JP2011150744A - Support for magnetic recording medium and tape for data storage using the same - Google Patents

Support for magnetic recording medium and tape for data storage using the same Download PDF

Info

Publication number
JP2011150744A
JP2011150744A JP2010008982A JP2010008982A JP2011150744A JP 2011150744 A JP2011150744 A JP 2011150744A JP 2010008982 A JP2010008982 A JP 2010008982A JP 2010008982 A JP2010008982 A JP 2010008982A JP 2011150744 A JP2011150744 A JP 2011150744A
Authority
JP
Japan
Prior art keywords
layer
polyester
magnetic recording
recording medium
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010008982A
Other languages
Japanese (ja)
Inventor
Mitsuo Tojo
光峰 東條
Takeshi Ishida
剛 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Film Solutions Ltd
Original Assignee
Teijin DuPont Films Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin DuPont Films Japan Ltd filed Critical Teijin DuPont Films Japan Ltd
Priority to JP2010008982A priority Critical patent/JP2011150744A/en
Publication of JP2011150744A publication Critical patent/JP2011150744A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a support for a magnetic recording medium which not only has excellent stability in size but also has excellent traveling durability and excellent electromagnetic conversion characteristics and is suitable as the base film of a tape in particular for data storage of a large storage capacity. <P>SOLUTION: The support includes: a laminated film wherein a polyester layer F2 (F2 layer) is laminated on the single surface of a polyester layer F1 (F1 layer); and layers (an M1 layer and an M2 layer) which are laminated on both sides thereof, each have a thickness of 5-200 nm, and are made of metal or a metallic inorganic compound. The F1 layer contains inert particles which have a polyester intrinsic viscosity of 0.55 dl/g or more, a terminal carboxyl group concentration of 30 eq/10<SP>6</SP>g or more, and the average particle size of 50-1,000 nm. The content of the inert particles is 0.001 wt.% or more larger in the F1 layer than in the F2 layer. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、データストレージ用テープなどのベースフィルムとして用いる磁気記録媒体用支持体に関する。   The present invention relates to a support for a magnetic recording medium used as a base film such as a data storage tape.

2軸配向ポリエステルフィルムを用いた磁気記録媒体用支持体は、デジタルビデオ用テープや、コンピュータのバックアップ用テープ(以後、データテープという)などに用いられている。近年、磁気テープ、特に高密度に磁気記録を行うデータテープにおいては、データトラックが非常に狭幅化したことによって、テープ走行・保存時のわずかな熱的・力学的寸法変化や、データを記録する際と読み取る際の温湿度環境の違いにより、データの再生不良を引き起こす問題が生じてきた。従って、高密度記録に対応する磁気記録媒体には、温湿度環境変化やテープドライブの張力などに対して高い寸法安定性が要求され、特にリニア記録方式のデータテープでは、テープ幅方向に高い寸法安定性が要求された。   Supports for magnetic recording media using a biaxially oriented polyester film are used for digital video tapes, computer backup tapes (hereinafter referred to as data tapes), and the like. In recent years, in magnetic tapes, especially data tapes that perform high-density magnetic recording, the data track has become very narrow, so slight thermal and mechanical dimensional changes during tape running and storage, and data recording Due to the difference in temperature and humidity environment at the time of reading and reading, there has been a problem that causes data reproduction failure. Therefore, magnetic recording media that support high-density recording are required to have high dimensional stability against changes in the temperature and humidity environment, tape drive tension, and the like. In particular, linear recording data tapes have high dimensions in the tape width direction. Stability was required.

従来、磁気テープの素材としては、ポリエチレンテレフタレート(以下、PETと称することがある。)とならんで、ポリエチレン−2,6−ナフタレンジカルボキシレート(以下、PENと称することがある。)が用いられてきたが、高密度記録の磁気テープのベースフィルムに求められる寸法安定性の要求はますます厳しくなってきており、それだけでは不十分であった。そこで、上記の寸法安定性の要求に応え得るベースフィルムとして、ポリエステルフィルムに金属類または金属系無機化合物からなるM層を設けた磁気記録媒体用支持体が提案されている(特許文献1および2)。   Conventionally, as a material for magnetic tape, polyethylene-2,6-naphthalenedicarboxylate (hereinafter sometimes referred to as PEN) is used in addition to polyethylene terephthalate (hereinafter sometimes referred to as PET). However, the requirements for dimensional stability required for the base film of magnetic tapes for high-density recording have become increasingly severe, and that alone has been insufficient. Therefore, as a base film that can meet the above-described requirements for dimensional stability, a magnetic recording medium support in which an M layer made of a metal or a metal-based inorganic compound is provided on a polyester film has been proposed (Patent Documents 1 and 2). ).

しかしながら、このように強化膜を設けることで寸法安定性は向上するものの、強化膜の形成時やそのあとの保管時に、粒子含有量の多いポリエステル側に積層された強化膜の一部が浮き上がり、走行時に削り取られて走行耐久性や電磁変換特性を損なうなどの問題があった。
また、このような問題は、磁性層が薄くなるほど顕著に影響するため、特に記憶容量が1TB以上であるデータストレージのベースフィルムにおいて、重要な問題であった。
However, although the dimensional stability is improved by providing the reinforcing film in this way, a part of the reinforcing film laminated on the polyester side having a large particle content is lifted at the time of forming the reinforcing film or subsequent storage, There was a problem that it was scraped off during running, and the running durability and electromagnetic conversion characteristics were impaired.
In addition, since such a problem becomes more significant as the magnetic layer becomes thinner, it is an important problem particularly in a data storage base film having a storage capacity of 1 TB or more.

特開2005−346865号公報JP 2005-346865 A 特開2006−216194号公報JP 2006-216194 A

本発明の目的は、寸法安定性に優れるだけでなく、走行耐久性や電磁変換特性にも優れる、特に記憶容量が1TB以上であるデータストレージのベースフィルムとして好適な磁気記録媒体用支持体を提供することにある。   An object of the present invention is to provide a support for a magnetic recording medium which is not only excellent in dimensional stability but also excellent in running durability and electromagnetic conversion characteristics, and particularly suitable as a base film for data storage having a storage capacity of 1 TB or more. There is to do.

本発明者らは上記課題を解決しようと鋭意研究したところ、表面粗さの粗い表面側のポリエステル層(F1層)の表面にオリゴマーが析出してきたり、含有する不活性粒子などが凝集したりして、F1層側に形成した金属類または金属系無機化合物からなる膜(M1層)の表面に大きな粗大突起が形成され、それが影響しているのではないかと考えた。そこで、F1層のポリエステルについて、鋭意研究したところ、特定の固有粘度と末端カルボキシル基量を満足するポリエステルとしたとき、極めて走行耐久性や電磁変換特性に優れた磁気記録媒体が得られることを見出し、本発明に到達した。   As a result of diligent research to solve the above-mentioned problems, the present inventors have found that oligomers have precipitated on the surface of the polyester layer (F1 layer) on the surface side with a rough surface, and that inert particles contained therein have aggregated. Thus, it was considered that large coarse protrusions were formed on the surface of the film (M1 layer) made of a metal or a metal-based inorganic compound formed on the F1 layer side, which might have an influence. Thus, as a result of diligent research on the polyester of the F1 layer, it has been found that when a polyester satisfying a specific intrinsic viscosity and terminal carboxyl group content is obtained, a magnetic recording medium having extremely excellent running durability and electromagnetic conversion characteristics can be obtained. The present invention has been reached.

かくして本発明によれば、ポリエステル層F2(F2層)の片面にポリエステル層F1(F1層)が積層された積層ポリエステルフィルムと、その両面に積層された厚みが5〜200nmの金属類または金属系無機化合物の層(M2層とM1層)とからなる支持体であって、
F1層は、ポリエステルの固有粘度が0.55dl/g以上で、末端カルボキシル基濃度が30eq/106g以上で、かつ平均粒径が50〜1000nmの不活性粒子を含有し、その含有量がF2層より0.001重量%以上多い磁気記録媒体用支持体が提供される。
Thus, according to the present invention, a laminated polyester film in which the polyester layer F1 (F1 layer) is laminated on one side of the polyester layer F2 (F2 layer), and a metal or metal-based metal having a thickness of 5 to 200 nm laminated on both sides thereof. A support comprising an inorganic compound layer (M2 layer and M1 layer),
The F1 layer contains inert particles having an intrinsic viscosity of polyester of 0.55 dl / g or more, a terminal carboxyl group concentration of 30 eq / 10 6 g or more, and an average particle size of 50 to 1000 nm. There is provided a support for a magnetic recording medium that is 0.001% or more by weight greater than the F2 layer.

また、本発明によれば、本発明の好ましい態様として、F2層側に積層されたM2層の露出面の表面粗さ(Ra2)が1〜5nmで、F1層側に積層されたM1層の露出面の表面粗さ(Ra1)がRa2よりも大きく、かつ3〜10nmの範囲にあること、F1層およびF2層のポリエステルが、ポリエチレンテレフタレートまたはポリエチレン−2,6−ナフタレンジカルボキシレートであること、M1層およびM2層が、それぞれF1層およびF2層と、ポリエステル樹脂、アクリル樹脂、アクリル変性ポリエステル樹脂から成る群から選ばれる少なくとも1種のバインダー樹脂を含有する被膜層(C層)を介して積層されていること、塗膜層(C層)が粒径5〜50nmの微細粒子を含有し、塗膜層表面における粒子の頻度が100万〜1億個/mmであることの少なくともいずれか一つを具備する磁気記録媒体用支持体も提供される。 According to the present invention, as a preferred embodiment of the present invention, the surface roughness (Ra2) of the exposed surface of the M2 layer laminated on the F2 layer side is 1 to 5 nm, and the M1 layer laminated on the F1 layer side The surface roughness (Ra1) of the exposed surface is greater than Ra2 and in the range of 3 to 10 nm, and the F1 and F2 layer polyesters are polyethylene terephthalate or polyethylene-2,6-naphthalenedicarboxylate. , M1 layer and M2 layer through F1 layer and F2 layer, respectively, and a coating layer (C layer) containing at least one binder resin selected from the group consisting of polyester resin, acrylic resin and acrylic modified polyester resin The coating layer (C layer) contains fine particles having a particle size of 5 to 50 nm, and the frequency of particles on the coating layer surface is 1,000,000. The magnetic recording medium support comprising at least one of that 1 is billion pieces / mm 2 are also provided.

さらにまた、本発明によれば、上記本発明の磁気記録媒体用支持体と、そのM2層側の表面に形成された磁性層とからなるデータストレージ用テープ、さらには磁性層が塗布によって形成され、記録方式がリニア記録方式であるデータストレージ用テープも提供される。   Furthermore, according to the present invention, a data storage tape comprising the magnetic recording medium support of the present invention described above and a magnetic layer formed on the surface of the M2 layer side, and a magnetic layer are formed by coating. A data storage tape whose recording method is a linear recording method is also provided.

本発明の磁気記録媒体用支持体を用いれば、記憶容量が1TB以上のような高記録容量のデータストレージ用テープのベースフィルムに用いたときに、寸法安定性に優れるだけでなく、走行耐久性と電磁変換特性にも優れたデータストレージ用テープを提供することができる。   When the support for magnetic recording medium of the present invention is used for a base film of a data storage tape having a high recording capacity such as 1 TB or more, it not only has excellent dimensional stability but also has running durability. And a data storage tape excellent in electromagnetic conversion characteristics.

以下、本発明について、詳述する。
本発明の磁気記録媒体用支持体は、ポリエステル層F2(F2層)の片面にポリエステル層F1(F1層)が積層された積層ポリエステルフィルムと、その両面に積層された厚みが5〜200nmの金属類または金属系無機化合物の層(M2層とM1層)とからなる。
Hereinafter, the present invention will be described in detail.
The support for a magnetic recording medium of the present invention includes a laminated polyester film in which a polyester layer F1 (F1 layer) is laminated on one side of a polyester layer F2 (F2 layer), and a metal having a thickness of 5 to 200 nm laminated on both sides. Or layers of metal-based inorganic compounds (M2 layer and M1 layer).

前記F1層およびF2層を形成するポリエステルとしては、フィルムに製膜可能なポリエステルであれば、特に制限されないが、芳香族ポリエステルが好ましく、F1層とF2層のポリエステルは異なる種類のポリマーであっても良いが、カールや剥離などを抑える観点から同じ種類であることが好ましい。   The polyester forming the F1 layer and the F2 layer is not particularly limited as long as it is a polyester that can be formed into a film, but is preferably an aromatic polyester, and the F1 layer and the F2 layer polyester are different types of polymers. However, the same type is preferable from the viewpoint of suppressing curling and peeling.

前記芳香族ポリエステルとしては、ポリエチレンテレフタレート、ポリエチレンイソフタレート、ポリテトラメチレンテレフタレート、ポリ−1,4−シクロヘキシレンジメチレンテレフタレート、ポリエチレン−2,6−ナフタレート(ポリエチレン−2,6−ナ
フタレンジカルボキシレート)などが例示でき、これらの中でも、ポリエチレンテレフタレート、ポリエチレン−2,6−ナフタレートが好ましい。また、より環境変化に対する寸法安定性を向上させる観点から、国際公開2008/096612号パンフレットに記載された6,6’−(エチレンジオキシ)ジ−2−ナフトエ酸成分、6,6’−(トリメチレンジオキシ)ジ−2−ナフトエ酸成分および6,6’−(ブチレンジオキシ)ジ−2−ナフトエ酸成分などを共重合したものも好ましく挙げられる。
Examples of the aromatic polyester include polyethylene terephthalate, polyethylene isophthalate, polytetramethylene terephthalate, poly-1,4-cyclohexylenedimethylene terephthalate, polyethylene-2,6-naphthalate (polyethylene-2,6-naphthalenedicarboxylate). Among them, polyethylene terephthalate and polyethylene-2,6-naphthalate are preferable. Further, from the viewpoint of further improving the dimensional stability against environmental changes, the 6,6 ′-(ethylenedioxy) di-2-naphthoic acid component described in International Publication No. 2008/096612 pamphlet, 6,6 ′-( A copolymer obtained by copolymerizing a trimethylenedioxy) di-2-naphthoic acid component and a 6,6 ′-(butylenedioxy) di-2-naphthoic acid component is also preferred.

