JP2011149916A - Radio wave receiver and arrival direction measuring method - Google Patents

Radio wave receiver and arrival direction measuring method Download PDF

Info

Publication number
JP2011149916A
JP2011149916A JP2010013573A JP2010013573A JP2011149916A JP 2011149916 A JP2011149916 A JP 2011149916A JP 2010013573 A JP2010013573 A JP 2010013573A JP 2010013573 A JP2010013573 A JP 2010013573A JP 2011149916 A JP2011149916 A JP 2011149916A
Authority
JP
Japan
Prior art keywords
antenna
received
angle
azimuth
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010013573A
Other languages
Japanese (ja)
Other versions
JP5377345B2 (en
Inventor
Kenji Shinoda
賢司 篠田
Toru Tanaka
亨 田中
Naoki Hosaka
直樹 保坂
Hiroyuki Hachisu
裕之 蜂須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2010013573A priority Critical patent/JP5377345B2/en
Publication of JP2011149916A publication Critical patent/JP2011149916A/en
Application granted granted Critical
Publication of JP5377345B2 publication Critical patent/JP5377345B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a radio wave receiver capable of measuring arrival direction of the received radio wave at high precision without enlargement of hardware scale. <P>SOLUTION: In the radio wave receiver, a controlling section 16 performs selectively both the control of rough angle measurement, which makes the antenna selectors 9 to 12 to select the received waves from antennas 4, 8, 2, and 6 of azimuthal directions and vertical directions and also makes a signal processing section 15 to compute azimuthal rough angle measurement and vertical rough angle measurement by using mono-pulse mode, and the control of precision angle measurement, which makes antenna selectors 9 to 12 to switch between the received waves from azimuthal direction antennas 4, 8, 3, and 7 and the received wave from antennas 1, 5, 2, and 6 corresponding to vertical direction in order to force selection and also makes the signal processing section 15 to compute azimuthal precision angle measurement and vertical precision angle measurement of the arrival direction by using mono-pulse mode together with interferometer mode. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、例えば、飛しょう体に搭載され、受信電波の到来方向を測定する電波受信装置及び到来方向測定方法に関する。   The present invention relates to a radio wave receiving apparatus and an arrival direction measuring method that are mounted on a flying object and measure the arrival direction of a received radio wave, for example.

一般に、到来するレーダ波の発信源の方向を求める場合、振幅モノパルス方式、位相モノパルス方式、インターフェロメータ方式を用いて測角する方法がある。飛しょう体に搭載する電波受信装置では、飛しょう体の前方に設置した一対の受信用アンテナで電波を受信し、振幅モノパルス方式やインターフェロメータ方式により電波の到来方向を測定する。   In general, when obtaining the direction of the source of an incoming radar wave, there are methods of measuring angles using an amplitude monopulse method, a phase monopulse method, and an interferometer method. A radio wave receiver mounted on a flying object receives radio waves with a pair of receiving antennas installed in front of the flying object, and measures the direction of arrival of the radio wave by an amplitude monopulse method or an interferometer method.

インターフェロメータ方式は、電波の位相情報に基づいて到来方向を測定するため、電波の振幅情報に基づいて到来方向を測定する振幅モノパルス方式よりも高精度であることが知られている。しかし、飛しょう体ではレドームがとがった形状であるため、その影響による受信波の到来方向の変化による位相の乱れが大きく、インターフェロメータ方式では正確な到来方向を測定できない。   Since the interferometer method measures the arrival direction based on the phase information of the radio wave, it is known that the interferometer method is more accurate than the amplitude monopulse method that measures the arrival direction based on the amplitude information of the radio wave. However, since the flying object has a shape with a sharp radome, the phase disturbance due to the change in the arrival direction of the received wave due to the influence is large, and the accurate arrival direction cannot be measured by the interferometer method.

一方、振幅モノパルス方式では、インターフェロメータ方式より測定精度が低いため、飛しょう体の飛しょうに必要な精度が得られない。そこで、アンテナの設置数を増やし、複数のアンテナの組み合わせの最適解を求めることで精度を上げる手法が提案されている(例えば、特許文献1を参照。)。   On the other hand, the amplitude monopulse method has a measurement accuracy lower than that of the interferometer method, and thus the accuracy required for flying the flying object cannot be obtained. Therefore, a method has been proposed in which the number of antennas is increased and the accuracy is improved by obtaining an optimal solution of a combination of a plurality of antennas (see, for example, Patent Document 1).

特開平8−5734号公報JP-A-8-5734

ところが、特許文献1の手法によれば、アンテナの設置数を増やし、複数のアンテナの組み合わせの最適解を求めることで精度を上げることはできるが、ハードウェア規模が大きくなるという問題がある。飛しょう体では小型化の観点から簡素な構造をとる必要があり、特許文献1の手法は飛しょう体の電波受信装置には適さない。   However, according to the method of Patent Document 1, the accuracy can be increased by increasing the number of antennas installed and obtaining an optimal solution of a combination of a plurality of antennas, but there is a problem that the hardware scale increases. The flying object needs to have a simple structure from the viewpoint of miniaturization, and the technique of Patent Document 1 is not suitable for the radio wave receiver of the flying object.

この発明は上記事情に着目してなされたもので、その目的とするところは、ハードウェア規模を増大させることなく、受信電波の到来方向を高精度に測定可能な電波受信装置及び到来方向測定方法を提供することにある。   The present invention has been made paying attention to the above circumstances, and its object is to provide a radio wave receiving apparatus and an arrival direction measuring method capable of measuring the arrival direction of a received radio wave with high accuracy without increasing the hardware scale. Is to provide.

