WO2020003513A1 - Radar device - Google Patents

Radar device Download PDF

Info

Publication number
WO2020003513A1
WO2020003513A1 PCT/JP2018/024897 JP2018024897W WO2020003513A1 WO 2020003513 A1 WO2020003513 A1 WO 2020003513A1 JP 2018024897 W JP2018024897 W JP 2018024897W WO 2020003513 A1 WO2020003513 A1 WO 2020003513A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio wave
unit
calculation unit
antenna
wave
Prior art date
Application number
PCT/JP2018/024897
Other languages
French (fr)
Japanese (ja)
Inventor
孝行 中西
道生 瀧川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020527144A priority Critical patent/JP6797330B2/en
Priority to PCT/JP2018/024897 priority patent/WO2020003513A1/en
Publication of WO2020003513A1 publication Critical patent/WO2020003513A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00

Definitions

  • the present invention relates to a radar apparatus for setting a beam directing direction of a radio wave in a short wave band.
  • HF high frequency
  • Patent Document 1 discloses a propagation path calculation device that calculates a propagation path of a radio wave by obtaining a refraction angle of a radio wave in a short wave band with reference to data indicating a relationship between an electron density and a height in an ionosphere. Is disclosed.
  • the conventional radar apparatus can use the propagation path calculation device disclosed in Patent Document 1, it is possible to obtain a propagation path of a radio wave in a short wave band.
  • the propagation path calculation device disclosed in Patent Document 1 does not calculate the radiation direction of the short wave radio wave from the propagation path of the short wave radio wave. Therefore, even if the conventional radar device can use the propagation path calculation device disclosed in Patent Document 1, it cannot calculate an appropriate radio wave radiation direction for detecting a target. In other words, there is a problem that a target existing in a desired area may not be detected by irradiating a target with radio waves.
  • the present invention has been made to solve the above-described problems, and has as its object to obtain a radar device capable of detecting a target existing in a desired area.
  • a radar apparatus includes an altitude calculation unit that calculates an altitude of an ionosphere that reflects radio waves in a short wave band using a position of a radio wave source that emits radio waves in a short wave band, A phase velocity calculator that calculates the phase velocity of the short wave radio wave, and estimates the incident angle of the short wave radio wave to the ionosphere using the phase velocity, and the phase velocity, the incident angle, and the ground calculated by the phase velocity calculator.
  • a beam pointing direction calculation unit that calculates the beam pointing direction of the short wave radio wave from the phase velocity of the short wave radio wave in the direction of the short wave radio wave radiated from the transmitting antenna and the short wave band received by the receiving antenna.
  • a beam pointing direction setting unit that sets each of the directions of the radio waves to the beam pointing direction calculated by the beam pointing direction calculation unit.
  • the beam directivity calculation unit that calculates the beam directivity of the radio wave in the short wave band is provided.
  • the beam pointing direction setting unit sets each of the direction of the short wave radio wave radiated from the transmitting antenna and the direction of the short wave radio wave received by the receiving antenna to the beam pointing direction calculated by the beam pointing direction calculating unit.
  • the radar device was configured as described above. Therefore, the radar device according to the present invention can detect a target existing in a desired area.
  • FIG. 1 is a configuration diagram illustrating a radar device according to a first embodiment.
  • FIG. 2 is a hardware configuration diagram illustrating hardware of a signal processing device 20 of the radar device illustrated in FIG. 1.
  • FIG. 2 is a hardware configuration diagram of a computer when the signal processing device 20 is realized by software or firmware.
  • 9 is a flowchart illustrating a processing procedure when the signal processing device 20 is realized by software or firmware.
  • FIG. 3 is a configuration diagram illustrating a correlation determination unit 21 of the radar device according to the first embodiment.
  • FIG. 3 is a configuration diagram illustrating an altitude calculation unit 22 of the radar device according to the first embodiment.
  • FIG. 7 is a configuration diagram illustrating a radar device according to a second embodiment.
  • FIG. 8 is a hardware configuration diagram illustrating hardware of a signal processing device 20 of the radar device illustrated in FIG. 7.
  • FIG. 7 is an explanatory diagram showing a correspondence relationship between a linear distance Rd from the radar device to a plurality of radio wave sources 1 and a beam directing direction ⁇ 0 , and interpolation data indicating a relationship between the linear distance Rd and the beam directing direction ⁇ 0 after interpolation processing.
  • FIG. 9 is a configuration diagram illustrating a radar device according to a third embodiment.
  • FIG. 11 is a hardware configuration diagram illustrating hardware of a signal processing device 20 of the radar device illustrated in FIG. 10.
  • FIG. 1 is a configuration diagram showing a radar device according to the first embodiment.
  • FIG. 2 is a hardware configuration diagram showing hardware of the signal processing device 20 of the radar device shown in FIG.
  • a radio wave source 1 is installed at a position separated by a linear distance Rd from the radar apparatus shown in FIG. 1, and radiates radio waves in a short wave band.
  • the frequency of the short wave radio wave is 3 to 30 MHz.
  • the frequency f and the linear distance Rd of the radio wave in the short wave band radiated from the radio wave source 1 are known in the radar device shown in FIG.
  • the transmitter 2 generates a radar signal as a transmission signal, and outputs the radar signal to the distributor 3 and an analog / digital converter (hereinafter, referred to as an “A / D converter”) 13.
  • the distributor 3 divides the radar signal output from the transmitter 2 into N (N is an integer equal to or greater than 1) pieces, and outputs each of the divided radar signals to the phase control unit 4.
  • the phase control unit 4 includes N phase shifters 4-1 to 4-N.
  • Phase shifter 4-1 ⁇ 4-N adjusts the phase of each radar signals output from the distributor 3 in accordance with the control signal C p which is output from the beam pointing direction setting unit 25, after the phase adjustment of the respective The radar signal is output to variable gain amplifiers 5-1 to 5-N.
  • the amplitude control section 5 includes N variable gain amplifiers 5-1 to 5-N.
  • Variable gain amplifier 5-1 ⁇ 5-N in accordance with a control signal C a, which is output from the beam pointing direction setting unit 25, adjusts the amplitude of each of the radar signals output from the phase shifter 4-1 ⁇ 4-N Then, the respective radar signals after the amplitude adjustment are output to the transmitting antennas 6-1 to 6-N.
  • the transmission array antenna 6 includes N transmission antennas 6-1 to 6-N.
  • the transmitting antennas 6-1 to 6-N radiate short-wave radio waves into space as radar waves.
  • a dipole antenna, a monopole antenna, or the like can be used as the transmission antennas 6-1 to 6-N.
  • the receiving array antenna 7 includes M (M is an integer of 1 or more) receiving antennas 7-1 to 7-M.
  • the receiving antennas 7-1 to 7-M receive the radio waves in the short-wave band reflected on the ionosphere, and output the received signals of the radio waves to the variable gain amplifiers 8-1 to 8-M.
  • As the receiving antennas 7-1 to 7-M a dipole antenna or a monopole antenna can be used.
  • the amplitude control unit 8 includes M variable gain amplifiers 8-1 to 8-M.
  • Variable gain amplifiers 8-1 ⁇ 8-M in accordance with a control signal C a, which is output from the beam pointing direction setting unit 25, adjusts the amplitude of each received signal output from the receiving antennas 7-1 ⁇ 7-M , And outputs the received signals after the amplitude adjustment to the phase shifters 9-1 to 9-M.
  • the phase control section 9 includes M phase shifters 9-1 to 9-M.
  • Phase shifter 9-1 ⁇ 9-M adjusts the phase of each received signal output from the variable gain amplifiers 8-1 ⁇ 8-M according to the control signal C p which is output from the beam pointing direction setting unit 25 , And outputs the received signals after the phase adjustment to the combiner 10.
  • the combiner 10 combines the M received signals output from the phase shifters 9-1 to 9-M, and outputs a combined signal, which is the combined received signal, to the receiver 12.
  • the receiving antenna 11 receives a direct wave of a short wave radio wave radiated from the radio wave source 1 and outputs a received signal of the direct wave to the receiver 12.
  • a dipole antenna, a monopole antenna, or the like can be used as the receiving antenna 11.
  • Receiver 12 demodulates the combined signal output from combiner 10 and outputs the combined signal after demodulation to A / D converter 13. Further, the receiver 12 demodulates the received signal of the direct wave output from the receiving antenna 11 and outputs the demodulated received signal to the A / D converter 13.
  • the A / D converter 13 converts the radar signal output from the transmitter 2 from an analog signal to a digital signal, and outputs the digital signal to the correlation determination unit 21 as transmission data Tx.
  • a / D converter 13 a synthesized signal output from the receiver 12 from an analog signal to a digital signal, and outputs the correlation determination unit 21 the digital signal as the composite data Rx S. Further, A / D converter 13, a received signal output from the receiver 12 from an analog signal to a digital signal, and outputs the correlation determination unit 21 the digital signal as received data Rx D.
  • the signal processing device 20 includes a correlation determination unit 21, an altitude calculation unit 22, a phase speed calculation unit 23, a beam directivity calculation unit 24, a beam directivity direction setting unit 25, and a distance speed calculation unit 26.
  • the correlation determination unit 21 is realized by, for example, the correlation determination circuit 31 illustrated in FIG.
  • Correlation determination unit 21 determines a transmission data Tx outputted from the A / D converter 13, the correlation between the composite data Rx S output from the A / D converter 13.
  • Correlation determination unit 21, if there is no correlation between the transmission data Tx and synthetic data Rx S outputs a respective combined data Rx S and the received data Rx D altitude calculation unit 22.
  • the altitude calculation unit 22 is realized by, for example, the altitude calculation circuit 32 illustrated in FIG.
  • the altitude calculation unit 22 calculates the time difference ⁇ t between the reception time of the direct wave radio wave not reflected by the ionosphere and the reception time of the radio wave reflected by the ionosphere in the short wave band radio waves radiated from the radio wave source 1. calculate. That is, the height calculation unit 22, while delaying the received data Rx D output from the correlation determination unit 21 in the time direction, the delay time correlation is observed between the received data Rx D synthetic data Rx S t d , The time difference ⁇ t between both reception times is calculated.
  • the altitude calculator 22 calculates the altitude h of the ionosphere using the time difference ⁇ t and the position of the radio wave source 1, and outputs the altitude h of the ionosphere to the phase velocity calculator 23.
  • the phase speed calculation unit 23 is realized by, for example, a phase speed calculation circuit 33 illustrated in FIG.
  • the phase velocity calculation unit 23 estimates the electron density ed h of the ionosphere at the altitude h output from the altitude calculation unit 22 with reference to an IRI (International Reference Ionosphere) model, and calculates a short wave band at the altitude h from the electron density ed h. to calculate the radio wave phase velocity v h.
  • IRI International Reference Ionosphere
  • the phase velocity calculation unit 23 refers to the IRI model, than height h, in estimating the electron density ed h + 1 of the ionosphere in the upper one altitude (h + 1), advanced from the electron density ed h + 1 (h + 1 ) The phase speed v h + 1 of the short wave radio wave is calculated.
  • the altitude (h + 1) one level higher than the altitude h is one level higher in the model resolution of the IRI model.
  • Phase velocity calculation unit 23 and the phase velocity v h of a radio wave short-wave band in altitude h, the height (h + 1) of a radio wave short-wave band in the phase velocity v h + 1 Tokyo, radio waves incident angle theta h of HF band for ionospheric presume.
  • the phase velocity calculator 23 outputs the phase velocity v h and the incident angle ⁇ h of the radio wave to the beam directivity calculator 24.
  • the beam pointing direction calculation unit 24 is realized by, for example, a beam pointing direction calculation circuit 34 illustrated in FIG.
  • the beam directing direction calculation unit 24 calculates a beam of the short wave radio wave from the phase speed v h and the incident angle ⁇ h of the radio wave output from the phase speed calculation unit 23 and the phase speed v 0 of the short wave radio wave on the ground.
  • the pointing direction ⁇ 0 is calculated.
  • the beam pointing direction calculation unit 24 outputs the beam pointing direction ⁇ 0 of the short wave radio wave to the beam pointing direction setting unit 25.
  • the beam direction setting unit 25 is realized by, for example, a beam direction setting circuit 35 shown in FIG.
  • Beam pointing direction setting unit 25 for setting the direction of the radio wave of the short-wave band radiated from the transmission antenna 6-1 ⁇ 6-N in the beam pointing direction theta 0, shift of the phase shifter 4-1 ⁇ 4-N The phase amount and the gains of the variable gain amplifiers 5-1 to 5-N are controlled.
  • the distance speed calculation unit 26 is realized by, for example, a distance speed calculation circuit 36 illustrated in FIG.
  • Distance velocity calculation unit 26 the synthesized data Rx S output from the correlation determination unit 21, calculates the respective distances L and the target speed V to the target.
  • the hardware is realized by dedicated hardware as shown in FIG. That is, it is assumed that the signal processing device 20 is realized by the correlation determination circuit 31, the altitude calculation circuit 32, the phase velocity calculation circuit 33, the beam directivity direction calculation circuit 34, the beam directivity direction setting circuit 35, and the distance speed calculation circuit 36. are doing.
  • each of the correlation determination circuit 31, the altitude calculation circuit 32, the phase speed calculation circuit 33, the beam direction calculation circuit 34, the beam direction setting circuit 35, and the distance speed calculation circuit 36 is, for example, a single circuit, a composite circuit. , A programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof.
  • the components of the signal processing device 20 are not limited to those realized by dedicated hardware. Even if the signal processing device 20 is realized by software, firmware, or a combination of software and firmware, Good. Software or firmware is stored as a program in the memory of the computer.
  • the computer means hardware for executing a program, for example, a CPU (Central Processing Unit), a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, a processor, or a DSP (Digital Signal Processor). I do.
  • FIG. 3 is a hardware configuration diagram of a computer when the signal processing device 20 is realized by software or firmware.
  • FIG. 4 is a flowchart illustrating a processing procedure when the signal processing device 20 is realized by software or firmware.
  • FIG. 2 shows an example in which each of the components of the signal processing device 20 is realized by dedicated hardware
  • FIG. 3 shows an example in which the signal processing device 20 is realized by software or firmware.
  • some components of the signal processing device 20 may be realized by dedicated hardware, and the remaining components may be realized by software or firmware.
  • FIG. 5 is a configuration diagram illustrating the correlation determination unit 21 of the radar device according to the first embodiment.
  • the correlation processing section 21a sends data Tx outputted from the A / D converter 13, and acquires the respective combined data Rx S and the received data Rx D.
  • Correlation processing section 21a is performed a correlation processing between the transmission data Tx and synthetic data Rx S, and outputs the correlation processing result to the correlation determination unit 21b.
  • Correlation processing section 21a outputs the respective transmission data Tx, combined data Rx S and the received data Rx D to the correlation determination unit 21b.
  • Correlation determination processing section 21b correlation processing result output from the correlation processing unit 21a is, if indicates that the transmission data Tx and synthetic data Rx S are correlated, combined data Rx S distance speed calculating section 26 Output to Correlation determination processing section 21b, the correlation processing result output from the correlation processing unit 21a is, if indicates that the transmission data Tx and synthetic data Rx S is not correlated, the combined data Rx S and the received data Rx D Each is output to the altitude calculation unit 22.
  • FIG. 6 is a configuration diagram illustrating the altitude calculation unit 22 of the radar device according to the first embodiment. 6, the correlation processing section 22a, while delaying the received data Rx D output from the correlation determination unit 21 in the time direction, carried out correlation processing with the received data Rx D synthetic data Rx S, correlation The result is output to the time difference calculator 22b.
  • Time difference calculating unit 22b, correlation processing result output from the correlation processing unit 22a is, the received data Rx D synthetic data Rx S to search the delay time t d of the received data Rx D indicating that are correlated.
  • Time difference calculating unit 22b a direct wave signal reception time of which is not reflected in the ionosphere, as a time difference ⁇ t between the signal reception time, which is reflected in the ionosphere, and outputs the delay time t d to the distance calculation unit 22c .
  • the reflection altitude calculation unit 22d holds, as the position of the radio wave source 1, the linear distance Rd between the radar device and the radio wave source 1 shown in FIG.
  • the reflection altitude calculation unit 22d calculates the altitude h of the ionosphere using the linear distance Rd and the distance dr output from the distance calculation unit 22c, and outputs the altitude h of the ionosphere to the phase velocity calculation unit 23.
  • the operation of the radar device shown in FIG. 1 There are a plurality of radio sources 1 whose linear distance Rd from the radar device shown in FIG. 1 is known, and the frequency f of the short-wave radio waves radiated from each of the plurality of radio sources 1 is known in the radar device. Shall be.
  • the radar device shown in FIG. 1 for example, when detecting a target whose linear distance from the radar device is around 100 km, using a radio wave radiated from the radio source 1 having a linear distance Rd from the radar device of about 100 km, Set the beam direction.
  • radio waves radiated from the radio wave source 1 having a linear distance Rd from the radar device of about 200 km are used. To set the beam direction.
  • the receiving antenna 11 has a substantially horizontal beam direction (a direction at an elevation angle of about 0 degrees) so that a direct wave of a short-wave band radio wave radiated from the radio wave source 1 (a radio wave not reflected by the ionosphere) can be received.
  • the receiving antennas 7-1 to 7-M have a substantially vertical beam direction (a direction having an elevation angle of about 90 degrees) so as to be able to receive shortwave radio waves reflected from the ionosphere after being radiated from the radio wave source 1. )
  • the radar device shown in FIG. 1 detects a target whose linear distance from the radar device is around 100 km.
  • the receiving antenna 11 receives the direct wave of the radio wave radiated from the plurality of radio sources 1
  • the receiver 12 selects the radio wave radiated from the radio source 1 having a linear distance Rd of about 100 km from the plurality of direct waves. Extract the waves directly. Since the frequency f of the radio wave radiated from each of the plurality of radio sources 1 is registered in the receiver 12, the receiver 12 selects the radio source 1 having a linear distance Rd of about 100 km from the plurality of direct waves. Can extract the direct wave of the radio wave radiated from.
  • the receiver 12 When the receiver 12 extracts a direct wave of a radio wave radiated from the radio source 1 having a linear distance Rd of about 100 km, the receiver 12 demodulates the received signal of the extracted direct wave, and converts the demodulated received signal into an A / D converter 13. Output to A / D converter 13 receives the received signal from the receiver 12, the received signal is converted from an analog signal to a digital signal, and outputs the correlation determination unit 21 the digital signal as received data Rx D.
  • the receiving antennas 7-1 to 7-M receive the short-wave radio waves emitted from the radio wave source 1 and reflected by the ionosphere.
  • the variable gain amplifiers 8-1 to 8-M adjust the amplitude of the reception signals of the respective radio waves, and Are output to the phase shifters 9-1 to 9-M.
  • the phase shifters 9-1 to 9-M adjust the phases of the respective received signals and convert the respective received signals after the phase adjustment. Output to the synthesizer 10.
  • the combiner 10 Upon receiving the received signals from the phase shifters 9-1 to 9-M, the combiner 10 receives the received signals of the radio waves radiated from the radio source 1 having a linear distance Rd of about 100 km from the received signals. Is extracted. Since the frequency f of the radio wave radiated from each of the plurality of radio sources 1 is registered in the synthesizer 10, the synthesizer 10 radiates from the radio source 1 having a linear distance Rd of about 100 km from the received signal. It is possible to extract the received signal of the transmitted radio wave. The combiner 10 combines the extracted M received signals and outputs a combined signal, which is the combined received signal, to the receiver 12.
  • receiver 12 When receiving the combined signal from combiner 10, receiver 12 demodulates the combined signal and outputs the combined signal after demodulation to A / D converter 13.
  • a / D converter 13 receives the composite signal from the receiver 12, the combined signal is converted from an analog signal to a digital signal, and outputs the correlation determination unit 21 the digital signal as the synthesized data Rx S
  • the transmitter 2 generates a radar signal and outputs the radar signal to each of the distributor 3 and the A / D converter 13.
  • the A / D converter 13 converts the radar signal from an analog signal to a digital signal, and outputs the digital signal to the correlation determination unit 21 as transmission data Tx.
  • the transmitter 2 outputs a radar signal to each of the distributor 3 and the A / D converter 13.
  • the beam directivity direction setting unit 25 since no setting the beam pointing direction theta 0, beam pointing direction setting unit 25, until the setting of the beam pointing direction theta 0, the transmitter 2 ,
  • the radar signal may not be output.
  • Correlation processing section 21a of the correlation determination unit 21, carried receives the transmission data Tx from the A / D converter 13, a transmission data Tx, the correlation between the composite data Rx S output from the A / D converter 13 Then, the correlation processing result is output to the correlation determination processing section 21b (step ST1 in FIG. 4). Correlation itself between the transmission data Tx and synthetic data Rx S is a detailed description thereof will be omitted since it is well known in the art. Moreover, the correlation processing section 21a outputs the respective transmission data Tx, combined data Rx S and the received data Rx D to the correlation determination unit 21b.
  • the correlation processing unit 21a If the correlation processing unit 21a has not received the transmission data Tx from the A / D converter 13, the correlation processing unit 21a notifies the correlation determination processing unit 21b that the correlation processing has not been performed. Moreover, the correlation processing section 21a outputs the respective combined data Rx S and the received data Rx D to the correlation determination unit 21b.
  • Correlation determination processing section 21b correlation processing result output from the correlation processing unit 21a is, if indicates that the transmission data Tx and synthetic data Rx S are correlated (step of FIG. 4 ST2: in the case of YES) , and outputs the synthesized data Rx S the distance speed calculation unit 26.
  • Correlation determination processing section 21b correlation processing result output from the correlation processing unit 21a is, if indicates that the transmission data Tx and synthetic data Rx S is not correlated (step of FIG. 4 ST2: in the case of NO) , and outputs a respective combined data Rx S and the received data Rx D altitude calculation unit 22.
  • the correlation determination processing unit 21b if receiving the notification that no implementing correlation processing from the correlation processing unit 21a, and outputs the respective combined data Rx S and the received data Rx D altitude calculation unit 22.
  • Correlation processing section 22a of the height calculation unit 22 receives the respective combined data Rx S and the received data Rx D from the correlation determination unit 21b, while delaying the received data Rx D in the time direction, and the received data Rx D implementing the correlation between the synthesized data Rx S (step ST3 in FIG. 4). Correlation itself between the received data Rx D synthetic data Rx S is a detailed description thereof will be omitted since it is well known in the art. Correlation processing section 22a outputs the result of a correlation process in each of the delay time t d to the time difference calculating section 22b.
  • Time difference calculating section 22b receives the result of a correlation process in each of the delay time from the correlation processing unit 22a t d, with reference to the result of a correlation process in each of the delay time t d, the received data Rx D synthetic data rx S to search the delay time t d are correlated (step ST4 in FIG. 4).
  • Time difference calculating unit 22b a direct wave signal reception time of which is not reflected in the ionosphere, as a time difference ⁇ t between the signal reception time, which is reflected in the ionosphere, and outputs the delay time t d to the distance calculation unit 22c .
  • Distance calculating unit 22c receives the delay time t d from the time difference calculating portion 22b, as shown in the following equation (1), from the delay time t d, the receiving distance and linear distance Rd of the receiving array antennas 7 Is calculated (step ST5 in FIG. 4).
