに限定されず、図1(E2)に示したように粒子の厚み方向の本体断面が一部に円弧を有するものを含む概念である。 Here, the direction along the axis of the through hole 4 is referred to as “axial direction”, and the direction perpendicular to the axis of the through hole 4 is referred to as “radial direction”. For example, when the conductive particles are disk-shaped or plate-shaped particles, the length in the axial direction is the thickness of the conductive particles. In addition, “disk shape” and “plate shape” are not limited to the cross section of the main body in the thickness direction of the particles as shown in FIG. 1 (E1), but as shown in FIG. 1 (E2). In other words, the cross section of the main body in the thickness direction of the particle includes a portion having an arc.
導電性粒子の径方向の最大長さLは、通常は10〜300μm、好ましくは40〜200μm、より好ましくは50〜150μmである。
導電性粒子の軸方向の長さT(円盤状または板状粒子の場合はその厚み)は、通常は10〜150μm、好ましくは20〜100μm、より好ましくは20〜80μmである。
The maximum length L in the radial direction of the conductive particles is usually 10 to 300 μm, preferably 40 to 200 μm, more preferably 50 to 150 μm.
The length T in the axial direction of the conductive particles (the thickness in the case of disk-like or plate-like particles) is usually 10 to 150 μm, preferably 20 to 100 μm, more preferably 20 to 80 μm.
導電性粒子が有する貫通孔の径方向の最大長さSは、通常は5〜200μm、好ましくは10〜150μm、より好ましくは20〜100μmである。
本発明において導電性粒子の長さおよび厚みは、走査電子顕微鏡やレーザー変位計によって測定される。
The maximum length S in the radial direction of the through hole of the conductive particles is usually 5 to 200 μm, preferably 10 to 150 μm, more preferably 20 to 100 μm.
In the present invention, the length and thickness of the conductive particles are measured by a scanning electron microscope or a laser displacement meter.
本発明の効果は、以下の理由により発現するものと推定される。回路接続部材をその厚み方向に押し込むと、接触する導電性粒子には押込み方向と垂直な方向に移動するように力が働く。したがって、従来のような球状あるいは楕円状の導電性粒子を用いた場合、この力により導電性粒子間の接触が保たれなくなるため、回路接続部材の厚み方向に係る負荷量に対して電気抵抗値にバラツキが生じてしまう。ところが本発明の導電性粒子は粒子本体に貫通孔が形成されており、図2に示すように、押込み力に対して導電性粒子が変形することができるため、導電性粒子間の接触を保つことができる。このため、回路接続部材の厚み方向に係る負荷量に対して電気抵抗値が一定であり、充分な押込み耐性を有する回路接続部材が得られるのである。 The effect of the present invention is presumed to be manifested for the following reason. When the circuit connecting member is pushed in the thickness direction, a force acts on the contacting conductive particles so as to move in a direction perpendicular to the pushing direction. Therefore, when using spherical or elliptical conductive particles as in the past, the contact between the conductive particles is not maintained by this force, so the electrical resistance value with respect to the load amount in the thickness direction of the circuit connecting member Variation will occur. However, the conductive particles of the present invention have through holes formed in the particle body, and as shown in FIG. 2, the conductive particles can be deformed by the indentation force, so that the contact between the conductive particles is maintained. be able to. For this reason, the electrical resistance value is constant with respect to the load amount in the thickness direction of the circuit connecting member, and a circuit connecting member having sufficient indentation resistance can be obtained.
導電性粒子は、磁場を作用させることにより該粒子を容易に回路接続部材の厚み方向に配向または集合させることができ、ひいてはより良好な押込み耐性が得られることから、強磁性を有する導電性強磁性粒子であることが好ましい。本発明において「強磁性」とは、磁化率が1×106cm3/g以上のものをいう。 The conductive particles can be easily oriented or assembled in the thickness direction of the circuit connecting member by applying a magnetic field, and as a result, better indentation resistance can be obtained. Magnetic particles are preferred. In the present invention, “ferromagnetic” means a material having a magnetic susceptibility of 1 × 10 6 cm 3 / g or more.
導電性粒子は、粒子全体が導電性物質で形成されている必要はなく、少なくとも表面が導電性物質で形成されていればよい。粒子表面に導電性金属を被覆する手段としては、特に限定されるものではないが、電気メッキまたは無電解メッキなどが挙げられる。 The conductive particles do not need to be entirely formed of a conductive material, and at least the surface may be formed of a conductive material. The means for coating the surface of the particles with the conductive metal is not particularly limited, and examples thereof include electroplating or electroless plating.
導電性粒子としては、単体の金属粒子、2種以上の金属が混合されてなる複合粒子、前記金属粒子もしくは複合粒子を金属で被覆してなる被覆粒子、有機もしくは無機材料を金属で被覆してなる被覆粒子、または前記単体の金属粒子、複合粒子および被覆粒子から選ばれる2種以上の混合粒子などが挙げられる。 Conductive particles include single metal particles, composite particles in which two or more metals are mixed, coated particles formed by coating the metal particles or composite particles with metal, and organic or inorganic materials coated with metal. Or two or more kinds of mixed particles selected from the single metal particles, composite particles and coated particles.
このような導電性粒子としては、例えば、(1)ニッケル、鉄、コバルトなどの強磁性を示す金属の粒子およびこれらを含む合金の粒子、(2)セラミックスなどの無機粒子や樹脂などの有機粒子中に該金属粒子または合金粒子を混練して磁性を持たせた粒子、(3)これらの粒子に、金、銀、銅、錫、パラジウム、ロジウムなどをメッキなどにより被覆してなる粒子、ならびに(4)ポリマー粒子または非磁性金属粒子もしくはガラスビーズなどの無機質粒子に、ニッケル、鉄、コバルトなどの強磁性を示す金属のメッキを施してなる粒子などが挙げられる。 Examples of such conductive particles include (1) particles of metals that exhibit ferromagnetism such as nickel, iron, and cobalt, and particles of alloys containing these, and (2) inorganic particles such as ceramics and organic particles such as resins. Particles obtained by kneading the metal particles or alloy particles therein and having magnetism, (3) particles formed by coating these particles with gold, silver, copper, tin, palladium, rhodium, etc., and the like, and (4) Inorganic particles such as polymer particles, non-magnetic metal particles, or glass beads are particles obtained by plating a metal exhibiting ferromagnetism such as nickel, iron, cobalt, and the like.
製造コストの低減化を図る観点からは、ニッケル、鉄またはこれらの合金の粒子が好ましい。また、導通抵抗が小さいという電気的特性を利用するソケット、コネクターなどの用途では、表面が金メッキされた粒子が好ましい。 From the viewpoint of reducing the manufacturing cost, nickel, iron, or an alloy thereof is preferable. Further, in applications such as sockets and connectors that use electrical characteristics of low conduction resistance, particles whose surfaces are plated with gold are preferable.
〔回路接続部材用の導電性粒子の製造方法〕
本発明の回路接続部材用の導電性粒子の第1の製造方法は、粒子本体に貫通孔が形成された上述の導電性粒子の製造方法であって、下記(1)、(2a)および(3)に示す工程を順次行うことを特徴とする。必要に応じて、下記(4)に示す工程を更に行ってもよい。
[Method for producing conductive particles for circuit connecting member]
The 1st manufacturing method of the electroconductive particle for circuit connection members of the present invention is the above-mentioned electroconductive particle manufacturing method in which the penetration hole was formed in the particle body, and the following (1), (2a) and ( The step shown in 3) is sequentially performed. You may further perform the process shown to following (4) as needed.