上記目的を達成するために、この発明の一態様は、飛しょう体に搭載され、受信電波の到来方向を測定する電波受信装置であって、方位方向及び高低方向の軸上にそれぞれ対をなすようにアンテナ面の外縁部に配置された複数の第1のアンテナ素子と、前記第1のアンテナ素子の近傍にそれぞれ配置された複数の第2のアンテナ素子と、前記第1のアンテナ素子により受信された第1の受信波及び前記第2のアンテナ素子により受信された第2の受信波のうちいずれかを選択する複数のアンテナ選択器と、前記アンテナ選択器で選択された受信波に対して受信処理を施す受信器と、前記受信器からの信号に基づいて、振幅モノパルス方式を用いて前記到来方向の方位粗測角及び高低粗測角を算出する粗測角処理と、前記振幅モノパルス方式及びインターフェロメータ方式を併用して前記到来方向の方位精測角及び高低精測角を算出する精測角処理とを選択的に行う信号処理部と、前記アンテナ選択器に前記方位及び高低方向に対応する前記第2の受信波を選択させ、前記信号処理部に前記粗測角処理を行わせる第1の制御と、前記アンテナ選択器に前記方位方向に対応する前記第1及び第2の受信波と前記高低方向に対応する前記第1及び第2の受信波とを切り替えて選択させ、前記信号処理部に前記精測角処理を行わせる第2の制御とを行う制御部とを具備することを特徴とする電波受信装置を提供する。   In order to achieve the above object, one aspect of the present invention is a radio wave receiver that is mounted on a flying object and measures the arrival direction of a received radio wave, and is paired on an azimuth direction and an elevation axis. In this way, a plurality of first antenna elements arranged at the outer edge of the antenna surface, a plurality of second antenna elements arranged near each of the first antenna elements, and reception by the first antenna element A plurality of antenna selectors for selecting one of the received first received wave and the second received wave received by the second antenna element, and the received wave selected by the antenna selector A receiver that performs reception processing, a rough angle measurement process that calculates an azimuth coarse angle and a high and low coarse angle in the direction of arrival using an amplitude monopulse method based on a signal from the receiver, and the amplitude monopulse method And A signal processing unit that selectively performs precision angle processing for calculating the azimuth and elevation accuracy of the direction of arrival using an interferometer method, and the antenna selector in the orientation and elevation direction First control for selecting the corresponding second received wave and causing the signal processing unit to perform the rough angle measurement processing, and the first and second reception corresponding to the azimuth direction for the antenna selector. And a control unit that performs switching and selection between the first and second received waves corresponding to the height direction and the second control for causing the signal processing unit to perform the precise angle processing. A radio wave receiver characterized by the above is provided.

また、この発明の他の態様は、飛しょう体に搭載され、受信電波の到来方向を測定する電波受信装置に用いられる到来方向測定方法であって、方位方向及び高低方向の軸上にそれぞれ対をなすようにアンテナ面の外縁部に配置された複数の第1のアンテナ素子と、前記第1のアンテナ素子の近傍にそれぞれ配置された複数の第2のアンテナ素子とにより電波を受信し、前記第1のアンテナ素子により受信された第1の受信波及び前記第2のアンテナ素子により受信された第2の受信波のうち、前記方位及び高低方向に対応する第2の受信波を選択し、前記選択された第2の受信波に対して受信処理を施し、前記受信処理が施された信号に基づいて、振幅モノパルス方式を用いて前記到来方向の方位粗測角及び高低粗測角を算出する粗測角処理と、前記第1の受信波及び前記第2の受信波のうち、前記方位方向に対応する前記第1及び第2の受信波と前記高低方向に対応する前記第1及び第2の受信波とを切り替えて選択し、前記選択された第1及び第2の受信波に対して受信処理を施し、前記受信処理が施された信号に基づいて、前記振幅モノパルス方式及びインターフェロメータ方式を併用して前記到来方向の方位精測角及び高低精測角を算出する精測角処理とを選択的に行うことを特徴とする到来方向測定方法を提供する。   Another aspect of the present invention is an arrival direction measuring method used in a radio wave receiver that is mounted on a flying object and measures the arrival direction of a received radio wave. Radio waves are received by a plurality of first antenna elements arranged at the outer edge of the antenna surface so as to form a plurality of second antenna elements respectively arranged in the vicinity of the first antenna element, Of the first received wave received by the first antenna element and the second received wave received by the second antenna element, select the second received wave corresponding to the azimuth and elevation direction, A reception process is performed on the selected second received wave, and an azimuth rough angle and a high / low rough angle of the arrival direction are calculated using an amplitude monopulse method based on the signal subjected to the reception process. Rough angle measurement Among the first received wave and the second received wave, the first and second received waves corresponding to the azimuth direction and the first and second received waves corresponding to the elevation direction. Select by switching, perform reception processing on the selected first and second received waves, and use the amplitude monopulse method and interferometer method together based on the signal subjected to the reception processing There is provided an arrival direction measuring method characterized by selectively performing an azimuth measuring angle and a precise angle processing for calculating a high and low accuracy angle in the direction of arrival.

したがってこの発明によれば、ハードウェア規模を増大させることなく、受信電波の到来方向を高精度に測定可能な電波受信装置及び到来方向測定方法を提供することができる。   Therefore, according to the present invention, it is possible to provide a radio wave receiver and an arrival direction measuring method capable of measuring the arrival direction of a received radio wave with high accuracy without increasing the hardware scale.

本発明に係る電波受信装置の一実施形態の構成を示す機能ブロック図。The functional block diagram which shows the structure of one Embodiment of the electromagnetic wave receiver which concerns on this invention. 飛しょう体の正面方向から見たアンテナ配置例を示す図。The figure which shows the example of antenna arrangement | positioning seen from the front direction of the flying body. 図2のアンテナ面を上側から見た図。The figure which looked at the antenna surface of FIG. 2 from the upper side. 図2のアンテナ面を右側から見た図。The figure which looked at the antenna surface of FIG. 2 from the right side. 到来方向測定処理の手順とその内容を示すフローチャート。The flowchart which shows the procedure of the arrival direction measurement process, and its content.

以下、図面を参照しながら本発明の実施の形態を詳細に説明する。図1に本実施形態の飛しょう体に搭載される電波受信装置の構成を示す。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a configuration of a radio wave receiver mounted on the flying object of this embodiment.