  • c is the propagation speed of the radio wave.
  • the distance calculation unit 22c outputs the distance dr to the reflection height calculation unit 22d.
  • the reflection altitude calculation unit 22d uses the linear distance Rd between the radar device and the radio wave source 1 and the distance dr output from the distance calculation unit 22c to calculate the ionosphere as shown in the following equation (2).
  • the altitude h is calculated, and the altitude h of the ionosphere is output to the phase velocity calculator 23 (step ST6 in FIG. 4).
  • the phase velocity calculating unit 23 Upon receiving the ionospheric altitude h from the reflection altitude calculating unit 22d, the phase velocity calculating unit 23 estimates the electron density ed h of the ionosphere at the altitude h with reference to, for example, an IRI model.
  • the IRI model is a database showing the correspondence between altitude h and electron density ed h .
  • the IRI model may be held by the phase velocity calculator 23 or may be held by a device external to the radar device.
  • the phase velocity calculating unit 23 calculates the phase velocity v h of the short wave radio wave at the altitude h from the electron density ed h as shown in the following equation (3) (see FIG. 4). Step ST7).
  • is a plasma frequency determined by the electron density ed h of the ionosphere
  • k is a wave number.
  • Phase velocity calculation unit 23 for example, with reference to the IRI model, than height h, in estimating the electron density ed h + 1 of the ionosphere in the upper one altitude (h + 1), advanced from the electron density ed h + 1 (h + 1 ) The phase speed v h + 1 of the short wave radio wave is calculated.
  • the altitude (h + 1) one level higher than the altitude h is one level higher in the model resolution of the IRI model.
  • the phase velocity calculator 23 outputs the phase velocity v h and the incident angle ⁇ h of the radio wave to the beam directivity calculator 24.
  • the beam pointing direction calculation unit 24 calculates the phase velocity v h and the incident angle ⁇ h output from the phase velocity calculation unit 23 and the phase velocity v 0 of the short wave radio wave on the ground. Then, the beam directing direction ⁇ 0 of the short wave radio wave is calculated (step ST8 in FIG. 4).
  • the phase velocity v 0 radio waves of short wave band in the ground are known.
  • the ground corresponds to the altitude at which the receiving antennas 7-1 to 7-M are installed.
  • ⁇ w is the beam width of the short-wave radio wave radiated from the transmitting antennas 6-1 to 6-N.
  • the beam pointing direction calculation unit 24 outputs the beam pointing direction ⁇ 0 of the short wave radio wave to the beam pointing direction setting unit 25.
  • the phase amount and the gains of the variable gain amplifiers 5-1 to 5-N are controlled (step ST9 in FIG. 4).
  • the beam pointing direction setting unit 25 for setting the direction of the radio wave of the short-wave band, which is received by the receiving antennas 7-1 ⁇ 7-N in the beam pointing direction theta 0, the variable gain amplifiers 8-1 ⁇ 8-N And the phase shift amounts of the phase shifters 9-1 to 9-N are controlled (step ST9 in FIG. 4).
  • the beam directivity direction setting unit 25 calculates the amplitude and phase of the radar signal for setting the direction of the radio beam pointing direction theta 0. Then, the beam directivity direction setting unit 25 outputs a control signal C a indicating the amplitude in each of the variable gain amplifier 5-1 ⁇ 5-N and the variable gain amplifier 8-1 ⁇ 8-N. The beam pointing direction setting unit 25 outputs a control signal C p indicating the phase on each of the phase shifter 4-1 ⁇ 4-N and the phase shifter 9-1 ⁇ 9-N.
  • the process of calculating the amplitude and phase corresponding to the beam directing direction ⁇ 0 itself is a known technique, and a detailed description thereof will be omitted.
  • distributor 3 Upon receiving the radar signal from transmitter 2, distributor 3 divides the radar signal into N signals, and outputs the divided radar signals to phase shifters 4-1 to 4-N.
  • Phase shifter 4-1 ⁇ 4-N adjusts the phase of each radar signals output from the distributor 3 in accordance with the control signal C p which is output from the beam pointing direction setting unit 25, after the phase adjustment of the respective The radar signal is output to variable gain amplifiers 5-1 to 5-N.
  • Variable gain amplifier 5-1 ⁇ 5-N in accordance with a control signal C a, which is output from the beam pointing direction setting unit 25, adjusts the amplitude of each of the radar signals output from the phase shifter 4-1 ⁇ 4-N Then, the respective radar signals after the amplitude adjustment are output to the transmitting antennas 6-1 to 6-N.
  • the transmitting antennas 6-1 to 6-N When receiving the respective radar signals from the variable gain amplifiers 5-1 to 5-N, the transmitting antennas 6-1 to 6-N radiate short-wave radio waves into space as radar waves.
  • the beam pointing direction ⁇ 0 of the radio waves radiated from the transmitting antennas 6-1 to 6-N is set by using the radio waves radiated from the radio source 1 having a linear distance Rd from the radar device of about 100 km. It is possible to irradiate a target with a linear distance of around 100 km with a radio wave.
  • the receiving antennas 7-1 to 7-M receive the short-wave radio waves radiated from the transmitting antennas 6-1 to 6-N and then reflected back to the target, and convert the received radio wave signals into variable gain amplifiers. 8-1 to 8-M.
  • the beam pointing direction ⁇ 0 of radio waves received by the receiving antennas 7-1 to 7-M is set using radio waves radiated from the radio source 1 having a linear distance Rd from the radar device of about 100 km. It is possible to receive a radio wave reflected by a target whose linear distance is around 100 km.
  • the beam pointing direction ⁇ 0 calculated by the beam pointing direction calculation unit 24 is an elevation angle direction, not an azimuth angle direction.
  • the azimuth direction of the radio wave radiated from the transmitting antennas 6-1 to 6-N may be a direction set in advance, or may rotate in the range of 0 to 360 degrees.
  • the azimuth direction of the radio waves received by the receiving antennas 7-1 to 7-M may be a direction set in advance, or may rotate in the range of 0 to 360 degrees. Good.
  • Variable gain amplifiers 8-1 ⁇ 8-M in accordance with a control signal C a, which is output from the beam pointing direction setting unit 25, adjusts the amplitude of each received signal output from the receiving antennas 7-1 ⁇ 7-M , And outputs the received signals after the amplitude adjustment to the phase shifters 9-1 to 9-M.
  • Phase shifter 9-1 ⁇ 9-M adjusts the phase of each received signal output from the variable gain amplifiers 8-1 ⁇ 8-M according to the control signal C p which is output from the beam pointing direction setting unit 25 , And outputs the received signals after the phase adjustment to the combiner 10.
  • the combiner 10 Upon receiving the respective received signals from the phase shifters 9-1 to 9-M, the combiner 10 combines the M received signals and outputs a combined signal, which is the combined received signal, to the receiver 12.
  • receiver 12 demodulates the combined signal and outputs the combined signal after demodulation to A / D converter 13.
  • a / D converter 13 receives the composite signal from the receiver 12, the combined signal is converted from an analog signal to a digital signal, and outputs the correlation determination unit 21 the digital signal as the synthesized data Rx S
  • Correlation determination processing section 21b correlation processing result output from the correlation processing unit 21a is, if indicates that the transmission data Tx and synthetic data Rx S are correlated (step of FIG. 4 ST2: in the case of YES) , and outputs the synthesized data Rx S the distance speed calculation unit 26.
  • the receiving antennas 7-1 to 7-M are receiving shortwave radio waves that have been radiated from the transmitting antennas 6-1 to 6-N and then reflected back to the target, the transmission data Tx synthetic data Rx S are correlated.
  • Distance velocity calculation unit 26 calculates the receiving the synthetic data Rx S from the correlation determination unit 21, the combined data Rx S, the respective distances L and the target speed V to the target (step ST10 in FIG. 4). Process itself of calculating the combined data Rx S, the distance L and the target velocity V to the target, the detailed description thereof is omitted because it is known in the art.
  • the beam direction of the short wave radio wave is determined from the phase speed calculated by the phase speed calculation unit 23, the incident angle estimated by the phase speed calculation unit 23, and the phase speed of the short wave radio wave on the ground.
  • a beam pointing direction calculating unit 24 for calculating the direction is provided, and the beam pointing direction setting unit 25 controls the directions of the radio waves in the short wave band radiated from the transmitting antennas 6-1 to 6-N and the receiving antennas 7-1 to 7-M.
  • the radar device is configured to set each of the directions of the radio waves in the short wave band received by the beam pointing direction calculated by the beam pointing direction calculation unit 24. Therefore, the radar device according to the first embodiment can detect a target existing in a desired area.
  • Embodiment 2 FIG. In the second embodiment, a radar device that sets the beam pointing direction ⁇ 0 of radio waves using radio waves radiated from a plurality of radio sources 1 will be described.
  • FIG. 7 is a configuration diagram illustrating a radar device according to the second embodiment.
  • FIG. 8 is a hardware configuration diagram showing hardware of the signal processing device 20 of the radar device shown in FIG. 7 and 8, the same reference numerals as those in FIGS. 1 and 2 denote the same or corresponding parts, and a description thereof will not be repeated.
  • the beam directivity interpolating unit 27 is realized by, for example, a beam directivity interpolator 37 shown in FIG.
  • the beam pointing direction interpolation unit 27 interpolates between the plurality of beam pointing directions calculated by the beam pointing direction calculation unit 24.
  • the correlation determination unit 21, the altitude calculation unit 22, the phase velocity calculation unit 23, and the beam directivity calculation unit 24 use radio waves radiated from one radio source 1 as in the first embodiment. Is used to calculate the beam pointing direction ⁇ 0 of the radio wave. Further, in the radar apparatus shown in FIG. 7, the correlation determination unit 21, the altitude calculation unit 22, the phase velocity calculation unit 23, and the beam directivity calculation unit 24 are radiated from one radio source 1 different from the above radio source 1. The beam direction ⁇ 0 of the radio wave is calculated using the radio wave. In the radar device shown in FIG. 7, the correlation determination unit 21, the altitude calculation unit 22, the phase velocity calculation unit 23, and the beam directivity calculation unit 24 use radio waves radiated from the plurality of radio sources 1 to The beam directing direction ⁇ 0 is calculated.
  • Beam pointing direction calculation unit 24 uses the radio wave radiated from the radio wave source 1, every time to calculate the beam pointing direction theta 0 of the radio wave, straight line distance Rd and beam pointing direction theta 0 of the said radio sources 1
  • the set is output to the beam direction interpolator 27.
  • FIG. 9 shows interpolation data indicating the correspondence between the linear distance Rd from the radar device to the plurality of radio wave sources 1 and the beam pointing direction ⁇ 0 , and the relationship between the linear distance Rd and the beam pointing direction ⁇ 0 after the interpolation processing.
  • the beam pointing direction interpolation unit 27 acquires a plurality of pairs of the linear distance Rd to the radio wave source 1 and the beam pointing direction ⁇ 0 from the beam pointing direction calculation unit 24, the beam pointing directions ⁇ discretely obtained are obtained.
  • An interpolation process for interpolating between 0 is performed.
  • processing such as least squares method or spline interpolation can be used.
  • the beam pointing direction interpolation unit 27 outputs interpolation data indicating the relationship between the linear distance Rd after the interpolation processing and the beam pointing direction ⁇ 0 to the beam pointing direction setting unit 25.
  • the beam directivity setting unit 25 refers to the interpolation data output from the beam directivity interpolating unit 27 to determine the beam directivity corresponding to the linear distance X. Specify ⁇ 0 .
  • the beam pointing direction setting unit 25 for setting the direction of the radio wave of the short-wave band, which is received by the receiving antennas 7-1 ⁇ 7-N in the beam pointing direction theta 0, the variable gain amplifiers 8-1 ⁇ 8-N And the phase shift amounts of the phase shifters 9-1 to 9-N are controlled.
  • the radar apparatus is configured to include the beam directivity interpolating unit 27 that interpolates between the plurality of beam directivities calculated by the beam directivity calculating unit 24. Therefore, the radar device according to the second embodiment can detect the target by radiating radio waves to the target existing at an intermediate distance between the two linear distances Rd.
  • Embodiment 3 The radar apparatuses according to the first and second embodiments include amplitude controllers 5 and 8 and phase controllers 4 and 9 to change the beam directing direction.
  • a radar device including a transmission digital beamforming unit 53 and a reception digital beamforming unit 54 for changing the beam directing direction will be described.
  • FIG. 10 is a configuration diagram showing a radar device according to the third embodiment.
  • FIG. 11 is a hardware configuration diagram showing hardware of the signal processing device 20 of the radar device shown in FIG. 10 and 11, the same reference numerals as those in FIGS. 1, 2, 7, and 8 denote the same or corresponding parts, and a description thereof will not be repeated.
  • the signal generation unit 51 is realized by, for example, a signal generation circuit 61 illustrated in FIG.
  • the signal generation unit 51 generates transmission data corresponding to the transmission data Tx output from the A / D converter 13 shown in FIG. 1, and outputs the transmission data to the transmission digital beamforming unit 53 and the correlation determination unit 21.
  • the beam direction setting unit 52 is realized by, for example, a beam direction setting circuit 62 shown in FIG. Beam pointing direction setting unit 52, the transmitting antenna 6-1 to set the direction of the radio wave of the short-wave band, which is radiated in the beam pointing direction theta 0 from ⁇ 6-N, the radio wave direction of the adjustment in the transmit digital beam forming unit 53 Control.
  • the beam pointing direction setting unit 52 sets the direction of the radio wave in the short-wave band received by the receiving antennas 7-1 to 7-N to the beam pointing direction ⁇ 0 , so that the direction of the radio wave in the reception digital beam forming unit 54 is set. To control the adjustment.
  • the transmission digital beamforming unit 53 is realized by, for example, a transmission digital beamforming circuit 63 shown in FIG.
  • the transmission digital beamforming unit 53 distributes the transmission data output from the signal generation unit 51 into N pieces.
  • the transmission data after distribution is controlled.
  • the transmission digital beamforming unit 53 outputs the controlled transmission data to digital-to-analog converters (hereinafter, referred to as “D / A converters”) 55-1 to 55-N.
  • D / A converters digital-to-analog converters
  • the reception digital beamforming unit 54 is realized by, for example, a reception digital beamforming circuit 64 shown in FIG.
  • the respective received data output from the A / D converters 56-1 to 56-M are controlled.
  • Receiving digital beam forming unit 54 combines the respective received data after control, the combined data of the received data, as data corresponding to the combined data Rx S output from the A / D converter 13 shown in FIG. 1, Output to the correlation determination unit 21.
  • the digital-to-analog converter 55 includes N D / A converters 55-1 to 55-N.
  • the D / A converters 55-1 to 55-N convert each transmission data output from the transmission digital beamforming unit 53 from a digital signal to an analog signal, and convert each analog signal as a radar signal to the transmission antenna 6.
  • the analog-to-digital converter 56 includes M A / D converters 56-1 to 56-M.
  • the A / D converters 56-1 to 56-M convert the respective reception signals received by the reception antennas 7-1 to 7-N from analog signals to digital signals, and convert the respective digital signals into reception data. Output to the reception digital beamforming unit 54.
  • the A / D converter 57 converts the direct wave reception signal output from the reception antenna 11 from an analog signal to a digital signal, and converts the digital signal into reception data output from the A / D converter 13 shown in FIG. as data corresponding to rx D, and outputs the correlation determination unit 21.
  • the operation of the radar device shown in FIG. 10 will be described.
  • the signal generation unit 51 the beam directivity setting unit 52, the transmission digital beamforming unit 53, the reception digital beamforming unit 54, the digital / analog conversion unit 55, the analog / digital conversion unit 56, and the A / D converter 57
  • the implementation is the same. This is similar to the first and second embodiments. Here, only portions different from the first and second embodiments will be described.
  • the signal generation unit 51 generates transmission data corresponding to the transmission data Tx output from the A / D converter 13 shown in FIG. 1, and outputs the transmission data to the transmission digital beamforming unit 53 and the correlation determination unit 21.
  • the beam pointing direction setting unit 52 Upon receiving the beam pointing direction ⁇ 0 of the radio wave from the beam direction interpolating unit 27, the beam pointing direction setting unit 52 changes the direction of the short wave band radio wave radiated from the transmitting antennas 6-1 to 6-N to the beam pointing direction ⁇ . In order to set it to 0 , the adjustment of the direction of the radio wave in the transmission digital beam forming unit 53 is controlled.
  • the beam pointing direction setting unit 52 sets the direction of the radio wave in the short-wave band received by the receiving antennas 7-1 to 7-N to the beam pointing direction ⁇ 0 , so that the direction of the radio wave in the reception digital beam forming unit 54 is set. To control the adjustment.
  • the transmission digital beamforming unit 53 Upon receiving the transmission data from the signal generation unit 51, the transmission digital beamforming unit 53 distributes the transmission data into N pieces. Transmission digital beam forming unit 53, the transmitting antenna 6-1 to adjust the direction of the radio wave of the short-wave band, which is radiated in the beam pointing direction theta 0 from ⁇ 6-N, control signals outputted from the beam pointing direction setting unit 52 , The transmission data after distribution is controlled. To adjust the direction of the radio wave of the short-wave band radiated from the transmission antenna 6-1 ⁇ 6-N in the beam pointing direction theta 0, the process itself to control the respective transmission data after the distribution are known in the art Therefore, detailed description is omitted.
  • the transmission digital beamforming unit 53 outputs the respective controlled transmission data to the D / A converters 55-1 to 55-N.
  • the D / A converters 55-1 to 55-N convert each transmission data output from the transmission digital beamforming unit 53 from a digital signal to an analog signal, and convert each analog signal as a radar signal to the transmission antenna 6. Output to -1 to 6-N.
  • the A / D converters 56-1 to 56-M convert the respective reception signals received by the reception antennas 7-1 to 7-N from analog signals to digital signals, and convert the respective digital signals into reception data. Output to the reception digital beamforming unit 54.
  • the A / D converter 57 converts the direct wave reception signal output from the reception antenna 11 from an analog signal to a digital signal, and converts the digital signal into reception data output from the A / D converter 13 shown in FIG. as data corresponding to rx D, and outputs the correlation determination unit 21.
  • the reception digital beamforming unit 54 adjusts the direction of the radio wave received by the reception antennas 7-1 to 7-N to the beam pointing direction ⁇ 0 according to the control signal output from the beam pointing direction setting unit 52.
  • the respective received data output from the / D converters 56-1 to 56-M are controlled.
  • Receiving digital beam forming unit 54 combines the respective received data after control, the combined data of the received data, as data corresponding to the combined data Rx S output from the A / D converter 13 shown in FIG. 1, Output to the correlation determination unit 21.
  • the radar apparatus includes the transmission digital beamforming unit 53 and the reception digital beamforming unit 54 in order to change the beam directing direction.
  • the radar device including the transmission digital beamforming unit 53 and the reception digital beamforming unit 54 can detect a target existing in a desired area, similarly to the radar devices illustrated in FIGS. 1 and 7.
  • Embodiment 4 FIG.
  • a dipole antenna or a monopole antenna is used as transmission antennas 6-1 to 6-N and reception antennas 7-1 to 7-N.
  • each of transmitting antennas 6-1 to 6-N and receiving antennas 7-1 to 7-N is a radar whose beam directing direction is variable by adjusting the antenna element length. The device will be described.
  • antenna elements 71-1 to 71-6 are elements included in transmission antenna 6-n.
  • the antenna element 71-1 is an element on the base end side, and is connected to the variable gain amplifier 5-n.
  • the antenna element 71-6 is a tip-side element.
  • the transmission antenna 6-n includes six antenna elements 71-1 to 71-6. However, this is only an example, and the transmitting antenna 6-n may include two or more and five or less antenna elements, or may include seven or more antenna elements. May be.
  • the switch 72-1 is an element for switching a connection state between the antenna element 71-1 and the antenna element 71-2.
  • the switch 72-2 changes the connection state between the antenna element 71-2 and the antenna element 71-3 when the switch 72-1 connects the antenna element 71-1 and the antenna element 71-2. It is a switching element.
  • the switch 72-3 changes the connection state between the antenna element 71-3 and the antenna element 71-4 when the switch 72-2 connects the antenna element 71-2 and the antenna element 71-3. It is a switching element.
  • the switch 72-4 changes the connection state between the antenna element 71-4 and the antenna element 71-5 when the switch 72-3 connects the antenna element 71-3 and the antenna element 71-4. It is a switching element.
  • the switch 72-5 changes the connection state between the antenna element 71-5 and the antenna element 71-6 when the switch 72-4 connects the antenna element 71-4 and the antenna element 71-5. It is a switching element. The switching of the connection state by the switches 72-1 to 72-5 is controlled by the beam directivity setting unit 25.
  • antenna elements 81-1 to 81-6 are elements included in receiving antenna 7-m.
  • the antenna element 81-1 is an element on the base end side, and is connected to the variable gain amplifier 8-m.
  • the antenna element 81-6 is a tip-side element.
  • the receiving antenna 7-m includes six antenna elements 81-1 to 81-6. However, this is only an example, and the receiving antenna 7-m may include two or more and five or less antenna elements, or may include seven or more antenna elements. May be.
  • the switch 82-1 is an element for switching a connection state between the antenna element 81-1 and the antenna element 81-2.
  • the switch 82-2 changes the connection state between the antenna element 81-2 and the antenna element 81-3 when the switch 82-1 connects the antenna element 81-1 and the antenna element 81-2. It is a switching element.
  • the switch 82-3 changes the connection state between the antenna element 81-3 and the antenna element 81-4 when the switch 82-2 connects the antenna element 81-2 and the antenna element 81-3. It is a switching element.
  • the switch 82-4 changes the connection state between the antenna element 81-4 and the antenna element 81-5 when the switch 82-3 connects the antenna element 81-3 and the antenna element 81-4. It is a switching element.
  • the switch 82-5 changes the connection state between the antenna element 81-5 and the antenna element 81-6 when the switch 82-4 connects the antenna element 81-4 and the antenna element 81-5. It is a switching element. The switching of the connection state by the switches 82-1 to 82-5 is controlled by the beam directivity setting unit 25.
  • the antenna element length of the transmitting antenna 6-n is controlled by the beam directivity setting unit 25 to turn on only the switch 72-1 (connected state) and turn off the switches 72-2 to 72-5 (disconnected state).
  • the antenna element length of the transmitting antenna 6-n is the longest when the beam directivity setting unit 25 controls all the switches 72-1 to 72-5 to be ON.
  • the beam pointing direction setting unit 25 controls ON / OFF of the switches 72-1 to 72-5, so that the antenna element length of the transmitting antenna 6-n changes.
  • the elevation angles indicating the beam directing directions of the transmission antennas 6-1 to 6-N when the antenna element lengths of the transmission antennas 6-1 to 6-N are short are such that the antenna element length of the transmission antennas 6-1 to 6-N is long. It becomes smaller than the elevation angle indicating the beam directing direction of the transmitting antennas 6-1 to 6-N. Therefore, the beam directing direction setting unit 25 controls the ON / OFF of the switches 72-1 to 72-5, so that the beam directing directions of the transmitting antennas 6-1 to 6-N can be changed.
  • the antenna element length of the receiving antenna 7-m is the shortest when the beam directivity setting unit 25 controls only the switch 82-1 to be ON and switches 82-2 to 82-5 to be OFF.
  • the antenna element length of the receiving antenna 7-m becomes the longest when the beam directivity setting unit 25 controls all the switches 82-1 to 82-5 to be ON.
  • the antenna element length of the receiving antenna 7-m changes.
  • the elevation angles indicating the beam directing directions of the receiving antennas 7-1 to 7-M when the antenna element lengths of the receiving antennas 7-1 to 7-M are short are such that the antenna element lengths of the receiving antennas 7-1 to 7-M are long.
  • the beam pointing direction setting unit 25 can change the beam pointing directions of the receiving antennas 7-1 to 7-M by controlling ON / OFF of the switches 82-1 to 82-5.
  • any combination of the embodiments, a modification of an arbitrary component of each embodiment, or an omission of any component in each embodiment is possible within the scope of the invention. .
  • the present invention is suitable for a radar apparatus for setting the beam directing direction of a short-wave radio wave.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