(1)基板上に、前記導電性粒子の形状に対応するレジストパターンを形成する工程。
(2a)前記レジストパターン間に、導電性粒子形成材料を析出させる工程。
(3)前記レジストパターンおよび前記基板を除去する工程。
(4)得られた粒子の表面の一部または全部を金属で被覆する工程。
(1) A step of forming a resist pattern corresponding to the shape of the conductive particles on the substrate.
(2a) A step of depositing a conductive particle forming material between the resist patterns.
(3) A step of removing the resist pattern and the substrate.
(4) A step of coating a part or all of the surface of the obtained particles with a metal.
《工程(1)》
工程(1)では、基板上に、詳述した上記導電性粒子の形状に対応するレジストパターンを形成する。以下では、レジストパターンが形成された基板を「パターニング基板」ともいう。
<< Process (1) >>
In step (1), a resist pattern corresponding to the shape of the above-described conductive particles described above is formed on the substrate. Hereinafter, the substrate on which the resist pattern is formed is also referred to as a “patterning substrate”.
レジストパターンを形成する方法や使用されるレジスト組成物は特に限定されず、従来公知の方法およびレジスト組成物を採用することができる。例えば、レジスト組成物としては、電気鋳造する際のレジストパターンへのダメージなどを鑑みると、特開平8−301911号公報、特開2005−181976号公報、特開2005−189810号公報に記載されたレジスト組成物が好ましく、レジストパターンの形成条件もこれらの公報に記載の条件を採用することができる。 The method for forming the resist pattern and the resist composition used are not particularly limited, and conventionally known methods and resist compositions can be employed. For example, the resist composition is described in JP-A-8-301911, JP-A-2005-181976, and JP-A-2005-189810 in view of damage to the resist pattern during electroforming. Resist compositions are preferred, and the conditions described in these publications can be adopted as the resist pattern formation conditions.
通常は、基板上にレジスト組成物を塗布して塗膜を形成し、露光処理および現像処理を行い、上記導電性粒子の形状に対応するレジストパターンを形成する。以下の記載はその一具体例であるが、レジストパターンの形成条件はこれらに限定されるものではない。 Usually, a resist composition is applied onto a substrate to form a coating film, and an exposure process and a development process are performed to form a resist pattern corresponding to the shape of the conductive particles. The following description is one specific example, but the formation conditions of the resist pattern are not limited to these.
塗膜形成:レジスト組成物を基板上に塗布し、加熱乾燥して溶媒を除去することによって所望の塗膜を作成する。基板としては、通常は導電性基板(例:SUS板、銅箔板)が用いられる。基板上への塗布方法としては、スピンコート法、ロールコート法、スクリーン印刷法、アプリケーター法などが挙げられる。塗膜の乾燥条件は、レジスト組成物中の各成分の種類、配合割合、塗膜の厚みなどによって異なるが、通常は40〜160℃、好ましくは50〜150℃で、5〜60分間程度である。 Coating film formation: A resist composition is applied on a substrate and dried by heating to remove the solvent, thereby forming a desired coating film. As the substrate, a conductive substrate (eg, SUS plate, copper foil plate) is usually used. Examples of the coating method on the substrate include a spin coating method, a roll coating method, a screen printing method, and an applicator method. The drying condition of the coating film varies depending on the type of each component in the resist composition, the blending ratio, the thickness of the coating film, etc., but is usually 40 to 160 ° C., preferably 50 to 150 ° C., for about 5 to 60 minutes. is there.
露光処理:得られた塗膜に、詳述した上記導電性粒子の形状に対応するパターンを有するフォトマスクを介して活性光線を照射する。ここで活性光線とは紫外線、可視光線などを意味し、光源としては、カーボンアーク灯、水銀蒸気アーク灯、超高圧水銀灯、高圧水銀灯、キセノンランプなどの公知の光源が挙げられる。活性光線の照射量は、レジスト組成物中の各成分の種類、配合割合、塗膜の厚みなどによって異なるが、(超)高圧水銀灯を使用する場合、通常は100〜1500mJ/cm2である。 Exposure process: The obtained coating film is irradiated with actinic rays through a photomask having a pattern corresponding to the shape of the conductive particles described in detail. Here, active light means ultraviolet light, visible light, and the like, and examples of the light source include known light sources such as a carbon arc lamp, a mercury vapor arc lamp, an ultrahigh pressure mercury lamp, a high pressure mercury lamp, and a xenon lamp. The irradiation amount of actinic rays varies depending on the type of each component in the resist composition, the blending ratio, the thickness of the coating film, and the like, but is usually 100 to 1500 mJ / cm 2 when a (super) high pressure mercury lamp is used.
現像処理:未露光部の上記塗膜(ネガ型)あるいは露光部の上記塗膜(ポジ型)を、現像液を用いて選択的に除去してレジストパターンを形成する。現像液としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、ケイ酸ナトリウム、メタケイ酸ナトリウム、アンモニア水、エチルアミン、n−プロピルアミン、ジエチルアミン、ジ−n−プロピルアミン、トリエチルアミン、メチルジエチルアミン、ジメチルエタノールアミン、トリエタノールアミン、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、ピロール、ピペリジン、1,8−ジアザビシクロ[5.4.0]−7−ウンデセン、1,5−ジアザビシクロ[4.3.0]−5−ノナンなどのアルカリ類の水溶液を使用することができる。また、前記アルカリ類の水溶液にメタノール、エタノールなどの水溶性有機溶媒や界面活性剤を適当量添加した水溶液を現像液として使用することもできる。なお、アルカリ類の水溶液による現像処理がなされた後は、通常は水洗処理が施される。
上記レジストパターンの厚みは、導電性粒子の厚みに対応して、通常は10〜150μm、好ましくは20〜100μm、より好ましくは20〜80μmである。
Development processing: The resist film is formed by selectively removing the coating film (negative type) in the unexposed area or the coating film (positive type) in the exposed area using a developer. As the developer, sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, aqueous ammonia, ethylamine, n-propylamine, diethylamine, di-n-propylamine, triethylamine, methyldiethylamine, dimethylethanol Amine, triethanolamine, tetramethylammonium hydroxide, tetraethylammonium hydroxide, pyrrole, piperidine, 1,8-diazabicyclo [5.4.0] -7-undecene, 1,5-diazabicyclo [4.3.0] An aqueous solution of an alkali such as -5-nonane can be used. Further, an aqueous solution obtained by adding an appropriate amount of a water-soluble organic solvent such as methanol or ethanol or a surfactant to the alkaline aqueous solution can also be used as a developer. In addition, after the development process with an alkaline aqueous solution is performed, a washing process is usually performed.
The thickness of the resist pattern is usually 10 to 150 μm, preferably 20 to 100 μm, more preferably 20 to 80 μm, corresponding to the thickness of the conductive particles.