この飛しょう体の電波受信装置は、他レーダからの電波を受信するアンテナTI1、アンテナTM2、アンテナLI3、アンテナLM4、アンテナBI5、アンテナBM6、アンテナRI7及びアンテナRM8と、アンテナTI1及びアンテナLM4から1つのアンテナを選択するアンテナ選択器A9と、アンテナBI5及びアンテナRM8から1つのアンテナを選択するアンテナ選択器B10と、アンテナLI3及びアンテナTM2から1つのアンテナを選択するアンテナ選択器C11と、アンテナRI7及びアンテナBM6から1つのアンテナを選択するアンテナ選択器D12と、各アンテナ選択器により選択されたアンテナの受信波を検波する受信器13と、検波された受信波をデジタル信号に変換するA/D変換器14と、デジタル信号から受信波の方向を求める信号処理部15と、測角処理と周波数の選択を指示する制御器16とを備える。   This flying object radio wave receiving apparatus includes antennas TI1, antenna TM2, antenna LI3, antenna LM4, antenna BI5, antenna BM6, antenna RI7 and antenna RM8, antennas TI1 and antennas LM4 to 1 that receive radio waves from other radars. An antenna selector A9 that selects one antenna, an antenna selector B10 that selects one antenna from the antenna BI5 and the antenna RM8, an antenna selector C11 that selects one antenna from the antenna LI3 and the antenna TM2, and an antenna RI7 and An antenna selector D12 that selects one antenna from the antenna BM6, a receiver 13 that detects a received wave of the antenna selected by each antenna selector, and an A / D conversion that converts the detected received wave into a digital signal 14 and digital It comprises a signal processing unit 15 for determining the direction of the reception wave from the items, and a controller 16 for instructing the selection of the angle measuring process and frequency.

アンテナTI1、アンテナTM2、アンテナLI3、アンテナLM4、アンテナBI5、アンテナBM6、アンテナRI7、アンテナRM8は、同一の大きさ、同一の性能を有するものとする。アンテナTI1、アンテナLI3、アンテナBI5及びアンテナRI7は、インターフェロメータ方式により電波の位相情報に基づいて到来方向を測定する際に用いられる(精測角処理)。アンテナTM2、アンテナLM4、アンテナBM6及びアンテナRM8は、振幅モノパルス方式によりインターフェロメータ方式により精度は低いが一意に到来方向を測定する際に用いられる(粗測角処理)。   The antenna TI1, the antenna TM2, the antenna LI3, the antenna LM4, the antenna BI5, the antenna BM6, the antenna RI7, and the antenna RM8 are assumed to have the same size and the same performance. The antenna TI1, the antenna LI3, the antenna BI5, and the antenna RI7 are used when measuring the arrival direction based on the phase information of the radio wave by the interferometer method (precise angle processing). The antenna TM2, the antenna LM4, the antenna BM6, and the antenna RM8 are used when uniquely measuring the direction of arrival (rough angle measurement processing) although the accuracy is low by the interferometer method by the amplitude monopulse method.

図2は、飛しょう体の正面方向から見たアンテナ配置例を示したものである。図2に示すように、上記アンテナは、飛しょう体の前方部分に設けられたアンテナ面の外縁部に配置される。アンテナTI1、アンテナLI3、アンテナBI5及びアンテナRI7はいずれも正面方向に向けて、方位方向及び高低方向の軸上にそれぞれ対をなすように配置される。アンテナTM2、アンテナLM4、アンテナBM6及びアンテナRM8は、アンテナTI1、アンテナLI3、アンテナBI5及びアンテナRI7の近傍にそれぞれ配置される。   FIG. 2 shows an antenna arrangement example as seen from the front direction of the flying object. As shown in FIG. 2, the antenna is disposed at the outer edge of the antenna surface provided in the front portion of the flying body. The antenna TI1, the antenna LI3, the antenna BI5, and the antenna RI7 are all arranged in pairs on the azimuth and elevation axes in the front direction. Antenna TM2, antenna LM4, antenna BM6, and antenna RM8 are arranged in the vicinity of antenna TI1, antenna LI3, antenna BI5, and antenna RI7, respectively.

図3は、アンテナ面を上側から見た図、アンテナ面を右側から見た図を示す。図3に示すようにアンテナ面を上側から見ると、アンテナTM2は上向き、アンテナBM6下向きにやや角度をつけて配置される。図4のようにアンテナ面を右側から見ると、アンテナLM4は左向き、アンテナRM8は右向きにやや角度をつけて配置される。これは振幅モノパルス方式を行うための受信信号を得るためのものである。傾ける角度は、振幅モノパルス方式の原理からアンテナのビーム幅の半分程度とする。このとき測角可能な範囲はビーム幅程度となる。   FIG. 3 shows a view of the antenna surface from the upper side and a view of the antenna surface from the right side. As shown in FIG. 3, when the antenna surface is viewed from the upper side, the antenna TM <b> 2 is disposed at an angle with the antenna BM <b> 6 facing upward and the antenna BM <b> 6 downward. When the antenna surface is viewed from the right side as shown in FIG. 4, the antenna LM4 is arranged at a slight angle in the left direction and the antenna RM8 is arranged in a right direction. This is to obtain a received signal for performing the amplitude monopulse method. The tilt angle is about half of the beam width of the antenna from the principle of the amplitude monopulse system. At this time, the range in which the angle can be measured is about the beam width.

信号処理部21は、デジタル信号からレーダ波の受信を検出する検出処理器151と、制御器16からの指示により粗測角処理器153または精測角処理器154にデジタル信号を出力する測角処理選択器152と、振幅モノパルス方式を用いて受信波の方向を求める粗測角処理器153と、インターフェロメータ方式を用いて受信波の方向を粗測角処理器153より高精度に求める精測角処理器154とを備える。   The signal processing unit 21 detects a radar wave from the digital signal, and outputs a digital signal to the rough angle processor 153 or the precise angle processor 154 according to an instruction from the controller 16. The processing selector 152, the coarse angle measuring unit 153 that obtains the direction of the received wave using the amplitude monopulse method, and the precision that obtains the direction of the received wave using the interferometer method with higher accuracy than the rough angle measuring unit 153. Angle measuring processor 154.