This radar device comprises a beam orientation calculation unit (24) for calculating the beam orientation of shortwave radio waves on the basis of a phase velocity calculated by a phase velocity calculation unit (23) and an incidence angle and ground shortwave-radio-wave phase velocity estimated by the phase velocity calculation unit (23), and is configured such that a beam orientation setting unit (25) sets the orientations of shortwave radio waves emitted from transmission antennas (6-1) to (6-N) and shortwave radio waves received by reception antennas (7-1) to (7-M) to the beam orientation calculated by the beam orientation calculation unit (24).

Description

レーダ装置Radar equipment
 この発明は、短波帯の電波のビーム指向方向を設定するレーダ装置に関するものである。 The present invention relates to a radar apparatus for setting a beam directing direction of a radio wave in a short wave band.
 地上から放射された短波(HF:High Frequency)帯の電波は、電離層内で屈折されて、見通し外の遠方まで伝搬されることが知られている。
 目標を検出するレーダ装置が、電離層に反射された短波帯の電波を利用すれば、見通し外の遠方に存在している目標を検出することが可能である。
It is known that high frequency (HF) radio waves radiated from the ground are refracted in the ionosphere and propagate far out of line of sight.
If a radar device for detecting a target uses radio waves in the short wave band reflected on the ionosphere, it is possible to detect a target that is located far away from the line of sight.
 以下の特許文献1には、電離層における電子密度と高さの関係を示すデータを参照して、短波帯の電波の屈折角を求めることで、電波の伝搬経路を算出している伝搬経路計算装置が開示されている。 Patent Document 1 below discloses a propagation path calculation device that calculates a propagation path of a radio wave by obtaining a refraction angle of a radio wave in a short wave band with reference to data indicating a relationship between an electron density and a height in an ionosphere. Is disclosed.
特開2009-69982号公報JP 2009-69982 A
 従来のレーダ装置は、特許文献1に開示されている伝搬経路計算装置を用いることが可能であるとすれば、短波帯の電波の伝搬経路を得ることができる。
 しかし、特許文献1に開示されている伝搬経路計算装置は、短波帯の電波の伝搬経路から、短波帯の電波の放射方向を算出するものではない。
 したがって、従来のレーダ装置は、特許文献1に開示されている伝搬経路計算装置を用いることが可能であるとしても、目標を検出する上で適正な電波の放射方向を算出することができない。つまり、所望の領域に存在している目標に電波を照射して、目標を検出できないことがあるという課題があった。
If the conventional radar apparatus can use the propagation path calculation device disclosed in Patent Document 1, it is possible to obtain a propagation path of a radio wave in a short wave band.
However, the propagation path calculation device disclosed in Patent Document 1 does not calculate the radiation direction of the short wave radio wave from the propagation path of the short wave radio wave.
Therefore, even if the conventional radar device can use the propagation path calculation device disclosed in Patent Document 1, it cannot calculate an appropriate radio wave radiation direction for detecting a target. In other words, there is a problem that a target existing in a desired area may not be detected by irradiating a target with radio waves.
 この発明は上記のような課題を解決するためになされたもので、所望の領域に存在している目標を検出することができるレーダ装置を得ることを目的とする。 The present invention has been made to solve the above-described problems, and has as its object to obtain a radar device capable of detecting a target existing in a desired area.
 この発明に係るレーダ装置は、短波帯の電波を放射する電波源の位置を用いて、短波帯の電波を反射する電離層の高度を算出する高度算出部と、高度算出部により算出された高度における短波帯の電波の位相速度を算出し、位相速度を用いて、電離層に対する短波帯の電波の入射角度を推定する位相速度算出部と、位相速度算出部により算出された位相速度、入射角度及び地上における短波帯の電波の位相速度から、短波帯の電波のビーム指向方向を算出するビーム指向方向算出部と、送信アンテナから放射される短波帯の電波の方向及び受信アンテナにより受信される短波帯の電波の方向のそれぞれをビーム指向方向算出部により算出されたビーム指向方向に設定するビーム指向方向設定部とを備えるようにしたものである。 A radar apparatus according to the present invention includes an altitude calculation unit that calculates an altitude of an ionosphere that reflects radio waves in a short wave band using a position of a radio wave source that emits radio waves in a short wave band, A phase velocity calculator that calculates the phase velocity of the short wave radio wave, and estimates the incident angle of the short wave radio wave to the ionosphere using the phase velocity, and the phase velocity, the incident angle, and the ground calculated by the phase velocity calculator. A beam pointing direction calculation unit that calculates the beam pointing direction of the short wave radio wave from the phase velocity of the short wave radio wave in the direction of the short wave radio wave radiated from the transmitting antenna and the short wave band received by the receiving antenna. A beam pointing direction setting unit that sets each of the directions of the radio waves to the beam pointing direction calculated by the beam pointing direction calculation unit.
 この発明によれば、位相速度算出部により算出された位相速度、入射角度及び地上における短波帯の電波の位相速度から、短波帯の電波のビーム指向方向を算出するビーム指向方向算出部を設け、ビーム指向方向設定部が、送信アンテナから放射される短波帯の電波の方向及び受信アンテナにより受信される短波帯の電波の方向のそれぞれをビーム指向方向算出部により算出されたビーム指向方向に設定するように、レーダ装置を構成した。したがって、この発明に係るレーダ装置は、所望の領域に存在している目標を検出することができる。 According to the present invention, from the phase velocity calculated by the phase velocity calculation unit, the incident angle and the phase velocity of the radio wave in the short wave band on the ground, the beam directivity calculation unit that calculates the beam directivity of the radio wave in the short wave band is provided. The beam pointing direction setting unit sets each of the direction of the short wave radio wave radiated from the transmitting antenna and the direction of the short wave radio wave received by the receiving antenna to the beam pointing direction calculated by the beam pointing direction calculating unit. The radar device was configured as described above. Therefore, the radar device according to the present invention can detect a target existing in a desired area.
実施の形態1によるレーダ装置を示す構成図である。1 is a configuration diagram illustrating a radar device according to a first embodiment. 図1に示すレーダ装置の信号処理装置20のハードウェアを示すハードウェア構成図である。FIG. 2 is a hardware configuration diagram illustrating hardware of a signal processing device 20 of the radar device illustrated in FIG. 1. 信号処理装置20がソフトウェア又はファームウェアなどで実現される場合のコンピュータのハードウェア構成図である。FIG. 2 is a hardware configuration diagram of a computer when the signal processing device 20 is realized by software or firmware. 信号処理装置20がソフトウェア又はファームウェアなどで実現される場合の処理手順を示すフローチャートである。9 is a flowchart illustrating a processing procedure when the signal processing device 20 is realized by software or firmware. 実施の形態1によるレーダ装置の相関判定部21を示す構成図である。FIG. 3 is a configuration diagram illustrating a correlation determination unit 21 of the radar device according to the first embodiment. 実施の形態1によるレーダ装置の高度算出部22を示す構成図である。FIG. 3 is a configuration diagram illustrating an altitude calculation unit 22 of the radar device according to the first embodiment. 実施の形態2によるレーダ装置を示す構成図である。FIG. 7 is a configuration diagram illustrating a radar device according to a second embodiment. 図7に示すレーダ装置の信号処理装置20のハードウェアを示すハードウェア構成図である。FIG. 8 is a hardware configuration diagram illustrating hardware of a signal processing device 20 of the radar device illustrated in FIG. 7. レーダ装置から複数の電波源1への直線距離Rdとビーム指向方向θの対応関係、及び補間処理後の直線距離Rdとビーム指向方向θとの関係を示す補間データを示す説明図である。FIG. 7 is an explanatory diagram showing a correspondence relationship between a linear distance Rd from the radar device to a plurality of radio wave sources 1 and a beam directing direction θ 0 , and interpolation data indicating a relationship between the linear distance Rd and the beam directing direction θ 0 after interpolation processing. . 実施の形態3によるレーダ装置を示す構成図である。FIG. 9 is a configuration diagram illustrating a radar device according to a third embodiment. 図10に示すレーダ装置の信号処理装置20のハードウェアを示すハードウェア構成図である。FIG. 11 is a hardware configuration diagram illustrating hardware of a signal processing device 20 of the radar device illustrated in FIG. 10. アンテナ素子長が調整されることで、ビーム指向方向が可変される送信アンテナ6-n(n=1,2,・・・,N)を示す構成図である。FIG. 9 is a configuration diagram showing a transmitting antenna 6-n (n = 1, 2,..., N) whose beam directing direction is changed by adjusting the antenna element length. アンテナ素子長が調整されることで、ビーム指向方向が可変される受信アンテナ7-m(m=1,2,・・・,M)を示す構成図である。FIG. 9 is a configuration diagram showing a receiving antenna 7-m (m = 1, 2,..., M) in which a beam directing direction is changed by adjusting an antenna element length.
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。 Hereafter, in order to explain this invention in greater detail, the preferred embodiments of the present invention will be described with reference to the accompanying drawings.
実施の形態1.
 図1は、実施の形態1によるレーダ装置を示す構成図である。
 図2は、図1に示すレーダ装置の信号処理装置20のハードウェアを示すハードウェア構成図である。
 図1において、電波源1は、図1に示すレーダ装置から直線距離でRdだけ離れている位置に設置されており、短波帯の電波を放射する。短波帯の電波の周波数は、3~30MHzである。
 電波源1から放射される短波帯の電波の周波数f及び直線距離Rdは、図1に示すレーダ装置において既知である。
Embodiment 1 FIG.
FIG. 1 is a configuration diagram showing a radar device according to the first embodiment.
FIG. 2 is a hardware configuration diagram showing hardware of the signal processing device 20 of the radar device shown in FIG.
In FIG. 1, a radio wave source 1 is installed at a position separated by a linear distance Rd from the radar apparatus shown in FIG. 1, and radiates radio waves in a short wave band. The frequency of the short wave radio wave is 3 to 30 MHz.
The frequency f and the linear distance Rd of the radio wave in the short wave band radiated from the radio wave source 1 are known in the radar device shown in FIG.
 送信器2は、送信信号としてレーダ信号を生成し、レーダ信号を分配器3及びアナログデジタル変換器(以下、「A/D変換器」と称する)13に出力する。
 分配器3は、送信器2から出力されたレーダ信号をN(Nは1以上の整数)個に分配し、分配後のそれぞれのレーダ信号を位相制御部4に出力する。
The transmitter 2 generates a radar signal as a transmission signal, and outputs the radar signal to the distributor 3 and an analog / digital converter (hereinafter, referred to as an “A / D converter”) 13.
The distributor 3 divides the radar signal output from the transmitter 2 into N (N is an integer equal to or greater than 1) pieces, and outputs each of the divided radar signals to the phase control unit 4.
 位相制御部4は、N個の移相器4-1~4-Nを備えている。
 移相器4-1~4-Nは、ビーム指向方向設定部25から出力された制御信号Cに従って分配器3から出力されたそれぞれのレーダ信号の位相を調整し、位相調整後のそれぞれのレーダ信号を可変利得アンプ5-1~5-Nに出力する。
 振幅制御部5は、N個の可変利得アンプ5-1~5-Nを備えている。
 可変利得アンプ5-1~5-Nは、ビーム指向方向設定部25から出力された制御信号Cに従って、移相器4-1~4-Nから出力されたそれぞれのレーダ信号の振幅を調整し、振幅調整後のそれぞれのレーダ信号を送信アンテナ6-1~6-Nに出力する。
 送信アレイアンテナ6は、N個の送信アンテナ6-1~6-Nを備えている。
 送信アンテナ6-1~6-Nは、可変利得アンプ5-1~5-Nからそれぞれのレーダ信号を受けると、レーダ波として、短波帯の電波を空間に放射する。
 送信アンテナ6-1~6-Nとしては、ダイポールアンテナ又はモノポールアンテナなどを用いることができる。
The phase control unit 4 includes N phase shifters 4-1 to 4-N.
Phase shifter 4-1 ~ 4-N adjusts the phase of each radar signals output from the distributor 3 in accordance with the control signal C p which is output from the beam pointing direction setting unit 25, after the phase adjustment of the respective The radar signal is output to variable gain amplifiers 5-1 to 5-N.
The amplitude control section 5 includes N variable gain amplifiers 5-1 to 5-N.
Variable gain amplifier 5-1 ~ 5-N in accordance with a control signal C a, which is output from the beam pointing direction setting unit 25, adjusts the amplitude of each of the radar signals output from the phase shifter 4-1 ~ 4-N Then, the respective radar signals after the amplitude adjustment are output to the transmitting antennas 6-1 to 6-N.
The transmission array antenna 6 includes N transmission antennas 6-1 to 6-N.
When receiving the respective radar signals from the variable gain amplifiers 5-1 to 5-N, the transmitting antennas 6-1 to 6-N radiate short-wave radio waves into space as radar waves.
As the transmission antennas 6-1 to 6-N, a dipole antenna, a monopole antenna, or the like can be used.
 受信アレイアンテナ7は、M(Mは1以上の整数)個の受信アンテナ7-1~7-Mを備えている。
 受信アンテナ7-1~7-Mは、電離層に反射された短波帯の電波を受信し、電波の受信信号を可変利得アンプ8-1~8-Mに出力する。
 受信アンテナ7-1~7-Mとしては、ダイポールアンテナ又はモノポールアンテナなどを用いることができる。
 振幅制御部8は、M個の可変利得アンプ8-1~8-Mを備えている。
 可変利得アンプ8-1~8-Mは、ビーム指向方向設定部25から出力された制御信号Cに従って、受信アンテナ7-1~7-Mから出力されたそれぞれの受信信号の振幅を調整し、振幅調整後のそれぞれの受信信号を移相器9-1~9-Mに出力する。
 位相制御部9は、M個の移相器9-1~9-Mを備えている。
 移相器9-1~9-Mは、ビーム指向方向設定部25から出力された制御信号Cに従って可変利得アンプ8-1~8-Mから出力されたそれぞれの受信信号の位相を調整し、位相調整後のそれぞれの受信信号を合成器10に出力する。
 合成器10は、移相器9-1~9-Mから出力されたM個の受信信号を合成し、合成した受信信号である合成信号を受信器12に出力する。
The receiving array antenna 7 includes M (M is an integer of 1 or more) receiving antennas 7-1 to 7-M.
The receiving antennas 7-1 to 7-M receive the radio waves in the short-wave band reflected on the ionosphere, and output the received signals of the radio waves to the variable gain amplifiers 8-1 to 8-M.
As the receiving antennas 7-1 to 7-M, a dipole antenna or a monopole antenna can be used.
The amplitude control unit 8 includes M variable gain amplifiers 8-1 to 8-M.
Variable gain amplifiers 8-1 ~ 8-M in accordance with a control signal C a, which is output from the beam pointing direction setting unit 25, adjusts the amplitude of each received signal output from the receiving antennas 7-1 ~ 7-M , And outputs the received signals after the amplitude adjustment to the phase shifters 9-1 to 9-M.
The phase control section 9 includes M phase shifters 9-1 to 9-M.
Phase shifter 9-1 ~ 9-M adjusts the phase of each received signal output from the variable gain amplifiers 8-1 ~ 8-M according to the control signal C p which is output from the beam pointing direction setting unit 25 , And outputs the received signals after the phase adjustment to the combiner 10.
The combiner 10 combines the M received signals output from the phase shifters 9-1 to 9-M, and outputs a combined signal, which is the combined received signal, to the receiver 12.
 受信アンテナ11は、電波源1から放射された短波帯の電波の直接波を受信し、直接波の受信信号を受信器12に出力する。
 受信アンテナ11としては、ダイポールアンテナ又はモノポールアンテナなどを用いることができる。
 受信器12は、合成器10から出力された合成信号を復調し、復調後の合成信号をA/D変換器13に出力する。
 また、受信器12は、受信アンテナ11から出力された直接波の受信信号を復調し、復調後の受信信号をA/D変換器13に出力する。
 A/D変換器13は、送信器2から出力されたレーダ信号をアナログ信号からデジタル信号に変換し、デジタル信号を送信データTxとして相関判定部21に出力する。
 また、A/D変換器13は、受信器12から出力された合成信号をアナログ信号からデジタル信号に変換し、デジタル信号を合成データRxとして相関判定部21に出力する。
 さらに、A/D変換器13は、受信器12から出力された受信信号をアナログ信号からデジタル信号に変換し、デジタル信号を受信データRxとして相関判定部21に出力する。
The receiving antenna 11 receives a direct wave of a short wave radio wave radiated from the radio wave source 1 and outputs a received signal of the direct wave to the receiver 12.
As the receiving antenna 11, a dipole antenna, a monopole antenna, or the like can be used.
Receiver 12 demodulates the combined signal output from combiner 10 and outputs the combined signal after demodulation to A / D converter 13.
Further, the receiver 12 demodulates the received signal of the direct wave output from the receiving antenna 11 and outputs the demodulated received signal to the A / D converter 13.
The A / D converter 13 converts the radar signal output from the transmitter 2 from an analog signal to a digital signal, and outputs the digital signal to the correlation determination unit 21 as transmission data Tx.
Further, A / D converter 13, a synthesized signal output from the receiver 12 from an analog signal to a digital signal, and outputs the correlation determination unit 21 the digital signal as the composite data Rx S.
Further, A / D converter 13, a received signal output from the receiver 12 from an analog signal to a digital signal, and outputs the correlation determination unit 21 the digital signal as received data Rx D.
 信号処理装置20は、相関判定部21、高度算出部22、位相速度算出部23、ビーム指向方向算出部24、ビーム指向方向設定部25及び距離速度算出部26を備えている。
 相関判定部21は、例えば、図2に示す相関判定回路31によって実現される。
 相関判定部21は、A/D変換器13から出力された送信データTxと、A/D変換器13から出力された合成データRxとの相関を判定する。
 相関判定部21は、送信データTxと合成データRxとの間に相関があれば、合成データRxを距離速度算出部26に出力する。
 相関判定部21は、送信データTxと合成データRxとの間に相関がなければ、合成データRx及び受信データRxのそれぞれを高度算出部22に出力する。
The signal processing device 20 includes a correlation determination unit 21, an altitude calculation unit 22, a phase speed calculation unit 23, a beam directivity calculation unit 24, a beam directivity direction setting unit 25, and a distance speed calculation unit 26.
The correlation determination unit 21 is realized by, for example, the correlation determination circuit 31 illustrated in FIG.
Correlation determination unit 21 determines a transmission data Tx outputted from the A / D converter 13, the correlation between the composite data Rx S output from the A / D converter 13.
Correlation determination unit 21, if there is a correlation between the transmission data Tx and synthetic data Rx S, and outputs the synthesized data Rx S the distance speed calculation unit 26.
Correlation determination unit 21, if there is no correlation between the transmission data Tx and synthetic data Rx S, outputs a respective combined data Rx S and the received data Rx D altitude calculation unit 22.
 高度算出部22は、例えば、図2に示す高度算出回路32によって実現される。
 高度算出部22は、電波源1から放射された短波帯の電波のうち、電離層に反射されていない直接波の電波の受信時刻と、電離層に反射された電波の受信時刻との時刻差Δtを算出する。
 即ち、高度算出部22は、相関判定部21から出力された受信データRxを時間方向に遅延させながら、当該受信データRxと合成データRxとの間で相関が認められる遅延時間tを探索することで、双方の受信時刻の時刻差Δtを算出する。
 高度算出部22は、時刻差Δtと電波源1の位置とを用いて、電離層の高度hを算出し、電離層の高度hを位相速度算出部23に出力する。
The altitude calculation unit 22 is realized by, for example, the altitude calculation circuit 32 illustrated in FIG.
The altitude calculation unit 22 calculates the time difference Δt between the reception time of the direct wave radio wave not reflected by the ionosphere and the reception time of the radio wave reflected by the ionosphere in the short wave band radio waves radiated from the radio wave source 1. calculate.
That is, the height calculation unit 22, while delaying the received data Rx D output from the correlation determination unit 21 in the time direction, the delay time correlation is observed between the received data Rx D synthetic data Rx S t d , The time difference Δt between both reception times is calculated.
The altitude calculator 22 calculates the altitude h of the ionosphere using the time difference Δt and the position of the radio wave source 1, and outputs the altitude h of the ionosphere to the phase velocity calculator 23.
 位相速度算出部23は、例えば、図2に示す位相速度算出回路33によって実現される。
 位相速度算出部23は、IRI(International Reference Ionosphere)モデルを参照して、高度算出部22から出力された高度hにおける電離層の電子密度edを推定し、電子密度edから高度hにおける短波帯の電波の位相速度vを算出する。
 また、位相速度算出部23は、IRIモデルを参照して、高度hよりも、1つ上の高度(h+1)における電離層の電子密度edh+1を推定し、電子密度edh+1から高度(h+1)における短波帯の電波の位相速度vh+1を算出する。
 高度hよりも1つ上の高度(h+1)は、IRIモデルのモデル分解能において、1つ上の高度である。
 位相速度算出部23は、高度hにおける短波帯の電波の位相速度vと、高度(h+1)における短波帯の電波の位相速度vh+1とから、電離層に対する短波帯の電波の入射角度θを推定する。
 位相速度算出部23は、電波の位相速度v及び入射角度θのそれぞれをビーム指向方向算出部24に出力する。
The phase speed calculation unit 23 is realized by, for example, a phase speed calculation circuit 33 illustrated in FIG.
The phase velocity calculation unit 23 estimates the electron density ed h of the ionosphere at the altitude h output from the altitude calculation unit 22 with reference to an IRI (International Reference Ionosphere) model, and calculates a short wave band at the altitude h from the electron density ed h. to calculate the radio wave phase velocity v h.
The phase velocity calculation unit 23 refers to the IRI model, than height h, in estimating the electron density ed h + 1 of the ionosphere in the upper one altitude (h + 1), advanced from the electron density ed h + 1 (h + 1 ) The phase speed v h + 1 of the short wave radio wave is calculated.
The altitude (h + 1) one level higher than the altitude h is one level higher in the model resolution of the IRI model.
Phase velocity calculation unit 23, and the phase velocity v h of a radio wave short-wave band in altitude h, the height (h + 1) of a radio wave short-wave band in the phase velocity v h + 1 Tokyo, radio waves incident angle theta h of HF band for ionospheric presume.
The phase velocity calculator 23 outputs the phase velocity v h and the incident angle θ h of the radio wave to the beam directivity calculator 24.
 ビーム指向方向算出部24は、例えば、図2に示すビーム指向方向算出回路34によって実現される。
 ビーム指向方向算出部24は、位相速度算出部23から出力された電波の位相速度v及び入射角度θと、地上における短波帯の電波の位相速度vとから、短波帯の電波のビーム指向方向θを算出する。
 ビーム指向方向算出部24は、短波帯の電波のビーム指向方向θをビーム指向方向設定部25に出力する。
The beam pointing direction calculation unit 24 is realized by, for example, a beam pointing direction calculation circuit 34 illustrated in FIG.
The beam directing direction calculation unit 24 calculates a beam of the short wave radio wave from the phase speed v h and the incident angle θ h of the radio wave output from the phase speed calculation unit 23 and the phase speed v 0 of the short wave radio wave on the ground. The pointing direction θ 0 is calculated.
The beam pointing direction calculation unit 24 outputs the beam pointing direction θ 0 of the short wave radio wave to the beam pointing direction setting unit 25.
 ビーム指向方向設定部25は、例えば、図2に示すビーム指向方向設定回路35によって実現される。
 ビーム指向方向設定部25は、送信アンテナ6-1~6-Nから放射される短波帯の電波の方向をビーム指向方向θに設定するため、移相器4-1~4-Nの移相量及び可変利得アンプ5-1~5-Nの利得のそれぞれを制御する。
 また、ビーム指向方向設定部25は、受信アンテナ7-1~7-Nにより受信される短波帯の電波の方向をビーム指向方向θに設定するため、可変利得アンプ8-1~8-Nの利得及び移相器9-1~9-Nの移相量のそれぞれを制御する。
The beam direction setting unit 25 is realized by, for example, a beam direction setting circuit 35 shown in FIG.
Beam pointing direction setting unit 25 for setting the direction of the radio wave of the short-wave band radiated from the transmission antenna 6-1 ~ 6-N in the beam pointing direction theta 0, shift of the phase shifter 4-1 ~ 4-N The phase amount and the gains of the variable gain amplifiers 5-1 to 5-N are controlled.
The beam pointing direction setting unit 25 for setting the direction of the radio wave of the short-wave band, which is received by the receiving antennas 7-1 ~ 7-N in the beam pointing direction theta 0, the variable gain amplifiers 8-1 ~ 8-N And the phase shift amounts of the phase shifters 9-1 to 9-N are controlled.
 距離速度算出部26は、例えば、図2に示す距離速度算出回路36によって実現される。
 距離速度算出部26は、相関判定部21より出力された合成データRxから、目標までの距離L及び目標の速度Vのそれぞれを算出する。
The distance speed calculation unit 26 is realized by, for example, a distance speed calculation circuit 36 illustrated in FIG.
Distance velocity calculation unit 26, the synthesized data Rx S output from the correlation determination unit 21, calculates the respective distances L and the target speed V to the target.
 図1では、信号処理装置20の構成要素である相関判定部21、高度算出部22、位相速度算出部23、ビーム指向方向算出部24、ビーム指向方向設定部25及び距離速度算出部26のそれぞれが、図2に示すような専用のハードウェアで実現されるものを想定している。即ち、信号処理装置20が、相関判定回路31、高度算出回路32、位相速度算出回路33、ビーム指向方向算出回路34、ビーム指向方向設定回路35及び距離速度算出回路36で実現されるものを想定している。
 ここで、相関判定回路31、高度算出回路32、位相速度算出回路33、ビーム指向方向算出回路34、ビーム指向方向設定回路35及び距離速度算出回路36のそれぞれは、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又は、これらを組み合わせたものが該当する。
