JPH07260918A - Measurement of wave refractive index of ionosphere and atmospheric gas layer via follow-up of wave propagation route and measurement of relative position between target and observation point - Google Patents

Measurement of wave refractive index of ionosphere and atmospheric gas layer via follow-up of wave propagation route and measurement of relative position between target and observation point

Info

Publication number
JPH07260918A
JPH07260918A JP7944794A JP7944794A JPH07260918A JP H07260918 A JPH07260918 A JP H07260918A JP 7944794 A JP7944794 A JP 7944794A JP 7944794 A JP7944794 A JP 7944794A JP H07260918 A JPH07260918 A JP H07260918A
Authority
JP
Japan
Prior art keywords
cosα
radio wave
point
ionosphere
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7944794A
Other languages
Japanese (ja)
Inventor
Kenichi Kawamata
健一 川俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP7944794A priority Critical patent/JPH07260918A/en
Publication of JPH07260918A publication Critical patent/JPH07260918A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To accurately measure the cosine of the critical incident angle of a wave to an ionosphere by following up the wave from the position of a satellite assumed on the basis of a wave propagation time therefrom and the approximate value of a vertical distance between horizontal planes across the satellite and an observation point on the ground. CONSTITUTION:The virtual point P1 of a satellite (point P) is set on the basis of the approximate value of the 3D position of the point P obtained from a wave transmitted from the satellite, and a linear distance between the point P1 and an observation point A on the ground is divided by a flux (u), thereby establishing a wave propagation time pi. Then, a virtual point P'1 is set on a wave propagation route P1CA with length P1DA kept equal to P'1CA, so that a wave from the point P1 can reach in the propagation time P1. Also, the virtual point P2 of the satellite is established, so as to keep route length P2EA equal to P'1CA, thereby obtaining a vertical distance Lzi. between horizontal planes across the point P2 and the observation point A. As a result, a critical incident angle alphaio when a wave passing the route P2EA enters the interface of a wave rectilinear propagation layer and an ionosphere, can be detected, thereby improving the measurement accuracy of the 3D position of the satellite.

Description

【発明の詳細な説明】Detailed Description of the Invention

【発明が解決しょうとする課題】物標と観測点間の電波
伝搬時間及び垂直距離の概略値から、電離層及び大気ガ
ス層の正確な電波屈折率を測定することにより、物標の
三次元位置を測定精度1mm以内で求めることが出来
る。この技術を使って、上空を高速で飛翔する物標の軌
道決定及びその形・大きさの認識を行なう。又、飛翔体
の推力とその飛翔体の三次元位置の認識技術との巧妙な
インターフェスを取ることにより、その飛翔体のある特
定領域内における案内制御を行なう。
The three-dimensional position of the target can be determined by measuring the accurate radio wave refractive index of the ionosphere and atmospheric gas layer from the approximate values of the radio wave propagation time and vertical distance between the target and the observation point. Can be obtained within a measurement accuracy of 1 mm. Using this technology, the trajectory of a target flying at high speed in the sky is determined and its shape and size are recognized. Further, guidance control in a specific region of the flying object is performed by taking a delicate interface between the thrust of the flying object and the technology for recognizing the three-dimensional position of the flying object.

【従来の技術】GPS衛星からの電波を地上の受信機で
受信して、三次元位置を決定する単独測位では、衛星の
軌道情報、電波伝搬路(電離層と大気ガス層)、観測点
及び衛星の時計の誤差により、C/Aコードによる場合
は、100メートル、Pコードでは16メートルの公称
精度であると言われている。又、GPS衛星からの電波
を複数の受信機で受信して、受信点間の基線長を求める
相対測位において、数センチメートルから数メートル程
度の精度で、単独測位に比較して精度は著しく向上する
が、15分以上2時間程度の測定記録時間を必要とし
て、短時間に結果が得られないだけでなく、受信点及び
衛星の三次元位置を求めることができないという欠点が
ある。
2. Description of the Related Art In single positioning in which radio waves from GPS satellites are received by a receiver on the ground to determine a three-dimensional position, satellite orbit information, radio wave propagation paths (ionosphere and atmospheric gas layer), observation points and satellites are used. Due to the error of the clock, the C / A code has a nominal accuracy of 100 meters, and the P code has a nominal accuracy of 16 meters. Further, in relative positioning in which radio waves from GPS satellites are received by a plurality of receivers and the baseline length between receiving points is obtained, the accuracy is significantly improved from a few centimeters to a few meters, compared to single positioning. However, the measurement recording time of about 15 minutes or more and about 2 hours is required, and not only the result cannot be obtained in a short time, but also the receiving point and the three-dimensional position of the satellite cannot be obtained.

【産業上の利用分野及び発明の効果】[Industrial Application Field and Effect of Invention]

1. 船舶、自動車、列車及び航空機の運行管理。 2. 測地測量への応用。 3. 大規模土木工事への応用。 4. 構造物の変形・移動の監視への応用。 5. 科学観測(地震、火山噴火予知、プレートテクニ
クスの移動)への応用。 6, 海洋観測、宇宙観測への応用。 7. 静止衛星経由盗聴不可電話への応用。 8. 静止衛星経由極小地域放送への応用。 9. 衛星の姿勢制御・追尾。 10.高速飛翔体の制御・追尾。 11.マイクロ波大電力の輸送方式への応用。 12.超遠視レーダへの応用。 本技術の開発により、物標の三次元位置測定が測距精度
ミリメートル以下のレベルで、且キネマテックに測定が
できる。
1. Operation management of ships, cars, trains and aircraft. 2. Application to geodetic survey. 3. Application to large-scale civil engineering work. 4. Application to monitoring deformation / movement of structures. 5. Application to scientific observation (earthquake, volcanic eruption prediction, movement of plate technics). 6, Application to ocean observation and space observation. 7. Application to phones that cannot be eavesdropped via geostationary satellites. 8. Application to micro area broadcasting via geostationary satellite. 9. Attitude control and tracking of satellites. 10. Control and tracking of high-speed flying objects. 11. Application of microwave high power to transportation system. 12. Application to hyperopic radar. With the development of this technology, three-dimensional position measurement of a target can be performed at a level with a range-finding accuracy of millimeters or less, and can be measured kinematically.