図5に、この電波受信装置における到来方向測定処理の手順とその内容を示すフローチャートである。
S1において、制御器16は、「粗測角」または「精測角」の指示をアンテナ選択器A9〜アンテナ選択器D12及び測角処理選択器152に出力する。制御器16から「粗測角」の指示が出されたときはS2〜S6の処理が行われ、「精測角」の指示が出されたときはS7〜S12の処理が行われる。なお、制御器16における粗測角、精測角の指示は、粗測角で電波の検出があった直後に精測角を行う方法と、粗測角の処理を周波数を変化させて繰り返し、広範囲の周波数に対して電波の発信源の概略の方向および周波数を複数求めたのち、精測角をその周波数ごとに繰り返す方法とがある。
FIG. 5 is a flowchart showing the procedure and contents of the arrival direction measurement process in this radio wave receiving apparatus.
In S <b> 1, the controller 16 outputs an instruction of “rough angle measurement” or “fine angle measurement” to the antenna selectors A <b> 9 to D <b> 12 and the angle measurement process selector 152. When the instruction of “rough angle measurement” is issued from the controller 16, the process of S2 to S6 is performed, and when the instruction of “precision angle” is issued, the process of S7 to S12 is performed. The instructions for the coarse angle and the precise angle in the controller 16 are a method of performing the precise angle immediately after the radio wave is detected in the coarse angle, and the process of the coarse angle is repeated by changing the frequency, There is a method in which a plurality of approximate directions and frequencies of a radio wave transmission source are obtained for a wide range of frequencies, and then a precise angle is repeated for each frequency.

(粗測角処理)
粗測角受信・検出処理S2では、アンテナ選択器A9〜アンテナ選択器D12は、制御器16から「粗測角」の指示を受けると、アンテナ選択器A9はアンテナLM4を、アンテナ選択器B10はアンテナRM8を、アンテナ選択器C11はアンテナTM2を、アンテナ選択器D12はアンテナBM6を選択する。それぞれのアンテナ選択器からの受信波を受信波A、受信波B、受信波C、受信波Dとする。
(Coarse angle measurement)
In the coarse angle reception / detection process S2, when the antenna selector A9 to the antenna selector D12 receive an instruction of “rough angle measurement” from the controller 16, the antenna selector A9 receives the antenna LM4, and the antenna selector B10 The antenna RM8, the antenna selector C11 selects the antenna TM2, and the antenna selector D12 selects the antenna BM6. The received waves from the respective antenna selectors are referred to as received wave A, received wave B, received wave C, and received wave D.

受信波A〜Dは、受信器13において制御器16から指示された周波数で検波され、受信アナログ信号A〜Dとなる。粗測角処理では位相情報を用いないので、周波数の帯域は広くとることができる。A/D変換器14は、受信アナログ信号A〜Dをデジタル信号A〜Dに変換する。検出処理器151でデジタル信号A〜Dの振幅値がしきい値を超えるときに「検出あり」を示す検出結果を出力する。しきい値を超えないときは、制御器16へ「検出なし」を示す検出結果を出力する。   The reception waves A to D are detected at the frequency instructed by the controller 16 in the receiver 13, and become reception analog signals A to D. Since the phase information is not used in the rough angle measurement process, the frequency band can be widened. The A / D converter 14 converts the received analog signals A to D into digital signals A to D. The detection processor 151 outputs a detection result indicating “detected” when the amplitude value of the digital signals A to D exceeds the threshold value. When the threshold value is not exceeded, a detection result indicating “no detection” is output to the controller 16.

S3において、検出処理器151から制御器16に「検出あり」が入力されたときは、制御器16は、S4、S5の処理を指示し、「検出なし」が入力されたときは処理を終了する。   In S3, when “detected” is input from the detection processor 151 to the controller 16, the controller 16 instructs the processing of S4 and S5, and when “not detected” is input, the processing ends. To do.

粗測角範囲判定処理S4は、測角処理選択器152から粗測角処理器153にデジタル信号A〜Dを出力する。粗測角処理器153は、デジタル信号A、デジタル信号Bの振幅値をA、Aとしたとき、Σ=(A+A)、Δ=(A−A)の値を、デジタル信号C、デジタル信号Dの振幅値をA、Aとしたとき、Σ=(A+A)、Δ=(A−A)の値をそれぞれ求める。これらの値から粗測角範囲判定式N=Σ−KNA・Δ、N=Σ−KNE・Δを計算する。粗測角範囲内では原理上Σ>Δ、Σ>Δとなることから、N、Nとも0以上のときは「範囲内」、それ以外は「範囲外」と判定する。KNA、KNEはアンテナ特性を補正する係数である。 In the rough angle measurement range determination process S4, the angle measurement processing selector 152 outputs the digital signals A to D to the rough angle measurement processor 153. The coarse angle measuring processor 153 is the values of Σ A = (A A + A B ) and Δ A = (A A −A B ) when the amplitude values of the digital signal A and the digital signal B are A A and A B , respectively. and when the digital signal C, and the amplitude value of the digital signal D to the a C, a D, Σ E = (a C + a D), Δ E = (a C -A D) of values respectively obtained. Crude angle measurement range discriminant These values N A = Σ A -K NA · Δ A, N E = calculating the Σ E -K NE · Δ E. In principle, Σ A > Δ A and Σ E > Δ E within the rough measurement angle range. Therefore, when both N A and N E are equal to or greater than 0, it is determined as “in range”, and otherwise is determined as “out of range”. . K NA and K NE are coefficients for correcting the antenna characteristics.

S5において、上記S4の判定結果が「範囲内」の場合はS6の処理に移行し、粗測角処理器153は、制御器16へ「範囲内」を示す判定結果と周波数とを出力する。一方、上記S4の判定結果が「範囲外」の場合は、粗測角処理器153から制御器16へ「範囲外」を示す判定結果が出力され、制御器16は処理を終了する。   In S5, when the determination result of S4 is “within range”, the process proceeds to S6, and the rough angle processor 153 outputs the determination result indicating “within range” and the frequency to the controller 16. On the other hand, when the determination result of S4 is “out of range”, the rough angle measurement processor 153 outputs a determination result indicating “out of range” to the controller 16, and the controller 16 ends the processing.