In FIG. 1, each of a correlation determination unit 21, an altitude calculation unit 22, a phase velocity calculation unit 23, a beam directivity calculation unit 24, a beam directivity setting unit 25, and a distance speed calculation unit 26, which are components of the signal processing device 20, However, it is assumed that the hardware is realized by dedicated hardware as shown in FIG. That is, it is assumed that the signal processing device 20 is realized by the correlation determination circuit 31, the altitude calculation circuit 32, the phase velocity calculation circuit 33, the beam directivity direction calculation circuit 34, the beam directivity direction setting circuit 35, and the distance speed calculation circuit 36. are doing.
Here, each of the correlation determination circuit 31, the altitude calculation circuit 32, the phase speed calculation circuit 33, the beam direction calculation circuit 34, the beam direction setting circuit 35, and the distance speed calculation circuit 36 is, for example, a single circuit, a composite circuit. , A programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof.
 信号処理装置20の構成要素は、専用のハードウェアで実現されるものに限るものではなく、信号処理装置20がソフトウェア、ファームウェア、又は、ソフトウェアとファームウェアとの組み合わせで実現されるものであってもよい。
 ソフトウェア又はファームウェアは、プログラムとして、コンピュータのメモリに格納される。コンピュータは、プログラムを実行するハードウェアを意味し、例えば、CPU(Central Processing Unit)、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、あるいは、DSP(Digital Signal Processor)が該当する。
 図3は、信号処理装置20がソフトウェア又はファームウェアなどで実現される場合のコンピュータのハードウェア構成図である。
 信号処理装置20がソフトウェア又はファームウェアなどで実現される場合、相関判定部21、高度算出部22、位相速度算出部23、ビーム指向方向算出部24、ビーム指向方向設定部25及び距離速度算出部26の処理手順をコンピュータに実行させるためのプログラムがメモリ41に格納される。そして、コンピュータのプロセッサ42がメモリ41に格納されているプログラムを実行する。
 図4は、信号処理装置20がソフトウェア又はファームウェアなどで実現される場合の処理手順を示すフローチャートである。
The components of the signal processing device 20 are not limited to those realized by dedicated hardware. Even if the signal processing device 20 is realized by software, firmware, or a combination of software and firmware, Good.
Software or firmware is stored as a program in the memory of the computer. The computer means hardware for executing a program, for example, a CPU (Central Processing Unit), a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, a processor, or a DSP (Digital Signal Processor). I do.
FIG. 3 is a hardware configuration diagram of a computer when the signal processing device 20 is realized by software or firmware.
When the signal processing device 20 is realized by software or firmware, the correlation determination unit 21, the altitude calculation unit 22, the phase velocity calculation unit 23, the beam direction calculation unit 24, the beam direction setting unit 25, and the distance speed calculation unit 26 A program for causing a computer to execute the processing procedure is stored in the memory 41. Then, the processor 42 of the computer executes the program stored in the memory 41.
FIG. 4 is a flowchart illustrating a processing procedure when the signal processing device 20 is realized by software or firmware.
 また、図2では、信号処理装置20の構成要素のそれぞれが専用のハードウェアで実現される例を示し、図3では、信号処理装置20がソフトウェア又はファームウェアなどで実現される例を示しているが、信号処理装置20における一部の構成要素が専用のハードウェアで実現され、残りの構成要素がソフトウェア又はファームウェアなどで実現されるものであってもよい。 FIG. 2 shows an example in which each of the components of the signal processing device 20 is realized by dedicated hardware, and FIG. 3 shows an example in which the signal processing device 20 is realized by software or firmware. However, some components of the signal processing device 20 may be realized by dedicated hardware, and the remaining components may be realized by software or firmware.
 図5は、実施の形態1によるレーダ装置の相関判定部21を示す構成図である。
 図5において、相関処理部21aは、A/D変換器13から出力された送信データTx、合成データRx及び受信データRxのそれぞれを取得する。
 相関処理部21aは、送信データTxと合成データRxとの相関処理を実施し、相関処理結果を相関判定処理部21bに出力する。
 相関処理部21aは、送信データTx、合成データRx及び受信データRxのそれぞれを相関判定処理部21bに出力する。
 相関判定処理部21bは、相関処理部21aから出力された相関処理結果が、送信データTxと合成データRxが相関している旨を示していれば、合成データRxを距離速度算出部26に出力する。
 相関判定処理部21bは、相関処理部21aから出力された相関処理結果が、送信データTxと合成データRxが相関していない旨を示していれば、合成データRx及び受信データRxのそれぞれを高度算出部22に出力する。
FIG. 5 is a configuration diagram illustrating the correlation determination unit 21 of the radar device according to the first embodiment.
5, the correlation processing section 21a sends data Tx outputted from the A / D converter 13, and acquires the respective combined data Rx S and the received data Rx D.
Correlation processing section 21a is performed a correlation processing between the transmission data Tx and synthetic data Rx S, and outputs the correlation processing result to the correlation determination unit 21b.
Correlation processing section 21a outputs the respective transmission data Tx, combined data Rx S and the received data Rx D to the correlation determination unit 21b.
Correlation determination processing section 21b, correlation processing result output from the correlation processing unit 21a is, if indicates that the transmission data Tx and synthetic data Rx S are correlated, combined data Rx S distance speed calculating section 26 Output to
Correlation determination processing section 21b, the correlation processing result output from the correlation processing unit 21a is, if indicates that the transmission data Tx and synthetic data Rx S is not correlated, the combined data Rx S and the received data Rx D Each is output to the altitude calculation unit 22.
 図6は、実施の形態1によるレーダ装置の高度算出部22を示す構成図である。
 図6において、相関処理部22aは、相関判定部21から出力された受信データRxを時間方向に遅延させながら、当該受信データRxと合成データRxとの相関処理を実施し、相関処理結果を時刻差算出部22bに出力する。
 時刻差算出部22bは、相関処理部22aから出力された相関処理結果が、受信データRxと合成データRxが相関している旨を示す受信データRxの遅延時間tを探索する。
 時刻差算出部22bは、電離層に反射されていない直接波の電波の受信時刻と、電離層に反射された電波の受信時刻との時刻差Δtとして、遅延時間tを距離算出部22cに出力する。
FIG. 6 is a configuration diagram illustrating the altitude calculation unit 22 of the radar device according to the first embodiment.
6, the correlation processing section 22a, while delaying the received data Rx D output from the correlation determination unit 21 in the time direction, carried out correlation processing with the received data Rx D synthetic data Rx S, correlation The result is output to the time difference calculator 22b.
Time difference calculating unit 22b, correlation processing result output from the correlation processing unit 22a is, the received data Rx D synthetic data Rx S to search the delay time t d of the received data Rx D indicating that are correlated.
Time difference calculating unit 22b, a direct wave signal reception time of which is not reflected in the ionosphere, as a time difference Δt between the signal reception time, which is reflected in the ionosphere, and outputs the delay time t d to the distance calculation unit 22c .
 距離算出部22cは、時刻差算出部22bより出力された遅延時間tから、受信アレイアンテナ7での受信距離と直線距離Rdとの差の距離drを算出し、距離drを反射高度算出部22dに出力する。
 反射高度算出部22dは、電波源1の位置として、図1に示すレーダ装置と電波源1との間の直線距離Rdを保持している。
 反射高度算出部22dは、直線距離Rdと、距離算出部22cから出力された距離drとを用いて、電離層の高度hを算出し、電離層の高度hを位相速度算出部23に出力する。
Distance calculating unit 22c, the delay from the time t d that is output from the time difference calculating section 22b, the receiving array calculates the distance dr of the difference between the reception distance and linear distance Rd at the antenna 7, altitude calculating unit reflecting the distance dr Output to 22d.
The reflection altitude calculation unit 22d holds, as the position of the radio wave source 1, the linear distance Rd between the radar device and the radio wave source 1 shown in FIG.
The reflection altitude calculation unit 22d calculates the altitude h of the ionosphere using the linear distance Rd and the distance dr output from the distance calculation unit 22c, and outputs the altitude h of the ionosphere to the phase velocity calculation unit 23.
 次に、図1に示すレーダ装置の動作について説明する。
 図1に示すレーダ装置からの直線距離Rdが既知である電波源1が複数存在しており、複数の電波源1からそれぞれ放射される短波帯の電波の周波数fが、レーダ装置において既知であるものとする。
 図1に示すレーダ装置では、例えば、レーダ装置からの直線距離が100km付近の目標を検出する場合、レーダ装置からの直線距離Rdが約100kmの電波源1から放射される電波を利用して、ビーム指向方向を設定する。
 また、図1に示すレーダ装置では、例えば、レーダ装置からの直線距離が200km付近の目標を検出する場合、レーダ装置からの直線距離Rdが約200kmの電波源1から放射される電波を利用して、ビーム指向方向を設定する。
Next, the operation of the radar device shown in FIG. 1 will be described.
There are a plurality of radio sources 1 whose linear distance Rd from the radar device shown in FIG. 1 is known, and the frequency f of the short-wave radio waves radiated from each of the plurality of radio sources 1 is known in the radar device. Shall be.
In the radar device shown in FIG. 1, for example, when detecting a target whose linear distance from the radar device is around 100 km, using a radio wave radiated from the radio source 1 having a linear distance Rd from the radar device of about 100 km, Set the beam direction.
In the radar device shown in FIG. 1, for example, when detecting a target whose linear distance from the radar device is around 200 km, radio waves radiated from the radio wave source 1 having a linear distance Rd from the radar device of about 200 km are used. To set the beam direction.
 受信アンテナ11は、電波源1から放射される短波帯の電波の直接波(電離層に反射されていない電波)を受信できるように、ビーム指向方向が概ね水平方向(仰角が約0度の方向)に設定されている。
 受信アンテナ7-1~7-Mは、電波源1から放射されたのち、電離層に反射された短波帯の電波を受信できるように、ビーム指向方向が概ね垂直方向(仰角が約90度の方向)に設定されている。
The receiving antenna 11 has a substantially horizontal beam direction (a direction at an elevation angle of about 0 degrees) so that a direct wave of a short-wave band radio wave radiated from the radio wave source 1 (a radio wave not reflected by the ionosphere) can be received. Is set to
The receiving antennas 7-1 to 7-M have a substantially vertical beam direction (a direction having an elevation angle of about 90 degrees) so as to be able to receive shortwave radio waves reflected from the ionosphere after being radiated from the radio wave source 1. ) Is set to
 ここでは、説明の便宜上、図1に示すレーダ装置が、レーダ装置からの直線距離が100km付近の目標を検出するものとする。
 受信器12は、受信アンテナ11が複数の電波源1から放射された電波の直接波を受信すると、複数の直接波の中から、直線距離Rdが約100kmの電波源1から放射された電波の直接波を抽出する。
 受信器12には、複数の電波源1からそれぞれ放射される電波の周波数fが登録されているため、受信器12は、複数の直接波の中から、直線距離Rdが約100kmの電波源1から放射された電波の直接波を抽出することができる。
 受信器12は、直線距離Rdが約100kmの電波源1から放射される電波の直接波を抽出すると、抽出した直接波の受信信号を復調し、復調後の受信信号をA/D変換器13に出力する。
 A/D変換器13は、受信器12から受信信号を受けると、受信信号をアナログ信号からデジタル信号に変換し、デジタル信号を受信データRxとして相関判定部21に出力する。
Here, for convenience of explanation, it is assumed that the radar device shown in FIG. 1 detects a target whose linear distance from the radar device is around 100 km.
When the receiving antenna 11 receives the direct wave of the radio wave radiated from the plurality of radio sources 1, the receiver 12 selects the radio wave radiated from the radio source 1 having a linear distance Rd of about 100 km from the plurality of direct waves. Extract the waves directly.
Since the frequency f of the radio wave radiated from each of the plurality of radio sources 1 is registered in the receiver 12, the receiver 12 selects the radio source 1 having a linear distance Rd of about 100 km from the plurality of direct waves. Can extract the direct wave of the radio wave radiated from.
When the receiver 12 extracts a direct wave of a radio wave radiated from the radio source 1 having a linear distance Rd of about 100 km, the receiver 12 demodulates the received signal of the extracted direct wave, and converts the demodulated received signal into an A / D converter 13. Output to
A / D converter 13 receives the received signal from the receiver 12, the received signal is converted from an analog signal to a digital signal, and outputs the correlation determination unit 21 the digital signal as received data Rx D.
 受信アンテナ7-1~7-Mは、電波源1から放射されたのち、電離層に反射された短波帯の電波を受信する。
 可変利得アンプ8-1~8-Mは、受信アンテナ7-1~7-Mが電離層に反射された短波帯の電波を受信すると、それぞれの電波の受信信号の振幅を調整し、振幅調整後のそれぞれの受信信号を移相器9-1~9-Mに出力する。
 移相器9-1~9-Mは、可変利得アンプ8-1~8-Mからそれぞれの受信信号を受けると、それぞれの受信信号の位相を調整し、位相調整後のそれぞれの受信信号を合成器10に出力する。
 合成器10は、移相器9-1~9-Mからそれぞれの受信信号を受けると、それぞれの受信信号の中から、直線距離Rdが約100kmの電波源1から放射された電波の受信信号を抽出する。
 合成器10には、複数の電波源1からそれぞれ放射される電波の周波数fが登録されているため、合成器10は、受信信号の中から、直線距離Rdが約100kmの電波源1から放射された電波の受信信号を抽出することができる。
 合成器10は、抽出したM個の受信信号を合成し、合成した受信信号である合成信号を受信器12に出力する。
 受信器12は、合成器10から合成信号を受けると、合成信号を復調し、復調後の合成信号をA/D変換器13に出力する。
 A/D変換器13は、受信器12から合成信号を受けると、合成信号をアナログ信号からデジタル信号に変換し、デジタル信号を合成データRxとして相関判定部21に出力する
The receiving antennas 7-1 to 7-M receive the short-wave radio waves emitted from the radio wave source 1 and reflected by the ionosphere.
When the receiving antennas 7-1 to 7-M receive the radio waves in the short wave band reflected on the ionosphere, the variable gain amplifiers 8-1 to 8-M adjust the amplitude of the reception signals of the respective radio waves, and Are output to the phase shifters 9-1 to 9-M.
Upon receiving the respective received signals from the variable gain amplifiers 8-1 to 8-M, the phase shifters 9-1 to 9-M adjust the phases of the respective received signals and convert the respective received signals after the phase adjustment. Output to the synthesizer 10.
Upon receiving the received signals from the phase shifters 9-1 to 9-M, the combiner 10 receives the received signals of the radio waves radiated from the radio source 1 having a linear distance Rd of about 100 km from the received signals. Is extracted.
Since the frequency f of the radio wave radiated from each of the plurality of radio sources 1 is registered in the synthesizer 10, the synthesizer 10 radiates from the radio source 1 having a linear distance Rd of about 100 km from the received signal. It is possible to extract the received signal of the transmitted radio wave.
The combiner 10 combines the extracted M received signals and outputs a combined signal, which is the combined received signal, to the receiver 12.
When receiving the combined signal from combiner 10, receiver 12 demodulates the combined signal and outputs the combined signal after demodulation to A / D converter 13.
A / D converter 13 receives the composite signal from the receiver 12, the combined signal is converted from an analog signal to a digital signal, and outputs the correlation determination unit 21 the digital signal as the synthesized data Rx S
 送信器2は、レーダ信号を生成し、レーダ信号を分配器3及びA/D変換器13のそれぞれに出力する。
 A/D変換器13は、送信器2からレーダ信号を受けると、レーダ信号をアナログ信号からデジタル信号に変換し、デジタル信号を送信データTxとして相関判定部21に出力する。
 ここでは、送信器2が、レーダ信号を分配器3及びA/D変換器13のそれぞれに出力している。しかし、現段階では、ビーム指向方向設定部25が、ビーム指向方向θを設定していないため、ビーム指向方向設定部25が、ビーム指向方向θを設定するまでの間、送信器2が、レーダ信号を出力しないようにしてもよい。
The transmitter 2 generates a radar signal and outputs the radar signal to each of the distributor 3 and the A / D converter 13.
Upon receiving the radar signal from the transmitter 2, the A / D converter 13 converts the radar signal from an analog signal to a digital signal, and outputs the digital signal to the correlation determination unit 21 as transmission data Tx.
Here, the transmitter 2 outputs a radar signal to each of the distributor 3 and the A / D converter 13. However, in this stage, the beam directivity direction setting unit 25, since no setting the beam pointing direction theta 0, beam pointing direction setting unit 25, until the setting of the beam pointing direction theta 0, the transmitter 2 , The radar signal may not be output.
 相関判定部21の相関処理部21aは、A/D変換器13から送信データTxを受けると、送信データTxと、A/D変換器13から出力された合成データRxとの相関処理を実施し、相関処理結果を相関判定処理部21bに出力する(図4のステップST1)。
 送信データTxと合成データRxとの相関処理自体は、公知の技術であるため詳細な説明を省略する。
 また、相関処理部21aは、送信データTx、合成データRx及び受信データRxのそれぞれを相関判定処理部21bに出力する。
 相関処理部21aは、A/D変換器13から送信データTxを受けていなければ、相関処理を実施していない旨を相関判定処理部21bに通知する。
 また、相関処理部21aは、合成データRx及び受信データRxのそれぞれを相関判定処理部21bに出力する。
Correlation processing section 21a of the correlation determination unit 21, carried receives the transmission data Tx from the A / D converter 13, a transmission data Tx, the correlation between the composite data Rx S output from the A / D converter 13 Then, the correlation processing result is output to the correlation determination processing section 21b (step ST1 in FIG. 4).
Correlation itself between the transmission data Tx and synthetic data Rx S is a detailed description thereof will be omitted since it is well known in the art.
Moreover, the correlation processing section 21a outputs the respective transmission data Tx, combined data Rx S and the received data Rx D to the correlation determination unit 21b.
If the correlation processing unit 21a has not received the transmission data Tx from the A / D converter 13, the correlation processing unit 21a notifies the correlation determination processing unit 21b that the correlation processing has not been performed.
Moreover, the correlation processing section 21a outputs the respective combined data Rx S and the received data Rx D to the correlation determination unit 21b.
 相関判定処理部21bは、相関処理部21aから出力された相関処理結果が、送信データTxと合成データRxが相関している旨を示していれば(図4のステップST2:YESの場合)、合成データRxを距離速度算出部26に出力する。
 相関判定処理部21bは、相関処理部21aから出力された相関処理結果が、送信データTxと合成データRxが相関していない旨を示していれば(図4のステップST2:NOの場合)、合成データRx及び受信データRxのそれぞれを高度算出部22に出力する。
 また、相関判定処理部21bは、相関処理部21aから相関処理を実施していない旨の通知を受けていれば、合成データRx及び受信データRxのそれぞれを高度算出部22に出力する。
Correlation determination processing section 21b, correlation processing result output from the correlation processing unit 21a is, if indicates that the transmission data Tx and synthetic data Rx S are correlated (step of FIG. 4 ST2: in the case of YES) , and outputs the synthesized data Rx S the distance speed calculation unit 26.
Correlation determination processing section 21b, correlation processing result output from the correlation processing unit 21a is, if indicates that the transmission data Tx and synthetic data Rx S is not correlated (step of FIG. 4 ST2: in the case of NO) , and outputs a respective combined data Rx S and the received data Rx D altitude calculation unit 22.
Moreover, the correlation determination processing unit 21b, if receiving the notification that no implementing correlation processing from the correlation processing unit 21a, and outputs the respective combined data Rx S and the received data Rx D altitude calculation unit 22.
 高度算出部22の相関処理部22aは、相関判定処理部21bから合成データRx及び受信データRxのそれぞれを受けると、受信データRxを時間方向に遅延させながら、当該受信データRxと合成データRxとの相関処理を実施する(図4のステップST3)。
 受信データRxと合成データRxとの相関処理自体は、公知の技術であるため詳細な説明を省略する。
 相関処理部22aは、それぞれの遅延時間tでの相関処理結果を時刻差算出部22bに出力する。
Correlation processing section 22a of the height calculation unit 22 receives the respective combined data Rx S and the received data Rx D from the correlation determination unit 21b, while delaying the received data Rx D in the time direction, and the received data Rx D implementing the correlation between the synthesized data Rx S (step ST3 in FIG. 4).
Correlation itself between the received data Rx D synthetic data Rx S is a detailed description thereof will be omitted since it is well known in the art.
Correlation processing section 22a outputs the result of a correlation process in each of the delay time t d to the time difference calculating section 22b.
 時刻差算出部22bは、相関処理部22aからそれぞれの遅延時間tでの相関処理結果を受けると、それぞれの遅延時間tでの相関処理結果を参照して、受信データRxと合成データRxが相関している遅延時間tを探索する(図4のステップST4)。
 時刻差算出部22bは、電離層に反射されていない直接波の電波の受信時刻と、電離層に反射された電波の受信時刻との時刻差Δtとして、遅延時間tを距離算出部22cに出力する。
Time difference calculating section 22b receives the result of a correlation process in each of the delay time from the correlation processing unit 22a t d, with reference to the result of a correlation process in each of the delay time t d, the received data Rx D synthetic data rx S to search the delay time t d are correlated (step ST4 in FIG. 4).
Time difference calculating unit 22b, a direct wave signal reception time of which is not reflected in the ionosphere, as a time difference Δt between the signal reception time, which is reflected in the ionosphere, and outputs the delay time t d to the distance calculation unit 22c .
 距離算出部22cは、時刻差算出部22bから遅延時間tを受けると、以下の式(1)に示すように、遅延時間tから、受信アレイアンテナ7での受信距離と直線距離Rdとの差の距離drを算出する(図4のステップST5)。
Figure JPOXMLDOC01-appb-I000002
 式(1)において、cは、電波の伝搬速度である。
 距離算出部22cは、距離drを反射高度算出部22dに出力する。
Distance calculating unit 22c receives the delay time t d from the time difference calculating portion 22b, as shown in the following equation (1), from the delay time t d, the receiving distance and linear distance Rd of the receiving array antennas 7 Is calculated (step ST5 in FIG. 4).
Figure JPOXMLDOC01-appb-I000002
In the equation (1), c is the propagation speed of the radio wave.
The distance calculation unit 22c outputs the distance dr to the reflection height calculation unit 22d.
 反射高度算出部22dは、以下の式(2)に示すように、レーダ装置と電波源1との間の直線距離Rdと、距離算出部22cから出力された距離drとを用いて、電離層の高度hを算出し、電離層の高度hを位相速度算出部23に出力する(図4のステップST6)。
Figure JPOXMLDOC01-appb-I000003
The reflection altitude calculation unit 22d uses the linear distance Rd between the radar device and the radio wave source 1 and the distance dr output from the distance calculation unit 22c to calculate the ionosphere as shown in the following equation (2). The altitude h is calculated, and the altitude h of the ionosphere is output to the phase velocity calculator 23 (step ST6 in FIG. 4).
Figure JPOXMLDOC01-appb-I000003
 位相速度算出部23は、反射高度算出部22dから電離層の高度hを受けると、例えば、IRIモデルを参照して、高度hにおける電離層の電子密度edを推定する。IRIモデルは、高度hと電子密度edの対応関係を示すデータベースである。IRIモデルは、位相速度算出部23が保持していてもよいし、レーダ装置の外部の装置が保持していてもよい。
 位相速度算出部23は、電子密度edを推定すると、以下の式(3)に示すように、電子密度edから高度hにおける短波帯の電波の位相速度vを算出する(図4のステップST7)。
Figure JPOXMLDOC01-appb-I000004
 式(3)において、ωは、電離層の電子密度edによって決まるプラズマ振動数、kは、波数である。
Upon receiving the ionospheric altitude h from the reflection altitude calculating unit 22d, the phase velocity calculating unit 23 estimates the electron density ed h of the ionosphere at the altitude h with reference to, for example, an IRI model. The IRI model is a database showing the correspondence between altitude h and electron density ed h . The IRI model may be held by the phase velocity calculator 23 or may be held by a device external to the radar device.
After estimating the electron density ed h , the phase velocity calculating unit 23 calculates the phase velocity v h of the short wave radio wave at the altitude h from the electron density ed h as shown in the following equation (3) (see FIG. 4). Step ST7).
Figure JPOXMLDOC01-appb-I000004
In Expression (3), ω is a plasma frequency determined by the electron density ed h of the ionosphere, and k is a wave number.
 位相速度算出部23は、例えば、IRIモデルを参照して、高度hよりも、1つ上の高度(h+1)における電離層の電子密度edh+1を推定し、電子密度edh+1から高度(h+1)における短波帯の電波の位相速度vh+1を算出する。
 高度hよりも1つ上の高度(h+1)は、IRIモデルのモデル分解能において、1つ上の高度である。