【問題を解決するための手段・作用】[Means / actions for solving problems]

【0001】1. 衛星が位置すると仮想される点P1
から放射されるマイクロ波の伝搬経路の正確なフォロ
ー。(図1参照) ある時刻;Tに於て、上空にある衛星の位置する点Pか
ら放射されたマイクロ波が、電波直進層と電離層の界面
上の点Cへ突入後、厚さhkmのn層の平行平面層を通過
して、地上にある点Aに位置する観測点に到達したとす
る。そして、点Pの三次元位置の概略値を求める。い
ま、点Pの三次元位置の概略値によって定義される位置
を点P1とする。尚、点Aの三次元位置は正しく求めら
れているものとする。これにより、点P1と点Aとの間
の直線距離、及び点P1と点Aを通る水平面との間の垂
直距離;Lziが求まる。いま、点P1と点Aとの間の直
線距離を光速度で除し、その商を衛星と観測点間の電波
伝搬時間;Piとする。点P1と点Aを結ぶ直線と電波直
進層と電離層の界面との交点をDとすると、 経路長;P1DA < 経路長;P1CA となる。従って、点P1から放射されたマイクロ波は、
伝搬時間;Piでは、点Aに到達できない。そこで、経
路;P1CA上に点P1'をとり、 経路長;P1DA = 経路長;P1'CA となるようにする。そうすると、ある時刻;Tに於て、
点P1'にあるマイクロ波放射源からのマイクロ波が、経
路;P1'CAを通って点Aにある観測点に到達する。し
かしながら、点P1'と点Aを通る水平面との間の垂直距
離は求められないから、点Cにおけるこのマイクロ波の
入射角も、同様に求めることができない。そこで、ある
時刻;Tに於て、上空にある点P2にマイクロ波放射源
があり、点P2からのマイクロ波は、電波直進層と電離
層の界面上の点Eへ突入後、地上にある点Aに位置する
観測点に到達したとする。このとき、 経路長;P2EA = 経路長;P1'CA 点P2と点Aを通る水平面との間の垂直距離 = Lzi とすると、経路;P2EAのマイクロ波の電波直進層と
電離層との界面上の点Eへ突入したときの入射角;αi0
'は、 cosαi0 '={φ'a・Lzi+φ'c・Lzi-2φ'c・h・Int(Lzi/2h)} /{(φ'a・u±φ'c・v)・Pi} (1) 但し、u;光の速度。 v;地球の自転速度。 h;平行平面層の厚さ。 Int(・・・);括弧内の計算式叉は数値の小数点以下を略し
たもの。 φ'a;マイクロ波の電波直進層と電離層との界面上の一
点へ突入したときの入射角をφ度単位に変化させたとき
のKij-nij特性曲線の傾き。 φ'c;マイクロ波の電波直進層と電離層との界面上の一
点へ突入したときの入射角をφ度単位に変化させたとき
のKij・nij-nij特性曲線の傾き。 Kij;各電波
経路に対応する各平行平面層の電波屈折係数。 Kij={(1-sin2αi0)/(nij 2-sin2αi0)}1/2ij;各電波経路に対応する各平行平面層の電波屈折
率。 i;各電波経路を表す記号。 j;電波直進層と電離層との界面から地表面方向に何番目
に位置する平行平面層かを表す記号。 観測点Aで受信するマイクロ波の経路は、式(1)にお
いて、hを限りなくゼロに近ずけたときのものである。
いま、式(1)において、hを限りなくゼロに近ずけた
ときのマイクロ波が、電波直進層と電離層との界面へ突
入したときの入射角を臨界入射角と呼び、αi0a'で表す
と、式(1)から、 h→0のとき、φ'c・Lzi-2・φ'c・h・Int(Lzi/2h)→0 から、 cosαi0a'=φ'a・Lzi/{(φ'a・u±φ'c・v)・Pi} (2) 式(2)において、Lzi、Pi、u及びvが確定している
から、αi0a'も確定する。尚、φ'a及びφ'cはcos
αi0a'の二次式として表される。詳細、平成3年特許願
第361415号参照のこと。然しながら、Lzi及びP
iが全然誤差のない衛星と観測点間の垂直距離及び伝搬
時間であっても、式(1)又は式(2)の特性から、こ
の様にして求めたαi0 a'は、10-5度より小さい誤差を
含む。従って、この誤差を10-13度より小さくする
為、後段記載の臨界入射角の真値を求める方法により、
補正を行なう必要がある。この様にして補正した臨界入
射角を式(2)のαi0a'へ代入し、尚φ'a及びφ'cはc
osαi0a'の二次式ではあるが、αi0a'の補正を行なう
前の値を、そのまま使用する。 経路長;P2EA=経路長;P1'CAから、∠EP21'
≒π/2 従って、点P1から経路;AEP2の点P2を越えた延長
線上に垂線を下ろし、その足を点P3とすると、△P1
1'P2≡△P132から、 P11'=P32 故に、ある時刻;Tに於て、上空にある点P3にマイク
ロ波放射源があるとすると、点P3からのマイクロ波
は、経路;P32EAを通り、地上にある点Aに位置す
る観測点に到達する。このときのマイクロ波の伝搬時間
は、点P1から放射されたマイクロ波が、経路;P1CA
を通って観測点Aに到達したときの伝搬時間と等しい。
いま、点P2と点P3を直線で結んだときの点P2と点P3
の間の経路を通過するマイクロ波の伝搬時間をΔPi
すると、 P23=ΔPi・u 従って、点P3から点P2を通る水平面に下ろした垂線の
足をP4とすると、 P34=ΔPi・u・cosαi0 ' 故に、 cosαi0 '={φ'a・(Lzi+ΔPi・u・cosαi0 ')+φ'c・(Lzi+ΔPi・u・cosαi0 ') -2φ'c・h・Int((Lzi+ΔPi・u・cosαi0')/2h)} /{(φ'a・u±φ'c・v)・(Pi+ΔPi)} しかしながら、通常我々が観測するマイクロ波はhを限
りなくゼロに近ずけたときのものであり、このときの入
射角は式(2)からαi0a'で既知であるから、 cosαi0a'=φ'a・(Lzi+ΔPi・u・cosi0a') /{(φ'a・u+φ'c・v)・(Pi+ΔPi)}(3) αi0a '、φ'a、Lzi、u、φ'c、v、Piが確定している
から、式(3)からΔPiが求まる。従って、電波経
路;P1CAに於ける点Cへ突入した入射角をαi0とす
ると、 cosαi0={φa・Lzi+φc・Lzi-2φc・h・Int(Lzi/2h)} /(φa・u±φc・v)・(Pi+ΔPi) (4) 通常、我々が観測するマイクロ波はhを限りなくゼロに
近ずけたものであるから 、 cosαi0a=φa・Lzi/(φa・u±φc・v)・(Pi+ΔPi) (5) この様にして求めたαi0aは、前に述べた様に誤差を含
むから、臨界入射角の真値を求める方法により、補正を
行なう。故に、ある時刻;Tに於ける衛星の位置する点
1から放射されたマイクロ波が電波直進層と電離層と
の界面へ突入するときの入射角の余弦が、式(5)から
確定する。点P1に実際に衛星が位置するか否かが問題
ではなく、仮に点P1に衛星が位置したとして、そのと
きの電波経路をフォローすることが目的である。実際、
点P1に衛星が正確に位置することは稀である。(図1
参照) ある時刻:Tに於て、点Pに実際に衛星が位置したとす
る。点Pにある衛星からのマイクロ波を観測点Aで受信
すると、あたかも、点P1に位置する衛星からのマイク
ロ波を受信したように見えるが、点P1は点Pの近傍に
位置することは確かである。従って、点Pから放射され
たマイクロ波の電離層及び大気ガス層における経路は、
点P1からのそれと極く接近している。そこで、点P1
位置する衛星から受信したものと仮定して、点P1から
放射されると仮定されるマイクロ波の経路を正確にフォ
ローして、点P1と点Aとの間の電波伝搬時間、高さ及
び電波直進層と電離層の界面へ突入する電波の臨界入射
角の余弦を正しく求めることにより、各平行平面層のマ
イクロ波屈折率を得る。(図1参照) 図1に於て、点P3と点P2との間の距離が、電波伝搬経
路距離;P2EAと比較して極めて小さいとき、換言す
れば、Pi》ΔPiのとき、点P3から時刻;(T−Δ
i)のとき放射されたマイクロ波は、経路;P32
Aを通って観測点Aに到達し、式(6)が成立する。 cosαi0a=φa・(Lzi+u・ΔPi・cosαi0a)/{(φa・u±φc・v)・(Pi+ΔPi)}(6) これは、下表より明白である。即ち、ΔPiをいろいろ
変えても、αi0aはほぼ一定であることから立証され
る。従って、次のことが言いうる。即ち、時刻;Tのと
き、点P2に在った電波放射源から放射されたマイクロ
波が、電波直進層と電離層との界面上の一点Eに突入
後、地表面上にある点Aに位置する観測点に到達したと
すると、電波経路;AEP2の点P2を越えた延長線上の