《工程(2a)》
工程(2a)では、上記レジストパターン間に、導電性粒子形成材料を析出させる。ここでは、上記レジストパターンが鋳型となる。導電性粒子形成材料を析出させるには、例えば電気メッキ法などを採用することができる。具体的には、上記パターニング基板を電気メッキ用の各種メッキ液に浸漬し、所望のメッキ厚となるように電流値および通電時間を設定してメッキを行い、電鋳物を形成する。各種メッキ液としては、ニッケルメッキ液、コバルトメッキ液、鉄メッキ液、およびそれらの金属イオンを含む合金メッキ液などが挙げられる。
<< Step (2a) >>
In the step (2a), a conductive particle forming material is deposited between the resist patterns. Here, the resist pattern serves as a mold. In order to deposit the conductive particle forming material, for example, an electroplating method or the like can be employed. Specifically, the patterning substrate is dipped in various plating solutions for electroplating, and plating is performed by setting the current value and energizing time so as to obtain a desired plating thickness, thereby forming an electroformed product. Examples of the various plating solutions include nickel plating solutions, cobalt plating solutions, iron plating solutions, and alloy plating solutions containing those metal ions.
《工程(3)》
工程(3)では、上記レジストパターンおよび上記基板を除去する。レジストパターンおよび基板を該パターン間に形成された導電性粒子から剥離するには、例えば50〜80℃で攪拌中の剥離液にパターニング基板を5〜30分間浸漬すればよい。ここで使用される剥離液としては、第4級アンモニウム塩の水溶液、第4級アンモニウム塩とジメチルスルホキシドと水との混合溶液、水酸化ナトリウム水溶液などが挙げられる。
<< Step (3) >>
In step (3), the resist pattern and the substrate are removed. In order to peel the resist pattern and the substrate from the conductive particles formed between the patterns, for example, the patterning substrate may be immersed in a stripping solution being stirred at 50 to 80 ° C. for 5 to 30 minutes. Examples of the stripping solution used here include an aqueous solution of a quaternary ammonium salt, a mixed solution of a quaternary ammonium salt, dimethyl sulfoxide and water, and an aqueous sodium hydroxide solution.
《工程(4)》
必要に応じて行われる工程(4)では、得られた粒子の表面の一部または全部を金属で被覆する。粒子表面に導電性金属を被覆する手段としては、特に限定されるものではないが、電気メッキまたは無電解メッキなどが挙げられる。各種メッキ液としては、金メッキ液、銀メッキ液、銅メッキ液、ニッケルメッキ液、半田メッキ液などが挙げられる。
<< Step (4) >>
In step (4) performed as necessary, a part or all of the surface of the obtained particles is coated with a metal. The means for coating the surface of the particles with the conductive metal is not particularly limited, and examples thereof include electroplating or electroless plating. Examples of the various plating solutions include a gold plating solution, a silver plating solution, a copper plating solution, a nickel plating solution, and a solder plating solution.
以上のようにして、本発明の導電性粒子を製造することができる。
本発明の回路接続部材用の導電性粒子の第2の製造方法は、粒子本体に貫通孔が形成され、かつ有機または無機材料を金属で被覆してなる被覆粒子である上述の導電性粒子の製造方法であって、下記(1)、(2b)、(3)および(4)に示す工程を順次行うことを特徴とする。
As described above, the conductive particles of the present invention can be produced.
The second method for producing conductive particles for a circuit connecting member of the present invention is the above-described conductive particles, which are coated particles in which through holes are formed in the particle body and an organic or inorganic material is coated with a metal. A manufacturing method is characterized in that the following steps (1), (2b), (3), and (4) are sequentially performed.
(1)基板上に、前記導電性粒子の形状に対応するレジストパターンを形成する工程。
(2b)前記レジストパターン間に、有機または無機材料からなる粒子を形成する工程。
(3)前記レジストパターンおよび前記基板を除去する工程。
(4)得られた粒子の表面の一部または全部を金属で被覆する工程。
(1) A step of forming a resist pattern corresponding to the shape of the conductive particles on the substrate.
(2b) A step of forming particles made of an organic or inorganic material between the resist patterns.
(3) A step of removing the resist pattern and the substrate.
(4) A step of coating a part or all of the surface of the obtained particles with a metal.
《工程(1)》
工程(1)は、第1の製造方法で詳述した上記工程(1)と同様である。
<< Process (1) >>
Step (1) is the same as step (1) described in detail in the first production method.
《工程(2b)》
工程(2b)では、上記レジストパターン間に、有機または無機材料からなる粒子を形成する。その形成方法としては、例えば有機材料(熱硬化性樹脂など)、無機材料(セラミック材料やポリシロキサンなど)、有機材料と無機材料との混合物などの組成物を、スクリーン印刷、凹版印刷などによりレジストパターン間に埋め込んだ後、硬化処理する方法が挙げられる。なお、磁性を持つ粒子(フェライト、強磁性金属粉末など)を混ぜ込んだ樹脂ペースト、セラミックペーストなどを組成物として用いる場合は、硬化処理後に行う磁性付与の下記メッキ工程を省略できる。
<< Step (2b) >>
In the step (2b), particles made of an organic or inorganic material are formed between the resist patterns. As the formation method, for example, a composition such as an organic material (such as a thermosetting resin), an inorganic material (such as a ceramic material or polysiloxane), or a mixture of an organic material and an inorganic material is resisted by screen printing or intaglio printing. A method of curing after embedding between the patterns can be mentioned. In the case where a resin paste, ceramic paste, or the like mixed with magnetic particles (ferrite, ferromagnetic metal powder, etc.) is used as the composition, the following plating step for imparting magnetism after the curing treatment can be omitted.
《工程(3)》
工程(3)は、第1の製造方法で詳述した上記工程(3)と同様である。
<< Step (3) >>
Step (3) is the same as step (3) described in detail in the first production method.
《工程(4)》
工程(4)では、得られた粒子の表面の一部または全部を金属で被覆する。粒子表面に導電性金属を被覆する手段としては、特に限定されるものではないが、電気メッキまたは無電解メッキなどが挙げられる。各種メッキ液としては、ニッケルメッキ液、コバルトメッキ液、鉄メッキ液、およびそれらの金属イオンを含む合金メッキ液などが挙げられる。
以上のようにして、本発明の導電性粒子を製造することができる。
<< Step (4) >>
In the step (4), a part or all of the surface of the obtained particle is coated with a metal. The means for coating the surface of the particles with the conductive metal is not particularly limited, and examples thereof include electroplating or electroless plating. Examples of the various plating solutions include nickel plating solutions, cobalt plating solutions, iron plating solutions, and alloy plating solutions containing those metal ions.
As described above, the conductive particles of the present invention can be produced.
〔回路接続部材〕
本発明の回路接続部材は、高分子材料と導電性粒子とを含有するシート形成材料から形成されるシート状の回路接続部材であって、前記導電性粒子は、粒子本体に貫通孔が形成されていることを特徴とする。前記導電性粒子は、上述の本発明の導電性粒子である。
[Circuit connection member]
The circuit connecting member of the present invention is a sheet-like circuit connecting member formed from a sheet forming material containing a polymer material and conductive particles, and the conductive particles have a through-hole formed in the particle body. It is characterized by. The conductive particles are the above-described conductive particles of the present invention.
上記の回路接続部材は、導電性粒子が回路接続部材の面方向に均一に分散した「分散型回路接続部材」、導電性粒子を含有する多数の導電部と、これらを相互に絶縁する絶縁部とからなるシート状の「偏在型回路接続部材」の何れでもよい。本発明の分散型回路接続部材は、厚み方向に加圧されたときに厚み方向にのみ導電性を示す。本発明の偏在型回路接続部材は、厚み方向にのみ導電性を示すものでもよく、厚み方向に加圧されたときに厚み方向にのみ導電性を示すものでもよい。
本発明の回路接続部材はシート状であり、そのシートの厚みには特に制限はなく、目的に応じて適宜決定することができ、通常は0.1〜10mmである。
The above circuit connection member includes a "dispersed circuit connection member" in which conductive particles are uniformly dispersed in the surface direction of the circuit connection member, a large number of conductive parts containing conductive particles, and an insulating part that insulates them from each other Any of the sheet-like “unevenly-distributed circuit connecting member” composed of The distributed circuit connection member of the present invention exhibits conductivity only in the thickness direction when pressed in the thickness direction. The unevenly distributed circuit connection member of the present invention may be conductive only in the thickness direction, or may be conductive only in the thickness direction when pressed in the thickness direction.