 位相速度算出部23は、高度hにおける短波帯の電波の位相速度vと、高度(h+1)における短波帯の電波の位相速度vh+1とから、電離層に対する短波帯の電波の入射角度θを推定する。
 即ち、位相速度算出部23は、位相速度v及び位相速度vh+1を以下の式(4)に代入し、式(4)が成立する電波の入射角度θを探索する。
Figure JPOXMLDOC01-appb-I000005
 短波帯の電波は、式(4)が成立する入射角度θであるときに電離層によって反射される。
 位相速度算出部23は、電波の位相速度v及び入射角度θのそれぞれをビーム指向方向算出部24に出力する。
Phase velocity calculation unit 23, for example, with reference to the IRI model, than height h, in estimating the electron density ed h + 1 of the ionosphere in the upper one altitude (h + 1), advanced from the electron density ed h + 1 (h + 1 ) The phase speed v h + 1 of the short wave radio wave is calculated.
The altitude (h + 1) one level higher than the altitude h is one level higher in the model resolution of the IRI model.
Phase velocity calculation unit 23, and the phase velocity v h of a radio wave short-wave band in altitude h, the height (h + 1) of a radio wave short-wave band in the phase velocity v h + 1 Tokyo, radio waves incident angle theta h of HF band for ionospheric presume.
That is, the phase velocity calculation unit 23, the phase velocity v h and phase velocity v h + 1 is substituted into the following equation (4), to search the incident angle theta h of a radio wave equation (4) is satisfied.
Figure JPOXMLDOC01-appb-I000005
Radio wave short-wave band is reflected by the ionosphere when Equation (4) is the incident angle theta h which satisfies.
The phase velocity calculator 23 outputs the phase velocity v h and the incident angle θ h of the radio wave to the beam directivity calculator 24.
 ビーム指向方向算出部24は、以下の式(5)に示すように、位相速度算出部23から出力された位相速度v及び入射角度θと、地上における短波帯の電波の位相速度vとから、短波帯の電波のビーム指向方向θを算出する(図4のステップST8)。
 地上における短波帯の電波の位相速度vは、既知である。ここでの地上は、受信アンテナ7-1~7-Mが設置されている高度に対応する。
Figure JPOXMLDOC01-appb-I000006
 式(5)において、θは、送信アンテナ6-1~6-Nから放射される短波帯の電波のビーム幅である。
 ビーム指向方向算出部24は、短波帯の電波のビーム指向方向θをビーム指向方向設定部25に出力する。
As shown in the following equation (5), the beam pointing direction calculation unit 24 calculates the phase velocity v h and the incident angle θ h output from the phase velocity calculation unit 23 and the phase velocity v 0 of the short wave radio wave on the ground. Then, the beam directing direction θ 0 of the short wave radio wave is calculated (step ST8 in FIG. 4).
The phase velocity v 0 radio waves of short wave band in the ground are known. Here, the ground corresponds to the altitude at which the receiving antennas 7-1 to 7-M are installed.
Figure JPOXMLDOC01-appb-I000006
In Equation (5), θ w is the beam width of the short-wave radio wave radiated from the transmitting antennas 6-1 to 6-N.
The beam pointing direction calculation unit 24 outputs the beam pointing direction θ 0 of the short wave radio wave to the beam pointing direction setting unit 25.
 ビーム指向方向設定部25は、送信アンテナ6-1~6-Nから放射される短波帯の電波の方向をビーム指向方向θに設定するため、移相器4-1~4-Nの移相量及び可変利得アンプ5-1~5-Nの利得のそれぞれを制御する(図4のステップST9)。
 また、ビーム指向方向設定部25は、受信アンテナ7-1~7-Nにより受信される短波帯の電波の方向をビーム指向方向θに設定するため、可変利得アンプ8-1~8-Nの利得及び移相器9-1~9-Nの移相量のそれぞれを制御する(図4のステップST9)。
 即ち、ビーム指向方向設定部25は、電波の方向をビーム指向方向θに設定するためのレーダ信号の振幅及び位相を算出する。
 そして、ビーム指向方向設定部25は、当該振幅を示す制御信号Cを可変利得アンプ5-1~5-N及び可変利得アンプ8-1~8-Nのそれぞれに出力する。
 また、ビーム指向方向設定部25は、当該位相を示す制御信号Cを移相器4-1~4-N及び移相器9-1~9-Nのそれぞれに出力する。
 ビーム指向方向θに対応する振幅及び位相の算出処理自体は、公知の技術であるため詳細な説明を省略する。
Beam pointing direction setting unit 25 for setting the direction of the radio wave of the short-wave band radiated from the transmission antenna 6-1 ~ 6-N in the beam pointing direction theta 0, shift of the phase shifter 4-1 ~ 4-N The phase amount and the gains of the variable gain amplifiers 5-1 to 5-N are controlled (step ST9 in FIG. 4).
The beam pointing direction setting unit 25 for setting the direction of the radio wave of the short-wave band, which is received by the receiving antennas 7-1 ~ 7-N in the beam pointing direction theta 0, the variable gain amplifiers 8-1 ~ 8-N And the phase shift amounts of the phase shifters 9-1 to 9-N are controlled (step ST9 in FIG. 4).
That is, the beam directivity direction setting unit 25 calculates the amplitude and phase of the radar signal for setting the direction of the radio beam pointing direction theta 0.
Then, the beam directivity direction setting unit 25 outputs a control signal C a indicating the amplitude in each of the variable gain amplifier 5-1 ~ 5-N and the variable gain amplifier 8-1 ~ 8-N.
The beam pointing direction setting unit 25 outputs a control signal C p indicating the phase on each of the phase shifter 4-1 ~ 4-N and the phase shifter 9-1 ~ 9-N.
The process of calculating the amplitude and phase corresponding to the beam directing direction θ 0 itself is a known technique, and a detailed description thereof will be omitted.
 分配器3は、送信器2からレーダ信号を受けると、レーダ信号をN個に分配し、分配後のそれぞれのレーダ信号を移相器4-1~4-Nに出力する。
 移相器4-1~4-Nは、ビーム指向方向設定部25から出力された制御信号Cに従って分配器3から出力されたそれぞれのレーダ信号の位相を調整し、位相調整後のそれぞれのレーダ信号を可変利得アンプ5-1~5-Nに出力する。
 可変利得アンプ5-1~5-Nは、ビーム指向方向設定部25から出力された制御信号Cに従って、移相器4-1~4-Nから出力されたそれぞれのレーダ信号の振幅を調整し、振幅調整後のそれぞれのレーダ信号を送信アンテナ6-1~6-Nに出力する。
Upon receiving the radar signal from transmitter 2, distributor 3 divides the radar signal into N signals, and outputs the divided radar signals to phase shifters 4-1 to 4-N.
Phase shifter 4-1 ~ 4-N adjusts the phase of each radar signals output from the distributor 3 in accordance with the control signal C p which is output from the beam pointing direction setting unit 25, after the phase adjustment of the respective The radar signal is output to variable gain amplifiers 5-1 to 5-N.
Variable gain amplifier 5-1 ~ 5-N in accordance with a control signal C a, which is output from the beam pointing direction setting unit 25, adjusts the amplitude of each of the radar signals output from the phase shifter 4-1 ~ 4-N Then, the respective radar signals after the amplitude adjustment are output to the transmitting antennas 6-1 to 6-N.
 送信アンテナ6-1~6-Nは、可変利得アンプ5-1~5-Nからそれぞれのレーダ信号を受けると、レーダ波として、短波帯の電波を空間に放射する。
 送信アンテナ6-1~6-Nから放射される電波のビーム指向方向θは、レーダ装置からの直線距離Rdが約100kmの電波源1から放射される電波を利用して設定されているため、直線距離が100km付近の目標に電波を照射することが可能である。
When receiving the respective radar signals from the variable gain amplifiers 5-1 to 5-N, the transmitting antennas 6-1 to 6-N radiate short-wave radio waves into space as radar waves.
The beam pointing direction θ 0 of the radio waves radiated from the transmitting antennas 6-1 to 6-N is set by using the radio waves radiated from the radio source 1 having a linear distance Rd from the radar device of about 100 km. It is possible to irradiate a target with a linear distance of around 100 km with a radio wave.
 受信アンテナ7-1~7-Mは、送信アンテナ6-1~6-Nから放射されたのち、目標に反射されて戻ってきた短波帯の電波を受信し、電波の受信信号を可変利得アンプ8-1~8-Mに出力する。
 受信アンテナ7-1~7-Mにより受信される電波のビーム指向方向θは、レーダ装置からの直線距離Rdが約100kmの電波源1から放射される電波を利用して設定されているため、直線距離が100km付近の目標に反射された電波を受信することが可能である。
 なお、ビーム指向方向算出部24により算出されているビーム指向方向θは、仰角方向であり、方位角方向ではない。
 したがって、送信アンテナ6-1~6-Nから放射される電波の方位角方向は、事前に設定されている方向であってもよいし、0~360度の範囲で回転するものであってもよい。
 また、受信アンテナ7-1~7-Mにより受信される電波の方位角方向は、事前に設定されている方向であってもよいし、0~360度の範囲で回転するものであってもよい。
 ただし、送信アンテナ6-1~6-Nについての電波の方位角方向と、受信アンテナ7-1~7-Mについての電波の方位角方向との間で同期がとれている必要がある。
The receiving antennas 7-1 to 7-M receive the short-wave radio waves radiated from the transmitting antennas 6-1 to 6-N and then reflected back to the target, and convert the received radio wave signals into variable gain amplifiers. 8-1 to 8-M.
The beam pointing direction θ 0 of radio waves received by the receiving antennas 7-1 to 7-M is set using radio waves radiated from the radio source 1 having a linear distance Rd from the radar device of about 100 km. It is possible to receive a radio wave reflected by a target whose linear distance is around 100 km.
Note that the beam pointing direction θ 0 calculated by the beam pointing direction calculation unit 24 is an elevation angle direction, not an azimuth angle direction.
Therefore, the azimuth direction of the radio wave radiated from the transmitting antennas 6-1 to 6-N may be a direction set in advance, or may rotate in the range of 0 to 360 degrees. Good.
Further, the azimuth direction of the radio waves received by the receiving antennas 7-1 to 7-M may be a direction set in advance, or may rotate in the range of 0 to 360 degrees. Good.
However, it is necessary that the azimuth direction of the radio wave for the transmitting antennas 6-1 to 6-N and the azimuth direction of the radio wave for the receiving antennas 7-1 to 7-M be synchronized.
 可変利得アンプ8-1~8-Mは、ビーム指向方向設定部25から出力された制御信号Cに従って、受信アンテナ7-1~7-Mから出力されたそれぞれの受信信号の振幅を調整し、振幅調整後のそれぞれの受信信号を移相器9-1~9-Mに出力する。
 移相器9-1~9-Mは、ビーム指向方向設定部25から出力された制御信号Cに従って可変利得アンプ8-1~8-Mから出力されたそれぞれの受信信号の位相を調整し、位相調整後のそれぞれの受信信号を合成器10に出力する。
Variable gain amplifiers 8-1 ~ 8-M in accordance with a control signal C a, which is output from the beam pointing direction setting unit 25, adjusts the amplitude of each received signal output from the receiving antennas 7-1 ~ 7-M , And outputs the received signals after the amplitude adjustment to the phase shifters 9-1 to 9-M.
Phase shifter 9-1 ~ 9-M adjusts the phase of each received signal output from the variable gain amplifiers 8-1 ~ 8-M according to the control signal C p which is output from the beam pointing direction setting unit 25 , And outputs the received signals after the phase adjustment to the combiner 10.
 合成器10は、移相器9-1~9-Mからそれぞれの受信信号を受けると、M個の受信信号を合成し、合成した受信信号である合成信号を受信器12に出力する。
 受信器12は、合成器10から合成信号を受けると、合成信号を復調し、復調後の合成信号をA/D変換器13に出力する。
 A/D変換器13は、受信器12から合成信号を受けると、合成信号をアナログ信号からデジタル信号に変換し、デジタル信号を合成データRxとして相関判定部21に出力する
Upon receiving the respective received signals from the phase shifters 9-1 to 9-M, the combiner 10 combines the M received signals and outputs a combined signal, which is the combined received signal, to the receiver 12.
When receiving the combined signal from combiner 10, receiver 12 demodulates the combined signal and outputs the combined signal after demodulation to A / D converter 13.
A / D converter 13 receives the composite signal from the receiver 12, the combined signal is converted from an analog signal to a digital signal, and outputs the correlation determination unit 21 the digital signal as the synthesized data Rx S
 相関判定部21の相関処理部21aは、A/D変換器13から出力された送信データTxと、A/D変換器13から出力された合成データRxとの相関処理を実施し、相関処理結果を相関判定処理部21bに出力する(図4のステップST1)。
 また、相関処理部21aは、送信データTx、合成データRx及び受信データRxのそれぞれを相関判定処理部21bに出力する。
Correlation processing section 21a of the correlation determination unit 21, a transmission data Tx outputted from the A / D converter 13, a correlation between the composite data Rx S output from the A / D converter 13 performing the correlation process The result is output to the correlation determination processing unit 21b (step ST1 in FIG. 4).
Moreover, the correlation processing section 21a outputs the respective transmission data Tx, combined data Rx S and the received data Rx D to the correlation determination unit 21b.
 相関判定処理部21bは、相関処理部21aから出力された相関処理結果が、送信データTxと合成データRxが相関している旨を示していれば(図4のステップST2:YESの場合)、合成データRxを距離速度算出部26に出力する。
 ここでは、受信アンテナ7-1~7-Mが、送信アンテナ6-1~6-Nから放射されたのち、目標に反射されて戻ってきた短波帯の電波を受信しているため、送信データTxと合成データRxは相関している。
Correlation determination processing section 21b, correlation processing result output from the correlation processing unit 21a is, if indicates that the transmission data Tx and synthetic data Rx S are correlated (step of FIG. 4 ST2: in the case of YES) , and outputs the synthesized data Rx S the distance speed calculation unit 26.
Here, since the receiving antennas 7-1 to 7-M are receiving shortwave radio waves that have been radiated from the transmitting antennas 6-1 to 6-N and then reflected back to the target, the transmission data Tx synthetic data Rx S are correlated.
 距離速度算出部26は、相関判定部21から合成データRxを受けると、合成データRxから、目標までの距離L及び目標の速度Vのそれぞれを算出する(図4のステップST10)。
 合成データRxから、目標までの距離L及び目標の速度Vを算出する処理自体は、公知の技術であるため詳細な説明を省略する。
Distance velocity calculation unit 26 calculates the receiving the synthetic data Rx S from the correlation determination unit 21, the combined data Rx S, the respective distances L and the target speed V to the target (step ST10 in FIG. 4).
Process itself of calculating the combined data Rx S, the distance L and the target velocity V to the target, the detailed description thereof is omitted because it is known in the art.
 以上の実施の形態1は、位相速度算出部23により算出された位相速度、位相速度算出部23により推定された入射角度及び地上における短波帯の電波の位相速度から、短波帯の電波のビーム指向方向を算出するビーム指向方向算出部24を設け、ビーム指向方向設定部25が、送信アンテナ6-1~6-Nから放射される短波帯の電波の方向及び受信アンテナ7-1~7-Mにより受信される短波帯の電波の方向のそれぞれをビーム指向方向算出部24により算出されたビーム指向方向に設定するように、レーダ装置を構成した。したがって、実施の形態1のレーダ装置は、所望の領域に存在している目標を検出することができる。 In the first embodiment, the beam direction of the short wave radio wave is determined from the phase speed calculated by the phase speed calculation unit 23, the incident angle estimated by the phase speed calculation unit 23, and the phase speed of the short wave radio wave on the ground. A beam pointing direction calculating unit 24 for calculating the direction is provided, and the beam pointing direction setting unit 25 controls the directions of the radio waves in the short wave band radiated from the transmitting antennas 6-1 to 6-N and the receiving antennas 7-1 to 7-M. The radar device is configured to set each of the directions of the radio waves in the short wave band received by the beam pointing direction calculated by the beam pointing direction calculation unit 24. Therefore, the radar device according to the first embodiment can detect a target existing in a desired area.
実施の形態2.
 実施の形態2では、複数の電波源1から放射される電波を利用して、電波のビーム指向方向θを設定するレーダ装置について説明する。
Embodiment 2 FIG.
In the second embodiment, a radar device that sets the beam pointing direction θ 0 of radio waves using radio waves radiated from a plurality of radio sources 1 will be described.
 図7は、実施の形態2によるレーダ装置を示す構成図である。
 図8は、図7に示すレーダ装置の信号処理装置20のハードウェアを示すハードウェア構成図である。
 図7及び図8において、図1及び図2と同一符号は同一又は相当部分を示すので説明を省略する。
 ビーム指向方向補間部27は、例えば、図8に示すビーム指向方向補間回路37によって実現される。
 ビーム指向方向補間部27は、ビーム指向方向算出部24により算出された複数のビーム指向方向の間を補間する。
FIG. 7 is a configuration diagram illustrating a radar device according to the second embodiment.
FIG. 8 is a hardware configuration diagram showing hardware of the signal processing device 20 of the radar device shown in FIG.
7 and 8, the same reference numerals as those in FIGS. 1 and 2 denote the same or corresponding parts, and a description thereof will not be repeated.
The beam directivity interpolating unit 27 is realized by, for example, a beam directivity interpolator 37 shown in FIG.
The beam pointing direction interpolation unit 27 interpolates between the plurality of beam pointing directions calculated by the beam pointing direction calculation unit 24.
 次に、図7に示すレーダ装置の動作について説明する。
 図7に示すレーダ装置では、相関判定部21、高度算出部22、位相速度算出部23及びビーム指向方向算出部24が、実施の形態1と同様に、1つの電波源1から放射される電波を利用して、電波のビーム指向方向θを算出する。
 また、図7に示すレーダ装置では、相関判定部21、高度算出部22、位相速度算出部23及びビーム指向方向算出部24が、上記の電波源1と異なる1つの電波源1から放射される電波を利用して、電波のビーム指向方向θを算出する。
 図7に示すレーダ装置では、相関判定部21、高度算出部22、位相速度算出部23及びビーム指向方向算出部24が、複数の電波源1から放射される電波をそれぞれ利用して、電波のビーム指向方向θをそれぞれ算出する。
Next, the operation of the radar device shown in FIG. 7 will be described.
In the radar device shown in FIG. 7, the correlation determination unit 21, the altitude calculation unit 22, the phase velocity calculation unit 23, and the beam directivity calculation unit 24 use radio waves radiated from one radio source 1 as in the first embodiment. Is used to calculate the beam pointing direction θ 0 of the radio wave.
Further, in the radar apparatus shown in FIG. 7, the correlation determination unit 21, the altitude calculation unit 22, the phase velocity calculation unit 23, and the beam directivity calculation unit 24 are radiated from one radio source 1 different from the above radio source 1. The beam direction θ 0 of the radio wave is calculated using the radio wave.
In the radar device shown in FIG. 7, the correlation determination unit 21, the altitude calculation unit 22, the phase velocity calculation unit 23, and the beam directivity calculation unit 24 use radio waves radiated from the plurality of radio sources 1 to The beam directing direction θ 0 is calculated.
 ビーム指向方向算出部24は、電波源1から放射される電波を利用して、電波のビーム指向方向θを算出する毎に、当該電波源1への直線距離Rdとビーム指向方向θの組をビーム指向方向補間部27に出力する。
 図9は、レーダ装置から複数の電波源1への直線距離Rdとビーム指向方向θの対応関係、及び補間処理後の直線距離Rdとビーム指向方向θとの関係を示す補間データを示す説明図である。
 図9では、電波源1への直線距離Rdとビーム指向方向θの組として、4つの組を例示している。
Beam pointing direction calculation unit 24 uses the radio wave radiated from the radio wave source 1, every time to calculate the beam pointing direction theta 0 of the radio wave, straight line distance Rd and beam pointing direction theta 0 of the said radio sources 1 The set is output to the beam direction interpolator 27.
FIG. 9 shows interpolation data indicating the correspondence between the linear distance Rd from the radar device to the plurality of radio wave sources 1 and the beam pointing direction θ 0 , and the relationship between the linear distance Rd and the beam pointing direction θ 0 after the interpolation processing. FIG.
In Figure 9, as a set of linear distance Rd and beam pointing direction theta 0 to radio sources 1 illustrates the four sets.
 ビーム指向方向補間部27は、ビーム指向方向算出部24から、電波源1への直線距離Rdとビーム指向方向θの組を複数取得すると、離散的に求められている複数のビーム指向方向θの間を補間する補間処理を実施する。
 ビーム指向方向補間部27が、補間処理を実施することで、2つの直線距離Rdの中間の距離に対応するビーム指向方向θを特定することが可能になる。
 補間処理としては、最小二乗法又はスプライン補間などの処理を用いることができる。
 ビーム指向方向補間部27は、補間処理後の直線距離Rdとビーム指向方向θとの関係を示す補間データをビーム指向方向設定部25に出力する。
When the beam pointing direction interpolation unit 27 acquires a plurality of pairs of the linear distance Rd to the radio wave source 1 and the beam pointing direction θ 0 from the beam pointing direction calculation unit 24, the beam pointing directions θ discretely obtained are obtained. An interpolation process for interpolating between 0 is performed.
Beam pointing direction interpolation unit 27, by carrying out the interpolation process, it is possible to identify the beam pointing direction theta 0 corresponding to the intermediate distance between two linear distance Rd.
As the interpolation processing, processing such as least squares method or spline interpolation can be used.
The beam pointing direction interpolation unit 27 outputs interpolation data indicating the relationship between the linear distance Rd after the interpolation processing and the beam pointing direction θ 0 to the beam pointing direction setting unit 25.
 ビーム指向方向設定部25は、レーダ装置からの直線距離がX付近の目標を検出する場合、ビーム指向方向補間部27から出力された補間データを参照して、直線距離Xに対応するビーム指向方向θを特定する。
 ビーム指向方向設定部25は、送信アンテナ6-1~6-Nから放射される短波帯の電波の方向をビーム指向方向θに設定するため、移相器4-1~4-Nの移相量及び可変利得アンプ5-1~5-Nの利得のそれぞれを制御する。
 また、ビーム指向方向設定部25は、受信アンテナ7-1~7-Nにより受信される短波帯の電波の方向をビーム指向方向θに設定するため、可変利得アンプ8-1~8-Nの利得及び移相器9-1~9-Nの移相量のそれぞれを制御する。
When detecting a target whose linear distance from the radar apparatus is close to X, the beam directivity setting unit 25 refers to the interpolation data output from the beam directivity interpolating unit 27 to determine the beam directivity corresponding to the linear distance X. Specify θ 0 .
Beam pointing direction setting unit 25 for setting the direction of the radio wave of the short-wave band radiated from the transmission antenna 6-1 ~ 6-N in the beam pointing direction theta 0, shift of the phase shifter 4-1 ~ 4-N The phase amount and the gains of the variable gain amplifiers 5-1 to 5-N are controlled.
The beam pointing direction setting unit 25 for setting the direction of the radio wave of the short-wave band, which is received by the receiving antennas 7-1 ~ 7-N in the beam pointing direction theta 0, the variable gain amplifiers 8-1 ~ 8-N And the phase shift amounts of the phase shifters 9-1 to 9-N are controlled.
 以上の実施の形態2は、ビーム指向方向算出部24により算出された複数のビーム指向方向の間を補間するビーム指向方向補間部27を備えるように、レーダ装置を構成した。したがって、実施の形態2のレーダ装置は、2つの直線距離Rdの中間の距離に存在している目標に電波を照射して、当該目標を検出することができる。 In the second embodiment, the radar apparatus is configured to include the beam directivity interpolating unit 27 that interpolates between the plurality of beam directivities calculated by the beam directivity calculating unit 24. Therefore, the radar device according to the second embodiment can detect the target by radiating radio waves to the target existing at an intermediate distance between the two linear distances Rd.
実施の形態3.
 実施の形態1,2のレーダ装置は、ビーム指向方向を可変するために、振幅制御部5,8及び位相制御部4,9を備えている。
 実施の形態3では、ビーム指向方向を可変するために、送信デジタルビームフォーミング部53及び受信デジタルビームフォーミング部54を備えるレーダ装置について説明する。
Embodiment 3 FIG.
The radar apparatuses according to the first and second embodiments include amplitude controllers 5 and 8 and phase controllers 4 and 9 to change the beam directing direction.
In the third embodiment, a radar device including a transmission digital beamforming unit 53 and a reception digital beamforming unit 54 for changing the beam directing direction will be described.
 図10は、実施の形態3によるレーダ装置を示す構成図である。
 図11は、図10に示すレーダ装置の信号処理装置20のハードウェアを示すハードウェア構成図である。
 図10及び図11において、図1、図2、図7及び図8と同一符号は同一又は相当部分を示すので説明を省略する。
 信号生成部51は、例えば、図11に示す信号生成回路61によって実現される。
 信号生成部51は、図1に示すA/D変換器13から出力される送信データTxに相当する送信データを生成し、送信データを送信デジタルビームフォーミング部53及び相関判定部21に出力する。
FIG. 10 is a configuration diagram showing a radar device according to the third embodiment.
FIG. 11 is a hardware configuration diagram showing hardware of the signal processing device 20 of the radar device shown in FIG.
10 and 11, the same reference numerals as those in FIGS. 1, 2, 7, and 8 denote the same or corresponding parts, and a description thereof will not be repeated.
The signal generation unit 51 is realized by, for example, a signal generation circuit 61 illustrated in FIG.
The signal generation unit 51 generates transmission data corresponding to the transmission data Tx output from the A / D converter 13 shown in FIG. 1, and outputs the transmission data to the transmission digital beamforming unit 53 and the correlation determination unit 21.
 ビーム指向方向設定部52は、例えば、図11に示すビーム指向方向設定回路62によって実現される。
 ビーム指向方向設定部52は、送信アンテナ6-1~6-Nから放射される短波帯の電波の方向をビーム指向方向θに設定するため、送信デジタルビームフォーミング部53における電波の方向の調整を制御する。
 また、ビーム指向方向設定部52は、受信アンテナ7-1~7-Nにより受信される短波帯の電波の方向をビーム指向方向θに設定するため、受信デジタルビームフォーミング部54における電波の方向の調整を制御する。
The beam direction setting unit 52 is realized by, for example, a beam direction setting circuit 62 shown in FIG.
Beam pointing direction setting unit 52, the transmitting antenna 6-1 to set the direction of the radio wave of the short-wave band, which is radiated in the beam pointing direction theta 0 from ~ 6-N, the radio wave direction of the adjustment in the transmit digital beam forming unit 53 Control.