点P3に電波放射源があり、点P3から時刻;(T−P2
3/u)のとき放射されたマイクロ波は、時刻;Tの
とき、点P2から放射されたマイクロ波と同じ電波経路
を通って、点Aに位置する観測点に同時に到達する。
又、次の式が成立する。尚、ΔPi=P23/uで、
i》ΔPiであるとすると、 cosαi0a=φa・(Lzi+u・ΔPi・cosαi0a)/((φa・u±φc・v)・(Pi+ΔPi)) (7) 但し、αi0a;電波直進層と電離層との界面上の一点E
に突入したマイクロ波の臨界入射角。 Pi;点P2から放射されたマイクロ波の伝搬時間。 Lzi;点P2と点Aを通る水平面との間の垂直距離。 φa;電波直進層と電離層との界面へ突入するマイクロ
波の入射角をφ度単位に変化させたときのKij-nij
性曲線の傾き。 φc;電波直進層と電離層との界面へ突入するマイクロ
波の入射角をφ度単位に変化させたときのKij・nij-n
ij特性曲線の傾き。 u; 光の速度。 v; 地球の自転速度。 Kij;各電波経路に対応する各平行平面層の電波屈折係
数。 Kij=cosαi0a/(nij 2-sin2αi0a)1/2ij;各電波経路に対応する各平行平面層の電波屈折
率。 i;各電波経路を表す記号。 j;電波直進層と電離層との界面から地表面方向に何番
目にある平行平面層であるかを表す記号。 Pi+ΔPi(ΔPi) Lzi+u・ΔPi・cosαi0a αi0a (u・ΔPi・cosαi0a) .068001431232363(0) 16699492.96243313(0) 34.99999830259679 .068001441232363(1・10-7) 16699495.41818922(2.45575610) 34.99999830259697 .068001451232363(2・10-7) 16699497.87394533(4.91151220) 34.99999830259671 .068001461232363(3・10-7) 16699500.32970143(7.36726830) 34.99999830259671 .068001471232363(4・10-7) 16699502.78545753(9.82302440) 34.99999830259685 .068001481232363(5・10-7) 16699505.24121363(12.2787805) 34.99999830259686 .068001531232363(1・10-6) 16699517.51999413(24.5575610) 34.99999830259674 .068001631232363(2・10-6) 16699542.07755514(49.1151220) 34.99999830259676 .068001731232363(3・10-6) 16699566.63511614(73.6726830) 34.99999830259691 .068001831232363(4・10-6) 16699591.19267715(98.2302440) 34.99999830259691 .068001931242463(5・10-6) 16699615.75023815(122.787805) 34.99999830259687
1. Virtual point P 1 where the satellite is located
Accurate follow of the propagation path of microwaves radiated from. (See Fig. 1) At a certain time; T, microwaves radiated from the point P where the satellite is located in the sky enter the point C on the interface between the radio wave rectilinear layer and the ionosphere, and then n with a thickness of hkm. It is assumed that the observation point located at the point A on the ground is reached after passing through the parallel plane layer of the layer. Then, the approximate value of the three-dimensional position of the point P is obtained. Now, the location defined by the approximate value of the three-dimensional position of the point P and the point P 1. It is assumed that the three-dimensional position of the point A is correctly obtained. Thus, the linear distance between the point P 1 and point A, and the vertical distance between the horizontal plane passing through the point P 1 and point A; is L zi obtained. Now, the straight line distance between the points P 1 and A is divided by the speed of light, and the quotient is defined as the radio wave propagation time between the satellite and the observation point; P i . If the intersection of the straight line connecting point P 1 and point A and the interface of the radio wave rectilinear layer and the ionosphere is D, then path length; P 1 DA <path length; P 1 CA. Therefore, the microwave radiated from the point P 1 is
At the propagation time; P i , the point A cannot be reached. Therefore, the point P 1 'is set on the route P 1 CA so that the route length P 1 DA = route length P 1 ' CA. Then, at a certain time; T,
The microwave from the microwave radiation source located at the point P 1 ′ reaches the observation point located at the point A through the path; P 1 ′ CA. However, since the vertical distance between the point P 1 ′ and the horizontal plane passing through the point A cannot be obtained, the incident angle of this microwave at the point C cannot be similarly obtained. Then, at a certain time; T, there is a microwave radiation source at a point P 2 in the sky, and the microwave from the point P 2 rushes to the point E on the interface between the radio wave rectilinear layer and the ionosphere, and then on the ground. It is assumed that an observation point located at a certain point A is reached. At this time, the path length; P 2 EA = path length; P 1 'CA The vertical distance between the point P 2 and the horizontal plane passing through the point A = L zi , the path; P 2 EA microwave rectilinear layer Angle of incidence at point E on the interface between the ionosphere and the ionosphere; α i0