これらポリエステルは、ホモポリエステルであっても、コポリエステルであっても良く、コポリエステルの場合の共重合成分としては、それ自体公知のものを採用できる。その共重合量は、本発明の効果を損なわない限り、特に制限されないが、繰り返し単位のモル数を基準として、20モル%以下、さらには10モル%以下であることが好ましい。   These polyesters may be homopolyesters or copolyesters, and those known per se can be used as the copolymerization component in the case of copolyesters. The amount of copolymerization is not particularly limited as long as the effects of the present invention are not impaired, but it is preferably 20 mol% or less, more preferably 10 mol% or less, based on the number of moles of repeating units.

本発明で重要なことは、積層ポリエステルフィルムを形成する2つのフィルム層(F1層およびF2層)のうち、不活性粒子の含有量が多いフィルム層、すなわちF1層を構成するポリエステルを、固有粘度が0.55dl/g以上で、末端カルボキシル基濃度が30eq/106g以上のポリエステルとしたことにある。 What is important in the present invention is that, among the two film layers (F1 layer and F2 layer) forming the laminated polyester film, the film layer having a large content of inert particles, that is, the polyester constituting the F1 layer, has an intrinsic viscosity. Is a polyester having a terminal carboxyl group concentration of 30 eq / 10 6 g or more.

前記F1層のポリエステルの固有粘度が下限に満たない場合、オリゴマー等のブリードアウトや突起の脱落が酷くなり、これらが反対面に転写して平滑性を損なうというトラブルを生じ易くなる。好ましいF1層のポリエステルの固有粘度は、0.57dl/g以上、特に0.60dl/g以上である。F1層のポリエステルをこのような固有粘度の範囲にするには、原料ポリマーの固有粘度を高くしておく方法や、溶融押出し条件のマイルド化(ポリマー劣化をできるだけ抑制する押出し条件の採用)等が有効である。なお、F1層における固有粘度の上限は特に制限されないが、製膜性などの観点から1.0dl/g以下、さらに0.8dl/g以下、特にが好ましい。   When the intrinsic viscosity of the polyester of the F1 layer is less than the lower limit, bleeding out of oligomers and dropping of protrusions become severe, and troubles such as transfer to the opposite surface and loss of smoothness are likely to occur. The intrinsic viscosity of the polyester of the preferred F1 layer is 0.57 dl / g or more, particularly 0.60 dl / g or more. In order to bring the polyester of the F1 layer into such an intrinsic viscosity range, a method of increasing the intrinsic viscosity of the raw material polymer, mild melt extrusion conditions (adopting extrusion conditions that suppress polymer degradation as much as possible), etc. It is valid. The upper limit of the intrinsic viscosity in the F1 layer is not particularly limited, but is preferably 1.0 dl / g or less, more preferably 0.8 dl / g or less, from the viewpoint of film forming properties.

また、本発明におけるF1層は、前述のとおり、ポリマーの末端カルボキシル基濃度が30eq/106g以上である。好ましい末端カルボキシル基濃度の上限は、60eq/106g以下である。さらに好ましい末端カルボキシル基濃度は34〜60eq/106gであり、特に36〜55eq/106gである。この末端カルボキシル基濃度が下限に満たないと、含有する不活性粒子との親和性が劣り、不活性粒子の凝集などにより表面の欠陥が生じたり、フィルム製造時またはM層を形成する工程で不活性粒子の脱落が生じたりする。その結果、磁性層を形成する側の表面の平坦性などが損なわれてしまう。なお、この末端カルボキシル基濃度が過度に多くなると、不活性粒子に対する親和性はより一層向上するが、F1層の表面にM層を形成する際に、表面の平坦性が損なわれることがあるので、前述のとおり、60eq/106g以下であることが好ましい。このような末端カルボキシル基濃度の範囲にするには、例えば、重縮合終了後にポリマーを溶融保持する方法や、重縮合を末端カルボキシル基濃度が通常より多くなる条件で行う等を例示できる。 In the F1 layer in the present invention, the terminal carboxyl group concentration of the polymer is 30 eq / 10 6 g or more as described above. The upper limit of the preferable terminal carboxyl group concentration is 60 eq / 10 6 g or less. A more preferable terminal carboxyl group concentration is 34 to 60 eq / 10 6 g, particularly 36 to 55 eq / 10 6 g. If the terminal carboxyl group concentration is less than the lower limit, the affinity with the inert particles contained is inferior, surface defects occur due to aggregation of the inert particles, etc., and this is not possible during film production or in the process of forming the M layer. The active particles may fall off. As a result, the flatness of the surface on the side where the magnetic layer is formed is impaired. If the terminal carboxyl group concentration is excessively increased, the affinity for the inert particles is further improved, but the flatness of the surface may be impaired when the M layer is formed on the surface of the F1 layer. As described above, it is preferably 60 eq / 10 6 g or less. Examples of the range of the terminal carboxyl group concentration include a method in which the polymer is melt-held after completion of polycondensation, and polycondensation is performed under conditions where the terminal carboxyl group concentration is higher than usual.

本発明におけるF1層は、F2層よりも平均粒径が50〜1,000nmの不活性粒子を、各フィルム層の重量を基準として、0.001重量%以上多く含有する必要がある。このF1層の不活性粒子の含有量が、F2層の含有量よりも少ない場合、積層ポリエステルフィルムの製造工程やM層の形成工程でブロッキングなどの問題が生じる。該不活性粒子の平均粒径は50〜1,000nm、好ましくは100〜800nm、さらに好ましくは150〜700nm、特に好ましくは200〜600nmである。そして、該不活性粒子の含有量は、F1層に対し、0.05〜1重量%、好ましくは0.06〜0.8重量%、さらに好ましくは0.07〜0.6重量%、特に好ましくは0.08〜0.4重量%である。   The F1 layer in the present invention needs to contain more than 0.001% by weight of inert particles having an average particle diameter of 50 to 1,000 nm than the F2 layer, based on the weight of each film layer. When the content of the inert particles in the F1 layer is less than the content of the F2 layer, problems such as blocking occur in the production process of the laminated polyester film and the formation process of the M layer. The average particle diameter of the inert particles is 50 to 1,000 nm, preferably 100 to 800 nm, more preferably 150 to 700 nm, and particularly preferably 200 to 600 nm. And the content of the inert particles is 0.05 to 1% by weight, preferably 0.06 to 0.8% by weight, more preferably 0.07 to 0.6% by weight, particularly with respect to the F1 layer. Preferably it is 0.08 to 0.4 weight%.

F1層に含有させる不活性粒子としては、それ自体公知の不活性粒子が好適に使用でき、例えば架橋シリコーン樹脂粒子、架橋ポリスチレン樹脂粒子、架橋アクリル樹脂粒子、架橋ポリエステル樹脂粒子、メラミン−ホルムアルデヒド樹脂粒子、ポリアミドイミド樹脂粒子、その他酸化アルミニウム(アルミナ)、二酸化チタン、二酸化ケイ素(シリカ)、酸化ジルコニウム、合成炭酸カルシウム、硫酸バリウム、ダイアモンド、カオリンまたはクレーなどが挙げられる。これらの中でもF1層の末端カルボキシル基との反応で親和性をより一層向上しやすい水酸基が粒子表面上に多く存在する不活性粒子が好ましく、架橋シリコーン樹脂、架橋ポリスチレン樹脂、架橋アクリル樹脂、架橋ポリエステル樹脂、酸化アルミニウム、二酸化チタン、二酸化ケイ素(シリカ)、カオリン及びクレーから選ばれる不活性粒子が好ましく、特に粒度分布が比較的シャープで均一な突起を形成しやすいことから、真球状の架橋シリコーン樹脂粒子、架橋ポリスチレン樹脂粒子、二酸化ケイ素などの粒子が好ましい。これら不活性粒子は、1種に限らず、2種以上を併用してもよい。例えば、不活性粒子として平均粒径の違う2種以上の粒子を用いる場合、小さい平均粒径の第2、第3の粒子(微細粒子)として、例えばコロイダルシリカ、α、γ、δ、θなどの結晶形態を有するアルミナなどの微粒子を用いてもよい。   As the inert particles to be contained in the F1 layer, known inert particles can be suitably used. For example, crosslinked silicone resin particles, crosslinked polystyrene resin particles, crosslinked acrylic resin particles, crosslinked polyester resin particles, melamine-formaldehyde resin particles. , Polyamideimide resin particles, aluminum oxide (alumina), titanium dioxide, silicon dioxide (silica), zirconium oxide, synthetic calcium carbonate, barium sulfate, diamond, kaolin or clay. Among these, inactive particles in which a large amount of hydroxyl groups are present on the surface of the particles, which can further improve the affinity by reaction with the terminal carboxyl group of the F1 layer, are preferable. Crosslinked silicone resin, crosslinked polystyrene resin, crosslinked acrylic resin, crosslinked polyester Inert particles selected from resins, aluminum oxide, titanium dioxide, silicon dioxide (silica), kaolin, and clay are preferable, and since the particle size distribution is relatively sharp and easy to form uniform protrusions, a true spherical crosslinked silicone resin is preferable. Particles such as particles, crosslinked polystyrene resin particles, and silicon dioxide are preferred. These inert particles are not limited to one type, and two or more types may be used in combination. For example, when two or more kinds of particles having different average particle diameters are used as the inert particles, the second and third particles (fine particles) having a small average particle diameter include, for example, colloidal silica, α, γ, δ, θ, and the like. Fine particles such as alumina having the following crystal form may be used.

本発明におけるF2層は、磁性層を形成する側の表面に配される層である。F2層はF1層ほど不活性粒子を大量に含有しないので、ポリマーの固有粘度をあまり高くする必要はないが、それでも0.45dl/g以上、さらに0.47dl/g以上、特に0.50dl/g以上であることが好ましい。このF2層におけるポリマーの固有粘度が下限未満の場合、オリゴマー等のブリードアウトや製膜巻取り工程での破断等が生じやすくなる。   The F2 layer in the present invention is a layer disposed on the surface on the side on which the magnetic layer is formed. Since the F2 layer does not contain as much inert particles as the F1 layer, it is not necessary to increase the intrinsic viscosity of the polymer so much, but it is still 0.45 dl / g or more, further 0.47 dl / g or more, particularly 0.50 dl / g. It is preferable that it is more than g. When the intrinsic viscosity of the polymer in the F2 layer is less than the lower limit, bleedout of an oligomer or the like, breakage in a film winding process, and the like are likely to occur.

F2層におけるポリマーの固有粘度を0.45dl/g以上にする方法としては、原料ポリマーの固有粘度を0.45dl/gよりもやや高くしておくことや、溶融押出し条件のマイルド化(ポリマー劣化をできるだけ抑制する押出し条件の採用)等が好適に用いることができる。   As a method of setting the intrinsic viscosity of the polymer in the F2 layer to 0.45 dl / g or more, the intrinsic viscosity of the raw material polymer is set slightly higher than 0.45 dl / g, or the melt extrusion conditions are mild (polymer degradation). Can be suitably used.

本発明におけるF2層は、実質的に粒子を含有しないものでもよく、不活性粒子を含有するものでもよい。F2層が実質的に不活性粒子を含有しない場合、磁気記録媒体としたとき優れた電磁変換特性が得られるが、オリゴマーなどのブリードアウトや電磁変換特性に悪影響を与えない範囲の不活性粒子を含有させると、走行耐久性の向上を図ることができる。具体的には、体積形状係数0.1〜π/6、平均粒径30〜400nmの不活性粒子を、F2層に対し、0.001重量%以上0.05重量%未満含有させることが好ましい。具体的な不活性粒子としては、前述のF1層で説明したのと同様な不活性粒子が好適に挙げられる。   The F2 layer in the present invention may contain substantially no particles or may contain inert particles. When the F2 layer does not substantially contain inert particles, excellent electromagnetic conversion characteristics can be obtained when a magnetic recording medium is used, but inert particles in a range that does not adversely affect the bleed out of oligomers and electromagnetic conversion characteristics. When contained, the running durability can be improved. Specifically, it is preferable that 0.001 wt% or more and less than 0.05 wt% of inert particles having a volume shape factor of 0.1 to π / 6 and an average particle size of 30 to 400 nm are contained in the F2 layer. . As specific inert particles, the same inert particles as described in the above-described F1 layer are preferably exemplified.

本発明の磁気記録媒体用支持体は、F1層およびF2層のそれぞれの表面に金属類または金属系無機化合物からなるM1層(F1層の表面に形成された層)とM2層(F2層の表面に形成された層)を有する。M1層およびM2層を有することで、積層ポリエステルフィルムのみからなる磁気記録媒体用支持体に比べ、温湿度環境変化および荷重による寸法変化の好ましい範囲を両立することが容易となる。ここで、金属類とは、いわゆる単体金属、半金属、合金、金属間化合物を表し、具体的には、例えば単体金属ではMg、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Zr、Mo、Pd、Ag、Sn、Pt、Au、Pb、半金属ではC、Si、Ge、Sb、Teなどが挙げられ、これらの金属の数種を混ぜ合わせて合金や金属間化合物としてもよい。また、金属系無機化合物としては、例えば、上記金属類の酸化物や窒化物、炭化物、ホウ化物、硫化物などを用いることができる。具体的には、例えば、CuO、ZnO、Al、SiO、Fe、Fe、AgO、TiO、MgO、SnO、ZrO、InOなどの酸化物、Si、TiN、ZrN、GaN、TaN、AlNなどの窒化物、TiC、WC、SiC、NbC、ZrC、FeCなどの炭化物が挙げられる。また、上記の金属系無機化合物はそれぞれ単独で用いてもよく、もちろん複数種を混合して用いても構わない。これらの中でも、M1層およびM2層を構成する金属材料は経済性の観点からアルミニウムや珪素を含むことが好ましい。 The support for a magnetic recording medium of the present invention comprises an M1 layer (a layer formed on the surface of the F1 layer) and an M2 layer (a layer of the F2 layer) made of a metal or a metal-based inorganic compound on the surface of each of the F1 layer and the F2 layer. A layer formed on the surface). By having the M1 layer and the M2 layer, it becomes easy to achieve both a preferable range of temperature / humidity environment change and dimensional change due to load, as compared with a magnetic recording medium support made of only a laminated polyester film. Here, the metals represent so-called simple metals, metalloids, alloys, and intermetallic compounds. Specifically, for example, simple metals such as Mg, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Mo, Pd, Ag, Sn, Pt, Au, Pb, and semi-metals include C, Si, Ge, Sb, Te, etc. It may be an intercalation compound. As the metal-based inorganic compound, for example, oxides, nitrides, carbides, borides, sulfides, and the like of the above metals can be used. Specifically, for example, oxides such as CuO, ZnO, Al 2 O 3 , SiO 2 , Fe 2 O 3 , Fe 3 O 4 , Ag 2 O, TiO 2 , MgO, SnO 2 , ZrO 2 and InO 3 And nitrides such as Si 4 N 3 , TiN, ZrN, GaN, TaN, and AlN, and carbides such as TiC, WC, SiC, NbC, ZrC, and Fe 3 C. Moreover, said metal type inorganic compound may be used individually, respectively, and of course, multiple types may be mixed and used. Among these, it is preferable that the metal material which comprises M1 layer and M2 layer contains aluminum and silicon from a viewpoint of economical efficiency.