The beam pointing direction setting unit 52 sets the direction of the radio wave in the short-wave band received by the receiving antennas 7-1 to 7-N to the beam pointing direction θ 0 , so that the direction of the radio wave in the reception digital beam forming unit 54 is set. To control the adjustment.
 送信デジタルビームフォーミング部53は、例えば、図11に示す送信デジタルビームフォーミング回路63によって実現される。
 送信デジタルビームフォーミング部53は、信号生成部51から出力された送信データをN個に分配する。
 送信デジタルビームフォーミング部53は、送信アンテナ6-1~6-Nから放射される短波帯の電波の方向をビーム指向方向θに調整するため、ビーム指向方向設定部52から出力された制御信号に従って、分配後のそれぞれの送信データを制御する。
 送信デジタルビームフォーミング部53は、制御後のそれぞれの送信データをデジタルアナログ変換器(以下、「D/A変換器」と称する)55-1~55-Nに出力する。
The transmission digital beamforming unit 53 is realized by, for example, a transmission digital beamforming circuit 63 shown in FIG.
The transmission digital beamforming unit 53 distributes the transmission data output from the signal generation unit 51 into N pieces.
Transmission digital beam forming unit 53, the transmitting antenna 6-1 to adjust the direction of the radio wave of the short-wave band, which is radiated in the beam pointing direction theta 0 from ~ 6-N, control signals outputted from the beam pointing direction setting unit 52 , The transmission data after distribution is controlled.
The transmission digital beamforming unit 53 outputs the controlled transmission data to digital-to-analog converters (hereinafter, referred to as “D / A converters”) 55-1 to 55-N.
 受信デジタルビームフォーミング部54は、例えば、図11に示す受信デジタルビームフォーミング回路64によって実現される。
 受信デジタルビームフォーミング部54は、受信アンテナ7-1~7-Nにより受信される短波帯の電波の方向をビーム指向方向θに調整するため、ビーム指向方向設定部52から出力された制御信号に従って、A/D変換器56-1~56-Mから出力されたそれぞれの受信データを制御する。
 受信デジタルビームフォーミング部54は、制御後のそれぞれの受信データを合成し、受信データの合成データを、図1に示すA/D変換器13から出力される合成データRxに相当するデータとして、相関判定部21に出力する。
The reception digital beamforming unit 54 is realized by, for example, a reception digital beamforming circuit 64 shown in FIG.
Receiving digital beam forming unit 54, receiving antennas 7-1 to adjust the direction of the radio wave of the short-wave band received by the beam pointing direction theta 0 by ~ 7-N, control signals outputted from the beam pointing direction setting unit 52 , The respective received data output from the A / D converters 56-1 to 56-M are controlled.
Receiving digital beam forming unit 54 combines the respective received data after control, the combined data of the received data, as data corresponding to the combined data Rx S output from the A / D converter 13 shown in FIG. 1, Output to the correlation determination unit 21.
 デジタルアナログ変換部55は、N個のD/A変換器55-1~55-Nを備えている。
 D/A変換器55-1~55-Nは、送信デジタルビームフォーミング部53から出力されたそれぞれの送信データをデジタル信号からアナログ信号に変換し、それぞれのアナログ信号をレーダ信号として、送信アンテナ6-1~6-Nに出力する。
 アナログデジタル変換部56は、M個のA/D変換器56-1~56-Mを備えている。
 A/D変換器56-1~56-Mは、受信アンテナ7-1~7-Nにより受信されたそれぞれの受信信号をアナログ信号からデジタル信号に変換し、それぞれのデジタル信号を受信データとして、受信デジタルビームフォーミング部54に出力する。
 A/D変換器57は、受信アンテナ11から出力された直接波の受信信号をアナログ信号からデジタル信号に変換し、デジタル信号を、図1に示すA/D変換器13から出力される受信データRxに相当するデータとして、相関判定部21に出力する。
The digital-to-analog converter 55 includes N D / A converters 55-1 to 55-N.
The D / A converters 55-1 to 55-N convert each transmission data output from the transmission digital beamforming unit 53 from a digital signal to an analog signal, and convert each analog signal as a radar signal to the transmission antenna 6. Output to -1 to 6-N.
The analog-to-digital converter 56 includes M A / D converters 56-1 to 56-M.
The A / D converters 56-1 to 56-M convert the respective reception signals received by the reception antennas 7-1 to 7-N from analog signals to digital signals, and convert the respective digital signals into reception data. Output to the reception digital beamforming unit 54.
The A / D converter 57 converts the direct wave reception signal output from the reception antenna 11 from an analog signal to a digital signal, and converts the digital signal into reception data output from the A / D converter 13 shown in FIG. as data corresponding to rx D, and outputs the correlation determination unit 21.
 次に、図10に示すレーダ装置の動作について説明する。
 ただし、信号生成部51、ビーム指向方向設定部52、送信デジタルビームフォーミング部53、受信デジタルビームフォーミング部54、デジタルアナログ変換部55、アナログデジタル変換部56及びA/D変換器57以外は、実施の形態1,2と同様である。
 ここで、実施の形態1,2と相違する部分のみを説明する。
Next, the operation of the radar device shown in FIG. 10 will be described.
However, except for the signal generation unit 51, the beam directivity setting unit 52, the transmission digital beamforming unit 53, the reception digital beamforming unit 54, the digital / analog conversion unit 55, the analog / digital conversion unit 56, and the A / D converter 57, the implementation is the same. This is similar to the first and second embodiments.
Here, only portions different from the first and second embodiments will be described.
 信号生成部51は、図1に示すA/D変換器13から出力される送信データTxに相当する送信データを生成し、送信データを送信デジタルビームフォーミング部53及び相関判定部21に出力する。
 ビーム指向方向設定部52は、ビーム指向方向補間部27から電波のビーム指向方向θを受けると、送信アンテナ6-1~6-Nから放射される短波帯の電波の方向をビーム指向方向θに設定するため、送信デジタルビームフォーミング部53における電波の方向の調整を制御する。
 また、ビーム指向方向設定部52は、受信アンテナ7-1~7-Nにより受信される短波帯の電波の方向をビーム指向方向θに設定するため、受信デジタルビームフォーミング部54における電波の方向の調整を制御する。
The signal generation unit 51 generates transmission data corresponding to the transmission data Tx output from the A / D converter 13 shown in FIG. 1, and outputs the transmission data to the transmission digital beamforming unit 53 and the correlation determination unit 21.
Upon receiving the beam pointing direction θ 0 of the radio wave from the beam direction interpolating unit 27, the beam pointing direction setting unit 52 changes the direction of the short wave band radio wave radiated from the transmitting antennas 6-1 to 6-N to the beam pointing direction θ. In order to set it to 0 , the adjustment of the direction of the radio wave in the transmission digital beam forming unit 53 is controlled.
The beam pointing direction setting unit 52 sets the direction of the radio wave in the short-wave band received by the receiving antennas 7-1 to 7-N to the beam pointing direction θ 0 , so that the direction of the radio wave in the reception digital beam forming unit 54 is set. To control the adjustment.
 送信デジタルビームフォーミング部53は、信号生成部51から送信データを受けると、送信データをN個に分配する。
 送信デジタルビームフォーミング部53は、送信アンテナ6-1~6-Nから放射される短波帯の電波の方向をビーム指向方向θに調整するため、ビーム指向方向設定部52から出力された制御信号に従って、分配後のそれぞれの送信データを制御する。
 送信アンテナ6-1~6-Nから放射される短波帯の電波の方向をビーム指向方向θに調整するために、分配後のそれぞれの送信データを制御する処理自体は、公知の技術であるため詳細な説明を省略する。
 送信デジタルビームフォーミング部53は、制御後のそれぞれの送信データをD/A変換器55-1~55-Nに出力する。
 D/A変換器55-1~55-Nは、送信デジタルビームフォーミング部53から出力されたそれぞれの送信データをデジタル信号からアナログ信号に変換し、それぞれのアナログ信号をレーダ信号として、送信アンテナ6-1~6-Nに出力する。
Upon receiving the transmission data from the signal generation unit 51, the transmission digital beamforming unit 53 distributes the transmission data into N pieces.
Transmission digital beam forming unit 53, the transmitting antenna 6-1 to adjust the direction of the radio wave of the short-wave band, which is radiated in the beam pointing direction theta 0 from ~ 6-N, control signals outputted from the beam pointing direction setting unit 52 , The transmission data after distribution is controlled.
To adjust the direction of the radio wave of the short-wave band radiated from the transmission antenna 6-1 ~ 6-N in the beam pointing direction theta 0, the process itself to control the respective transmission data after the distribution are known in the art Therefore, detailed description is omitted.
The transmission digital beamforming unit 53 outputs the respective controlled transmission data to the D / A converters 55-1 to 55-N.
The D / A converters 55-1 to 55-N convert each transmission data output from the transmission digital beamforming unit 53 from a digital signal to an analog signal, and convert each analog signal as a radar signal to the transmission antenna 6. Output to -1 to 6-N.
 A/D変換器56-1~56-Mは、受信アンテナ7-1~7-Nにより受信されたそれぞれの受信信号をアナログ信号からデジタル信号に変換し、それぞれのデジタル信号を受信データとして、受信デジタルビームフォーミング部54に出力する。
 A/D変換器57は、受信アンテナ11から出力された直接波の受信信号をアナログ信号からデジタル信号に変換し、デジタル信号を、図1に示すA/D変換器13から出力される受信データRxに相当するデータとして、相関判定部21に出力する。
The A / D converters 56-1 to 56-M convert the respective reception signals received by the reception antennas 7-1 to 7-N from analog signals to digital signals, and convert the respective digital signals into reception data. Output to the reception digital beamforming unit 54.
The A / D converter 57 converts the direct wave reception signal output from the reception antenna 11 from an analog signal to a digital signal, and converts the digital signal into reception data output from the A / D converter 13 shown in FIG. as data corresponding to rx D, and outputs the correlation determination unit 21.
 受信デジタルビームフォーミング部54は、受信アンテナ7-1~7-Nにより受信される電波の方向をビーム指向方向θに調整するため、ビーム指向方向設定部52から出力された制御信号に従って、A/D変換器56-1~56-Mから出力されたそれぞれの受信データを制御する。
 受信デジタルビームフォーミング部54は、制御後のそれぞれの受信データを合成し、受信データの合成データを、図1に示すA/D変換器13から出力される合成データRxに相当するデータとして、相関判定部21に出力する。
The reception digital beamforming unit 54 adjusts the direction of the radio wave received by the reception antennas 7-1 to 7-N to the beam pointing direction θ 0 according to the control signal output from the beam pointing direction setting unit 52. The respective received data output from the / D converters 56-1 to 56-M are controlled.
Receiving digital beam forming unit 54 combines the respective received data after control, the combined data of the received data, as data corresponding to the combined data Rx S output from the A / D converter 13 shown in FIG. 1, Output to the correlation determination unit 21.
 以上の実施の形態3のレーダ装置は、ビーム指向方向を可変するために、送信デジタルビームフォーミング部53及び受信デジタルビームフォーミング部54を備えている。
 送信デジタルビームフォーミング部53及び受信デジタルビームフォーミング部54を備えるレーダ装置についても、図1及び図7に示すレーダ装置と同様に、所望の領域に存在している目標を検出することができる。
The radar apparatus according to the third embodiment includes the transmission digital beamforming unit 53 and the reception digital beamforming unit 54 in order to change the beam directing direction.
The radar device including the transmission digital beamforming unit 53 and the reception digital beamforming unit 54 can detect a target existing in a desired area, similarly to the radar devices illustrated in FIGS. 1 and 7.
実施の形態4.
 実施の形態1では、送信アンテナ6-1~6-N及び受信アンテナ7-1~7-Nとして、ダイポールアンテナ又はモノポールアンテナを用いている。
 実施の形態4では、送信アンテナ6-1~6-N及び受信アンテナ7-1~7-Nのそれぞれが、アンテナ素子長が調整されることで、ビーム指向方向が可変されるアンテナであるレーダ装置について説明する。
Embodiment 4 FIG.
In the first embodiment, a dipole antenna or a monopole antenna is used as transmission antennas 6-1 to 6-N and reception antennas 7-1 to 7-N.
In the fourth embodiment, each of transmitting antennas 6-1 to 6-N and receiving antennas 7-1 to 7-N is a radar whose beam directing direction is variable by adjusting the antenna element length. The device will be described.
 図12は、アンテナ素子長が調整されることで、ビーム指向方向が可変される送信アンテナ6-n(n=1,2,・・・,N)を示す構成図である。
 図12において、アンテナ素子71-1~71-6は、送信アンテナ6-nに含まれている素子である。
 アンテナ素子71-1は、基端側の素子であり、可変利得アンプ5-nと接続されている。
 アンテナ素子71-6は、先端側の素子である。
 図12では、送信アンテナ6-nが、6つのアンテナ素子71-1~71-6を含んでいる。しかし、これは一例に過ぎず、送信アンテナ6-nが、2つ以上5つ以下のアンテナ素子を含んでいるものであってもよいし、7つ以上のアンテナ素子を含んでいるものであってもよい。
FIG. 12 is a configuration diagram showing a transmitting antenna 6-n (n = 1, 2,..., N) in which the beam directing direction is changed by adjusting the antenna element length.
In FIG. 12, antenna elements 71-1 to 71-6 are elements included in transmission antenna 6-n.
The antenna element 71-1 is an element on the base end side, and is connected to the variable gain amplifier 5-n.
The antenna element 71-6 is a tip-side element.
In FIG. 12, the transmission antenna 6-n includes six antenna elements 71-1 to 71-6. However, this is only an example, and the transmitting antenna 6-n may include two or more and five or less antenna elements, or may include seven or more antenna elements. May be.
 スイッチ72-1は、アンテナ素子71-1とアンテナ素子71-2との間の接続状態を切り換える素子である。
 スイッチ72-2は、スイッチ72-1がアンテナ素子71-1とアンテナ素子71-2との間を接続しているとき、アンテナ素子71-2とアンテナ素子71-3との間の接続状態を切り換える素子である。
 スイッチ72-3は、スイッチ72-2がアンテナ素子71-2とアンテナ素子71-3との間を接続しているとき、アンテナ素子71-3とアンテナ素子71-4との間の接続状態を切り換える素子である。
 スイッチ72-4は、スイッチ72-3がアンテナ素子71-3とアンテナ素子71-4との間を接続しているとき、アンテナ素子71-4とアンテナ素子71-5との間の接続状態を切り換える素子である。
 スイッチ72-5は、スイッチ72-4がアンテナ素子71-4とアンテナ素子71-5との間を接続しているとき、アンテナ素子71-5とアンテナ素子71-6との間の接続状態を切り換える素子である。
 スイッチ72-1~72-5における接続状態の切り換えの制御は、ビーム指向方向設定部25によって行われる。
The switch 72-1 is an element for switching a connection state between the antenna element 71-1 and the antenna element 71-2.
The switch 72-2 changes the connection state between the antenna element 71-2 and the antenna element 71-3 when the switch 72-1 connects the antenna element 71-1 and the antenna element 71-2. It is a switching element.
The switch 72-3 changes the connection state between the antenna element 71-3 and the antenna element 71-4 when the switch 72-2 connects the antenna element 71-2 and the antenna element 71-3. It is a switching element.
The switch 72-4 changes the connection state between the antenna element 71-4 and the antenna element 71-5 when the switch 72-3 connects the antenna element 71-3 and the antenna element 71-4. It is a switching element.
The switch 72-5 changes the connection state between the antenna element 71-5 and the antenna element 71-6 when the switch 72-4 connects the antenna element 71-4 and the antenna element 71-5. It is a switching element.
The switching of the connection state by the switches 72-1 to 72-5 is controlled by the beam directivity setting unit 25.
 図13は、アンテナ素子長が調整されることで、ビーム指向方向が可変される受信アンテナ7-m(m=1,2,・・・,M)を示す構成図である。
 図13において、アンテナ素子81-1~81-6は、受信アンテナ7-mに含まれている素子である。
 アンテナ素子81-1は、基端側の素子であり、可変利得アンプ8-mと接続されている。
 アンテナ素子81-6は、先端側の素子である。
 図13では、受信アンテナ7-mが、6つのアンテナ素子81-1~81-6を含んでいる。しかし、これは一例に過ぎず、受信アンテナ7-mが、2つ以上5つ以下のアンテナ素子を含んでいるものであってもよいし、7つ以上のアンテナ素子を含んでいるものであってもよい。
FIG. 13 is a configuration diagram showing the receiving antenna 7-m (m = 1, 2,..., M) in which the beam directing direction is changed by adjusting the antenna element length.
In FIG. 13, antenna elements 81-1 to 81-6 are elements included in receiving antenna 7-m.
The antenna element 81-1 is an element on the base end side, and is connected to the variable gain amplifier 8-m.
The antenna element 81-6 is a tip-side element.
In FIG. 13, the receiving antenna 7-m includes six antenna elements 81-1 to 81-6. However, this is only an example, and the receiving antenna 7-m may include two or more and five or less antenna elements, or may include seven or more antenna elements. May be.
 スイッチ82-1は、アンテナ素子81-1とアンテナ素子81-2との間の接続状態を切り換える素子である。
 スイッチ82-2は、スイッチ82-1がアンテナ素子81-1とアンテナ素子81-2との間を接続しているとき、アンテナ素子81-2とアンテナ素子81-3との間の接続状態を切り換える素子である。
 スイッチ82-3は、スイッチ82-2がアンテナ素子81-2とアンテナ素子81-3との間を接続しているとき、アンテナ素子81-3とアンテナ素子81-4との間の接続状態を切り換える素子である。
 スイッチ82-4は、スイッチ82-3がアンテナ素子81-3とアンテナ素子81-4との間を接続しているとき、アンテナ素子81-4とアンテナ素子81-5との間の接続状態を切り換える素子である。
 スイッチ82-5は、スイッチ82-4がアンテナ素子81-4とアンテナ素子81-5との間を接続しているとき、アンテナ素子81-5とアンテナ素子81-6との間の接続状態を切り換える素子である。
 スイッチ82-1~82-5における接続状態の切り換えの制御は、ビーム指向方向設定部25によって行われる。
The switch 82-1 is an element for switching a connection state between the antenna element 81-1 and the antenna element 81-2.
The switch 82-2 changes the connection state between the antenna element 81-2 and the antenna element 81-3 when the switch 82-1 connects the antenna element 81-1 and the antenna element 81-2. It is a switching element.
The switch 82-3 changes the connection state between the antenna element 81-3 and the antenna element 81-4 when the switch 82-2 connects the antenna element 81-2 and the antenna element 81-3. It is a switching element.
The switch 82-4 changes the connection state between the antenna element 81-4 and the antenna element 81-5 when the switch 82-3 connects the antenna element 81-3 and the antenna element 81-4. It is a switching element.
The switch 82-5 changes the connection state between the antenna element 81-5 and the antenna element 81-6 when the switch 82-4 connects the antenna element 81-4 and the antenna element 81-5. It is a switching element.
The switching of the connection state by the switches 82-1 to 82-5 is controlled by the beam directivity setting unit 25.
 次に動作について説明する。
 送信アンテナ6-nのアンテナ素子長は、ビーム指向方向設定部25が、スイッチ72-1のみをON(接続状態)にして、スイッチ72-2~72-5をOFF(非接続状態)に制御する場合に最も短くなる。
 送信アンテナ6-nのアンテナ素子長は、ビーム指向方向設定部25が、スイッチ72-1~72-5の全てをONに制御する場合に最も長くなる。
 ビーム指向方向設定部25が、スイッチ72-1~72-5のON/OFFを制御することで、送信アンテナ6-nのアンテナ素子長が変化する。
 送信アンテナ6-1~6-Nのアンテナ素子長が短いときの送信アンテナ6-1~6-Nのビーム指向方向を示す仰角は、送信アンテナ6-1~6-Nのアンテナ素子長が長いときの送信アンテナ6-1~6-Nのビーム指向方向を示す仰角よりも小さくなる。
 したがって、ビーム指向方向設定部25が、スイッチ72-1~72-5のON/OFFを制御することで、送信アンテナ6-1~6-Nのビーム指向方向を可変することができる。
Next, the operation will be described.
The antenna element length of the transmitting antenna 6-n is controlled by the beam directivity setting unit 25 to turn on only the switch 72-1 (connected state) and turn off the switches 72-2 to 72-5 (disconnected state). The shortest case.
The antenna element length of the transmitting antenna 6-n is the longest when the beam directivity setting unit 25 controls all the switches 72-1 to 72-5 to be ON.
The beam pointing direction setting unit 25 controls ON / OFF of the switches 72-1 to 72-5, so that the antenna element length of the transmitting antenna 6-n changes.
The elevation angles indicating the beam directing directions of the transmission antennas 6-1 to 6-N when the antenna element lengths of the transmission antennas 6-1 to 6-N are short are such that the antenna element length of the transmission antennas 6-1 to 6-N is long. It becomes smaller than the elevation angle indicating the beam directing direction of the transmitting antennas 6-1 to 6-N.
Therefore, the beam directing direction setting unit 25 controls the ON / OFF of the switches 72-1 to 72-5, so that the beam directing directions of the transmitting antennas 6-1 to 6-N can be changed.
 受信アンテナ7-mのアンテナ素子長は、ビーム指向方向設定部25が、スイッチ82-1のみをONにして、スイッチ82-2~82-5をOFFに制御する場合に最も短くなる。
 受信アンテナ7-mのアンテナ素子長は、ビーム指向方向設定部25が、スイッチ82-1~82-5の全てをONに制御する場合に最も長くなる。
 ビーム指向方向設定部25が、スイッチ82-1~82-5のON/OFFを制御することで、受信アンテナ7-mのアンテナ素子長が変化する。
 受信アンテナ7-1~7-Mのアンテナ素子長が短いときの受信アンテナ7-1~7-Mのビーム指向方向を示す仰角は、受信アンテナ7-1~7-Mのアンテナ素子長が長いときの受信アンテナ7-1~7-Mのビーム指向方向を示す仰角よりも小さくなる。
 したがって、ビーム指向方向設定部25が、スイッチ82-1~82-5のON/OFFを制御することで、受信アンテナ7-1~7-Mのビーム指向方向を可変することができる。
The antenna element length of the receiving antenna 7-m is the shortest when the beam directivity setting unit 25 controls only the switch 82-1 to be ON and switches 82-2 to 82-5 to be OFF.
The antenna element length of the receiving antenna 7-m becomes the longest when the beam directivity setting unit 25 controls all the switches 82-1 to 82-5 to be ON.
When the beam directing direction setting unit 25 controls ON / OFF of the switches 82-1 to 82-5, the antenna element length of the receiving antenna 7-m changes.
The elevation angles indicating the beam directing directions of the receiving antennas 7-1 to 7-M when the antenna element lengths of the receiving antennas 7-1 to 7-M are short are such that the antenna element lengths of the receiving antennas 7-1 to 7-M are long. It becomes smaller than the elevation angle indicating the beam directing direction of the receiving antennas 7-1 to 7-M.
Therefore, the beam pointing direction setting unit 25 can change the beam pointing directions of the receiving antennas 7-1 to 7-M by controlling ON / OFF of the switches 82-1 to 82-5.
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 In the present invention, any combination of the embodiments, a modification of an arbitrary component of each embodiment, or an omission of any component in each embodiment is possible within the scope of the invention. .
 この発明は、短波帯の電波のビーム指向方向を設定するレーダ装置に適している。 The present invention is suitable for a radar apparatus for setting the beam directing direction of a short-wave radio wave.
 1 電波源、2 送信器、3 分配器、4 位相制御部、4-1~4-N 移相器、5 振幅制御部、5-1~5-N 可変利得アンプ、6 送信アレイアンテナ、6-1~6-N 送信アンテナ、7 受信アレイアンテナ、7-1~7-M 受信アンテナ、8 振幅制御部、8-1~8-M 可変利得アンプ、9 位相制御部、9-1~9-M 移相器、10 合成器、11 受信アンテナ、12 受信器、13 A/D変換器、20 信号処理装置、21 相関判定部、21a 相関処理部、21b 相関判定処理部、22 高度算出部、22a 相関処理部、22b 時刻差算出部、22c 距離算出部、22d 反射高度算出部、23 位相速度算出部、24 ビーム指向方向算出部、25 ビーム指向方向設定部、26 距離速度算出部、27 ビーム指向方向補間部、31 相関判定回路、32 高度算出回路、33 位相速度算出回路、34 ビーム指向方向算出回路、35 ビーム指向方向設定回路、36 距離速度算出回路、37 ビーム指向方向補間回路、41 メモリ、42 プロセッサ、51 信号生成部、52 ビーム指向方向設定部、53 送信デジタルビームフォーミング部、54 受信デジタルビームフォーミング部、55 デジタルアナログ変換部、55-1~55-N D/A変換器、56 アナログデジタル変換部、56-1~56-M A/D変換器、57 A/D変換器、61 信号生成回路、62 ビーム指向方向設定回路、63 送信デジタルビームフォーミング回路、64 受信デジタルビームフォーミング回路、71-1~71-6 アンテナ素子、72-1~72-5 スイッチ、81-1~81-6 アンテナ素子、82-1~82-5 スイッチ。 1 radio source, 2 transmitter, 3 distributor, 4 phase controller, 4-1 to 4-N phase shifter, 5 amplitude controller, 5-1 to 5-N variable gain amplifier, 6 transmission array antenna, 6 -1 to 6-N transmission antenna, 7 reception array antenna, 7-1 to 7-M reception antenna, 8 amplitude control unit, 8-1 to 8-M variable gain amplifier, 9 phase control unit, 9-1 to 9 -M phase shifter, 10 combiner, 11 receiving antenna, 12 receiver, 13 A / D converter, 20 signal processor, 21 correlation judgment unit, 21a correlation processing unit, 21b correlation judgment processing unit, 22 altitude calculation unit , 22a 処理 correlation processing unit, 22b time difference calculation unit, 22c distance calculation unit, 22d reflection altitude calculation unit, 23 phase speed calculation unit, 24 beam pointing direction calculation unit, 25 beam pointing direction setting unit, 26 distance speed Calculation unit, 27 ° beam direction interpolating unit, 31 ° correlation determination circuit, 32 ° altitude calculation circuit, 33 ° phase speed calculation circuit, 34 ° beam direction calculation circuit, 35 ° beam direction setting circuit, 36 ° distance speed calculation circuit, 37 ° beam direction Interpolation circuit, 41 memory, 42 processor, 51 signal generator, 52 beam direction setting unit, 53 transmit digital beam forming unit, 54 receive digital beam forming unit, 55 digital to analog converter, 55-1 to 55-N / D / A converter, 56 analog-to-digital converter, 56-1 to 56-M A / D converter, 57 A / D converter, 61 signal generation circuit, 62 beam directivity setting circuit, 63 transmission digital beamforming circuit, 64 Receive digital beamforming circuit, 71-1 ~ 1-6 antenna elements, 72-1 to 72-5 switches, 81-1 ~ 81-6 antenna elements, 82-1 to 82-5 switches.