粗測角処理S6では、粗測角処理器153は以下に示すように振幅モノパルス処理を行い、受信波の粗測角値(方位粗測角値θMAと高低粗測角値θME)を求める。方位粗測角値θMAと高低粗測角値θMEの算出は、並行して処理が可能である。 In the rough angle measurement process S6, the rough angle measurement processor 153 performs amplitude monopulse processing as shown below, and obtains the rough measured angle values (the azimuth rough measured angle value θ MA and the high and low rough measured angle value θ ME ) of the received wave. Ask. The calculation of the azimuth rough angle value θ MA and the high and low rough angle value θ ME can be processed in parallel.

方位粗測角値は、誤差角係数をKMAとすると、θMA=KMA・Δ/Σとなる。高低粗測角値は、誤差角係数をKMEとすると、θME=KME・Δ/Σとなる。KMA、KMEは制御器16からの指示により決定する。 The coarse azimuth angle value is θ MA = K MA · Δ A / Σ A where the error angle coefficient is K MA . Height roughness measured angle value, when the error angle coefficient is K ME, the θ ME = K ME · Δ E / Σ E. K MA and K ME are determined by instructions from the controller 16.

(精測角処理)
精測角処理は、振幅モノパルス方式とインターフェロメータ方式とを併用するため、方位方向に対応する受信波と高低方向に対応する受信波とを切り替えて選択する。図5では、S7〜S9が方位角処理を示し、S10〜S12が高低角処理を示す。
(Precision angle processing)
Since the precise angle measurement process uses both the amplitude monopulse method and the interferometer method, the received wave corresponding to the azimuth direction and the received wave corresponding to the height direction are switched and selected. In FIG. 5, S7 to S9 indicate azimuth angle processing, and S10 to S12 indicate elevation angle processing.

方位角受信・検出処理S7では、アンテナ選択器A9〜アンテナ選択器D12は、制御器16から「方位精測角」の指示を受け、アンテナ選択器A9ではアンテナLM4を、アンテナ選択器B10ではアンテナRM8を、アンテナ選択器C11ではアンテナLI3を、アンテナ選択器D12ではアンテナRI7を選択する。それぞれのアンテナ選択器からの受信波を受信波A1、受信波B1、受信波C1及び受信波D1とする。   In the azimuth reception / detection processing S7, the antenna selector A9 to the antenna selector D12 receive an instruction of “azimuth of precise azimuth” from the controller 16, and the antenna selector A9 receives the antenna LM4 and the antenna selector B10 receives the antenna. RM8, antenna selector C11 selects antenna LI3, and antenna selector D12 selects antenna RI7. The received waves from the respective antenna selectors are defined as a received wave A1, a received wave B1, a received wave C1, and a received wave D1.

受信波A1〜D1は、受信器13で制御器16から指示された周波数で検波され、受信アナログ信号A1〜D1となる。周波数は粗測角処理器153から出力されたものが指示される。A/D変換器14は、受信アナログ信号A1〜D1をデジタル信号A1〜D1に変換する。検出処理器151は、デジタル信号A1〜D1の振幅値がしきい値を超えるときに受信波検出とし、制御器16へ「検出あり」の検出結果を出力する。しきい値を超えないときは、制御器16へ「検出なし」の検出結果を出力する。   The reception waves A1 to D1 are detected by the receiver 13 at the frequency designated by the controller 16, and become reception analog signals A1 to D1. The frequency is instructed to be output from the coarse angle processor 153. The A / D converter 14 converts the received analog signals A1 to D1 into digital signals A1 to D1. The detection processor 151 detects a received wave when the amplitude values of the digital signals A1 to D1 exceed a threshold value, and outputs a detection result “detected” to the controller 16. When the threshold value is not exceeded, a detection result “no detection” is output to the controller 16.

S8において、制御器16は、「検出あり」が入力されたときはS9の処理を行い、「検出なし」が入力されたときは処理を終了する。   In S <b> 8, the controller 16 performs the process of S <b> 9 when “detected” is input, and ends the process when “not detected” is input.

方位精測角処理S9では、測角処理選択器152は精測角処理器154にデジタル信号A1〜D1を出力する。精測角処理器154では振幅モノパルス処理とインターフェロメータ処理とを並行して行い、両方の結果から受信波の方位精測角値θIAを求める。 In the azimuth precise angle processing S <b> 9, the angle measurement processing selector 152 outputs the digital signals A <b> 1 to D <b> 1 to the precise angle processor 154. The precise angle processor 154 performs the amplitude monopulse process and the interferometer process in parallel, and obtains the azimuth angle value θ IA of the received wave from both results.

振幅モノパルス処理は以下の処理を行う。デジタル信号A1、デジタル信号B1の振幅値をAA1、AB1としたとき、ΣA1=(AA1+AB1)、ΔA1=(AA1−AB1)を求める。誤差角係数をKMA1とすると、θMA1=KMA1・ΔA1/ΣA1となる。 The amplitude monopulse processing performs the following processing. When the amplitude values of the digital signal A1 and the digital signal B1 are A A1 and A B1 , Σ A1 = (A A1 + A B1 ) and Δ A1 = (A A1 −A B1 ) are obtained. When the error angle coefficient is K MA1 , θ MA1 = K MA1 · Δ A1 / Σ A1 .

インターフェロメータ処理は以下の処理を行う。デジタル信号C1、デジタル信号D1の位相値をφ、φ、アンテナLI3とアンテナRI7の素子間隔をd[m]、受信波の周波数をf[Hz]、光速をcとすると、θIA=sin−1((φ−φ)・c/(2π・f・d))となる。 The interferometer processing performs the following processing. When the phase values of the digital signal C1 and the digital signal D1 are φ C and φ D , the element interval between the antenna LI3 and the antenna RI7 is d A [m], the frequency of the received wave is f [Hz], and the speed of light is c, θ IA = Sin −1 ((φ C −φ D ) · c / (2π · f · d A )).

振幅モノパルス処理は角度が一意的に求まるが、精度はインターフェロメータ処理より低い。一方、インターフェロメータ処理はsin関数の周期性から複数の角度値を取りうる。よって、θIAは複数の解のうち、θMA1にもっとも近いものとする。 In the amplitude monopulse processing, the angle is uniquely determined, but the accuracy is lower than that of the interferometer processing. On the other hand, the interferometer processing can take a plurality of angle values from the periodicity of the sin function. Therefore, θ IA is the closest to θ MA1 among a plurality of solutions.