M1層およびM2層の形成方法としては物理蒸着法や化学蒸着法を用いることができる。物理蒸着法には真空蒸着法、スパッタリング法があり、真空蒸着法が一般的である。特に金属層の結晶粒径を小さく緻密にするためには蒸着物の運動エネルギーを高める必要がある。そのため電子ビーム蒸着やスパッタリング法が好ましい。   As a method for forming the M1 layer and the M2 layer, a physical vapor deposition method or a chemical vapor deposition method can be used. Physical vapor deposition methods include vacuum vapor deposition and sputtering, and vacuum vapor deposition is common. In particular, in order to make the crystal grain size of the metal layer small and precise, it is necessary to increase the kinetic energy of the deposited material. Therefore, electron beam evaporation or sputtering is preferable.

M1層およびM2層の厚みは、それぞれ5〜200nmが好ましく、より好ましくは10〜150nm、最も好ましくは20〜100nmである。この範囲にすることでM1層およびM2層の金属の結晶粒径を細かくすることができ、補強効果の向上と、表面平滑性への悪影響がないなどの条件を満足し易いため好ましい。厚みが下限未満の場合、M1層およびM2層の金属の結晶形成が不完全となるため、強度を増加させる効果が小さくなり、本発明の寸法安定性向上の効果が小さくなることがある。一方、M1層およびM2層の厚みが上限を超える場合はクラックや粒界ができやすく、磁気記録媒体の表面が粗くなって電磁変換特性が悪化したり、M層が製造工程や、走行を繰り返す際に剥離や脱落が起こり易く、生産性が低下することがある。   The thickness of each of the M1 layer and the M2 layer is preferably 5 to 200 nm, more preferably 10 to 150 nm, and most preferably 20 to 100 nm. Within this range, the metal crystal grain sizes of the M1 layer and the M2 layer can be made fine, and it is preferable because conditions such as an improvement in the reinforcing effect and no adverse effect on the surface smoothness are easily satisfied. When the thickness is less than the lower limit, the crystal formation of the metal of the M1 layer and the M2 layer is incomplete, so that the effect of increasing the strength is reduced, and the effect of improving the dimensional stability of the present invention may be reduced. On the other hand, when the thickness of the M1 layer and the M2 layer exceeds the upper limit, cracks and grain boundaries are likely to be formed, the surface of the magnetic recording medium becomes rough and electromagnetic conversion characteristics deteriorate, and the M layer repeats the manufacturing process and running. In this case, peeling or dropping is likely to occur, and productivity may be reduced.

本発明の磁気記録媒体用支持体において、磁気記録テープとしたときのカッピングやカールを抑制する観点から、M1層およびM2層の厚みはできる限り等しいことが望ましいが、積層ポリエステルフィルムがもともと有するカッピングやカールの影響を打ち消すように、多少厚みを異ならしても良い。そのような観点から、M1層とM2層の厚みの比は、0.8〜1.25の範囲にあることが好ましい。   In the support for a magnetic recording medium of the present invention, the thickness of the M1 layer and the M2 layer is desirably equal as much as possible from the viewpoint of suppressing cupping and curling when the magnetic recording tape is used. The thickness may be slightly different so as to counteract the effects of curling. From such a viewpoint, the ratio of the thicknesses of the M1 layer and the M2 layer is preferably in the range of 0.8 to 1.25.

本発明の磁気記録媒体用支持体は、長手方向のヤング率が5〜20GPaの範囲にあることが好ましい。さらに好ましい支持体の長手方向のヤング率は5.5〜18GPa、特に6.0〜15GPaである。長手方向のヤング率が下限未満だと、磁気記録テープとして使用するときに生じる張力の変動で、幅方向の寸法変化が発生しやすくなる。他方、長手方向のヤング率が上限を超えると、幅方向のヤング率を範囲内に維持することが困難となり、ヘッドとの接触状態を安定に保つのが困難となりやすい。   The magnetic recording medium support of the present invention preferably has a Young's modulus in the longitudinal direction in the range of 5 to 20 GPa. Further, the Young's modulus in the longitudinal direction of the support is preferably 5.5 to 18 GPa, particularly 6.0 to 15 GPa. If the Young's modulus in the longitudinal direction is less than the lower limit, a dimensional change in the width direction is likely to occur due to a variation in tension generated when used as a magnetic recording tape. On the other hand, if the Young's modulus in the longitudinal direction exceeds the upper limit, it is difficult to maintain the Young's modulus in the width direction within the range, and it is difficult to maintain a stable contact state with the head.

また、本発明の磁気記録媒体用支持体は、幅方向のヤング率が、8〜20GPa、さらに9〜18GPa、特に10〜16GPaの範囲にあることが好ましい。支持体の幅方向のヤング率が下限未満だと、磁気ヘッドとの接触状態が不安定化するため電磁変換特性が悪化しやすくなる。他方、支持体の幅方向のヤング率が上限を超えると、支持体の長手方向のヤング率が乏しくなりやすい。   The support for a magnetic recording medium of the present invention preferably has a Young's modulus in the width direction of 8 to 20 GPa, more preferably 9 to 18 GPa, and particularly preferably 10 to 16 GPa. If the Young's modulus in the width direction of the support is less than the lower limit, the contact state with the magnetic head becomes unstable, and the electromagnetic conversion characteristics tend to deteriorate. On the other hand, when the Young's modulus in the width direction of the support exceeds the upper limit, the Young's modulus in the longitudinal direction of the support tends to be poor.

支持体の長手方向のヤング率(YMD)と幅方向のヤング率(YTD)の比、YMD/YTDは0.5〜1.0であることが、上述のヘッドとの安定接触と、張力変動による長手方向の変形抑制を両立できる点から好ましい。より好ましいYMD/YTDの範囲は0.55〜0.9、特に好ましくは0.6〜0.8である。   The ratio of the Young's modulus (YMD) in the longitudinal direction of the support to the Young's modulus (YTD) in the width direction, YMD / YTD being 0.5 to 1.0 is stable contact with the above-mentioned head and fluctuation in tension. It is preferable from the viewpoint that both can prevent deformation in the longitudinal direction. A more preferable range of YMD / YTD is 0.55 to 0.9, particularly preferably 0.6 to 0.8.

本発明の磁気記録媒体用支持体は、その幅方向の温度膨張係数が、0ppm/℃未満〜−5ppm/℃以上の範囲にあることが好ましい。より好ましい磁気記録媒体用支持体の幅方向の温度膨張係数は、上限が−1ppm/℃以下であり、下限が−4ppm/℃以上、さらに−3ppm/℃以上である。一般的に磁気記録装置に用いられている磁気ヘッドの温度膨張係数は7ppm/℃前後である。支持体の幅方向の温度膨張係数が0ppm/℃以上の場合には、磁気テープとしたときの幅方向の温度膨張が磁気ヘッドの温度膨張よりも大きくなりすぎるため、磁気データを記録・再生する環境が低温から高温に変化した際に、テープの幅方向に磁気ヘッドに対して相対的に膨張し、再生不良を起こしやすい。また、支持体幅方向の温度膨張係数が−5ppm/℃より小さい場合には、フィルムの温度膨張が磁気ヘッドの温度膨張よりも小さすぎるため、低温から高温に変化した際に、テープの幅方向に磁気ヘッドに対して相対的に収縮し、再生不良を起こしやすくなる。   The support for a magnetic recording medium of the present invention preferably has a temperature expansion coefficient in the width direction of less than 0 ppm / ° C. to −5 ppm / ° C. or more. A more preferable temperature expansion coefficient in the width direction of the support for a magnetic recording medium has an upper limit of −1 ppm / ° C. or lower, a lower limit of −4 ppm / ° C. or higher, and further −3 ppm / ° C. or higher. Generally, the temperature expansion coefficient of a magnetic head used in a magnetic recording apparatus is around 7 ppm / ° C. When the temperature expansion coefficient in the width direction of the support is 0 ppm / ° C. or more, the temperature expansion in the width direction of the magnetic tape is too large than the temperature expansion of the magnetic head, so that magnetic data is recorded / reproduced. When the environment changes from a low temperature to a high temperature, the tape expands relative to the magnetic head in the width direction of the tape and easily causes a reproduction failure. When the temperature expansion coefficient in the width direction of the support is smaller than −5 ppm / ° C., the temperature expansion of the film is too small than the temperature expansion of the magnetic head. In other words, the magnetic head contracts relatively to the magnetic head, which tends to cause a reproduction failure.

このような幅方向の温度膨張係数は、M1層およびM2層の材質や厚み、さらにM1層およびM2層を設ける積層ポリエステルフィルムの幅方向の温度膨張係数とヤング率によって調整できる。具体的には、積層ポリエステルフィルムの幅方向の温度膨張係数は、その方向の分子鎖の配向を高めること、すなわち延伸倍率を高くすることなどによって小さくできる。そして、M層は積層ポリエステルフィルムと比較して非常に大きな値のヤング率を有しており、また材質によっては大きな温度膨張係数を有することから、使用するF層の温度膨張係数がマイナスサイドにある場合は、温度膨張係数の大きなM層を使用したり、M層の厚みを厚くし、他方使用するF層の温度膨張係数がさほどマイナスサイドにない場合は、温度膨張係数の小さなM層を使用したり、M層の厚みを薄くするなど組合せによる最適化も可能である。   Such a temperature expansion coefficient in the width direction can be adjusted by the material and thickness of the M1 layer and the M2 layer, and the temperature expansion coefficient in the width direction and the Young's modulus of the laminated polyester film provided with the M1 layer and the M2 layer. Specifically, the temperature expansion coefficient in the width direction of the laminated polyester film can be decreased by increasing the orientation of molecular chains in that direction, that is, by increasing the draw ratio. The M layer has a very large Young's modulus compared to the laminated polyester film, and has a large temperature expansion coefficient depending on the material. Therefore, the temperature expansion coefficient of the F layer used is on the negative side. In some cases, use an M layer with a large temperature expansion coefficient, or increase the thickness of the M layer, while if the temperature expansion coefficient of the F layer to be used is not so negative, use an M layer with a small temperature expansion coefficient. It is also possible to optimize by combination such as using or reducing the thickness of the M layer.

本発明の磁気記録媒体用支持体は、M2層の表面、すなわち磁性層を形成する側の表面の表面粗さRa2が、1〜5nm、さらに2〜4.5nmの範囲にあることが好ましい。Ra2が上限より大きいと、高密度磁気記録媒体として十分な電磁変換特性を得られにくい。また、Ra2が下限未満だと、搬送工程や、テープ走行中に、搬送不良のトラブルを引き起こしたり、走行面の突起が転写したり、走行中にゴミによる傷が付きやすくなったりする。このようなM2層の表面粗さは、F2層の表面粗さやM2層の厚さで制御することが可能である。Ra2を好ましい範囲に制御するためには、F2層の表面粗さは、1〜7nm、さらに2〜5nmの範囲にあることが好ましく、前述の不活性粒子の平均粒径や含有量で調整できる。金属層の厚みは前記のとおりであり、厚みが厚いほど、表面が粗くなりやすい。   In the support for a magnetic recording medium of the present invention, the surface roughness Ra2 of the surface of the M2 layer, that is, the surface on which the magnetic layer is formed is preferably in the range of 1 to 5 nm, more preferably 2 to 4.5 nm. When Ra2 is larger than the upper limit, it is difficult to obtain sufficient electromagnetic conversion characteristics as a high-density magnetic recording medium. On the other hand, if Ra2 is less than the lower limit, troubles of conveyance failure may occur during the conveyance process or tape traveling, protrusions on the traveling surface may be transferred, and dust may be easily damaged during traveling. Such surface roughness of the M2 layer can be controlled by the surface roughness of the F2 layer and the thickness of the M2 layer. In order to control Ra2 to a preferred range, the surface roughness of the F2 layer is preferably in the range of 1 to 7 nm, and more preferably in the range of 2 to 5 nm, and can be adjusted by the average particle size and content of the aforementioned inert particles. . The thickness of the metal layer is as described above, and the thicker the thickness, the easier the surface becomes.

本発明の磁気記録媒体用支持体は、M1層の表面、すなわち磁性層を形成しない側の表面の表面粗さRa1は、前述のRa2より大きく、好ましくは1nm以上大きく、3〜10nm、さらに4〜8nm、特に5〜7nmの範囲にあることが好ましい。Ra1が上限より大きいと、保存中に磁性面側へ転写が起こり、磁性面側の表面粗さが粗くなることがある。また、Ra1が下限未満だと、テープの走行性が低下し、ドライブ中で走行不良を引き起こすことがある。このようなM1層の表面粗さは、F1層の表面粗さやM1層の厚さで制御することが可能である。Ra1を好ましい範囲に制御するためには、F1層の表面粗さは、3〜12nm、さらに5〜10nmの範囲にあることが好ましい。金属層の厚みは前記のとおりであり、厚みが厚いほど、表面が粗くなりやすい。   In the support for magnetic recording medium of the present invention, the surface roughness Ra1 of the surface of the M1 layer, that is, the surface on which the magnetic layer is not formed is larger than Ra2 described above, preferably 1 nm or more, 3 to 10 nm, and further 4 It is preferably in the range of ˜8 nm, particularly 5 to 7 nm. If Ra1 is larger than the upper limit, transfer may occur to the magnetic surface side during storage, and the surface roughness on the magnetic surface side may become rough. On the other hand, when Ra1 is less than the lower limit, the running property of the tape is lowered, and a running failure may occur in the drive. Such surface roughness of the M1 layer can be controlled by the surface roughness of the F1 layer and the thickness of the M1 layer. In order to control Ra1 within a preferable range, the surface roughness of the F1 layer is preferably in the range of 3 to 12 nm, more preferably 5 to 10 nm. The thickness of the metal layer is as described above, and the thicker the thickness, the easier the surface becomes.