The circuit connecting member of the present invention is in the form of a sheet, and the thickness of the sheet is not particularly limited and can be appropriately determined according to the purpose, and is usually 0.1 to 10 mm.
《分散型回路接続部材》
本発明の分散型回路接続部材において、導電性粒子は、回路接続部材の面方向に均一に分散しており、かつ厚み方向に並ぶように配向した状態で含有されていることが好ましい。導電性粒子として導電性強磁性粒子を用い、磁場配向により回路接続部材を製造する場合、磁場配向によって導電性強磁性粒子を厚み方向に並ぶように配向させることができるため、得られる回路接続部材は異方性の高いものとなる。
《Distributed circuit connection member》
In the distributed circuit connection member of the present invention, it is preferable that the conductive particles are uniformly dispersed in the surface direction of the circuit connection member and are aligned in the thickness direction. When using a conductive ferromagnetic particle as the conductive particle and manufacturing a circuit connecting member by magnetic field orientation, the conductive ferromagnetic particles can be aligned in the thickness direction by the magnetic field orientation, and thus the obtained circuit connecting member Becomes highly anisotropic.
本発明の分散型回路接続部材中の全構成部の体積分率を100%とするとき、導電性粒子の含有割合(体積分率)は、通常は3〜30%、好ましくは5〜25%、より好ましくは7〜23%である。この含有割合が前記範囲を下回ると、充分に電気抵抗値の小さい回路接続部材が得られないことがある。一方、この含有割合が前記範囲を上回ると、得られる回路接続部材は脆弱なものとなりやすく、回路接続部材として必要な弾性が得られないことがある。さらに、接続端子と他の接続端子との間の電気絶縁性が確保できなくなることがある。 When the volume fraction of all components in the distributed circuit connecting member of the present invention is 100%, the content ratio (volume fraction) of the conductive particles is usually 3 to 30%, preferably 5 to 25%. More preferably, it is 7 to 23%. When this content ratio is less than the above range, a circuit connecting member having a sufficiently small electric resistance value may not be obtained. On the other hand, when the content ratio exceeds the above range, the obtained circuit connection member tends to be fragile, and the elasticity necessary for the circuit connection member may not be obtained. Furthermore, electrical insulation between the connection terminal and other connection terminals may not be ensured.
本発明の分散型回路接続部材は、例えば以下の方法によって製造することができる。
先ず、高分子材料と導電性粒子とを含有するシート形成材料を調製する。ここで、シート形成材料に対して、必要に応じて減圧による脱泡処理を行うことができる。前記シート形成材料において、導電性粒子の含有割合(体積分率)は、通常は3〜30%、好ましくは5〜25%、より好ましくは7〜23%である。
The distributed circuit connection member of the present invention can be manufactured, for example, by the following method.
First, a sheet forming material containing a polymer material and conductive particles is prepared. Here, the defoaming process by pressure reduction can be performed with respect to a sheet forming material as needed. In the sheet forming material, the content ratio (volume fraction) of the conductive particles is usually 3 to 30%, preferably 5 to 25%, more preferably 7 to 23%.
次いで、上記シート形成材料を、従来公知の基板フィルム(例:ポリテトラフルオロエチレン(PTFE)フィルム)上に塗布してシート形成材料層を形成し、シート形成材料層と基板フィルムとからなる塗布基板を製造する。 Next, the sheet forming material is applied onto a conventionally known substrate film (eg, polytetrafluoroethylene (PTFE) film) to form a sheet forming material layer, and a coated substrate comprising the sheet forming material layer and the substrate film. Manufacturing.
次いで、上記塗布基板の上面および下面に、例えば電磁石または永久磁石を配置し、上記シート形成材料層の厚み方向に平行磁場を作用させる。この磁場配向により、シート形成材料層に分散されている導電性粒子が、面方向に均一に分散された状態を維持しながら厚み方向に並ぶように配向する。シート形成材料層に作用される平行磁場の強度は、平均で0.02〜1.5T(テスラ)であることが好ましい。なお、この平行磁場を作用させる工程は省略することも可能である。 Next, for example, an electromagnet or a permanent magnet is disposed on the upper and lower surfaces of the coated substrate, and a parallel magnetic field is applied in the thickness direction of the sheet forming material layer. By this magnetic field orientation, the conductive particles dispersed in the sheet forming material layer are aligned in the thickness direction while maintaining a state of being uniformly dispersed in the surface direction. The intensity of the parallel magnetic field applied to the sheet forming material layer is preferably 0.02 to 1.5 T (Tesla) on average. Note that the step of applying the parallel magnetic field can be omitted.
ここで、シート形成材料層を硬化することにより、高分子材料(好ましくは絶縁性高分子材料)から形成された硬化層中に、導電性粒子が面方向に均一に分散しており、かつ厚み方向に並ぶように配向した状態で含有されている本発明の分散型回路接続部材が得られる。 Here, by curing the sheet forming material layer, the conductive particles are uniformly dispersed in the surface direction in the cured layer formed from the polymer material (preferably the insulating polymer material), and the thickness is increased. The distributed circuit connecting member of the present invention contained in an aligned state in the direction is obtained.
シート形成材料層の硬化処理は、平行磁場を作用させたままの状態で行うこともできるが、平行磁場の作用を停止させた後に行うこともできる。また、平行磁場の作用を途中で停止して、作用方向を反転させた後、再度平行磁場を作用させてもよい。 The curing process of the sheet forming material layer can be performed with the parallel magnetic field applied, but can also be performed after the parallel magnetic field is stopped. Alternatively, the parallel magnetic field may be applied again after the action of the parallel magnetic field is stopped halfway and the direction of action is reversed.
シート形成材料層の硬化処理は、高分子材料の種類によって適宜選定されるが、通常、加熱処理によって行われる。具体的な加熱温度および加熱時間は、高分子材料などの種類、導電性粒子の配向に要する時間などを考慮して適宜設定される。 The curing treatment of the sheet forming material layer is appropriately selected depending on the type of polymer material, but is usually performed by heat treatment. Specific heating temperature and heating time are appropriately set in consideration of the type of polymer material, the time required for orientation of the conductive particles, and the like.
《偏在型回路接続部材》
本発明の偏在型回路接続部材は、回路基板などの電極パターンと対掌のパターンに従って導電部が形成されているため、分散型回路接続部材と比較して、接続すべき電極が小さいピッチで配置されている回路装置などに対しても電極間の電気的接続を高い信頼性で達成することができる点で有利である。特に、導電部が絶縁部から突出するよう形成された偏在型回路接続部材は、被検査電極に対する接触が確実に行われる点でより有利である。
<< Unevenly distributed circuit connection member >>
In the unevenly distributed circuit connecting member of the present invention, the conductive portion is formed according to the electrode pattern of the circuit board or the like and the opposite pattern, so that the electrodes to be connected are arranged at a smaller pitch than the distributed circuit connecting member. This is advantageous in that the electrical connection between the electrodes can be achieved with high reliability even for a circuit device or the like. In particular, the unevenly distributed circuit connecting member formed so that the conductive portion protrudes from the insulating portion is more advantageous in that the contact with the electrode to be inspected is reliably performed.