高低角受信・検出処理S10では、アンテナ選択器A9〜アンテナ選択器D12は、制御器16から「高低精測角」の指示を受け、アンテナ選択器A9ではアンテナTI1を、アンテナ選択器B10ではアンテナBI5を、アンテナ選択器C11ではアンテナTM2を、アンテナ選択器D12ではアンテナBM6を選択する。それぞれのアンテナ選択器からの受信波を受信波A2、受信波B2、受信波C2、受信波D2とする。   In the high / low angle reception / detection processing S10, the antenna selector A9 to the antenna selector D12 receive an instruction of “high / low precision angle” from the controller 16, and the antenna selector A9 receives the antenna TI1 and the antenna selector B10 receives the antenna. BI5 is selected, antenna TM2 is selected by antenna selector C11, and antenna BM6 is selected by antenna selector D12. The received waves from the respective antenna selectors are referred to as received wave A2, received wave B2, received wave C2, and received wave D2.

受信波A2〜D2は、受信器13により制御器16から指示された周波数で検波され、受信アナログ信号A2〜D2となる。周波数は粗測角処理器153から出力されたものが指示される。A/D変換器14は、受信アナログ信号A2〜D2をデジタル信号A2〜D2に変換する。検出処理器151は、デジタル信号A2〜D2の振幅値がしきい値を超えるときに受信波検出とし、制御器16へ「検出あり」の検出結果を出力する。しきい値を超えないときは、制御器16へ「検出なし」の検出結果を出力する。   The reception waves A2 to D2 are detected by the receiver 13 at the frequency designated by the controller 16, and become reception analog signals A2 to D2. The frequency is instructed to be output from the coarse angle processor 153. The A / D converter 14 converts the received analog signals A2 to D2 into digital signals A2 to D2. The detection processor 151 detects a received wave when the amplitude values of the digital signals A2 to D2 exceed a threshold value, and outputs a detection result “detected” to the controller 16. When the threshold value is not exceeded, a detection result “no detection” is output to the controller 16.

S11において、制御器16は、「検出あり」が入力されたときはS10の処理を行い、「検出なし」が入力されたときは処理を終了する。   In S <b> 11, the controller 16 performs the process of S <b> 10 when “detected” is input, and ends the process when “not detected” is input.

高低精測角処理S12では、測角処理選択器152は精測角処理器154にデジタル信号A2〜D2を出力する。精測角処理器154では振幅モノパルス処理とインターフェロメータ処理とを並行して行い、両方の結果から受信波の高低精測角値θIEを求める。 In the high / low precision angle measurement process S <b> 12, the angle measurement process selector 152 outputs the digital signals A <b> 2 to D <b> 2 to the precision angle processor 154. The precise angle processor 154 performs the amplitude monopulse process and the interferometer process in parallel, and obtains the high and low precision angle value θ IE of the received wave from both results.

振幅モノパルス処理は以下の処理を行う。デジタル信号C2、デジタル信号D2の振幅値をAC2、AD2としたとき、ΣE2=(AC2+AD2)、ΔE2=(AC2−AD2)を求める。誤差角係数をKME2とすると、測角値θME2=KME2・ΔE2/ΣE2となる。 The amplitude monopulse processing performs the following processing. When the amplitude values of the digital signal C2 and the digital signal D2 are A C2 and A D2 , Σ E2 = (A C2 + A D2 ) and Δ E2 = (A C2 -A D2 ) are obtained. Assuming that the error angle coefficient is K ME2 , the measured angle value θ ME2 = K ME2 · Δ E2 / Σ E2 .

インターフェロメータ処理は以下の処理を行う。デジタル信号A2、デジタル信号B2の位相値をφ、φ、アンテナTI3とアンテナBI7の素子間隔をd[m]、受信波の周波数をf[Hz]、光速をcとすると、θIE=sin−1((φ−φ)・c/(2π・f・d))となる。 The interferometer processing performs the following processing. When the phase values of the digital signal A2 and the digital signal B2 are φ A and φ B , the element interval between the antenna TI3 and the antenna BI7 is d E [m], the frequency of the received wave is f [Hz], and the speed of light is c, θ IE = Sin −1 ((φ A −φ B ) · c / (2π · f · d E )).

振幅モノパルス処理は角度が一意的に求まるが、精度はインターフェロメータ処理より低い。一方、インターフェロメータ処理はsin関数の周期性から複数の角度値を取りうる。よって、θIEは複数の解のうち、θME2にもっとも近いものとする。 In the amplitude monopulse processing, the angle is uniquely determined, but the accuracy is lower than that of the interferometer processing. On the other hand, the interferometer processing can take a plurality of angle values from the periodicity of the sin function. Therefore, θ IE is the closest to θ ME2 among a plurality of solutions.

上記実施形態によれば、一般に存在するレーダ波の発信源の方向を求める場合、尖った形状のレドームを持つアンテナにおいても、レドームの影響が比較的少ない振幅情報のみを用いることで受信波の概略の方向を方位角、高低角同時に求め、次に周波数範囲を絞った上で、振幅情報による測角より精度の良い位相情報の測角で精度よく受信波の到来方向を求めることができる。   According to the above-described embodiment, when obtaining the direction of a radar wave transmission source that is generally present, an outline of a received wave can be obtained by using only amplitude information that is relatively less affected by a radome even in an antenna having a sharp radome. The azimuth angle and elevation angle can be obtained simultaneously, and after narrowing the frequency range, the arrival direction of the received wave can be obtained accurately by angle measurement of phase information more accurate than angle measurement based on amplitude information.

粗測角は振幅モノパルス方式により方位角、高低角を同時に求めることができる。精測角は、振幅モノパルス方式とインターフェロメータ方式とを併用することで1度の観測で一意的に角度を求めることができる。   The coarse angle can be obtained simultaneously by the azimuth angle and the elevation angle by the amplitude monopulse method. The precise measurement angle can be uniquely determined by one observation by using both the amplitude monopulse method and the interferometer method.