本発明の磁気記録媒体用支持体の全厚みは、2.0〜6μmが好ましい。より好ましくは2.5〜5.5μm、さらに好ましくは3〜5μm、特に好ましくは3.5〜4.5μmである。厚みが下限より薄いと、テープに腰がなくなるため、電磁変換特性が低下する。他方、厚みが上限を超えると、テープ1巻あたりのテープ長さが短くなるため、磁気テープの小型化、高容量化が困難になりやすい。   The total thickness of the magnetic recording medium support of the present invention is preferably 2.0 to 6 μm. More preferably, it is 2.5-5.5 micrometers, More preferably, it is 3-5 micrometers, Most preferably, it is 3.5-4.5 micrometers. If the thickness is less than the lower limit, the tape loses its elasticity and the electromagnetic conversion characteristics deteriorate. On the other hand, if the thickness exceeds the upper limit, the tape length per one tape is shortened, so that it is difficult to reduce the size and increase the capacity of the magnetic tape.

ところで、本発明の磁気記録媒体用支持体は、前述のM1層およびM2層が、それぞれF1層およびF2層と、ポリエステル樹脂、アクリル樹脂、アクリル変性ポリエステル樹脂から成る群から選ばれる少なくとも1種のバインダー樹脂を含有する塗膜層を介して積層されていることが好ましい。特に好ましいのはアクリル変性ポリエステル樹脂である。アルキッド樹脂、フェノール樹脂、エポキシ樹脂、アミノ樹脂、ポリウレタン樹脂、酢酸ビニル樹脂、塩化ビニル−酢酸ビニル共重合体などに比べ、ポリエステル樹脂、アクリル樹脂およびアクリル−ポリエステル樹脂のいずれかを選択することで、積層ポリエステルフィルムに対する密着性、突起保持性、易滑性などをより高度に具備させることができる。これらのポリエステル樹脂、アクリル樹脂およびアクリル−ポリエステル樹脂は、水溶性もしくは水分散性(多少の有機溶剤を含有していても良い)であることが塗膜層の形成などの点から好ましい。このような塗膜層の存在により、積層ポリエステルフィルムの表面に出てくるオリゴマーの析出による問題や、積層ポリエステルフィルム中の粒子の脱落を抑制できる。   By the way, the support for a magnetic recording medium of the present invention has at least one kind selected from the group consisting of the aforementioned M1 layer and M2 layer, respectively, F1 layer and F2 layer, polyester resin, acrylic resin, and acrylic modified polyester resin. It is preferable to laminate | stack through the coating-film layer containing binder resin. Particularly preferred are acrylic modified polyester resins. Compared to alkyd resin, phenol resin, epoxy resin, amino resin, polyurethane resin, vinyl acetate resin, vinyl chloride-vinyl acetate copolymer, etc., by selecting any of polyester resin, acrylic resin and acrylic-polyester resin, Adhesiveness to the laminated polyester film, protrusion retention, slipperiness, and the like can be further enhanced. These polyester resins, acrylic resins and acrylic-polyester resins are preferably water-soluble or water-dispersible (may contain some organic solvent) from the viewpoint of forming a coating layer. Due to the presence of such a coating layer, problems due to precipitation of oligomers appearing on the surface of the laminated polyester film, and dropping of particles in the laminated polyester film can be suppressed.

前記水溶性もしくは水分散性のポリエステル樹脂について、さらに説明する。該ポリエステル樹脂を構成する酸成分は、テレフタル酸、イソフタル酸、フタル酸、1,4−シクロヘキサンジカルボン酸、2,6−ナフタレンジカルボン酸、4,4’−ジフェニルジカルボン酸、アジピン酸、セバシン酸、ドデカンジカルボン酸、コハク酸、5−ナトリウムスルホイソフタル酸、2−カリウムスルホテレフタル酸、トリメリット酸、トリメシン酸、無水トリメリット酸、無水フタル酸、p−ヒドロキシ安息香酸、トリメリット酸モノカリウム塩などの多価カルボン酸を例示できる。また、該ポリエステル樹脂を構成するヒドロキシ化合物成分は、エチレングリコール、プロピレングリコール、1,3−プロパンジオール、1,4−ブタンジオール、1,6−ヘキサンジオール、ネオペンチルグリコール、1,4−シクロヘキサンジメタノール、p−キシリレングリコール、ビスフェノールAのエチレンオキシド付加物、ジエチレングリコール、トリエチレングリコール、ポリエチレンオキシドグリコール、ポリテトラメチレンオキシドグリコール、ジメチロールプロピオン酸、グリセリン、トリメチロールプロパン、ジメチロールエチルスルホン酸ナトリウム、ジメチロールプロパン酸カリウムなどの多価ヒドロキシ化合物を例示できる。該ポリエステル樹脂は、これらの多価カルボン酸および多価ヒドロキシ化合物から常法によってつくることができる。特に水性塗料をつくる点から、5−ナトリウムスルホイソフタル酸成分またはカルボン酸塩基を含有する水分散性または水溶性ポリエステル樹脂が好ましい。かかるポリエステル樹脂は分子内に官能基を有する自己架橋型とすることができるし、メラミン樹脂、エポキシ樹脂のような硬化剤を用いて架橋してもよい。   The water-soluble or water-dispersible polyester resin will be further described. The acid component constituting the polyester resin is terephthalic acid, isophthalic acid, phthalic acid, 1,4-cyclohexanedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 4,4′-diphenyldicarboxylic acid, adipic acid, sebacic acid, Dodecanedicarboxylic acid, succinic acid, 5-sodium sulfoisophthalic acid, 2-potassium sulfoterephthalic acid, trimellitic acid, trimesic acid, trimellitic anhydride, phthalic anhydride, p-hydroxybenzoic acid, trimellitic acid monopotassium salt, etc. Can be exemplified. Further, the hydroxy compound component constituting the polyester resin is ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, 1,4-cyclohexanediene. Methanol, p-xylylene glycol, ethylene oxide adduct of bisphenol A, diethylene glycol, triethylene glycol, polyethylene oxide glycol, polytetramethylene oxide glycol, dimethylolpropionic acid, glycerin, trimethylolpropane, sodium dimethylolethylsulfonate, di Examples thereof include polyvalent hydroxy compounds such as potassium methylolpropanoate. The polyester resin can be produced from these polyvalent carboxylic acids and polyvalent hydroxy compounds by a conventional method. In particular, from the viewpoint of producing a water-based paint, a water-dispersible or water-soluble polyester resin containing a 5-sodium sulfoisophthalic acid component or a carboxylate group is preferable. Such a polyester resin may be a self-crosslinking type having a functional group in the molecule, or may be crosslinked using a curing agent such as a melamine resin or an epoxy resin.

前記水溶性もしくは水分散性のアクリル樹脂について、説明する。該アクリル樹脂の製造に用いるアクリル成分は、アクリル酸エステル(アルコール残基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、2−エチルヘキシル基、シクロヘキシル基、フェニル基、ベンジル基、フェニルエチル基などを例示できる);メタクリル酸エステル(アルコール残基は上記と同じ);2−ヒドロキシエチルアクリレート、2ーヒドロキシエチルメタクリレート、2−ヒドロキシプロピルアクリレート、2−ヒドロキシプロピルメタクリレートなどの如きヒドロキシ含有モノマー;アクリルアミド、メタクリルアミド、N−メチルメタクリルアミド、N−メチルアクリルアミド、N−メチロールアクリルアミド、N−メチロールメタクリルアミド、N,N’−ジメチロールアクリルアミド、N−メトキシメチルアクリルアミド、N−メトキシメチルメタクリルアミド、N−フェニルアクリルアミドなどの如きアミド基含有モノマー;N,N’−ジエチルアミノエチルアクリレート、N,N’−ジエチルアミノエチルメタクリレートなどの如きアミノ基含有モノマーなどを挙げることができる。これらモノマーは、スチレンスルホン酸、ビニルスルホン酸およびそれらの塩(例えばナトリウム塩、カリウム塩、アンモニウム塩など)などの如きスルホン酸基またはその塩を含有するモノマー;クロトン酸、イタコン酸、アクリル酸、マレイン酸、フマール酸、およびそれらの塩(例えばナトリウム塩、カリウム塩、アンモニウム塩など)などの如きカルボキシル基またはその塩を含有するモノマー;無水マレイン酸、無水イタコン酸などの無水物を含有するモノマー;その他ビニルイソシアネート、アリルイソシアネート、スチレン、ビニルメチルエーテル、ビニルエチルエーテル、ビニルトリスアルコキシシラン、アルキルマレイン酸モノエステル、アルキルフマール酸モノエステル、アクリロニトリル、メタクリロニトリル、アルキルイタコン酸モノエステル、塩化ビニリデン、酢酸ビニル、塩化ビニル、アリルグリシジルエーテルなどの単量体と組合せて用いることができる。この場合、アクリル酸誘導体、メタクリル酸誘導体の如き(メタ)アクリルモノマーの成分が50モル%以上含まれているのが好ましく、特にメタクリル酸メチルの成分を含有しているものが好ましい。かかる水溶性もしくは水分散性のアクリル樹脂は分子内の官能基で自己架橋することができるし、メラミン樹脂やエポキシ化合物などの架橋剤を用いて架橋することもできる。   The water-soluble or water-dispersible acrylic resin will be described. The acrylic component used for the production of the acrylic resin is an acrylic ester (as the alcohol residue, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, 2- Ethylhexyl group, cyclohexyl group, phenyl group, benzyl group, phenylethyl group, etc.); methacrylate ester (alcohol residue is the same as above); 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl Hydroxy-containing monomers such as acrylate and 2-hydroxypropyl methacrylate; acrylamide, methacrylamide, N-methyl methacrylamide, N-methyl acrylamide, N-methylol acrylamide, N-methylol methacrylamide, N, N Amide group-containing monomers such as dimethylolacrylamide, N-methoxymethylacrylamide, N-methoxymethylmethacrylamide, N-phenylacrylamide, etc .; N, N′-diethylaminoethyl acrylate, N, N′-diethylaminoethyl methacrylate, etc. Examples thereof include amino group-containing monomers. These monomers include sulfonic acid groups such as styrene sulfonic acid, vinyl sulfonic acid and salts thereof (for example, sodium salt, potassium salt, ammonium salt, etc.) or a salt thereof; crotonic acid, itaconic acid, acrylic acid, Monomer containing a carboxyl group such as maleic acid, fumaric acid, and salts thereof (for example, sodium salt, potassium salt, ammonium salt, etc.) or a salt thereof; monomer containing anhydride such as maleic anhydride, itaconic anhydride, etc. Other vinyl isocyanate, allyl isocyanate, styrene, vinyl methyl ether, vinyl ethyl ether, vinyl trisalkoxysilane, alkyl maleic acid monoester, alkyl fumaric acid monoester, acrylonitrile, methacrylonitrile, al Ruitakon acid monoester, vinylidene chloride, vinyl acetate, may be used vinyl chloride, a monomer such as allyl glycidyl ether combination. In this case, it is preferable that components of (meth) acrylic monomers such as acrylic acid derivatives and methacrylic acid derivatives are contained in an amount of 50 mol% or more, and those containing a methyl methacrylate component are particularly preferable. Such a water-soluble or water-dispersible acrylic resin can be self-crosslinked with a functional group in the molecule, or can be crosslinked using a crosslinking agent such as a melamine resin or an epoxy compound.

本発明において、水溶性または水分散性のアクリル−ポリエステル樹脂は、アクリル変性ポリエステル樹脂とポリエステル変性アクリル樹脂とを包含するものである。具体的には、アクリル樹脂成分とポリエステル樹脂成分とが、互いにグラフトタイプやブロックタイブなどの形態で結合したものである。アクリル−ポリエステル樹脂は、例えばポリエステル樹脂の両端にラジカル開始剤を付加してアクリル単量体の重合を行わせたり、ポリエステル樹脂の側鎖にラジカル開始剤を付加してアクリル単量体の重合を行わせたり、あるいはアクリル樹脂の側鎖に水酸基を付け、末端にイソシアネート基やカルボキシル基を有するポリエステルと反応させて櫛形ポリマーとするなどによって製造できる。   In the present invention, the water-soluble or water-dispersible acrylic-polyester resin includes an acrylic-modified polyester resin and a polyester-modified acrylic resin. Specifically, an acrylic resin component and a polyester resin component are bonded to each other in the form of a graft type or a block type. Acrylic-polyester resin, for example, adds a radical initiator to both ends of the polyester resin to polymerize the acrylic monomer, or adds a radical initiator to the side chain of the polyester resin to polymerize the acrylic monomer. For example, or by adding a hydroxyl group to the side chain of the acrylic resin and reacting with a polyester having an isocyanate group or a carboxyl group at the terminal to form a comb polymer.

該アクリル−ポリエステル樹脂を構成する成分は、前記の水溶性もしくは水分散性のアクリル樹脂または水溶性または水分散性のポリエステル樹脂で例示したものを、同様に挙げることができる。   Examples of the component constituting the acrylic-polyester resin include those exemplified for the water-soluble or water-dispersible acrylic resin or the water-soluble or water-dispersible polyester resin.