' Is cosα i0 ' = {φ'a ・ L zi + φ'c ・ L zi -2φ'c ・ h ・ Int (L zi / 2h)} / {(φ'a ・ u ± φ'c ・ v ) · P i } (1) where u; speed of light. v; Earth's rotation speed. h; parallel plane layer thickness. Int (...); The calculation formula in parentheses or the number after the decimal point is omitted. φ′a: The slope of the K ij -n ij characteristic curve when the incident angle when entering a point on the interface between the microwave straight traveling layer and the ionosphere of the microwave is changed in units of φ degrees. φ'c: The slope of the K ij · n ij −n ij characteristic curve when the incident angle when entering a point on the interface between the microwave straight layer and the ionosphere of the microwave is changed in units of φ degrees. K ij ; Radio wave refraction coefficient of each parallel plane layer corresponding to each radio wave path. K ij = {(1-sin 2 α i0 ) / (n ij 2 -sin 2 α i0 )} 1/2 n ij ; The radio wave refractive index of each parallel plane layer corresponding to each radio wave path. i: A symbol representing each radio wave route. j: A symbol indicating the number of parallel plane layers located in the ground surface direction from the interface between the radio wave rectilinear layer and the ionosphere. The microwave path received at the observation point A is the one when h is approached to zero in the formula (1).
Now, in the formula (1), the incident angle when the microwave when h approaches zero as much as possible enters the interface between the radio wave rectilinear layer and the ionosphere is called the critical incident angle, and is represented by α i0a ' And from the formula (1), when h → 0, from φ'c · L zi -2 · φ'c · h · Int (L zi / 2h) → 0, cos α i0a '= φ'a · L zi / {(Φ'a ・ u ± φ'c ・ v) ・ P i } (2) In equation (2), L zi , P i , u and v are fixed, so α i0a 'is also fixed. . Note that φ'a and φ'c are cos
It is expressed as a quadratic expression of α i0a '. For details, see Japanese Patent Application No. 361415 of 1991. However, Lzi and P
Even if i is the vertical distance and the propagation time between the satellite and the observation point with no error, α i0 a 'obtained in this way is 10 −5 from the characteristics of equation (1) or equation (2). Including an error less than degrees. Therefore, in order to make this error smaller than 10 -13 degrees, by the method of obtaining the true value of the critical incident angle described later,
It is necessary to make a correction. Substituting the critical incident angle corrected in this way into α i0a 'of equation (2), φ'a and φ'c are c
osα i0a 'is a quadratic equation but, alpha I0a' value prior to the correction of, as it is used. Path length; P 2 EA = path length; P 1 'from CA, ∠EP 2 P 1 '
≈ π / 2 Therefore, the path from point P 1 ; if a perpendicular is drawn on the extension line of AEP 2 beyond point P 2 and its foot is point P 3 , ΔP 1 P
From 1′P 2 ≡ΔP 1 P 3 P 2 , P 1 P 1 ′ = P 3 P 2 Therefore, at a certain time; T, if there is a microwave radiation source at point P 3 in the sky, The microwave from the point P 3 passes through the path; P 3 P 2 EA and reaches the observation point located at the point A on the ground. The propagation time of the microwave at this time is that the microwave radiated from the point P 1 has a path; P 1 CA
It is equal to the propagation time when reaching the observation point A through the.