また、粗測角、精測角で異なるアンテナの受信波を用いるが、アンテナ選択器の切換により受信チャンネル数を増やすことなく、小さなハードウェア規模で実現できる。また、上記図2に示すようなアンテナ配置にすることで、アンテナ面の中央部にスペースができるので、同一のアンテナ面に、例えば、アクティブアレイアンテナをさらに配置することができる。   In addition, the received waves of different antennas are used for the coarse angle and the precise angle, but this can be realized with a small hardware scale without increasing the number of reception channels by switching the antenna selector. In addition, since the antenna arrangement as shown in FIG. 2 is used, a space is created in the central portion of the antenna surface. For example, an active array antenna can be further arranged on the same antenna surface.

なお、この発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態に亘る構成要素を適宜組み合せてもよい。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Further, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, you may combine suitably the component covering different embodiment.

1〜8…アンテナ、9〜12…アンテナ選択器、13…受信器、14…A/D変換器、15…信号処理部、151…検出処理器、152…測角処理選択器、153…粗測角処理器、154…精測角処理器、16…制御器。   DESCRIPTION OF SYMBOLS 1-8 ... Antenna, 9-12 ... Antenna selector, 13 ... Receiver, 14 ... A / D converter, 15 ... Signal processing part, 151 ... Detection processor, 152 ... Angular measurement selector, 153 ... Coarse Angle measuring processor, 154... Precision angle measuring device, 16.

Claims (3)

飛しょう体に搭載され、受信電波の到来方向を測定する電波受信装置であって、
方位方向及び高低方向の軸上にそれぞれ対をなすようにアンテナ面の外縁部に配置された複数の第1のアンテナ素子と、
前記第1のアンテナ素子の近傍にそれぞれ配置された複数の第2のアンテナ素子と、
前記第1のアンテナ素子により受信された第1の受信波及び前記第2のアンテナ素子により受信された第2の受信波のうちいずれかを選択する複数のアンテナ選択器と、
前記アンテナ選択器で選択された受信波に対して受信処理を施す受信器と、
前記受信器からの信号に基づいて、振幅モノパルス方式を用いて前記到来方向の方位粗測角及び高低粗測角を算出する粗測角処理と、前記振幅モノパルス方式及びインターフェロメータ方式を併用して前記到来方向の方位精測角及び高低精測角を算出する精測角処理とを選択的に行う信号処理部と、
前記アンテナ選択器に前記方位及び高低方向に対応する前記第2の受信波を選択させ、前記信号処理部に前記粗測角処理を行わせる第1の制御と、前記アンテナ選択器に前記方位方向に対応する前記第1及び第2の受信波と前記高低方向に対応する前記第1及び第2の受信波とを切り替えて選択させ、前記信号処理部に前記精測角処理を行わせる第2の制御とを行う制御部と
を具備することを特徴とする電波受信装置。
A radio wave receiver that is mounted on a flying object and measures the direction of arrival of received radio waves,
A plurality of first antenna elements disposed on the outer edge of the antenna surface so as to form a pair on the azimuth and elevation axes,
A plurality of second antenna elements respectively disposed in the vicinity of the first antenna element;
A plurality of antenna selectors for selecting one of a first received wave received by the first antenna element and a second received wave received by the second antenna element;
A receiver that performs reception processing on the received wave selected by the antenna selector;
Based on a signal from the receiver, a rough angle measurement process that calculates an azimuth rough angle and a high and low rough angle of the arrival direction using an amplitude monopulse method, and the amplitude monopulse method and an interferometer method are used in combination. A signal processing unit that selectively performs precision angle processing for calculating the azimuth and angle accuracy of the direction of arrival.
A first control for causing the antenna selector to select the second received wave corresponding to the azimuth and elevation direction, and causing the signal processing unit to perform the rough angle measurement process; and causing the antenna selector to perform the azimuth direction. The first and second received waves corresponding to and the first and second received waves corresponding to the height direction are switched and selected, and the signal processing unit performs the precise angle processing. And a control unit that controls the radio wave receiving apparatus.
前記第2のアンテナ素子は、アンテナ正面方向から外側に予め設定された角度を持って配置されることを特徴とする請求項1記載の電波受信装置。   2. The radio wave receiving apparatus according to claim 1, wherein the second antenna element is arranged with a preset angle outward from the antenna front direction. 飛しょう体に搭載され、受信電波の到来方向を測定する電波受信装置に用いられる到来方向測定方法であって、
方位方向及び高低方向の軸上にそれぞれ対をなすようにアンテナ面の外縁部に配置された複数の第1のアンテナ素子と、前記第1のアンテナ素子の近傍にそれぞれ配置された複数の第2のアンテナ素子とにより電波を受信し、
前記第1のアンテナ素子により受信された第1の受信波及び前記第2のアンテナ素子により受信された第2の受信波のうち、前記方位及び高低方向に対応する第2の受信波を選択し、前記選択された第2の受信波に対して受信処理を施し、前記受信処理が施された信号に基づいて、振幅モノパルス方式を用いて前記到来方向の方位粗測角及び高低粗測角を算出する粗測角処理と、前記第1の受信波及び前記第2の受信波のうち、前記方位方向に対応する前記第1及び第2の受信波と前記高低方向に対応する前記第1及び第2の受信波とを切り替えて選択し、前記選択された第1及び第2の受信波に対して受信処理を施し、前記受信処理が施された信号に基づいて、前記振幅モノパルス方式及びインターフェロメータ方式を併用して前記到来方向の方位精測角及び高低精測角を算出する精測角処理とを選択的に行うことを特徴とする到来方向測定方法。
A direction-of-arrival measurement method used in a radio wave receiver that is mounted on a flying object and measures the direction of arrival of a received radio wave,
A plurality of first antenna elements arranged on the outer edge of the antenna surface so as to form a pair on the azimuth and elevation axes, and a plurality of second antenna elements arranged in the vicinity of the first antenna element, respectively. Receive radio waves with the antenna element of
A second received wave corresponding to the azimuth and elevation direction is selected from the first received wave received by the first antenna element and the second received wave received by the second antenna element. , Applying a reception process to the selected second received wave, and based on the signal subjected to the reception process, an azimuth rough angle and a high / low rough angle in the direction of arrival using an amplitude monopulse method The first and second received waves corresponding to the azimuth direction of the first received wave and the second received wave and the first and second corresponding to the elevation direction of the rough angle calculation process to be calculated. A second received wave is selected by switching, a reception process is performed on the selected first and second received waves, and the amplitude monopulse method and the interferometry are based on the signal subjected to the reception process. Combining with the ferrometer method DOA measurement method for the precise measurement angle processing for calculating the azimuth precision angle measuring and height precision angle measuring of said selectively be performed.
JP2010013573A 2010-01-25 2010-01-25 Radio wave receiver and direction of arrival measurement method Expired - Fee Related JP5377345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010013573A JP5377345B2 (en) 2010-01-25 2010-01-25 Radio wave receiver and direction of arrival measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010013573A JP5377345B2 (en) 2010-01-25 2010-01-25 Radio wave receiver and direction of arrival measurement method