ところで、M2層とF2層およびM1層とF1層との間に介在する塗膜層は、バインダー樹脂のほかに、微細粒子を含有することが好ましい。本発明において、塗膜層を構成する微細粒子は、ポリスチレン、ポリスチレン―ジビニルベンゼン、ポリメチルメタクリレート、メチルメタクリレート共重合体、メチルメタクリレート共重合架橋体、ポリテトラフルオロエチレン、ポリビニリデンフルオライド、ポリアクリロニトリル、ベンゾグアナミン、シリコーンなどの有機質、または、シリカ、アルミナ、二酸化チタン、カオリン、炭酸カルシウム、タルク、グラファイトなどの無機質などからなる粒子を好ましく挙げることができる。また、微細粒子の内外部が、それぞれの性質の異なる材質で構成される多層構造のコアシェル型粒子を用いてもよい。上記微細粒子の平均粒径は、走行性と平坦性との観点から、3nm以上50nm以下、さらに5nm以上30nm以下の範囲であることが好ましい。   Incidentally, the coating layer interposed between the M2 layer and the F2 layer and between the M1 layer and the F1 layer preferably contains fine particles in addition to the binder resin. In the present invention, the fine particles constituting the coating layer are polystyrene, polystyrene-divinylbenzene, polymethyl methacrylate, methyl methacrylate copolymer, methyl methacrylate copolymer cross-linked product, polytetrafluoroethylene, polyvinylidene fluoride, polyacrylonitrile. Preferred examples include particles made of organic substances such as benzoguanamine and silicone, or inorganic substances such as silica, alumina, titanium dioxide, kaolin, calcium carbonate, talc and graphite. Moreover, you may use the core-shell type particle | grains of the multilayered structure by which the inside and outside of a fine particle are comprised with the material from which each property differs. The average particle size of the fine particles is preferably in the range of 3 nm to 50 nm, and more preferably 5 nm to 30 nm, from the viewpoints of runnability and flatness.

本発明におけるF2層の表面に形成された塗膜層の表面(以下、F2層側塗膜層表面と称することがある。)の微細粒子による突起の頻度は、100万個/mm以上1億個/mm以下、さらに100万個/mm以上3000万個/mm以下、特に300万個/mm以上2000万個/mm以下であることが走行性などの点から好ましい。 The frequency of protrusions due to fine particles on the surface of the coating layer formed on the surface of the F2 layer in the present invention (hereinafter sometimes referred to as the F2 layer-side coating layer surface) is 1,000,000 pieces / mm 2 or more 1 billion / mm 2 or less, further 1 million / mm 2 or more 30 million / mm 2 or less, it is preferable in view of runnability in particular 3 million / mm 2 or more 20 million / mm 2 or less.

本発明の磁気記録媒体用支持体は、高い寸法安定性を必要とする磁性層が塗布型のデジタル信号をリニア記録方式で記録する磁気記録テープの支持体として好ましく用いられる。中でも、LTOやDLTなどのデータストレージ用高密度磁気記録用テープに適したものである。   The support for a magnetic recording medium of the present invention is preferably used as a support for a magnetic recording tape in which a magnetic layer requiring high dimensional stability records a coating type digital signal by a linear recording method. Among these, it is suitable for high-density magnetic recording tapes for data storage such as LTO and DLT.

つぎに、本発明の磁気記録媒体用支持体の製造方法について、まずは積層ポリエステルフィルムの製造方法から説明する。まず、本発明におけるポリエステルの合成方法は、例えば芳香族ジカルボン酸もしくはそのエステル形成性誘導体とアルキレングリコールとをエステル化反応もしくはエステル交換反応させてポリエステルの前駆体を合成する第一反応と、該前駆体を重縮合反応させる第二反応とからなり、それ自体公知の方法を採用できる。   Next, the method for producing a support for a magnetic recording medium of the present invention will be described first from the method for producing a laminated polyester film. First, a polyester synthesis method in the present invention includes, for example, a first reaction in which an aromatic dicarboxylic acid or an ester-forming derivative thereof and an alkylene glycol are esterified or transesterified to synthesize a polyester precursor; It consists of a second reaction in which the product is polycondensed, and a method known per se can be adopted.

また、不活性粒子を含有させる方法については、粗大粒子などをフィルターなどによって低減し、それを重合工程で添加して粒子の含有量が多いマスターポリエステルを作成し、該マスターポリエステルを、粒子を含有しないポリエステルで希釈するのが、不活性粒子の凝集による粗大突起を低減する上で好ましい。   As for the method of containing inert particles, coarse particles and the like are reduced by a filter or the like, and added in the polymerization step to create a master polyester having a large particle content, and the master polyester contains particles. It is preferable to dilute with a non-polyester in order to reduce coarse protrusions due to aggregation of inert particles.

本発明における積層ポリエステルフィルムは、データストレージなどの高密度磁気記録媒体のベースフィルムに用いることから、二軸配向フィルムである。二軸配向フィルムは、上述のポリエステルを溶融状態で押出し、二軸方向に延伸することで製造でき、製膜方法などはそれ自体公知のものを採用することができる。   The laminated polyester film in the present invention is a biaxially oriented film because it is used as a base film for high-density magnetic recording media such as data storage. The biaxially oriented film can be produced by extruding the polyester described above in a molten state and stretching in the biaxial direction, and a film forming method or the like can be employed.

例えば、不活性粒子を含有させたF1層用のポリエステル組成物と、必要に応じて不活性粒子を含有させたF2層用のポリエステル組成物とを、ポリエステルの融点(Tm)〜(Tm+70)℃の温度で各々押出し機より溶融押出しし、押出し口金内または口金以前(一般に、前者はマルチマニホールド方式、後者はフィードブロック方式と呼ぶ)で、積層複合し好適な厚み比の積層構造となし、次いで口金よりフィルム状に共押出ししたのち、20〜70℃の冷却ロールで急冷固化し、未延伸積層フィルムを得る。その後、上記未延伸積層フィルムを常法に従い、一軸方向(縦方向または横方向)に(ポリエステルのガラス転移温度(Tg)−10)〜(Tg+70)℃の温度で2.5〜8.0倍の倍率で、好ましくは3.0〜7.5倍の倍率で延伸し、次いで上記延伸方向とは直角方向(一段目延伸が縦方向の場合には、二段目延伸は横方向となる)に(Tg)〜(Tg+70)℃の温度で2.5〜8.0倍の倍率で、好ましくは3.0〜7.5倍の倍率で延伸する。さらに、必要に応じて、縦方向および/または横方向に再度延伸してもよい。すなわち、2段、3段、4段あるいは多段の延伸を行うとよい。全延伸面積倍率としては、通常9倍以上、好ましくは10〜35倍、さらに好ましくは12〜30倍である。   For example, the polyester composition for the F1 layer containing inert particles and the polyester composition for the F2 layer containing inert particles as necessary, have a melting point (Tm) to (Tm + 70) ° C. of the polyester. At the temperature of the extruder, each is melt-extruded from the extruder, and in the extrusion die or before the die (generally the former is called the multi-manifold method, the latter is called the feed block method), and is laminated to form a laminated structure with a suitable thickness ratio, After coextrusion from the die into a film, it is rapidly cooled and solidified with a cooling roll of 20 to 70 ° C. to obtain an unstretched laminated film. Thereafter, the unstretched laminated film is 2.5 to 8.0 times in a uniaxial direction (longitudinal direction or transverse direction) at a temperature of (polyester glass transition temperature (Tg) -10) to (Tg + 70) ° C. according to a conventional method. The film is stretched at a magnification of 3.0 to 7.5, and preferably in a direction perpendicular to the stretching direction (when the first-stage stretching is the longitudinal direction, the second-stage stretching is the transverse direction). (Tg) to (Tg + 70) at a temperature of 2.5 to 8.0 times, preferably 3.0 to 7.5 times. Furthermore, you may extend | stretch again in the vertical direction and / or a horizontal direction as needed. That is, it is good to perform 2 steps, 3 steps, 4 steps, or multi-stage stretching. The total stretched area ratio is usually 9 times or more, preferably 10 to 35 times, and more preferably 12 to 30 times.

なお、前述の塗膜層は、積層ポリエステルフィルムを製膜した後に塗布して形成しても良いが、接着性や均一性の点から、積層ポリエステルフィルムの最終の延伸が終わるまでの間、好ましくは未延伸フィルムもしくは1軸延伸フィルムに塗液を塗布して乾燥し、延伸するのが好ましい。   In addition, although the above-mentioned coating film layer may apply | coat and form after forming a laminated polyester film, from the point of adhesiveness or uniformity, it is preferable until the final extending | stretching of a laminated polyester film is complete | finished. Is preferably applied by applying a coating solution to an unstretched film or a uniaxially stretched film, and then drying and stretching.

さらに、前記二軸配向フィルムは(Tg+70)〜(Tm−10)℃の温度、例えば、ポリエチレンテレフタレートフィルムの場合、180〜250℃で熱固定結晶化することによって、優れた寸法安定性が付与される。その際、熱固定時間は1〜60秒が好ましい。   Further, the biaxially oriented film is imparted with excellent dimensional stability by heat-set crystallization at a temperature of (Tg + 70) to (Tm-10) ° C., for example, 180 to 250 ° C. in the case of a polyethylene terephthalate film. The At that time, the heat setting time is preferably 1 to 60 seconds.

つづいて、前述の方法で作成した積層ポリエステルフィルムにM層(M1層およびM2層)を設ける方法について説明する。なお、ここでは、真空蒸着法を用いた製造方法の例を挙げる。   Next, a method of providing M layers (M1 layer and M2 layer) on the laminated polyester film prepared by the above-described method will be described. Here, an example of a manufacturing method using a vacuum deposition method is given.

真空蒸着装置内に設置されたフィルム走行装置に、ポリエステルフィルムをセットし、真空蒸着を行う。1.00×10−5〜1.00×10−1Paの高真空で蒸着することが好ましい。0〜50℃の冷却金属ドラムを介して、走行させ、蒸着物を加熱蒸発させ、フィルムの両面に形成して巻取る。フィルム走行速度は、10〜200m/分が好ましく、より好ましくは、50〜150m/分である。走行速度が上記範囲を外れる場合には、M層の厚みを好ましい範囲に設定することが困難となったり、生産性が劣る場合がある。両面へのM層の形成方法は、同一の真空層内に2つの加熱蒸着装置と冷却ドラムを設けて、1パスで両面を蒸着することが好ましいが、一度片面に蒸着を行ない、巻き取った後に、再びもう一方の面にM層を設ける2パスで行っても良い。2パスの場合は勿論であるが、1パスの場合でも、M層を設ける順序としては、磁性層側、バックコート層側とした方が、カッピングを抑制できるため好ましい。 A polyester film is set on a film running device installed in a vacuum deposition apparatus, and vacuum deposition is performed. It is preferable to deposit in a high vacuum of 1.00 × 10 −5 to 1.00 × 10 −1 Pa. It is made to travel through a cooling metal drum of 0 to 50 ° C., the deposited material is heated and evaporated, and is formed and wound on both surfaces of the film. The film running speed is preferably 10 to 200 m / min, and more preferably 50 to 150 m / min. When the traveling speed is out of the above range, it may be difficult to set the thickness of the M layer within a preferable range, or productivity may be inferior. The method of forming the M layer on both sides is preferably provided with two heating vapor deposition devices and a cooling drum in the same vacuum layer, and vapor deposition is performed on one side by one pass. Later, two passes may be performed in which an M layer is provided on the other surface again. Of course, in the case of two passes, even in the case of one pass, the order of providing the M layer is preferably the magnetic layer side and the back coat layer side because cupping can be suppressed.

さらに、上記の方法で磁気記録媒体支持体を作製した後、エージング処理を行うことが、クリープ変形を抑制し、寸法安定性を向上するために好ましい。処理温度は100〜120℃が好ましく、処理時間は10〜40時間が好ましく、より好ましくは、15〜20時間である。上記、エージング処理の好ましい条件のなかでも、処理温度が低い場合は処理時間を長くとる方が好ましいし、処理温度が比較的高めの場合には処理時間は短い方がよい。この温度と時間の両方に関係する処理条件は、示差走査熱量測定(DSC)によって得られる積層ポリエステルフィルムのエンタルピー緩和のピーク面積を指標として表すことができ、ピーク面積ΔHは、0.5J/g〜1J/gが好ましい。   Furthermore, after producing a magnetic recording medium support by the above method, it is preferable to perform an aging treatment in order to suppress creep deformation and improve dimensional stability. The treatment temperature is preferably from 100 to 120 ° C., and the treatment time is preferably from 10 to 40 hours, more preferably from 15 to 20 hours. Among the preferable conditions for the aging treatment, it is preferable that the treatment time is long when the treatment temperature is low, and the treatment time is short when the treatment temperature is relatively high. The processing conditions related to both temperature and time can be expressed by using the peak area of enthalpy relaxation of the laminated polyester film obtained by differential scanning calorimetry (DSC) as an index, and the peak area ΔH is 0.5 J / g. ~ 1 J / g is preferred.

エージング処理は、積層ポリエステルフィルムを作製した後、M層を設ける前に行うことも可能であるが、この場合、積層ポリエステルフィルムの長手方向の熱収縮率が低くなり、蒸着工程でキャンとの密着が低下して、表面が粗くなったり、オリゴマーがフィルム表面に析出して、蒸着工程トラブルを引き起こしやすい。このため、エージング処理は、M層を設けた後に行う方が好ましい。   The aging treatment can be performed after preparing the laminated polyester film and before providing the M layer, but in this case, the thermal contraction rate in the longitudinal direction of the laminated polyester film becomes low, and adhesion with the can in the vapor deposition process. Decreases, the surface becomes rough, and oligomers are deposited on the film surface, which easily causes a vapor deposition process trouble. For this reason, it is preferable to perform the aging treatment after providing the M layer.