図3に、本発明の偏在型回路接続部材の一具体例である回路接続部材1の、上面5および下面6に垂直な断面の一部分の模式図を示す(導電性粒子の形状は便宜上球形で表しているが、実際は粒子本体に貫通孔が形成されている)。以下、回路接続部材1を例にして本発明の偏在型回路接続部材の基本的な構造を説明する。
FIG. 3 shows a schematic view of a part of a cross section perpendicular to the
回路接続部材1は、導電性粒子2を含有する多数の導電部2と、これらを相互に絶縁する絶縁部3とからなる。例えば、回路接続部材1中の全構成部の体積分率を100%とするとき、導電部2の体積分率は、通常は5〜80%、好ましくは10〜70%、より好ましくは20〜60%である。
The
導電部2は、回路接続部材1の上面5から下面6にわたって形成され、回路接続部材1の厚み方向の導電性を確保する機能を有する。導電部2は、回路接続部材1の厚み方向の導電性を確保できる程度に多数形成されている。すなわち導電部2は、厚み方向に伸びる多数の導電部であり、かつ導電性粒子4の集合体および高分子材料から形成されていることが好ましい。
The
導電性粒子4は、それぞれ厚み方向に並んだ状態で配向していることが好ましい。導電性粒子4は、回路接続部材1の厚み方向にその上面5から下面6にわたって、相互に接触しながら、あるいは加圧時に相互に接触するよう配列されて、導電部2を形成している。つまり、導電部2は、厚み方向にのみ導電性を示すものでもよく、厚み方向に加圧されて圧縮されたときに抵抗値が減少して導電部2が形成される加圧導電部でもよい。
The conductive particles 4 are preferably oriented in a state where they are aligned in the thickness direction. The conductive particles 4 are arranged in the thickness direction of the
絶縁部3は、導電部2を面方向に囲むように高分子材料から形成され、多数の導電部2を相互に絶縁し、回路接続部材1の面方向の絶縁性を確保する機能を有する。
導電部の、回路接続部材の面方向に平行な断面の形状には特に制限はなく、円形状、楕円形状、線状、その他任意の形状を採り得る。導電部の前記断面の形状および大きさは、回路接続部材の厚み方向のどの位置においても同じであってもよく、また厚み方向の位置によって異なっていてもよい。導電部の径は、通常は0.02〜1mm、好ましくは0.05〜0.5mmである。また導電部は、回路接続部材の厚み方向の導電性が確保される限り、回路接続部材の厚み方向に平行に形成されていてもよく、また平行に形成されていなくてもよい。
The insulating
There is no restriction | limiting in particular in the shape of the cross section parallel to the surface direction of a circuit connection member of an electroconductive part, Circular shape, elliptical shape, linear shape, and other arbitrary shapes can be taken. The shape and size of the cross section of the conductive portion may be the same at any position in the thickness direction of the circuit connecting member, or may be different depending on the position in the thickness direction. The diameter of the conductive part is usually 0.02 to 1 mm, preferably 0.05 to 0.5 mm. Moreover, as long as the electroconductivity part of the thickness direction of a circuit connection member is ensured, the electroconductive part may be formed in parallel with the thickness direction of a circuit connection member, and does not need to be formed in parallel.
回路接続部材の表面側から見た導電部における導電性粒子の集合密度は均一であることが好ましい。集合密度が均一であると、回路接続部材をソケットまたはコネクターなどの電子回路の実装用に用いることができる程度に導通抵抗を小さくすることが容易になる。 It is preferable that the aggregate density of the conductive particles in the conductive portion viewed from the surface side of the circuit connection member is uniform. When the assembly density is uniform, it becomes easy to reduce the conduction resistance to such an extent that the circuit connecting member can be used for mounting an electronic circuit such as a socket or a connector.
本発明の偏在型回路接続部材は、その上面または下面の少なくとも一方の面において、平面部と該平面部から突出した導電部からなる突起部とを有していてもよい。突起部の形状は特に限定されず、例えば円盤状の突起部が挙げられる。回路接続部材がこのような突起部を有していると、加圧時に接続端子にかかる荷重を軽減できるという利点がある。 The unevenly distributed circuit connection member of the present invention may have a flat surface portion and a protrusion portion including a conductive portion protruding from the flat surface portion on at least one of the upper surface and the lower surface. The shape of the protrusion is not particularly limited, and examples thereof include a disk-shaped protrusion. When the circuit connection member has such a protrusion, there is an advantage that the load applied to the connection terminal during pressurization can be reduced.
本発明の偏在型回路接続部材は、例えば以下の方法によって製造することができる。
先ず、高分子材料と導電性粒子とを含有するシート形成材料を調製する。ここで、シート形成材料に対して、必要に応じて減圧による脱泡処理を行うことができる。前記シート形成材料において、導電性粒子の含有割合(体積分率)は、形成すべき導電部における導電性粒子の含有割合などを考慮して定められるが、通常は5〜40%、好ましくは8〜33%、より好ましくは10〜30%である。
The uneven distribution type circuit connecting member of the present invention can be manufactured, for example, by the following method.
First, a sheet forming material containing a polymer material and conductive particles is prepared. Here, the defoaming process by pressure reduction can be performed with respect to a sheet forming material as needed. In the sheet forming material, the content ratio (volume fraction) of the conductive particles is determined in consideration of the content ratio of the conductive particles in the conductive portion to be formed, and is usually 5 to 40%, preferably 8 ˜33%, more preferably 10-30%.
次いで、(1)上記シート形成材料を、電磁石および磁極板を備えてなる金型内に注入してシート形成材料層を形成し、(2)前記シート形成材料層に対して強度分布を有する磁場を前記シート形成材料層の厚み方向に作用させることにより、シート形成材料層中の導電性粒子を導電部となる部分に集合させ、(3)その状態でシート形成材料層を硬化することにより、高分子材料から形成された硬化層中に導電性粒子が密に充填された多数の導電部と、これらを相互に絶縁する高分子材料から形成された絶縁部とからなる本発明の偏在型回路接続部材が得られる。 Next, (1) the sheet forming material is injected into a mold including an electromagnet and a magnetic pole plate to form a sheet forming material layer, and (2) a magnetic field having an intensity distribution with respect to the sheet forming material layer. By acting in the thickness direction of the sheet-forming material layer, the conductive particles in the sheet-forming material layer are gathered in a portion to be a conductive portion, (3) by curing the sheet-forming material layer in that state, An unevenly distributed circuit of the present invention comprising a large number of conductive portions in which conductive particles are densely packed in a hardened layer formed of a polymer material, and an insulating portion formed of a polymer material that insulates them from each other A connecting member is obtained.
シート形成材料層の硬化処理は、平行磁場を作用させたままの状態で行うこともできるが、平行磁場の作用を停止させた後に行うこともできる。また、平行磁場の作用を途中で停止して、作用方向を反転させた後、再度平行磁場を作用させてもよい。 The curing process of the sheet forming material layer can be performed with the parallel magnetic field applied, but can also be performed after the parallel magnetic field is stopped. Alternatively, the parallel magnetic field may be applied again after the action of the parallel magnetic field is stopped halfway and the direction of action is reversed.