Claims (11)

  1.  短波帯の電波を放射する電波源の位置を用いて、前記短波帯の電波を反射する電離層の高度を算出する高度算出部と、
     前記高度算出部により算出された高度における短波帯の電波の位相速度を算出し、前記位相速度を用いて、前記電離層に対する前記短波帯の電波の入射角度を推定する位相速度算出部と、
     前記位相速度算出部により算出された位相速度、前記入射角度及び地上における短波帯の電波の位相速度から、短波帯の電波のビーム指向方向を算出するビーム指向方向算出部と、
     送信アンテナから放射される短波帯の電波の方向及び受信アンテナにより受信される短波帯の電波の方向のそれぞれを前記ビーム指向方向算出部により算出されたビーム指向方向に設定するビーム指向方向設定部と
     を備えたレーダ装置。
    Using a position of a radio wave source that emits radio waves in the short wave band, an altitude calculation unit that calculates the height of the ionosphere that reflects the radio waves in the short wave band,
    A phase velocity calculation unit that calculates a phase velocity of a short wave radio wave at the altitude calculated by the altitude calculation unit, and estimates an incident angle of the short wave radio wave with respect to the ionosphere using the phase velocity,
    From the phase velocity calculated by the phase velocity calculator, the incident angle and the phase velocity of the radio wave in the short wave band on the ground, a beam directivity calculation unit that calculates the beam directivity of the radio wave in the short wave band,
    A beam pointing direction setting unit that sets each of the direction of the short wave band radio wave radiated from the transmitting antenna and the direction of the short wave band radio wave received by the receiving antenna to the beam pointing direction calculated by the beam pointing direction calculation unit; Radar device equipped with
  2.  前記高度算出部は、前記電波源から放射された短波帯の電波のうち、前記電離層に反射されていない直接波の電波の受信時刻と、前記電離層に反射された電波の受信時刻との時刻差を算出し、前記時刻差と前記電波源の位置とを用いて、前記電離層の高度を算出することを特徴とする請求項1記載のレーダ装置。 The altitude calculation unit is configured to calculate a time difference between a reception time of a direct wave radio wave not reflected by the ionosphere and a reception time of a radio wave reflected by the ionosphere, out of short wave band radio waves radiated from the radio wave source. The radar apparatus according to claim 1, wherein the altitude of the ionosphere is calculated using the time difference and the position of the radio wave source.
  3.  前記ビーム指向方向算出部は、前記位相速度算出部により算出された位相速度v、前記入射角度θ、前記地上における短波帯の電波の位相速度v、前記送信アンテナから放射される短波帯の電波のビーム幅θとを以下の算出式に代入することで、短波帯の電波のビーム指向方向θを算出することを特徴とする請求項1記載のレーダ装置。
    [算出式]
    Figure JPOXMLDOC01-appb-I000001
    The beam pointing direction calculation unit calculates the phase speed v h , the incident angle θ h , the phase speed v 0 of the short wave radio wave on the ground, the short wave band radiated from the transmitting antenna, calculated by the phase speed calculation unit. of a radio wave and a beam width theta w by substituting the following calculation formula, the radar apparatus according to claim 1, wherein the calculating the beam pointing direction theta 0 of the radio wave of the short-wave band.
    [Calculation formula]
    Figure JPOXMLDOC01-appb-I000001
  4.  前記送信アンテナから短波帯の電波が放射されたのち、前記受信アンテナにより受信された短波帯の電波の受信信号から、目標までの距離及び前記目標の速度のそれぞれを算出する距離速度算出部を備えたことを特徴とする請求項1記載のレーダ装置。 After a short wave radio wave is radiated from the transmission antenna, a distance speed calculation unit is provided for calculating a distance to a target and a speed of the target from a reception signal of the short wave radio wave received by the reception antenna. The radar device according to claim 1, wherein:
  5.  前記送信アンテナから放射される短波帯の電波の送信信号と、前記受信アンテナにより受信された短波帯の電波の受信信号との相関を判定する相関判定部を備え、
     前記距離速度算出部は、前記相関判定部により相関があると判定されたとき、前記受信信号から、前記目標までの距離及び前記目標の速度のそれぞれを算出することを特徴とする請求項4記載のレーダ装置。
    The transmission signal of the short wave radio wave radiated from the transmission antenna, a correlation determination unit that determines the correlation between the reception signal of the short wave radio wave received by the receiving antenna,
    5. The distance / speed calculation unit, when the correlation determination unit determines that there is a correlation, calculates the distance to the target and the target speed from the received signal. 6. Radar equipment.
  6.  短波帯の電波を放射する電波源が複数あり、
     前記高度算出部は、それぞれの電波源の位置を用いて、前記電離層のそれぞれの高度を算出し、
     前記位相速度算出部は、前記高度算出部により算出されたそれぞれの高度における短波帯の電波の位相速度を算出し、
     前記ビーム指向方向算出部は、前記位相速度算出部により算出されたそれぞれの位相速度を用いて、短波帯の電波のそれぞれのビーム指向方向を算出し、
     前記ビーム指向方向算出部により算出された複数のビーム指向方向の間を補間するビーム指向方向補間部を備えたことを特徴とする請求項1記載のレーダ装置。
    There are multiple radio sources that emit shortwave radio waves,
    The altitude calculation unit calculates the altitude of the ionosphere using the position of each radio wave source,
    The phase velocity calculation unit calculates the phase velocity of radio waves in the short wave band at each altitude calculated by the altitude calculation unit,
    The beam pointing direction calculation unit, using the respective phase velocities calculated by the phase speed calculation unit, to calculate the respective beam pointing directions of radio waves in the short wave band,
    2. The radar device according to claim 1, further comprising a beam directing direction interpolating unit that interpolates between the plurality of beam directing directions calculated by the beam directing direction calculating unit.
  7.  前記送信アンテナから放射される短波帯の電波の方向を調整する送信デジタルビームフォーミング部と、
     前記受信アンテナにより受信される短波帯の電波の方向を調整する受信デジタルビームフォーミング部とを備え、
     前記ビーム指向方向設定部は、前記ビーム指向方向算出部により算出されたビーム指向方向に従って前記送信デジタルビームフォーミング部における電波の方向の調整を制御するとともに、前記ビーム指向方向に従って前記受信デジタルビームフォーミング部における電波の方向の調整を制御することを特徴とする請求項1記載のレーダ装置。
    A transmission digital beamforming unit that adjusts a direction of a short wave radio wave radiated from the transmission antenna,
    A receiving digital beam forming unit that adjusts a direction of a short wave radio wave received by the receiving antenna,
    The beam pointing direction setting unit controls the adjustment of the direction of radio waves in the transmission digital beam forming unit according to the beam pointing direction calculated by the beam pointing direction calculation unit, and the reception digital beam forming unit according to the beam pointing direction. 2. The radar apparatus according to claim 1, wherein the control of the direction of the radio wave at the step (c) is controlled.
  8.  前記送信アンテナ及び前記受信アンテナのそれぞれは、ダイポールアンテナであることを特徴とする請求項1記載のレーダ装置。 The radar device according to claim 1, wherein each of the transmitting antenna and the receiving antenna is a dipole antenna.
  9.  前記送信アンテナ及び前記受信アンテナのそれぞれは、モノポールアンテナであることを特徴とする請求項1記載のレーダ装置。 The radar apparatus according to claim 1, wherein each of the transmitting antenna and the receiving antenna is a monopole antenna.
  10.  前記送信アンテナ及び前記受信アンテナのそれぞれは、アンテナ素子長が調整されることで、ビーム指向方向が可変されるアンテナであることを特徴とする請求項1記載のレーダ装置。 The radar device according to claim 1, wherein each of the transmitting antenna and the receiving antenna is an antenna whose beam directing direction is variable by adjusting an antenna element length.
  11.  前記送信アンテナ及び前記受信アンテナのそれぞれは、
     複数のアンテナ素子と、
     前記複数のアンテナ素子の間の接続状態を切り替えるスイッチとを備えており、
     前記ビーム指向方向設定部によって、前記スイッチが制御されることで、前記アンテナ素子長が調整されることを特徴とする請求項10記載のレーダ装置。
    Each of the transmitting antenna and the receiving antenna,
    A plurality of antenna elements,
    A switch for switching a connection state between the plurality of antenna elements,
    The radar device according to claim 10, wherein the antenna element length is adjusted by controlling the switch by the beam directing direction setting unit.
PCT/JP2018/024897 2018-06-29 2018-06-29 Radar device WO2020003513A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020527144A JP6797330B2 (en) 2018-06-29 2018-06-29 Radar device
PCT/JP2018/024897 WO2020003513A1 (en) 2018-06-29 2018-06-29 Radar device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/024897 WO2020003513A1 (en) 2018-06-29 2018-06-29 Radar device