Now, the point P 2 and the point P 3 when connecting the point P 2 and the point P 3 in a straight line
If the propagation time of the microwave passing through the path between the two is ΔP i , then P 2 P 3 = ΔP i · u Therefore, if the foot of the perpendicular line drawn from the point P 3 to the horizontal plane passing through the point P 2 is P 4. , P 3 P 4 = ΔP i · u · cos α i0 , so cosα i0 = {φ′a · (L zi + ΔP i · u · cos α i0 ) + φ c · (L zi + ΔP i · u ・ cosα i0 ' ) -2φ'c ・ h ・ Int ((L zi + ΔPi ・ u ・ cosα i0 ') / 2h)} / {(φ'a ・ u ± φ'c ・ v) ・ (P i + ΔP i )} However, the microwaves that we usually observe are those when h approaches zero as much as possible, and the angle of incidence at this time is known from the equation (2) by α i0a ' cosα i0a '= φ'a ・ (L zi + ΔP i・ u ・ cos i0a ') / {(φ'a ・ u + φ'c ・ v) ・ (P i + ΔP i )} (3) α i0a Since ' , φ'a, L zi , u, φ'c, v and P i are determined, ΔP i can be obtained from the equation (3). Therefore, let α i0 be the angle of incidence at point C in the radio wave path P 1 CA, and cos α i0 = {φa ・ L zi + φc ・ L zi -2φc ・ h ・ Int (L zi / 2h)} / (φa ・ u ± φc ・ v) ・ (P i + ΔP i ) (4) Usually, the microwaves we observe are those in which h is as close to zero as possible, so cosα i0a = φa ・ L zi / (φa ・ u ± φc ・ v) ・ (P i + ΔP i ) (5) Since α i0a thus obtained includes an error as described above, the true value of the critical incident angle is Correction is made according to the required method. Therefore, the cosine of the incident angle when the microwave radiated from the point P 1 where the satellite is located at a certain time T enters the interface between the radio wave rectilinear layer and the ionosphere is determined from the equation (5). Rather than whether actual satellite point P 1 is located is a problem, as if the satellite to the point P 1 is located, it is an object to follow a wave path at that time. In fact
The satellite is rarely located exactly at point P 1 . (Fig. 1
Reference) At a certain time: T, it is assumed that the satellite is actually located at the point P. When the microwave from the satellite at the point P is received at the observation point A, it looks as if the microwave from the satellite at the point P 1 was received, but the point P 1 is located near the point P. Is certain. Therefore, the path of the microwave radiated from the point P in the ionosphere and atmospheric gas layer is
It is very close to that from point P 1 . Therefore, assuming that it is received from the satellite located at the point P 1 , the path of the microwave assumed to be radiated from the point P 1 is accurately followed, and the line between the points P 1 and A is The microwave refraction index of each parallel plane layer is obtained by correctly obtaining the radio wave propagation time, height, and the cosine of the critical incident angle of the radio wave entering the interface between the radio wave straight traveling layer and the ionosphere. (See FIG. 1) In FIG. 1, when the distance between the point P 3 and the point P 2 is extremely small compared to the radio wave propagation path distance; P 2 EA, in other words, P i >> ΔP i , The time from point P 3 ; (T−Δ
The microwave radiated when P i ) is the path; P 3 P 2 E
The observation point A is reached through A, and the equation (6) is established. cosα i0a = φa · (L zi + u · ΔP i · cos α i0a ) / {(φa · u ± φc · v) · (P i + ΔP i )} (6) This is apparent from the table below. That is, it is proved that α i0a is almost constant even if ΔP i is changed variously. Therefore, the following can be said. That is, at time; T, the microwave radiated from the radio wave radiation source located at the point P 2 rushes to a point E on the interface between the radio wave rectilinear layer and the ionosphere, and then to a point A on the ground surface. Assuming that the observation point is located, there is a radio wave radiation source at a point P 3 on the extension line beyond the point P 2 of the radio wave path AEP 2 , and the time from the point P 3 ; (T−P 2
The microwave radiated at P 3 / u) reaches the observation point located at the point A at the time; T through the same radio path as the microwave radiated from the point P 2 at the same time.
Also, the following equation holds. In addition, if ΔP i = P 2 P 3 / u,
If P i >> ΔP i , then cosα i0a = φa ・ (L zi + u ・ ΔP icosα i0a ) / ((φa ・ u ± φc・ v) ・ (P i + ΔP i )) (7) However, α i0a ; a point E on the interface between the rectilinear layer and the ionosphere
Critical angle of incidence of microwaves rushing into. P i : Propagation time of the microwave radiated from the point P 2 . L zi ; vertical distance between the point P 2 and a horizontal plane passing through the point A. φa: slope of the K ij -n ij characteristic curve when the incident angle of the microwave entering the interface between the radio wave rectilinear layer and the ionosphere is changed in units of φ degrees. φ c; K ij · n ij -n when the incident angle of the microwave entering the interface between the radio wave rectilinear layer and the ionosphere is changed in units of φ degrees
ij The slope of the characteristic curve. u; speed of light. v; Earth's rotation speed. K ij : Radio wave refraction coefficient of each parallel plane layer corresponding to each radio wave path. K ij = cos α i0a / (n ij 2 -sin 2 α i0a ) 1/2 n ij ; Radio wave refractive index of each parallel plane layer corresponding to each radio wave path. i: A symbol representing each radio wave route. j: A symbol indicating the number of parallel plane layers in the ground surface direction from the interface between the radio wave rectilinear layer and the ionosphere. P i + ΔP i (ΔP i ) L zi + u ・ ΔP icosα i0a α i0a (u ・ ΔP icosα i0a ) .068001431232363 (0) 16699492.96243313 (0) 34.99999830259679 .068001441232363 (1 ・ 10 -7 ) 16699495.41818922 (2.45575610) 34.99999830259697 .068001451232363 (2-10-7) 16,699,497.87394533 (4.91151220) 34.99999830259671 .068001461232363 (3-10-7) 16,699,500.32970143 (7.36726830) 34.99999830259671 .068001471232363 (4-10-7) 16,699,502.78545753 (9.82302440) 34.99999830259685 .068001481232363 (5 · 10 -7) 16,699,505.24121363 (12.2787805) 34.99999830259686 .068001531232363 (1 · 10 -6) 16,699,517.51999413 (24.5575610) 34.99999830259674 .068001631232363 (2 · 10 -6) 16,699,542.07755514 (49.1151220) 34.99999830259676 .068001731232363 (3 · 10 -6) 16,699,566.63511614 (73.6726830 ) 34.99999830259691 .068001831232363 (4 ・ 10 -6 ) 16699591.19267715 (98.2302440) 34.99999830259691 .068001931242463 (5 ・ 10 -6 ) 16699615.75023815 (122.787805) 34.99999830259687

【臨界入射角の真値を求める方法】しかしながら、この
様にして求めたαi0a及びαi0a'には、かなりの誤差が
含まれる。そこで、αi0a及びαi0a'を臨界入射角の計
算値と以後呼ぶことにして、その真値との差を求める。
そこで、図2の様なモデルを考案する。即ち、地表面か
ら上空10kmまでの領域を、厚さ:hメートルの観測
点Aを通る水平面に平行な平面層に分割し、地表面から
上空10kmより高い領域は、電波直進層として、電波
は直進する領域とする。そして、地表面から上空10k
mまでの領域を、以後電離層及び大気ガス層と称する。
電離層及び大気ガス層の電波屈折率は、直線的に変化す
るものとして、 y=a・x+b で表されるものとする。但し、b;観測点Aに於ける電
波屈折率、a;電波屈折率の傾き、x;観測点Aからの
高さ、y;観測点Aからの高さxの点の電波屈折率。そ
して、各平行平面層の電波屈折率は、各平行平面層の上
面と下面の電波屈折率の相加平均とし、電波伝搬時間を
一定とし、臨界入射角を変化させながら、各平行平面層
の厚さを変えたときの電離層及び大気ガス層を通過する
電波経路長、観測点と電波放射源との垂直距離及び各平
行平面層の電波屈折率の総和を求める。 以上の操作を
電波屈折率の傾き;aをある一定の割合で変化させなが
ら行ない、表1から表10を作成する。表1から表10
より判る様に、各平行平面層の電波屈折率の総和は、あ
る一定の割合(本モデルの場合、.25)で変化する。 表1から表10までの説明。 臨界入
射角の真値の単位変化量
[Method for obtaining the true value of the critical incident angle] However, α i0a and α i0a 'obtained in this way include a considerable error. Therefore, α i0a and α i0a 'will be called hereafter the calculated values of the critical incident angle, and the difference from the true value will be obtained.