本発明の磁気記録媒体用支持体を用いた磁気記録テープとしては、磁性層−非磁性層−支持体―バックコート層がこの順で積層されたものであることが好ましく、磁性層の表面をより高度に平坦にしやすいことから、非磁性層の厚みは0.9〜1.1μm、磁性層の厚みは0.05〜0.25μmの範囲にあることが好ましい。また、磁気記録テープの走行性を高度に発現させやすいことから、バックコート層の厚みは0.3〜0.7μmの範囲にあることが好ましい。特に本発明の効果の点からは、磁気記録テープ中に占めるコート層(磁性層、非磁性層、バックコート層など)の厚みの割合は、15〜35%、さらに22〜30%の範囲にあることが好ましい。コート層の厚みが下限未満では、非磁性層などの厚みが薄くなり、磁性層の平坦化向上効果が乏しくなりやすく、他方上限を超えると寸法安定性の向上効果が損なわれやすくなる。   The magnetic recording tape using the magnetic recording medium support of the present invention is preferably one in which a magnetic layer, a nonmagnetic layer, a support, and a backcoat layer are laminated in this order. It is preferable that the nonmagnetic layer has a thickness of 0.9 to 1.1 μm, and the magnetic layer has a thickness of 0.05 to 0.25 μm because it is more easily flattened. Further, the back coat layer preferably has a thickness in the range of 0.3 to 0.7 [mu] m because the traveling property of the magnetic recording tape is easily expressed. In particular, from the viewpoint of the effect of the present invention, the ratio of the thickness of the coating layer (magnetic layer, nonmagnetic layer, backcoat layer, etc.) in the magnetic recording tape is in the range of 15 to 35%, and further 22 to 30%. Preferably there is. If the thickness of the coat layer is less than the lower limit, the thickness of the non-magnetic layer and the like is reduced, and the flattening improvement effect of the magnetic layer tends to be poor. On the other hand, if the upper limit is exceeded, the improvement effect of dimensional stability is easily lost.

以下に実施例及び比較例を挙げ、本発明をより具体的に説明する。なお、本発明におけるポリエステル、ポリエステルフィルムおよびデータストレージ用テープの特性は、下記の方法で測定および評価した。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. In addition, the characteristic of the polyester in this invention, the polyester film, and the tape for data storage was measured and evaluated by the following method.

(1)固有粘度
得られたポリエステルの固有粘度は、o-クロロフェノール、35℃で測定し、o−クロロフェノールでは均一に溶解するのが困難な場合は、P−クロロフェノール/1,1,2,2−テトラクロロエタン(40/60重量比)の混合溶媒を用いて35℃で測定して求めた。
(1) Intrinsic viscosity The intrinsic viscosity of the obtained polyester is measured at o-chlorophenol at 35 ° C, and when it is difficult to dissolve uniformly with o-chlorophenol, P-chlorophenol / 1,1, It was determined by measuring at 35 ° C. using a mixed solvent of 2,2-tetrachloroethane (40/60 weight ratio).

(2)末端カルボキシル基濃度(eq/106g)
A. Conix の方法に準じて測定した。(Makromol.Chem.26,226(1958))
(2) Terminal carboxyl group concentration (eq / 10 6 g)
A. Measured according to Conix method. (Makromol. Chem. 26, 226 (1958))

(3)中心面平均粗さ(Ra)
非接触式三次元表面粗さ計(ZYGO社製:New View5022)を用いて測定倍率25倍、測定面積283μm×213μm(=0.0603mm)の条件にて測定し、該粗さ計に内蔵された表面解析ソフトMetroProにより中心面平均粗さ(Ra)を求めた。
(3) Center plane average roughness (Ra)
Measured using a non-contact type three-dimensional surface roughness meter (manufactured by ZYGO: New View 5022) at a measurement magnification of 25 times and a measurement area of 283 μm × 213 μm (= 0.0603 mm 2 ), and incorporated in the roughness meter The center plane average roughness (Ra) was determined by the surface analysis software MetroPro.

(4)不活性粒子の平均粒径
(4−1)フィルム中の添加粒子の粒径
株式会社島津製作所製「CP−50型セントリヒューグル パーティクル サイズ アナライザー(Centrifugal Particle Size Analyzer)」を用いて測定した。得られる遠心沈降曲線を基に算出した各粒径の粒子とその存在量との積算曲線から、50マスパーセントに相当する粒径「等価球直径」を読み取り、この値を上記平均粒径(nm)とする(「粒度測定技術」日刊工業新聞社発行、1975年、頁242〜247)。
(4) Average particle diameter of inert particles (4-1) Particle diameter of additive particles in film Measured using “CP-50 Centrifuggle Particle Size Analyzer” manufactured by Shimadzu Corporation did. A particle diameter “equivalent sphere diameter” corresponding to 50 mass percent is read from an integrated curve of particles of each particle diameter calculated based on the obtained centrifugal sedimentation curve and the abundance thereof, and this value is calculated as the average particle diameter (nm). ("Particle size measurement technology", published by Nikkan Kogyo Shimbun, 1975, pages 242-247).

(4−2)塗膜中に添加した微細粒子の粒径
塗膜中に添加する微細粒子の粒径は、光散乱法を用いて測定した。すなわち、ニコンプインストゥルメント株式会社(Nicomp Instruments Inc.)製の商品名「NICOMP MODEL 270 SUBMICRON PARTICLE SIZER」により求められる全粒子の50%の点にある粒子の「等価球直径」をもって、平均粒径(nm)とする。
(4-2) Particle size of fine particles added to the coating film The particle size of the fine particles added to the coating film was measured using a light scattering method. That is, the average particle diameter of the particles at the 50% point of the total particle size determined by the trade name “NICOMP MODEL 270 SUBMICRON SIZER” manufactured by Nicomp Instruments Inc. The diameter (nm).

(5)ガラス転移点および融点
ガラス転移点および融点は、試料10mgを、測定用のアルミニウム製パンに封入し、DSC(TAインスツルメンツ社製、商品名:Q100)により昇温速度20℃/minで測定した。
(5) Glass transition point and melting point The glass transition point and melting point were measured by enclosing 10 mg of a sample in an aluminum pan for measurement and using DSC (TA Instruments, trade name: Q100) at a heating rate of 20 ° C./min. It was measured.

(6)ヤング率
得られた積層ポリエステルフィルムおよび支持体を試料巾10mm、長さ15cmで切り取り、チャック間100mm、引張速度10mm/分、チャート速度500mm/分の条件で万能引張試験装置(東洋ボールドウィン製、商品名:テンシロン)にて引っ張る。得られた荷重―伸び曲線の立ち上がり部の接線よりヤング率を計算する。
(6) Young's modulus The obtained laminated polyester film and support were cut out with a sample width of 10 mm and a length of 15 cm, and a universal tensile tester (Toyo Baldwin) under the conditions of 100 mm between chucks, a tensile speed of 10 mm / min, and a chart speed of 500 mm / min. Product, product name: Tensilon). The Young's modulus is calculated from the tangent of the rising portion of the obtained load-elongation curve.

(7)湿度膨張係数(αh)
得られたフィルムから幅5mmのサンプルを切り出し、チャック間長さ15mmとなるように、ブルカーAXS製TMA4000SAにセットし、30℃の窒素雰囲気下で、湿度20%RHと湿度80%RHにおけるそれぞれのサンプルの長さを測定し、次式にて湿度膨張係数(αh)を算出した。なお、測定方向が切り出した試料の長手方向であり、5回測定し、その平均値をαhとした。
αh=(L80−L20)/(L20×△H)
ここで、上記式中のL20は20%RHのときのサンプル長(mm)、L80は80%RHのときのサンプル長(mm)、△H:60(=80−20)%RHである。
(7) Humidity expansion coefficient (αh)
A sample with a width of 5 mm was cut out from the obtained film and set in a TMA4000SA manufactured by Bruker AXS so that the length between chucks was 15 mm. Under a nitrogen atmosphere at 30 ° C., the humidity was 20% RH and the humidity was 80% RH. The length of the sample was measured, and the humidity expansion coefficient (αh) was calculated by the following formula. In addition, the measurement direction is the longitudinal direction of the cut out sample, the measurement was performed 5 times, and the average value was αh.
αh = (L 80 −L 20 ) / (L 20 × ΔH)
Here, L 20 in the above formula is a sample length (mm) when 20% RH, L 80 is a sample length (mm) when 80% RH, ΔH: 60 (= 80-20)% RH is there.

(8)温度膨張係数(αt)
得られたフィルムから幅4mmのサンプルを切り出し、チャック間長さ20mmとなるように、セイコーインスツル製TMA/SS6000にセットし、窒素雰囲気下(0%RH)、80℃で30分前処理し、その後室温まで降温させた。その後30℃から80℃まで2℃/minで昇温して、各温度でのサンプル長を測定し、次式より温度膨張係数(αt)を算出した。なお、測定方向が切り出した試料の長手方向であり、5回測定し、その平均値を用いた。
αt={(L60−L40)}/(L40×△T)}+0.5×10−6
ここで、上記式中のL40は40℃のときのサンプル長(mm)、L60は60℃のときのサンプル長(mm)、△Tは20(=60−40)℃、0.5×10−6/℃は石英ガラスの温度膨張係数(αt)である。
(8) Temperature expansion coefficient (αt)
A sample with a width of 4 mm was cut out from the obtained film, set to TMA / SS6000 made by Seiko Instruments so that the length between chucks was 20 mm, and pretreated at 80 ° C. for 30 minutes in a nitrogen atmosphere (0% RH). Thereafter, the temperature was lowered to room temperature. Thereafter, the temperature was raised from 30 ° C. to 80 ° C. at 2 ° C./min, the sample length at each temperature was measured, and the temperature expansion coefficient (αt) was calculated from the following equation. In addition, the measurement direction is the longitudinal direction of the sample cut out, the measurement was performed 5 times, and the average value was used.
αt = {(L 60 −L 40 )} / (L 40 × ΔT)} + 0.5 × 10 −6
Here, L 40 in the above formula is the sample length (mm) at 40 ° C., L 60 is the sample length (mm) at 60 ° C., ΔT is 20 (= 60-40) ° C., 0.5 × 10 −6 / ° C. is the temperature expansion coefficient (αt) of quartz glass.

(9)トラックずれ
支持体の表面M2側に、下記組成の磁性塗料と非磁性下層塗料とをエクストルージョンコーターにより重層塗布(上層は磁性塗料で、塗布厚0.1μm、非磁性下層の厚みは適宜変化させた。)し、磁気配向させ、乾燥させる。次いで反対面に、下記組成のバックコート層を形成した後、小型テストカレンダー装置(スチール/ナイロンロール、5段)で、温度85℃、線圧200kg/cmでカレンダー処理した後、60℃で、48時間キュアリングする。上記テープ原反を1/2インチ幅にスリットし、磁気テープとして、長さ850m分をリールに巻き取った。
(9) Track deviation
On the surface M2 side of the support, a magnetic coating material and a nonmagnetic lower layer coating material having the following composition were applied by an overlay coater (the upper layer was a magnetic coating material, the coating thickness was 0.1 μm, and the thickness of the nonmagnetic lower layer was appropriately changed. ), Magnetically oriented, and dried. Next, a back coat layer having the following composition was formed on the opposite surface, and then calendered at a temperature of 85 ° C. and a linear pressure of 200 kg / cm with a small test calender device (steel / nylon roll, 5 steps), then at 60 ° C. Cure for 48 hours. The original tape was slit to a 1/2 inch width, and a length of 850 m was wound as a magnetic tape on a reel.

(磁性塗料の組成)
・強磁性金属粉末 :100重量部
・変成塩化ビニル共重合体 : 10重量部
・変成ポリウレタン : 10重量部
・ポリイソシアネート : 5重量部
・ステアリン酸 : 1.5重量部
・オレイン酸 : 1重量部
・カーボンブラック : 1重量部
・アルミナ : 10重量部
・メチルエチルケトン : 75重量部
・シクロヘキサノン : 75重量部
・トルエン : 75重量部
(バックコートの組成)
・カーボンブラック(平均粒径20nm) : 95重量部
・カーボンブラック(平均粒径280nm): 10重量部
・αアルミナ : 0.1重量部
・変成ポリウレタン : 20重量部
・変成塩化ビニル共重合体 : 30重量部
・シクロヘキサノン :200重量部
・メチルエチルケトン :300重量部
・トルエン :100重量部
(Composition of magnetic paint)
・ Ferromagnetic metal powder: 100 parts by weight
-Modified vinyl chloride copolymer: 10 parts by weight
・ Modified polyurethane: 10 parts by weight
・ Polyisocyanate: 5 parts by weight
・ Stearic acid: 1.5 parts by weight
・ Oleic acid: 1 part by weight
・ Carbon black: 1 part by weight
・ Alumina: 10 parts by weight
・ Methyl ethyl ketone: 75 parts by weight
・ Cyclohexanone: 75 parts by weight
・ Toluene: 75 parts by weight
(Backcoat composition)
Carbon black (average particle size 20 nm): 95 parts by weight
Carbon black (average particle size 280 nm): 10 parts by weight
・ Α alumina: 0.1 parts by weight
・ Modified polyurethane: 20 parts by weight
-Modified vinyl chloride copolymer: 30 parts by weight
・ Cyclohexanone: 200 parts by weight
・ Methyl ethyl ketone: 300 parts by weight
-Toluene: 100 parts by weight

作成した磁気テープをテープ走行試験器にセットし、下記の1および2の条件に試験器ごと5時間保持した後、同条件下で走行させ、それぞれの条件での走行時のテープ幅をレーザー寸法測定器で測定して、両条件間でのテープ幅の変化を「トラックずれ」とした。条件1の温度、湿度、張力下でのテープ幅をL1(μm)、条件2の温度、湿度、張力下でのテープ幅をL2(μm)として、以下の式より「トラックずれ」を算出した。
条件1:10℃、10%RH、張力1N、
条件2:29℃、80%RH、張力0.7N、
トラックずれ=|L2−L1|/L1×10(ppm)
このトラックずれの値が少ないものほど、高密度記録磁気テープとして用いた際に、環境変化によるエラーが発生しにくく優れている。
Set the prepared magnetic tape in the tape running tester, hold it for 5 hours with the tester under the conditions 1 and 2 below, and run it under the same condition. The change in the tape width between the two conditions was defined as “track deviation” as measured by a measuring instrument. The tape width under condition 1 temperature, humidity and tension is L1 (μm), and the tape width under condition 2 temperature, humidity and tension is L2 (μm). .
Condition 1: 10 ° C., 10% RH, tension 1N,
Condition 2: 29 ° C., 80% RH, tension 0.7 N,
Track deviation = | L2-L1 | / L1 × 10 6 (ppm)
The smaller the value of the track deviation, the better the error caused by the environmental change when it is used as a high density recording magnetic tape.