Publications (1)

Publication Number Publication Date
WO2020003513A1 true WO2020003513A1 (en) 2020-01-02

Family

ID=68986346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024897 WO2020003513A1 (en) 2018-06-29 2018-06-29 Radar device

Country Status (2)

Country Link
JP (1) JP6797330B2 (en)
WO (1) WO2020003513A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021220335A1 (en) * 2020-04-27 2021-11-04 三菱電機株式会社 Radar position calculation device, radar position calculation method, and radar system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5160932A (en) * 1990-07-13 1992-11-03 The Boeing Company Over-the-horizon synthetic aperture radar
JP2002090438A (en) * 2000-09-12 2002-03-27 Hitachi Kokusai Electric Inc Device for detecting location of radio transmission source
JP2002267733A (en) * 2001-03-14 2002-09-18 Hitachi Kokusai Electric Inc Method of detecting position of radio wave transmission source using circular array antenna
US20070273574A1 (en) * 2004-04-05 2007-11-29 Sri International Method and system for multiple target class data recording, processing and display for over-the-horizon radar
JP2008122246A (en) * 2006-11-13 2008-05-29 Toshiba Corp Array antenna system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5444451A (en) * 1992-06-29 1995-08-22 Southwest Research Institute Passive means for single site radio location
JPH07260918A (en) * 1994-03-26 1995-10-13 Kenichi Kawamata Measurement of wave refractive index of ionosphere and atmospheric gas layer via follow-up of wave propagation route and measurement of relative position between target and observation point
JPH10268028A (en) * 1997-03-26 1998-10-09 Kenichi Kawamata Measurement of refractive index of actual sky due to conversion of actual sky to virtual sky
JPH11352208A (en) * 1998-06-09 1999-12-24 Kenichi Kawamata Decision method for orbit of debris and method for changing the same into image
GB2365239A (en) * 2000-07-26 2002-02-13 Alenia Marconi Systems Ltd Near-vertical incidence skywave HF radar
JP2003244052A (en) * 2002-02-21 2003-08-29 Toshiba Corp Communication system and communication method
JP4869187B2 (en) * 2007-09-11 2012-02-08 株式会社東芝 Propagation path calculation device, propagation path calculation method, and recording medium
CN105242274B (en) * 2015-10-26 2017-11-03 南昌大学 ionosphere incoherent scattering radar differential phase detection method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5160932A (en) * 1990-07-13 1992-11-03 The Boeing Company Over-the-horizon synthetic aperture radar
JP2002090438A (en) * 2000-09-12 2002-03-27 Hitachi Kokusai Electric Inc Device for detecting location of radio transmission source
JP2002267733A (en) * 2001-03-14 2002-09-18 Hitachi Kokusai Electric Inc Method of detecting position of radio wave transmission source using circular array antenna
US20070273574A1 (en) * 2004-04-05 2007-11-29 Sri International Method and system for multiple target class data recording, processing and display for over-the-horizon radar
JP2008122246A (en) * 2006-11-13 2008-05-29 Toshiba Corp Array antenna system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021220335A1 (en) * 2020-04-27 2021-11-04 三菱電機株式会社 Radar position calculation device, radar position calculation method, and radar system
JPWO2021220335A1 (en) * 2020-04-27 2021-11-04
JP7098087B2 (en) 2020-04-27 2022-07-08 三菱電機株式会社 Radar position calculation device, radar position calculation method and radar system

Also Published As

Publication number Publication date
JPWO2020003513A1 (en) 2020-12-17
JP6797330B2 (en) 2020-12-09

Similar Documents

Publication Publication Date Title
JP6290792B2 (en) Hybrid radar integrated in a single package
US9885777B2 (en) Detection of stealth vehicles using VHF radar
JP2010520692A5 (en)
JP2007093480A5 (en)
JP2010071889A (en) Radar system mounted on movable body and calibration method
TWI678846B (en) Antenna device and method for calibrating antenna device
US11245198B2 (en) Radar antenna and suitable method for influencing the radiation characteristics of a radar antenna
JP2011109660A (en) Beam steering system of phased array antenna using frequency
US9915728B2 (en) Sub-diffraction limit resolution radar arrays
WO2020003513A1 (en) Radar device
JP6257856B2 (en) Antenna device and antenna excitation method
JP2010197138A (en) Radar device
JP2005140639A (en) Distributed aperture radar system
KR20160086557A (en) Apparatus for adjusting radiation pattern of a radar antenna and a radar apparatus for a vehicle
JP5600464B2 (en) Radar apparatus and computer program
JPH08194055A (en) Polarized wave control radar device
US11081791B2 (en) Wireless communication device, control method, and program
JP6415392B2 (en) Signal processing device
TW201719191A (en) Radar antenna system
JP6613802B2 (en) ANTENNA DEVICE, ANTENNA DEVICE CONTROL METHOD, AND ANTENNA DEVICE CONTROL PROGRAM
WO2018138910A1 (en) Antenna device
JP2002168941A (en) Radar system, and method of correcting beam
TWI710785B (en) High resolution spatial angle scanning radar system and its design method
JP6516645B2 (en) Radar equipment
JP2010101694A (en) Azimuth detector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18924329

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2020527144

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18924329

Country of ref document: EP

Kind code of ref document: A1