シート形成材料層の硬化処理は、高分子材料の種類によって適宜選定されるが、通常、加熱処理によって行われる。具体的な加熱温度および加熱時間は、高分子材料などの種類、導電性粒子の配向に要する時間などを考慮して適宜設定される。 The curing treatment of the sheet forming material layer is appropriately selected depending on the type of polymer material, but is usually performed by heat treatment. Specific heating temperature and heating time are appropriately set in consideration of the type of polymer material, the time required for orientation of the conductive particles, and the like.
《高分子材料》
本発明の回路接続部材で用いられる高分子材料は、本発明の効果を損なわない限り特に制限はないが、絶縁性高分子材料であることが好ましい。絶縁性高分子材料としては、シリコーンゴム、エチレンプロピレン系ゴム、ウレタン系ゴム、フッ素系ゴム、ポリエステル系ゴム、スチレンブタジエン系ゴム、スチレンブタジエンブロック共重合体ゴム、スチレンイソプロピレンブロック共重合体ゴム、軟質エポキシ樹脂などが挙げられる。
《Polymer material》
The polymer material used in the circuit connection member of the present invention is not particularly limited as long as the effects of the present invention are not impaired, but is preferably an insulating polymer material. Insulating polymer materials include silicone rubber, ethylene propylene rubber, urethane rubber, fluorine rubber, polyester rubber, styrene butadiene rubber, styrene butadiene block copolymer rubber, styrene isopropylene block copolymer rubber, Examples include soft epoxy resins.
絶縁性高分子材料としては、シート製造時の温度で液状であるかまたは流動性を有し、その後硬化するものが好ましい。絶縁性高分子材料がこのような性質を有すると、シート製造時に磁場を作用させることにより導電性強磁性粒子を配向または集合させることができ、その後、絶縁性高分子材料を硬化させて導電性強磁性粒子を固定することができる。 As the insulating polymer material, a material that is liquid at the temperature at the time of sheet manufacture or has fluidity and is then cured is preferable. When the insulating polymer material has such properties, the conductive ferromagnetic particles can be oriented or assembled by applying a magnetic field during sheet production, and then the insulating polymer material is cured to be conductive. Ferromagnetic particles can be fixed.
例えば、熱硬化型のシリコーンゴムは、常温で液状であり、加熱により硬化して固形ゴムになるので好ましい。また例えば、軟質液状エポキシ樹脂、熱可塑性エラストマー、熱可塑性軟質樹脂などは、常温で固体であっても、後述のシート製造時に流動性を有し、シート製造後は固体となるので好ましい。 For example, thermosetting silicone rubber is preferable because it is in a liquid state at normal temperature and is cured by heating to become a solid rubber. Also, for example, soft liquid epoxy resins, thermoplastic elastomers, thermoplastic soft resins, etc. are preferable because they are fluid at the time of sheet production to be described later and become solid after sheet production even if they are solid at room temperature.
また、絶縁性高分子材料としては、架橋構造を有するものが耐熱性、耐久性などの点において好ましい。このような架橋構造を有する材料としては、上記シリコーンゴム、エチレンプロピレン系ゴム、ウレタン系ゴム、フッ素系ゴム、ポリエステル系ゴム、スチレンブタジエン系ゴム、スチレンブタジエンブロック共重合体ゴム、スチレンイソプロピレンブロック共重合体ゴム、軟質エポキシ樹脂などが挙げられる。 Further, as the insulating polymer material, those having a crosslinked structure are preferable in terms of heat resistance and durability. Examples of the material having such a crosslinked structure include silicone rubber, ethylene propylene rubber, urethane rubber, fluorine rubber, polyester rubber, styrene butadiene rubber, styrene butadiene block copolymer rubber, and styrene isopropylene block copolymer. Examples include polymer rubber and soft epoxy resin.
絶縁性高分子材料は、固体状であり、かつゴム弾性を有するものが、回路接続部材を電気回路部品、電気回路基板などに接続するときに、それらの表面の凹凸を吸収し、安定な電気的接触を得るのに有利である点で好ましい。シートの用途によっては、弾性が小さいものであってもかまわない。 Insulating polymer materials that are solid and have rubber elasticity absorb irregularities on their surfaces when connecting circuit connection members to electrical circuit components, electrical circuit boards, etc. It is preferable in that it is advantageous for obtaining a mechanical contact. Depending on the use of the sheet, it may be of low elasticity.
また、回路接続部材を基板などに接着または粘着することが要求される場合には、絶縁性高分子材料は接着性または粘着性を有する絶縁性高分子材料であることが好ましい。このような接着性または粘着性を有する絶縁性高分子材料としては、エポキシ樹脂やメラミン樹脂などが挙げられる。 In addition, when it is required to adhere or adhere the circuit connecting member to a substrate or the like, the insulating polymer material is preferably an insulating polymer material having adhesiveness or tackiness. Examples of such an insulating polymer material having adhesiveness or tackiness include epoxy resins and melamine resins.
(1)導電性粒子の製造
[実施例1]導電性粒子の製造(図4参照)
レジスト組成物を、SUS板上にスピンコーターを用いて塗布し、次いで、ホットプレートにて100℃で5分間熱処理を行い、膜厚20μmの塗膜を形成した。得られた塗膜を、図5(A)に示すパターンマスクを介して、超高圧水銀灯(ウシオ電機社製USH−1000KS)を用いて600mJ/cm2の紫外線で露光した。露光後の塗膜を、テトラメチルアンモニウムヒドロキシド2.38重量%水溶液で現像した。その後、脱イオン水にて流水洗浄し、スピン乾燥して、パターンマスクの配置と同じパターンを有するレジストパターンを形成した。このレジストパターンを有する基板を「パターニング基板」という。
(1) Production of conductive particles [Example 1] Production of conductive particles (see FIG. 4)
The resist composition was applied on a SUS plate using a spin coater, and then heat-treated at 100 ° C. for 5 minutes on a hot plate to form a coating film having a thickness of 20 μm. The obtained coating film was exposed to 600 mJ / cm 2 of ultraviolet rays using an ultrahigh pressure mercury lamp (USH-1000KS manufactured by USHIO INC.) Through a pattern mask shown in FIG. The exposed coating film was developed with a 2.38 wt% aqueous solution of tetramethylammonium hydroxide. Thereafter, it was washed with running deionized water and spin-dried to form a resist pattern having the same pattern as that of the pattern mask. A substrate having this resist pattern is referred to as a “patterning substrate”.
上記パターニング基板に対して、電解ニッケル浴(スルファミン酸ニッケル浴)を用いてニッケルメッキを行った。その後、剥離液としてTHB−S2(JSR社製)を用い、50℃で10分間攪拌しながら上記パターニング基板を浸漬してレジストパターンおよびSUS板を剥離することにより、ニッケル電鋳物を得た。このニッケル電鋳物を、走査電子顕微鏡(SEM)により観察したところ、径方向の最大長さ100μm、貫通孔の径方向の最大長さ40μm、厚み20μmであった。 Nickel plating was performed on the patterning substrate using an electrolytic nickel bath (nickel sulfamate bath). Thereafter, THB-S2 (manufactured by JSR) was used as a stripping solution, and the resist pattern and the SUS plate were stripped by immersing the patterning substrate while stirring at 50 ° C. for 10 minutes to obtain a nickel electroformed product. When this nickel electroformed product was observed with a scanning electron microscope (SEM), the maximum length in the radial direction was 100 μm, the maximum length in the radial direction of the through holes was 40 μm, and the thickness was 20 μm.