(10)ドロップアウト(DO) と走行耐久性
上記(9)で作成した磁気テープをLTO用カートリッジに巻き込み、IBM社製LTO4ドライブ(記録ヘッドはインダクティブヘッド、再生ヘッドはMRヘッドを搭載)に装填してデータ信号を14GB記録し、それを再生した。平均信号振幅に対して50%以下の振幅(P−P値)の信号をミッシングパルスとし、4個以上連続したミッシングパルスをドロップアウトとして検出した。なお、ドロップアウトは850m長1巻を評価し、1m当たりの個数に換算した。ドロップアウトは、少ないほど優れた特性であることを意味する。
(10) Dropout (DO) and running durability
The magnetic tape created in (9) above is wound around an LTO cartridge and loaded into an IBM LTO4 drive (recording head is inductive head, playback head is equipped with MR head) to record 14 GB of data signal and play it back did. A signal having an amplitude (PP value) of 50% or less with respect to the average signal amplitude was detected as a missing pulse, and four or more consecutive missing pulses were detected as dropouts. In addition, dropout evaluated 1 volume of 850m length, and converted into the number per 1m. The smaller the dropout, the better the characteristics.

また、磁気テープを50回繰り返し走行した後、上記測定を再度行い、繰り返し走行後のドロップアウトの増加率を求めた。得られたドロップアウトと走行後増加率に基づき、下記の基準で評価した。
(ドロップアウト)
◎:ドロップアウト個数が1個/m未満
○:ドロップアウト個数が1個/m以上、3個/m未満
△:ドロップアウト個数が3個/m以上、5個/m未満
×:ドロップアウト個数が5個/m以上、10個/m未満
××:ドロップアウト個数が10個/m以上
(走行耐久性)
◎:ドロップアウト増加率が5%未満
○:ドロップアウト増加率が5%以上、10%未満
△:ドロップアウト増加率が10%以上、25%未満
×:ドロップアウト増加率が25%以上、50%未満
××:ドロップアウト増加率が50%以上
Further, after the magnetic tape was repeatedly run 50 times, the above measurement was performed again, and the dropout increase rate after repeated running was determined. Based on the obtained dropout and the rate of increase after running, the following criteria were used for evaluation.
(Drop out)
◎: Number of dropouts is less than 1 / m ○: Number of dropouts is 1 / m or more and less than 3 / m △: Number of dropouts is 3 / m or more and less than 5 / m ×: Number of dropouts 5 / m or more and less than 10 / m XX: The number of dropouts is 10 / m or more (running durability)
A: Dropout increase rate is less than 5%
○: Dropout increase rate is 5% or more and less than 10% △: Dropout increase rate is 10% or more and less than 25% ×: Dropout increase rate is 25% or more and less than 50% XX: Dropout increase rate is 50% or more

(11)塗膜層中の微細粒子の個数
塗膜層表面を走査型電子顕微鏡により5万倍の拡大倍率で10視野以上観察し、塗膜層に含有させた微細粒子に基づく突起が1mmあたり何個あるかを測定することにより、塗膜層中の微細突起の頻度を求めた。
(11) Number of fine particles in the coating layer
The surface of the coating layer is observed with a scanning electron microscope at a magnification of 50,000 times for 10 fields or more, and the number of protrusions based on fine particles contained in the coating layer is measured per 1 mm 2. The frequency of fine protrusions in the film layer was determined.

[実施例1]
平均粒子径が0.3μmの架橋ポリスチレン粒子(架橋PSt)を0.04重量%、平均粒子径が0.1μmの架橋ポリスチレン粒子(架橋PSt)を0.06重量%含有し、重合工程での溶融保持時間を調整し、固有粘度が0.69dl/gで末端カルボキシル基濃度が33eq/tのポリエチレンテレフタレート樹脂(PET)組成物(樹脂1)、平均粒子径が0.1μmの架橋ポリスチレン粒子(架橋PSt)を、0.03重量%含有し、固有粘度が0.58dl/gのポリエチレンテレフタレート樹脂(PET)組成物(樹脂2)を用意し、これらをそれぞれのフィルム層(F1層とF2層)を形成する別の2台の押出機に供給して300℃で溶融し、矩形の合流ブロックにて合流させた後にダイから溶融状態で回転中の温度20℃の冷却ドラム上にシート状に押し出し、未延伸積層フィルムとした。この際、F1層に樹脂1を、F2層に樹脂2を用い、F1層側を冷却ドラムと接触する側とした。次に、この未延伸積層フィルムを予熱ロールおよび赤外線ヒーターを用いて100℃に加熱し、低速、高速のロール間で縦方向に倍率3.6倍で延伸し、縦延伸フィルムとした。つづいて、この縦延伸フィルムの両面に、下記組成の塗液を乾燥後の膜厚が10nmとなるように塗布した。その後、塗液を塗布した縦延伸フィルムをステンターに供給し、120℃から170℃に昇温しながら、横方向に倍率5.5倍で延伸し、さらに、210℃にて5秒間熱固定処理を行ない、170℃で幅方向に2%弛緩させた後、冷却して厚さ4.4μmの二軸延伸積層フィルムを得た。
[Example 1]
0.04% by weight of crosslinked polystyrene particles (crosslinked PSt) having an average particle size of 0.3 μm and 0.06% by weight of crosslinked polystyrene particles (crosslinked PSt) having an average particle size of 0.1 μm, A polyethylene terephthalate resin (PET) composition (resin 1) having an intrinsic viscosity of 0.69 dl / g and a terminal carboxyl group concentration of 33 eq / t, a crosslinked polystyrene particle having an average particle diameter of 0.1 μm Polyethylene terephthalate resin (PET) composition (resin 2) containing 0.03% by weight of crosslinked PSt and having an intrinsic viscosity of 0.58 dl / g is prepared, and these are prepared in respective film layers (F1 layer and F2 layer). ) Is melted at 300 ° C., joined at a rectangular joining block, and then melted from the die at a temperature of 20 ° C. during rotation. Extruded into a sheet on retirement drum was unstretched laminated film. At this time, the resin 1 was used for the F1 layer, the resin 2 was used for the F2 layer, and the F1 layer side was the side in contact with the cooling drum. Next, this unstretched laminated film was heated to 100 ° C. using a preheating roll and an infrared heater, and stretched at a magnification of 3.6 times in the machine direction between low-speed and high-speed rolls to obtain a longitudinally stretched film. Subsequently, a coating liquid having the following composition was applied to both surfaces of the longitudinally stretched film so that the film thickness after drying was 10 nm. Thereafter, the longitudinally stretched film coated with the coating solution is supplied to a stenter, stretched at a magnification of 5.5 times in the transverse direction while raising the temperature from 120 ° C to 170 ° C, and further heat set at 210 ° C for 5 seconds. The film was relaxed by 2% in the width direction at 170 ° C. and then cooled to obtain a biaxially stretched laminated film having a thickness of 4.4 μm.

塗液の組成(固形分濃度1重量%の水分散体で、下記重量%は固形分の重量が基準)
・バインダー(アクリル変性ポリエステル(高松油脂株式会社製、商品名:SH−551A)):83重量%
・微細粒子(架橋ポリスチレン粒子(平均粒径30nm、JSR株式会社製、商品名:SX8721)):7重量%
・界面活性剤(三洋化成株式会社製、商品名:ナロアクティーN−70):10重量%
Composition of coating liquid (solid dispersion with an aqueous dispersion of 1% by weight, the following weight% is based on the weight of the solid)
Binder (acrylic modified polyester (trade name: SH-551A, manufactured by Takamatsu Yushi Co., Ltd.)): 83% by weight
Fine particles (crosslinked polystyrene particles (average particle size 30 nm, manufactured by JSR Corporation, trade name: SX8721)): 7% by weight
-Surfactant (manufactured by Sanyo Chemical Co., Ltd., trade name: NAROACTY N-70): 10% by weight

上記の方法で作成した二軸延伸積層フィルムの両面に、以下の方法で、M1層およびM2層を設けた。まず、真空蒸着装置内に設置されたフィルム走行装置に、得られた二軸延伸積層フィルムをセットし、1.00×10−3Paの高真空にした後に、20℃の冷却金属ドラムを介して走行させた。アルミニウムのターゲットを電子ビームで加熱蒸発させ、蒸着装置内に導入した酸素ガスで、M層中のアルミニウムと酸素の元素比が1:1.2となるように酸化させつつ、走行するフィルム上に蒸着することにより、アルミナ膜からなるM層を形成した。片面に蒸着後一旦巻き取ったロールを、蒸着面が逆になるように走行させつつ、同様に蒸着することにより、反対面にもM層を形成した。蒸着の順序は、M2層、M1層の順で行い、各M層の厚みは、電子ビームの強度と走行速度を調整することで、各々70nmとした。
得られた磁気記録媒体用支持体およびそれを用いた磁気テープの特性を表1に示す。
M1 layer and M2 layer were provided on both sides of the biaxially stretched laminated film prepared by the above method by the following method. First, the obtained biaxially stretched laminated film is set in a film traveling device installed in a vacuum deposition apparatus, and after making a high vacuum of 1.00 × 10 −3 Pa, through a cooling metal drum at 20 ° C. And let it run. An aluminum target is heated and evaporated with an electron beam, and the oxygen gas introduced into the vapor deposition apparatus is oxidized so that the element ratio of aluminum to oxygen in the M layer is 1: 1.2. By vapor deposition, an M layer made of an alumina film was formed. An M layer was also formed on the opposite surface by vapor-depositing in the same manner while the roll once wound after vapor deposition on one side was run so that the vapor deposition surface was reversed. The order of vapor deposition was performed in the order of M2 layer and M1 layer, and the thickness of each M layer was set to 70 nm by adjusting the electron beam intensity and the traveling speed.
Table 1 shows the characteristics of the obtained magnetic recording medium support and the magnetic tape using the same.

[実施例2]
樹脂1を固有粘度0.73dl/g、末端カルボキシル基濃度が28eq/tのPET組成物に変更し、M1層およびM2層の厚みを、それぞれ表1の厚みになるように変更したほかは、実施例1と同様な操作を繰り返した。
得られた磁気記録媒体用支持体およびそれを用いた磁気テープの特性を表1に示す。
[Example 2]
Resin 1 was changed to a PET composition having an intrinsic viscosity of 0.73 dl / g and a terminal carboxyl group concentration of 28 eq / t, and the thicknesses of the M1 layer and the M2 layer were changed to the thicknesses shown in Table 1, respectively. The same operation as in Example 1 was repeated.
Table 1 shows the characteristics of the obtained magnetic recording medium support and the magnetic tape using the same.

[実施例3]
樹脂1を固有粘度0.65dl/g、末端カルボキシル基濃度が38eq/tのPET組成物に変更し、M1層およびM2層の厚みを、それぞれ表1の厚みになるように変更したほかは、実施例1と同様な操作を繰り返した。
得られた磁気記録媒体用支持体およびそれを用いた磁気テープの特性を表1に示す。
[Example 3]
The resin 1 was changed to a PET composition having an intrinsic viscosity of 0.65 dl / g and a terminal carboxyl group concentration of 38 eq / t, and the thicknesses of the M1 layer and the M2 layer were changed to the thicknesses shown in Table 1, respectively. The same operation as in Example 1 was repeated.
Table 1 shows the characteristics of the obtained magnetic recording medium support and the magnetic tape using the same.

[実施例4]
塗液中の微細粒子の割合を表1に示す突起数になるように減らし、塗膜層の厚みを表1に示すように変更し、さらにM1層およびM2層を形成するために用いるターゲットをアルミニウムから二酸化ケイ素に変更したほかは、実施例1と同様な操作を繰り返した。
得られた磁気記録媒体用支持体およびそれを用いた磁気テープの特性を表1に示す。
[Example 4]
Reduce the proportion of fine particles in the coating liquid to the number of protrusions shown in Table 1, change the thickness of the coating layer as shown in Table 1, and further use the target used to form the M1 layer and M2 layer. The same operation as in Example 1 was repeated except that aluminum was changed to silicon dioxide.
Table 1 shows the characteristics of the obtained magnetic recording medium support and the magnetic tape using the same.

[実施例5]
樹脂1を固有粘度0.65dl/g、末端カルボキシル基濃度が38eq/tのポリエチレン−2,6−ナフタレートに変更し、樹脂2を固有粘度0.58dl/gのポリエチレン−2,6−ナフタレートに変更し、冷却ドラムの温度を60℃、縦延伸温度を125℃、縦延伸倍率を4.5倍、横延伸温度の最初の温度を140℃、横延伸の最終温度を180℃、横延伸倍率を6倍に変更し、さらにM1層およびM2層を形成するために用いるターゲットをアルミニウムから二酸化ケイ素に変更したほかは、実施例1と同様な操作を繰り返した。
得られた磁気記録媒体用支持体およびそれを用いた磁気テープの特性を表1に示す。
[Example 5]
Resin 1 was changed to polyethylene-2,6-naphthalate having an intrinsic viscosity of 0.65 dl / g and a terminal carboxyl group concentration of 38 eq / t, and resin 2 was changed to polyethylene-2,6-naphthalate having an intrinsic viscosity of 0.58 dl / g. Changed the temperature of the cooling drum to 60 ° C, the longitudinal stretching temperature to 125 ° C, the longitudinal stretching ratio to 4.5 times, the initial transverse stretching temperature to 140 ° C, the final transverse stretching temperature to 180 ° C, and the transverse stretching ratio. Was changed to 6 times, and the same operation as in Example 1 was repeated except that the target used for forming the M1 layer and the M2 layer was changed from aluminum to silicon dioxide.
Table 1 shows the characteristics of the obtained magnetic recording medium support and the magnetic tape using the same.

[比較例1]
樹脂1の固有粘度を0.58dl/gに変更したほかは、実施例1と同様な操作を繰り返した。
得られた磁気記録媒体用支持体およびそれを用いた磁気テープの特性を表1に示す。
[Comparative Example 1]
The same operation as in Example 1 was repeated except that the intrinsic viscosity of the resin 1 was changed to 0.58 dl / g.
Table 1 shows the characteristics of the obtained magnetic recording medium support and the magnetic tape using the same.