Publications (2)

Publication Number Publication Date
JP2011149916A true JP2011149916A (en) 2011-08-04
JP5377345B2 JP5377345B2 (en) 2013-12-25

Family

ID=44537016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010013573A Expired - Fee Related JP5377345B2 (en) 2010-01-25 2010-01-25 Radio wave receiver and direction of arrival measurement method

Country Status (1)

Country Link
JP (1) JP5377345B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102788975A (en) * 2012-06-20 2012-11-21 西安空间无线电技术研究所 Multi-array-element single-channel interference angle measurement device
EP2543857A1 (en) 2011-07-06 2013-01-09 Kabushiki Kaisha Toyota Jidoshokki Systems for evaluating possible abnormality in an engine
CN114428644A (en) * 2022-01-24 2022-05-03 西安闻泰信息技术有限公司 Working mode switching method and device, electronic equipment and storage medium

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62239073A (en) * 1986-04-11 1987-10-19 Mitsubishi Heavy Ind Ltd Measuring instrument for ratio wave arrival angle
JPH03257388A (en) * 1990-03-07 1991-11-15 Mitsubishi Electric Corp Phase-difference azimuth detector
JPH06222122A (en) * 1991-12-10 1994-08-12 Texas Instr Inc <Ti> Array for measurement of wide-visual-field fixed-body matching direction
JPH085734A (en) * 1994-06-23 1996-01-12 Mitsubishi Electric Corp Angle measuring instrument and composite guiding device
JP2000162310A (en) * 1998-11-25 2000-06-16 Nec Corp Radar apparatus
JP2004198189A (en) * 2002-12-17 2004-07-15 Mitsubishi Electric Corp Azimuth detection device
JP2009204420A (en) * 2008-02-27 2009-09-10 Toshiba Corp Angle-measuring device
JP2011027544A (en) * 2009-07-24 2011-02-10 Toshiba Corp Radio wave receiving device and incoming direction measuring method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62239073A (en) * 1986-04-11 1987-10-19 Mitsubishi Heavy Ind Ltd Measuring instrument for ratio wave arrival angle
JPH03257388A (en) * 1990-03-07 1991-11-15 Mitsubishi Electric Corp Phase-difference azimuth detector
JPH06222122A (en) * 1991-12-10 1994-08-12 Texas Instr Inc <Ti> Array for measurement of wide-visual-field fixed-body matching direction
JPH085734A (en) * 1994-06-23 1996-01-12 Mitsubishi Electric Corp Angle measuring instrument and composite guiding device
JP2000162310A (en) * 1998-11-25 2000-06-16 Nec Corp Radar apparatus
JP2004198189A (en) * 2002-12-17 2004-07-15 Mitsubishi Electric Corp Azimuth detection device
JP2009204420A (en) * 2008-02-27 2009-09-10 Toshiba Corp Angle-measuring device
JP2011027544A (en) * 2009-07-24 2011-02-10 Toshiba Corp Radio wave receiving device and incoming direction measuring method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2543857A1 (en) 2011-07-06 2013-01-09 Kabushiki Kaisha Toyota Jidoshokki Systems for evaluating possible abnormality in an engine
CN102788975A (en) * 2012-06-20 2012-11-21 西安空间无线电技术研究所 Multi-array-element single-channel interference angle measurement device
CN102788975B (en) * 2012-06-20 2014-05-28 西安空间无线电技术研究所 Multi-array-element single-channel interference angle measurement device
CN114428644A (en) * 2022-01-24 2022-05-03 西安闻泰信息技术有限公司 Working mode switching method and device, electronic equipment and storage medium

Also Published As

Publication number Publication date
JP5377345B2 (en) 2013-12-25

Similar Documents

Publication Publication Date Title
JP2017535788A (en) Method and apparatus for increasing angular resolution in an automotive radar system
JP2011059083A (en) Radar device
JP5377345B2 (en) Radio wave receiver and direction of arrival measurement method
US20210149035A1 (en) Radar device and target angle measurement method
JPWO2017130386A1 (en) Antenna device and method for reducing grating lobe
KR101239165B1 (en) Method and apparatus for estimating target direction
KR20160029616A (en) Apparatus and Method for Finding Hybrid Direction using Two Baseline
KR20100005349A (en) Apparatus and method for tracking direction of signal source
JP2009204420A (en) Angle-measuring device
KR100971772B1 (en) The apparatus for searching signal source and the method thereof
WO2020261834A1 (en) Receiver, and radar apparatus, vehicle, and communication system provided with receiver
JP2010112795A (en) Radio wave arrival direction estimation apparatus and system
JP5811903B2 (en) Phased array antenna device
JP2010112749A (en) Radar apparatus
US9939513B2 (en) Apparatus and method for finding hybrid direction using two baselines
JP2012078163A (en) Composite guidance system and composite guidance method
JP5722026B2 (en) Direction of arrival estimation method
JP5163765B2 (en) Angle measuring device, radar device, angle measuring method and angle measuring program
JP2009139183A (en) Angle measuring apparatus
WO2020003513A1 (en) Radar device
KR100979287B1 (en) System and method for detecting direction
JP6516645B2 (en) Radar equipment
WO2018078963A1 (en) Wireless communication device, control method, and program
JP2013164333A (en) Method and device for controlling tracking antenna orientation direction
JP7412933B2 (en) radar equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120614

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130924

LAPS Cancellation because of no payment of annual fees