無電解メッキ法により、金メッキの厚みがおおよそ60〜100nmとなる条件にて、上記ニッケル電鋳物表面に金メッキを行い、導電性粒子を得た。この導電性粒子は、走査電子顕微鏡(SEM)により観察したところ、径方向の最大長さ100μm、貫通孔の径方向の最大長さ40μm、厚み20μmであった(図5(B))。また、磁化率測定装置により磁化率を測定したところ、55×109cm3/gであった。 By the electroless plating method, gold plating was performed on the surface of the nickel electroformed product under the condition that the thickness of the gold plating was approximately 60 to 100 nm to obtain conductive particles. When the conductive particles were observed with a scanning electron microscope (SEM), the maximum diameter in the radial direction was 100 μm, the maximum length in the radial direction of the through hole was 40 μm, and the thickness was 20 μm (FIG. 5B). Moreover, it was 55 * 10 < 9 > cm < 3 > / g when the magnetic susceptibility was measured with the magnetic susceptibility measuring apparatus.
なお、上記レジスト組成物としては、アルカリ可溶性樹脂(メタクリル酸/p−イソプロペニルフェノール/イソボルニルアクリレート/n−ブチルアクリレート/トリシクロ(5.2.1.02,6)デカニルメタクリレート=10/15/40/5/15(重量部)の共重合体)100重量部、エチレン性不飽和化合物として、商品名「アロニックスM8100」(東亞合成(株)製)を60重量部、商品名「アロニックスM320」(東亞合成(株)製)を10重量部、ラジカル重合開始剤として、2,2’−ビス(2−クロロフェニル)−4,5,4’,5’−テトラフェニル−1,2’−ビイミダゾールを4重量部、2−メチル−1−〔4−(メチルチオ)フェニル〕−2−モルフォリノプロパノン−1を10重量部、4,4’−ビス(ジエチルアミノ)ベンゾフェノンを0.2重量部、界面活性剤として、商品名「FTX−218」((株)ネオス製)を0.3重量部、乳酸エチルを150重量部含有する組成物を用いた。 In addition, as the resist composition, an alkali-soluble resin (methacrylic acid / p-isopropenylphenol / isobornyl acrylate / n-butyl acrylate / tricyclo (5.2.1.0 2,6 ) decanyl methacrylate = 10 / 15/40/5/15 (parts by weight of copolymer) 100 parts by weight, as ethylenically unsaturated compound, trade name “Aronix M8100” (manufactured by Toagosei Co., Ltd.), 60 parts by weight, trade name “ 10 parts by weight of Aronix M320 "(manufactured by Toagosei Co., Ltd.) and 2,2'-bis (2-chlorophenyl) -4,5,4 ', 5'-tetraphenyl-1,2 as a radical polymerization initiator 4 parts by weight of '-biimidazole, 10 parts by weight of 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropanone-1, 4,4'-bis (die A composition containing 0.2 part by weight of (tilamino) benzophenone, 0.3 part by weight of a trade name “FTX-218” (manufactured by Neos Co., Ltd.) and 150 parts by weight of ethyl lactate as a surfactant was used.
(2)回路接続部材の製造
[実施例2]回路接続部材の製造
付加型液状シリコーンゴムに、実施例1で得られた導電性粒子を、導電性粒子の体積分率が12%となるように添加して混合した後、減圧による脱泡処理を行うことにより、シート形成材料を調製した。このシート形成材料を、スクリーン印刷法によって、PTFEフィルム(商標)上に塗布して塗布基板を形成した。得られた塗布基板を、100℃に加熱しながら、平行磁場(0.5〜1テスラ)中に置き、外部磁場を30分間加えた。PTFEフィルムを剥がした後、200℃で4時間加熱処理を行うことにより、厚み400μmの分散型回路接続部材を製造した。
(2) Manufacture of circuit connection member [Example 2] Manufacture of circuit connection member The conductive particles obtained in Example 1 are added to the addition-type liquid silicone rubber so that the volume fraction of the conductive particles is 12%. After being added to and mixed, a sheet forming material was prepared by performing a defoaming treatment under reduced pressure. This sheet forming material was applied on a PTFE film (trademark) by a screen printing method to form a coated substrate. The obtained coated substrate was placed in a parallel magnetic field (0.5 to 1 Tesla) while being heated to 100 ° C., and an external magnetic field was applied for 30 minutes. After peeling off the PTFE film, a dispersion type circuit connecting member having a thickness of 400 μm was manufactured by performing a heat treatment at 200 ° C. for 4 hours.
なお、付加型液状シリコーンゴムとしては、A液の粘度が250Pa・sで、B液の粘度が250Pa・sである二液型のものであって、硬化物の150℃における永久圧縮歪みが5%、硬化物のデュロメーターA硬度が35、硬化物の引裂強度が25kN/mのものを用いた。 The addition-type liquid silicone rubber is a two-component type in which the viscosity of the liquid A is 250 Pa · s and the viscosity of the liquid B is 250 Pa · s, and the cured product has a permanent compression strain of 5 at 150 ° C. %, The durometer A hardness of the cured product was 35, and the tear strength of the cured product was 25 kN / m.
[比較例1]
導電性粒子として、金により被覆された直径50μmの球状ニッケル粒子(金の厚み=60〜100nm)を用いたこと以外は実施例2と同様の手法にて、回路接続部材を製造した。また、磁化率測定装置により球状ニッケル粒子の磁化率を測定したところ、55×109cm3/gであった。
[Comparative Example 1]
A circuit connecting member was produced in the same manner as in Example 2 except that spherical nickel particles having a diameter of 50 μm (gold thickness = 60 to 100 nm) coated with gold were used as the conductive particles. Further, when the magnetic susceptibility of the spherical nickel particles was measured by a magnetic susceptibility measuring apparatus, it was 55 × 10 9 cm 3 / g.
(3)回路接続部材の評価(押込み耐性)
金メッキ板上に、回路接続部材を乗せ、さらにその上にプローブ電極(直径300μmの円形状)を乗せた。前記プローブ電極を押し込みながら、金メッキ板とプローブ電極間に流れる電流の抵抗値(Ω)を測定した。また、プローブ電極に係る荷重(回路接続部材の反発によるプローブ電極に係る荷重)についても、プローブ電極にロードセルを設置することにより測定を行った。結果を表1および図6に示す。
(3) Evaluation of circuit connection member (indentation resistance)
A circuit connection member was placed on the gold-plated plate, and a probe electrode (circular shape with a diameter of 300 μm) was placed thereon. While pushing the probe electrode, the resistance value (Ω) of the current flowing between the gold-plated plate and the probe electrode was measured. Further, the load related to the probe electrode (the load related to the probe electrode due to the repulsion of the circuit connecting member) was also measured by installing a load cell on the probe electrode. The results are shown in Table 1 and FIG.
図1において
2 ・・・導電性粒子
2a・・・導電性粒子本体
2b・・・軸状部分
4 ・・・貫通孔
L ・・・導電性粒子の径方向の最大長さ
T ・・・導電性粒子の軸方向の長さ
S ・・・貫通孔の径方向の最大長さ
図3および図5において
1 ・・・回路接続部材
2 ・・・導電部
3 ・・・絶縁部
4 ・・・導電性粒子
5 ・・・回路接続部材の上面
6 ・・・回路接続部材の下面
7 ・・・透光部
8 ・・・遮光部
In FIG. 1, 2...