Therefore, we devise a model as shown in FIG. That is, the area from the ground surface to 10 km above the ground is divided into plane layers parallel to the horizontal plane passing through the observation point A having a thickness of h meters, and the area higher than 10 km above the ground surface is a radio wave straight layer, and The area goes straight. And 10k above the ground surface
The region up to m is hereinafter referred to as the ionosphere and atmospheric gas layer.
The radio wave refractive indices of the ionosphere and the atmospheric gas layer are assumed to change linearly and are represented by y = a · x + b. However, b: radio wave refractive index at the observation point A, a: inclination of the radio wave refractive index, x: height from the observation point A, y: radio wave refractive index at a point of height x from the observation point A. Then, the radio wave refractive index of each parallel plane layer is the arithmetic mean of the radio wave refractive index of the upper surface and the lower surface of each parallel plane layer, the radio wave propagation time is constant, and the critical incident angle is changed, The total length of the radio wave path through the ionosphere and atmospheric gas layer when the thickness is changed, the vertical distance between the observation point and the radio wave radiation source, and the radio wave refractive index of each parallel plane layer are obtained. The above operation is performed while changing the gradient of the radio wave refractive index; a at a certain ratio, and Tables 1 to 10 are created. Table 1 to Table 10
As can be seen, the sum of the radio wave refractive indexes of the parallel plane layers changes at a certain fixed rate (0.25 in the case of this model). Description of Table 1 to Table 10. Unit change in true value of critical incident angle

【表1】 (単位:度) Pi.068001431232363 Δα:1 a :-2.56D-05 電波伝搬時間(単位:秒) b :1.000301 αi0a35 電離層及び大気ガス層の電波屈折率の傾き h :1000 観測点Aに於ける電波屈折率 臨界入射角の真値(単位:度) 電離層及び大気ガス層内の平行平面層の厚さ(単位:m) 0 0 12.20671089556446 16699.49345258485 10.00173 0 1 12.20671089628706 16699.49345258426 100.0173 0 2 12.20671089629429 16699.49345258425 1000.173 0 3 12.20671089629436 16699.49345258425 10001.73 1 0 12.35955151962885 16492.87718514699 10.00173 1 1 12.35955152043641 16492.87718514633 100.0173 1 2 12.35955152044449 16492.87718514633 1000.173 1 3 12.35955152044458 16492.87718574633 10001.73 ' ' ' 電離層及び大気ガス層に於ける電波屈折率の総和 観測点Aと電波放射源との垂直距離(単位:km) '電離層及び大気ガス層を通過する電波の経路長(単
位:km) '電離層及び大気ガス層内の平行平面層の厚さを表す
指数で、1000*10-3=1mであることを表す。 '臨界入射角の真値の変化率にこの数値を乗じ、臨界
入射角の真値の変化量を表す。この場合、臨界入射角の
真値は、36度となる。 表11及び表11−1から判る様に、電離層及び大気ガ
ス層内の平行平面層の厚さを表す指数が3以上、即ち、
電離層及び大気ガス層内の各平行平面層の厚さが1m以
下になると、電離層及び大気ガス層を通過する電波経路
長はほとんど変化しなくなる。このことは、電離層及び
大気ガス層内の各平行平面層の厚さを限りなくゼロに近
ずけたときの我々が通常観測する電波と完全に一致して
いることを表す。従って、電離層及び大気ガス層内の各
平行平面層の厚さを1mとして、表1から表10より、 (1) 電波伝搬時間及び観測点と電波放射源との垂直
距離から、臨界入射角の計算値、Kij-nij特性曲線の
傾き:φa及びKij・nij-nij特性曲線の傾き:φcを
求める。 (2) 電離層及び大気ガス層内の各平行平面層の電波
屈折率の総和をΣj=0 nnijで表すと、 Σj=0 nnij={u・Lzi±v・Lzi+φa・h・n・u-2・h・u・Int(Lzi/2h)±φc・h・n・v} /(φa・u±φc・v)・h (8) (平成3年特許願第36141号9頁式(34)参照) h=1mであるから、hを限りなくゼロに近ずけたとき
と等価である。即ち、 h→0 u・Lzi-2・h・u・Int(Lzi/2h)→0 従って、式(8)から、 Σj=0 nnij=(±v・Lzi+φa・h・n・u±φc・h・n・v)/(φa・u±φc・v)・h =±v・Lzi/(φa・u±φc・v)+n (9) 前項(1)で求めたφa及びφcを、式(9)へ代入し
て、Σj=0 nnij(以後、電離層及び大気ガス層内の各平
行平面層の電波屈折率の総和の計算値と呼ぶ。)を求め
る。以上の操作を、電波伝搬時間を一定とし、臨界入射
角の真値を1度単位に変更して、表12から表21を作
成する。 (3) 電離層及び大気ガス層に於ける電波屈折率の総
和:Riを横軸にとり、臨界入射角の真値とその計算値
との差を縦軸にとり、グラフに表すと図3の様に、臨界
入射角の真値のそれぞれに対応して、異った曲線を描
く。臨界入射角の真値とその計算値との差をYと表す
と、表11、12、・・・・・、21から、XとYとの
間は、表22−1の様に表される。又、表22−1で表
されるXとYとの関係を数式で表すと表22−2の様に
なる。いま、表22−2の10個の数式を1個の数式に
まとめて、式(10)の様に表示する。 Y=f(αi0a)・X2+g(αi0a)・X+h(αi0a) (10) 但し、αi0a:臨界入射角の真値 X:電離層及び大気ガス層に於ける電波屈折率の総和:
iの内、平行平面層の個数に関係しない部分。 Y:臨界入射角の真値とその計算値との差 f(αi0a),g(αi0a),h(αi0a):αi0aのある関数である
ことを表す。 (4) 前項(2)で求めた電離層及び大気ガス層の各
平行平面層の電波屈折率の総和の計算値:Σj=0 nnij
うちの平行平面層の個数に関係しない部分を求める。こ
の部分をZと表すと、表11、12、・・・・・、21
から、XとZとの間は、表23−1及び表23−2で表
される。表23−1及び表23−2で表されるXとZと
の関係を数式で表すと、表23−3で表される。表23
−3は、臨界入射角の真値毎に不連続で表示されてい
る。いま、これを連続する臨界入射角の真値に対応させ
て表示すると、 Z=k(αi0a)・X2+l(αi0a)・X+m(αi0a) (11) 但し、αi0a:臨界入射角の真値 X:電離層及び大気ガス層内に於ける電波屈折率の総
和:Riの内、平行平面層の個数に関係しない部分。 Z:電離層及び大気ガス層内の各平行平面層の電波屈折
率の総和の計算値:Σj=0 nijの内の平行平面層の個数
に関係しない部分。 k(αi0a),l(αi0a),m(αi0a):αi0aのある関数である
ことを表す。 (5) 前項(1)で求めた臨界入射角の計算値をWで
表すと、表11、12、・・・・・、21から、XとW
との間は、表24−1で表される。表24−1で表され
るXとWとの関係を数式で表すと、表24−2で表され
る。表24−2は、臨界入射角の真値毎に不連続で表示
されている。いま、これを連続する臨界入射角の真値に
対応させて表示すると、 W=p(αi0a)・X2+q(αi0a)・X+r(αi0a) (12) 但し、αi0a:臨界入射角の真値 X:電離層及び大気ガス層内に於ける電波屈折率の総
和:Riの内、平行平面層の個数に関係しない部分。 W:臨界入射角の計算値。 p(αi0a),q(αi0a),r(αi0a):αi0aのある関数である