[比較例2]
重合工程での溶融保持時間を短縮し、樹脂1を固有粘度を0.72dl/gで末端カルボキシル濃度が20eq/tのPET組成物に変更したほかは、実施例1と同様な操作を繰り返した。
得られた磁気記録媒体用支持体およびそれを用いた磁気テープの特性を表1に示す。
[Comparative Example 2]
The same operation as in Example 1 was repeated except that the melt retention time in the polymerization step was shortened and that the resin 1 was changed to a PET composition having an intrinsic viscosity of 0.72 dl / g and a terminal carboxyl concentration of 20 eq / t. .
Table 1 shows the characteristics of the obtained magnetic recording medium support and the magnetic tape using the same.

[比較例3]
塗膜層を設けなかったほかは、比較例1と同様な操作を繰り返した。
得られた磁気記録媒体用支持体およびそれを用いた磁気テープの特性を表1に示す。
[Comparative Example 3]
The same operation as in Comparative Example 1 was repeated except that the coating layer was not provided.
Table 1 shows the characteristics of the obtained magnetic recording medium support and the magnetic tape using the same.

[比較例4]
M1層の厚みを40nmに変更し、M2層を設けなかったほかは、実施例1と同様な操作を繰り返した。
得られた磁気記録媒体用支持体およびそれを用いた磁気テープの特性を表1に示す。
[Comparative Example 4]
The same operation as in Example 1 was repeated except that the thickness of the M1 layer was changed to 40 nm and the M2 layer was not provided.
Table 1 shows the characteristics of the obtained magnetic recording medium support and the magnetic tape using the same.

Figure 2011150744
Figure 2011150744

表1中の、MDは製膜方向、TDは幅方向、AlO1.2はアルミニウムと酸素の元素費が1:1.2の不完全酸化アルミナ、SiOは二酸化ケイ素を意味する。 In Table 1, MD means the film forming direction, TD means the width direction, AlO 1.2 means incompletely oxidized alumina having an elemental cost of aluminum and oxygen of 1: 1.2, and SiO 2 means silicon dioxide.

Claims (7)

ポリエステル層F1(F1層)の片面にポリエステル層F2(F2層)が積層された積層ポリエステルフィルムと、その両面に積層された厚みが5〜200nmの金属類または金属系無機化合物の層(M1層とM2層)とからなる支持体であって、
F1層は、ポリエステルの固有粘度が0.55dl/g以上で、末端カルボキシル基濃度が30eq/106g以上で、かつ平均粒径が50〜1000nmの不活性粒子を含有し、その含有量がF2層より0.001重量%以上多いことを特徴とする磁気記録媒体用支持体。
A laminated polyester film in which a polyester layer F2 (F2 layer) is laminated on one side of a polyester layer F1 (F1 layer), and a metal or metal inorganic compound layer (M1 layer) having a thickness of 5 to 200 nm laminated on both sides And M2 layer),
The F1 layer contains inert particles having an intrinsic viscosity of polyester of 0.55 dl / g or more, a terminal carboxyl group concentration of 30 eq / 10 6 g or more, and an average particle size of 50 to 1000 nm. A support for a magnetic recording medium, characterized by being 0.001% by weight or more than the F2 layer.
F2層側に積層されたM2層の露出面の表面粗さ(Ra2)が1〜5nmで、F1層側に積層されたM1層の露出面の表面粗さ(Ra1)がRa2よりも大きく、かつ3〜10nmの範囲にある請求項1記載の磁気記録媒体用支持体。   The surface roughness (Ra2) of the exposed surface of the M2 layer laminated on the F2 layer side is 1 to 5 nm, and the surface roughness (Ra1) of the exposed surface of the M1 layer laminated on the F1 layer side is larger than Ra2. The support for a magnetic recording medium according to claim 1, which is in the range of 3 to 10 nm. F1層およびF2層のポリエステルが、ポリエチレンテレフタレートまたはポリエチレン−2,6−ナフタレンジカルボキシレートである請求項1記載の磁気記録媒体用支持体。   The support for a magnetic recording medium according to claim 1, wherein the polyester of the F1 layer and the F2 layer is polyethylene terephthalate or polyethylene-2,6-naphthalenedicarboxylate. M1層およびM2層が、それぞれF1層およびF2層に、ポリエステル樹脂、アクリル樹脂、アクリル変性ポリエステル樹脂から成る群から選ばれる少なくとも1種のバインダー樹脂を含有する塗膜層を介して積層されている請求項1記載の磁気記録媒体用支持体。   The M1 layer and the M2 layer are laminated on the F1 layer and the F2 layer, respectively, through a coating layer containing at least one binder resin selected from the group consisting of a polyester resin, an acrylic resin, and an acrylic modified polyester resin. The support for a magnetic recording medium according to claim 1. 塗膜層が粒径5〜50nmの微細粒子を含有し、塗膜層表面における粒子の頻度が100万〜1億個/mmである請求項4記載の磁気記録媒体用支持体。 The support for a magnetic recording medium according to claim 4, wherein the coating layer contains fine particles having a particle size of 5 to 50 nm, and the frequency of particles on the surface of the coating layer is 1 million to 100 million particles / mm 2 . 請求項1〜5のいずれかに記載の磁気記録媒体用支持体と、そのM2層側の表面に形成された磁性層とからなるデータストレージ用テープ。   A data storage tape comprising the magnetic recording medium support according to any one of claims 1 to 5 and a magnetic layer formed on the surface of the M2 layer side. 磁性層が塗布によって形成され、記録方式がリニア記録方式である請求項6記載のデータストレージ用テープ。   7. The data storage tape according to claim 6, wherein the magnetic layer is formed by coating, and the recording method is a linear recording method.
JP2010008982A 2010-01-19 2010-01-19 Support for magnetic recording medium and tape for data storage using the same Pending JP2011150744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010008982A JP2011150744A (en) 2010-01-19 2010-01-19 Support for magnetic recording medium and tape for data storage using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010008982A JP2011150744A (en) 2010-01-19 2010-01-19 Support for magnetic recording medium and tape for data storage using the same

Publications (1)

Publication Number Publication Date
JP2011150744A true JP2011150744A (en) 2011-08-04

Family

ID=44537600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010008982A Pending JP2011150744A (en) 2010-01-19 2010-01-19 Support for magnetic recording medium and tape for data storage using the same

Country Status (1)

Country Link
JP (1) JP2011150744A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10720181B1 (en) 2019-04-26 2020-07-21 Sony Corporation Magnetic recording cartridge
US10796724B1 (en) 2019-04-05 2020-10-06 Sony Corporation Magnetic recording medium
US10839846B2 (en) 2019-03-29 2020-11-17 Sony Corporation Magnetic recording medium having a dimensional variation
US10839847B2 (en) 2019-03-29 2020-11-17 Sony Corporation Magnetic recording medium having a dimensional variation
US10937457B2 (en) 2019-04-26 2021-03-02 Sony Corporation Magnetic recording medium
US11017809B2 (en) 2019-03-29 2021-05-25 Sony Corporation Magnetic recording medium having a controlled dimensional variation

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002248726A (en) * 2001-02-27 2002-09-03 Teijin Ltd Laminated polyester film
JP2003030818A (en) * 2001-05-10 2003-01-31 Toray Ind Inc Supporting body for magnetic recording medium and magnetic recording medium
JP2003103739A (en) * 2001-10-02 2003-04-09 Teijin Dupont Films Japan Ltd Laminated polyester film and magnetic recording medium
JP2005196944A (en) * 2003-12-08 2005-07-21 Toray Ind Inc Substrate for magnetic recording medium, and magnetic recording medium
JP2005346865A (en) * 2004-06-04 2005-12-15 Toray Ind Inc Magnetic recording medium
JP2006134406A (en) * 2004-11-04 2006-05-25 Fuji Photo Film Co Ltd Magnetic recording medium
JP2006277920A (en) * 2005-03-02 2006-10-12 Toray Ind Inc Supporting body for magnetic recording medium and magnetic recording medium
JP2007118489A (en) * 2005-10-31 2007-05-17 Toray Ind Inc Laminated polyester film and laminated polyester film for magnetic recording medium
JP2007287215A (en) * 2006-04-14 2007-11-01 Toray Ind Inc Support for magnetic recording medium and magnetic recording medium
JP2008243358A (en) * 2007-02-26 2008-10-09 Toray Ind Inc Supporting body for magnetic recording medium, and magnetic recording medium
JP2009140532A (en) * 2007-12-04 2009-06-25 Toray Ind Inc Support for magnetic recording medium, and magnetic recording medium

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002248726A (en) * 2001-02-27 2002-09-03 Teijin Ltd Laminated polyester film
JP2003030818A (en) * 2001-05-10 2003-01-31 Toray Ind Inc Supporting body for magnetic recording medium and magnetic recording medium
JP2003103739A (en) * 2001-10-02 2003-04-09 Teijin Dupont Films Japan Ltd Laminated polyester film and magnetic recording medium
JP2005196944A (en) * 2003-12-08 2005-07-21 Toray Ind Inc Substrate for magnetic recording medium, and magnetic recording medium
JP2005346865A (en) * 2004-06-04 2005-12-15 Toray Ind Inc Magnetic recording medium
JP2006134406A (en) * 2004-11-04 2006-05-25 Fuji Photo Film Co Ltd Magnetic recording medium
JP2006277920A (en) * 2005-03-02 2006-10-12 Toray Ind Inc Supporting body for magnetic recording medium and magnetic recording medium
JP2007118489A (en) * 2005-10-31 2007-05-17 Toray Ind Inc Laminated polyester film and laminated polyester film for magnetic recording medium
JP2007287215A (en) * 2006-04-14 2007-11-01 Toray Ind Inc Support for magnetic recording medium and magnetic recording medium
JP2008243358A (en) * 2007-02-26 2008-10-09 Toray Ind Inc Supporting body for magnetic recording medium, and magnetic recording medium
JP2009140532A (en) * 2007-12-04 2009-06-25 Toray Ind Inc Support for magnetic recording medium, and magnetic recording medium

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11302353B2 (en) 2019-03-29 2022-04-12 Sony Corporation Magnetic recording medium having controlled dimensional variation
US11749304B2 (en) 2019-03-29 2023-09-05 Sony Corporation Magnetic recording medium having controlled dimensional variation
US10839846B2 (en) 2019-03-29 2020-11-17 Sony Corporation Magnetic recording medium having a dimensional variation
US10839847B2 (en) 2019-03-29 2020-11-17 Sony Corporation Magnetic recording medium having a dimensional variation
US11521650B2 (en) 2019-03-29 2022-12-06 Sony Corporation Magnetic recording medium having a controlled dimensional variation
US11315594B2 (en) 2019-03-29 2022-04-26 Sony Corporation Magnetic recording medium having controlled dimensional variation
US11017809B2 (en) 2019-03-29 2021-05-25 Sony Corporation Magnetic recording medium having a controlled dimensional variation
US11423946B2 (en) 2019-04-05 2022-08-23 Sony Group Corporation Cartridge including tape-shaped magnetic recording medium
US11107505B2 (en) 2019-04-05 2021-08-31 Sony Corporation Cartridge
US11664054B2 (en) 2019-04-05 2023-05-30 Sony Corporation Cartridge including tape-shaped magnetic recording medium
US10796724B1 (en) 2019-04-05 2020-10-06 Sony Corporation Magnetic recording medium
US12020730B2 (en) 2019-04-05 2024-06-25 Sony Corporation Cartridge including tape-shaped magnetic recording medium
US11250884B2 (en) 2019-04-26 2022-02-15 Sony Corporation Magnetic recording cartridge
US11056143B2 (en) 2019-04-26 2021-07-06 Sony Corporation Magnetic recording medium
US10984833B2 (en) 2019-04-26 2021-04-20 Sony Corporation Magnetic recording cartridge
US10720181B1 (en) 2019-04-26 2020-07-21 Sony Corporation Magnetic recording cartridge
US10937457B2 (en) 2019-04-26 2021-03-02 Sony Corporation Magnetic recording medium
US11631430B2 (en) 2019-04-26 2023-04-18 Sony Group Corporation Magnetic recording medium

Similar Documents

Publication Publication Date Title
JP2989080B2 (en) Laminated polyester film for magnetic recording media
JP2011150744A (en) Support for magnetic recording medium and tape for data storage using the same
EP0845491B1 (en) Laminate film
EP0811478B1 (en) Laminate film and magnetic recording medium using the same
JP2006342198A (en) Biaxially oriented polyester film
JP3684095B2 (en) Slippery composite polyester film
JP2010250910A (en) Support for magnetic recording medium and data storage using the same
JP2005196944A (en) Substrate for magnetic recording medium, and magnetic recording medium
JP5112923B2 (en) Magnetic recording medium support
JP4066768B2 (en) Biaxially oriented polyester film
JPH10157039A (en) Laminated film
JP3797903B2 (en) Method for producing biaxially oriented polyester film and method for producing magnetic recording medium
JP3942410B2 (en) Laminated polyester film and magnetic recording medium
JPH11216824A (en) Polyester film for magnetic recording medium
JPH11216823A (en) Polyester film for magnetic recording medium
JP4080124B2 (en) Polyethylene-2,6-naphthalate film
JP4167054B2 (en) Laminated polyester film and magnetic recording medium
JP3933360B2 (en) Laminated thermoplastic resin film
JP3883785B2 (en) Slippery laminated film and magnetic recording medium using the same
JPH09323386A (en) Laminated film
JP4746163B2 (en) Laminated film
JP3856630B2 (en) Laminated thermoplastic resin film
JP2002150538A (en) Polyester film for magnetic recording medium
JPH10151706A (en) Laminate film
JP2011165266A (en) Polyester film for data storage, and support for magnetic recording medium

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Effective date: 20110630

Free format text: JAPANESE INTERMEDIATE CODE: A7422

RD04 Notification of resignation of power of attorney

Effective date: 20110630

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A621 Written request for application examination

Effective date: 20121024

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20130605

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A02 Decision of refusal

Effective date: 20131015

Free format text: JAPANESE INTERMEDIATE CODE: A02