In FIG. 3 and FIG. 5, 1...
Claims (14)
(1)基板上に、前記導電性粒子の形状に対応するレジストパターンを形成する工程。
(2a)前記レジストパターン間に、導電性粒子形成材料を析出させる工程。
(3)前記レジストパターンおよび前記基板を除去する工程。 It is a manufacturing method of the electroconductive particle as described in any one of Claims 9-12, Comprising: The process shown to following (1), (2a) and (3) is performed sequentially, The electroconductive particle characterized by the above-mentioned. Production method.
(1) A step of forming a resist pattern corresponding to the shape of the conductive particles on the substrate.
(2a) A step of depositing a conductive particle forming material between the resist patterns.
(3) A step of removing the resist pattern and the substrate.
(1)基板上に、前記導電性粒子の形状に対応するレジストパターンを形成する工程。
(2b)前記レジストパターン間に、有機または無機材料からなる粒子を形成する工程。
(3)前記レジストパターンおよび前記基板を除去する工程。
(4)得られた粒子の表面の一部または全部を金属で被覆する工程。 It is a manufacturing method of the electroconductive particle which is the covering particle formed by coat | covering the organic or inorganic material of Claim 12 with a metal, Comprising: The process shown to following (1), (2b), (3) and (4) A method for producing conductive particles, which is performed sequentially.
(1) A step of forming a resist pattern corresponding to the shape of the conductive particles on the substrate.
(2b) A step of forming particles made of an organic or inorganic material between the resist patterns.
(3) A step of removing the resist pattern and the substrate.
(4) A step of coating a part or all of the surface of the obtained particles with a metal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010009955A JP2011150837A (en) | 2010-01-20 | 2010-01-20 | Circuit connection member, conductive particles, and manufacturing method of conductive particles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010009955A JP2011150837A (en) | 2010-01-20 | 2010-01-20 | Circuit connection member, conductive particles, and manufacturing method of conductive particles |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011150837A true JP2011150837A (en) | 2011-08-04 |
Family
ID=44537659
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010009955A Pending JP2011150837A (en) | 2010-01-20 | 2010-01-20 | Circuit connection member, conductive particles, and manufacturing method of conductive particles |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011150837A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4821935B1 (en) * | 2011-06-28 | 2011-11-24 | オムロン株式会社 | Manufacturing method of metal parts |
CN104412112A (en) * | 2012-06-18 | 2015-03-11 | 株式会社Isc | Test socket including conductive particles in which through-holes are formed and method for manufacturing same |
KR101739537B1 (en) | 2016-05-11 | 2017-05-25 | 주식회사 아이에스시 | Test socket and conductive particle |
US9696344B2 (en) | 2012-04-27 | 2017-07-04 | ISC Co, Ltd. | Test socket which allows for ease of alignment |
CN109313953A (en) * | 2016-04-05 | 2019-02-05 | Isc股份有限公司 | Anisotropic conductive sheet comprising being mixed with the conductive particle of different types of particle |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000349406A (en) * | 1999-06-08 | 2000-12-15 | Denso Corp | Conductive paste for printed wiring board, printed wiring board using the same, and electronic device |
JP2003268587A (en) * | 2002-03-12 | 2003-09-25 | Dainippon Printing Co Ltd | Thick metallic film pattern and method for manufacturing the same |
-
2010
- 2010-01-20 JP JP2010009955A patent/JP2011150837A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000349406A (en) * | 1999-06-08 | 2000-12-15 | Denso Corp | Conductive paste for printed wiring board, printed wiring board using the same, and electronic device |
JP2003268587A (en) * | 2002-03-12 | 2003-09-25 | Dainippon Printing Co Ltd | Thick metallic film pattern and method for manufacturing the same |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4821935B1 (en) * | 2011-06-28 | 2011-11-24 | オムロン株式会社 | Manufacturing method of metal parts |
US9696344B2 (en) | 2012-04-27 | 2017-07-04 | ISC Co, Ltd. | Test socket which allows for ease of alignment |
CN104412112A (en) * | 2012-06-18 | 2015-03-11 | 株式会社Isc | Test socket including conductive particles in which through-holes are formed and method for manufacturing same |
JP2015524145A (en) * | 2012-06-18 | 2015-08-20 | 株式会社アイエスシーIsc Co., Ltd. | Inspection socket having conductive particles with through holes formed therein and method for manufacturing the same |
US9759742B2 (en) | 2012-06-18 | 2017-09-12 | Isc Co., Ltd. | Test socket including conductive particles in which through-holes are formed and method for manufacturing same |
CN109313953A (en) * | 2016-04-05 | 2019-02-05 | Isc股份有限公司 | Anisotropic conductive sheet comprising being mixed with the conductive particle of different types of particle |
CN109313953B (en) * | 2016-04-05 | 2020-06-26 | Isc股份有限公司 | Anisotropic conductive sheet comprising conductive particles mixed with different kinds of particles |
KR101739537B1 (en) | 2016-05-11 | 2017-05-25 | 주식회사 아이에스시 | Test socket and conductive particle |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI411781B (en) | And an inspection device for the electrically conductive connector device and the circuit device | |
JP4240724B2 (en) | Anisotropic conductive sheet and connector | |
US8124885B2 (en) | Anisotropically conductive connector and anisotropically conductive connector device | |
TWI239683B (en) | Anisotropic conducting connector, its manufacturing method, and checking apparatus of circuit device | |
JP2010062155A (en) | Anisotropic conductive connector device, porduction method therefor, and circuit device inspection device | |
JP2011150837A (en) | Circuit connection member, conductive particles, and manufacturing method of conductive particles | |
JP2004095547A5 (en) | ||
JP4415968B2 (en) | Anisotropic conductive sheet and connector, and method for manufacturing anisotropic conductive sheet | |
JP2002289277A (en) | Anisotropic conductive connector and applied product thereof | |
JP2009259415A (en) | Anisotropic conductive sheet and method for manufacturing anisotropic conductive sheet | |
KR101318351B1 (en) | Anisotropic conductive connector, production method and production device therefor | |
JP2002158051A (en) | Anisotropy conductive sheet | |
JP2011150836A (en) | Circuit connection member, conductive particles, and manufacturing method of conductive particles | |
JP2001067942A (en) | Anisotropic conductive sheet | |
JP2011150838A (en) | Circuit connection member, conductive particles, and manufacturing method of conductive particles | |
JP2005050782A (en) | Anisotropic connector device and its manufacturing method, and inspection device of circuit device | |
JP2012174417A (en) | Anisotropic conductive sheet, method for connecting electronic member, and electronic part | |
JP2003077560A (en) | Anisotropic conductive sheet and manufacturing method therefor | |
JP2008164476A (en) | Anisotropic conductive connector apparatus and manufacturing method of the same, and inspection apparatus for circuit apparatus | |
JP2006107881A (en) | Conductive fine particle and anisotropic conductive material | |
TW200525820A (en) | Anisotropic conductive sheet, process for producing the same, and circuit board inspection apparatus | |
JP2009129609A (en) | Composite conductive sheet, anisotropic conductive connector, adapter device, and electrical inspection device for circuit device | |
JP2011165320A (en) | Circuit connecting member | |
JP2002170608A (en) | Anisotropic conductive sheet, manufacturing method of the same, and applied product using the same | |
JP2001067940A (en) | Anisotropic conductive sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120816 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130710 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130723 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130826 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20140304 |