ことを表す。 W及びZは、前項(1)及び(2)から確定している。
従って、式(2)、(3)及び(4)から、X、Y及び
αi0aを求めることができる。これまで、臨界入射角の
真値が、35度から44度の範囲について行なわれたの
で、天空の大部分をカバーする為、臨界入射角の真値の
範囲が、 15°〜25° 25°〜35° 44゜〜55° 55°〜65° 65°〜75° についても同様なことを行なう。そして、臨界入射角の
計算値から臨界入射角の真値の範囲を定めて、その臨界
入射角を求める。実際の臨界入射角の真値を求めるに
は、地表面から上空1000kmまでの領域を、厚さ:
1mの観測点を通る水平面に平行な平面層に分割し、前
の小モデルと同様なことを行なう。
[Table 1] (Unit: degree) P i : .068001431232363 Δα: 1 a: -2.56D-05 Radio wave propagation time (unit: seconds) b: 1.000301 α i0a : 35 Slope of radio wave refractive index of ionosphere and atmospheric gas layer h: 1000 Observation Radio wave refractive index at point A True value of critical incidence angle (unit: degree) Thickness of parallel plane layer in ionosphere and atmospheric gas layer (unit: m) 0 0 12.20671089556446 16699.49345258485 10.00173 0 1 12.20671089628706 16699.49345258426 100.0173 0 2 12.20671089629429 16,699.49345258425 1000.173 0 3 12.20671089629436 16,699.49345258425 10001.73 1 0 12.35955151962885 16,492.87718514699 10.00173 1 1 12.35955152043641 16,492.87718514633 100.0173 1 2 12.35955152044449 16492.87718514633 1000.173 1 3 12.35955152044458 16,492.87718574633 10001.73 '''total observation point a and radio source of ionospheric and in radio refractive index in the atmosphere gas layer Vertical distance (unit: km) 'Path length of radio wave passing through ionosphere and atmospheric gas layer (unit: km)' Ionization It is an index showing the thickness of the layer and the plane-parallel layer in the atmospheric gas layer, and indicates that 1000 * 10 -3 = 1 m. 'This value is multiplied by the rate of change of the true value of the critical incident angle to express the amount of change of the true value of the critical angle of incidence. In this case, the true value of the critical incident angle is 36 degrees. As can be seen from Table 11 and Table 11-1, the index representing the thickness of the plane-parallel layer in the ionosphere and atmospheric gas layer is 3 or more, that is,
When the thickness of each parallel plane layer in the ionosphere and the atmospheric gas layer becomes 1 m or less, the radio path length passing through the ionosphere and the atmospheric gas layer hardly changes. This means that it is in perfect agreement with the radio waves that we normally observe when the thickness of each parallel plane layer in the ionosphere and atmospheric gas layer approaches zero as much as possible. Therefore, assuming that the thickness of each parallel plane layer in the ionosphere and atmospheric gas layer is 1 m, from Table 1 to Table 10, (1) From the radio wave propagation time and the vertical distance between the observation point and the radio wave radiation source, the critical incident angle Calculated values, the slope of the K ij -n ij characteristic curve: φa and the slope of the K ij · n ij -n ij characteristic curve: φc are obtained. (2) When the sum of the radio refractive index of the parallel planar layers of the ionosphere and the atmosphere gas layer expressed by Σ j = 0 n n ij, Σ j = 0 n n ij = {u · Lzi ± v · Lzi + φa・ H ・ n ・ u-2 ・ h ・ u ・ Int (Lzi / 2h) ± φc ・ h ・ n ・ v} / (φa ・ u ± φc ・ v) ・ h (8) (Patent application in 1991) No. 36141 page 9 formula (34)) Since h = 1 m, it is equivalent to when h approaches zero as much as possible. That is, h → 0 u · L zi −2 · h · u · Int (L zi / 2h) → 0 Therefore, from equation (8), Σ j = 0 n n ij = (± v · L zi + φa · h ・ n ・ u ± φc ・ h ・ n ・ v) / (φa ・ u ± φc ・ v) ・ h = ± v ・ L zi / (φa ・ u ± φc ・ v) + n (9) Previous item (1 Substituting φa and φc obtained in) into equation (9), Σ j = 0 n n ij (hereinafter referred to as the calculated value of the sum of the radio wave refractive indices of the parallel plane layers in the ionosphere and atmospheric gas layer). Ask). With the above operation, the radio wave propagation time is kept constant, and the true value of the critical incident angle is changed in units of 1 degree, and Tables 12 to 21 are created. (3) Sum of radio wave refractive indices in the ionosphere and atmospheric gas layer: R i is plotted on the horizontal axis, and the difference between the true value of the critical incident angle and its calculated value is plotted on the vertical axis. Then, different curves are drawn corresponding to the true values of the critical incident angles. When the difference between the true value of the critical incident angle and its calculated value is represented by Y, from Tables 11, 12, ..., 21, the space between X and Y is represented as shown in Table 22-1. It Further, the relationship between X and Y shown in Table 22-1 can be expressed as shown in Table 22-2. Now, the ten formulas in Table 22-2 are combined into one formula and displayed as in formula (10). Y = f (α i0a ) ・ X 2 + g (α i0a ) ・ X + h (α i0a ) (10) where α i0a : True value of critical incident angle X: Radio refraction in ionosphere and atmospheric gas layer Sum of rates:
A portion of R i that is not related to the number of parallel plane layers. Y: Difference between the true value of the critical incident angle and its calculated value f (α i0a ), g (α i0a ), h (α i0a ): It is a certain function of α i0a . (4) Calculated value of the sum of the radio wave refractive indices of the parallel plane layers of the ionosphere and atmospheric gas layer obtained in (2) above: Σ j = 0 n n ij , which is not related to the number of parallel plane layers. Ask. When this part is expressed as Z, Tables 11, 12, ..., 21
Therefore, between X and Z is represented by Table 23-1 and Table 23-2. When the relationship between X and Z shown in Table 23-1 and Table 23-2 is expressed by a mathematical expression, it is shown in Table 23-3. Table 23
-3 is discontinuously displayed for each true value of the critical incident angle. Now, if this is displayed in correspondence with the true values of the continuous critical incident angles, Z = k (α i0a ) ・ X 2 + l (α i0a ) ・ X + m (α i0a ) (11) where α i0a : True value of critical incident angle X: Sum of radio wave refractive indices in ionosphere and atmospheric gas layer: Part of R i that is not related to the number of parallel plane layers. Z: Calculated value of the sum of the radio wave refractive indices of the parallel plane layers in the ionosphere and the atmospheric gas layer: Σ j = 0 n n ij , which is not related to the number of parallel plane layers. k (α i0a ), l (α i0a ), m (α i0a ): It is a function of α i0a . (5) When the calculated value of the critical incident angle obtained in (1) above is expressed as W, from Tables 11, 12, ...
The space between and is shown in Table 24-1. If the relationship between X and W shown in Table 24-1 is represented by a mathematical expression, it is shown in Table 24-2. Table 24-2 is displayed discontinuously for each true value of the critical incident angle. Now, when this is displayed in correspondence with the true values of the continuous critical incident angles, W = p (α i0a ) ・ X 2 + q (α i0a ) ・ X + r (α i0a ) (12) where α i0a : True value of critical incident angle X: Sum of radio wave refractive indices in ionosphere and atmospheric gas layer: Part of R i that is not related to the number of parallel plane layers. W: Calculated value of the critical incident angle. p (α i0a ), q (α i0a ), r (α i0a ): It is a certain function of α i0a . W and Z are determined from the previous items (1) and (2).
Therefore, X, Y and α i0a can be obtained from the equations (2), (3) and (4). Up to now, the true value of the critical incident angle has been performed in the range of 35 degrees to 44 degrees. Therefore, in order to cover most of the sky, the true value of the critical incident angle is 15 ° to 25 ° 25 ° The same applies to ˜35 ° 44 ° to 55 ° 55 ° to 65 ° 65 ° to 75 °. Then, the range of the true value of the critical incident angle is determined from the calculated value of the critical incident angle, and the critical incident angle is obtained. To obtain the true value of the actual critical incident angle, the area from the ground surface up to 1000 km above
Divide into plane layers parallel to the horizontal plane that passes 1 m observation point, and do the same as the previous small model.

【0002】2. 地表面から上空1000kmまでの領
域を、観測点を通る水平面に平行なn個の平行平面層に
分割し、各平行平面層の電波屈折率を求める。(図5参
照) 層1の電波屈折率の真値;X1 層2の電波屈折率の真値;X2 層1の電波屈折率の初期値;X1 ' 層2の電波屈折率の初期値;X2 ' 層1の電波屈折率の誤差;ΔX1 ' 層2の電波屈折率の誤差;ΔX2 ' 電波直進層と電離層との界面へ突入するマイクロ波の入
射角;α0 層1のマイクロ波の屈折角;α1 層2のマイクロ波の屈折角;α2 α0の余弦に対応する二つの特性曲線の傾き;a、c 層1を通過するマイクロ波の経路長とα0の余弦との積
と、層2を通過するマイクロ波の経路長とα0の余弦と
の積の和の真値;A 層1を通過するマイクロ波の経路長とα0の余弦との積
と、層2を通過するマイクロ波の経路長とα0の余弦と
の積の和の初期値;A' 層1を通過するマイクロ波の経路長とα0の余弦との積
と、層2を通過するマイクロ波の経路長とα0の余弦と
の積の和の誤差;ΔA' とする。 c・X1+d+c・X2+d=A (a・X1+b)・X1+(a・X2+b)・X2=A c+d=1 a+b=1 X1=X1'+ΔX1' X2=X2'+ΔX2' A=A'+ΔA' が成立する。式、、及びの成立の詳細について
は、平成3年特許願第361415号参照のこと。、
、、及びをへ代入する。 c・(X1'+ΔX1')+1-c+c・(X2'+ΔX2')+1-c=A'+ΔA' ∴ ΔX1'+ΔX2'={A'+ΔA'-2・(1-c)}/c-(X1'+X2') より、 a・X1 2+b・X1+a・X2 2+b・X2=A a・(X1 2+X2 2)+b・(X1+X2)=A (8-1) より、 c・(X1+X2)+2・d=A ∴ X1+X2=(A-2・d)/c (8-2) (8-2)を(8-1)へ代入して、 a・(X1 2+X2 2)+b・(A-2・d)/c=A 、、、及びをへ代入する。 (X1'+ΔX1')2+(X2'+ΔX2')2={A'+ΔA'-(b/c)・(A'+ΔA')+2・(b・d)/c}/a ={1-b/c)(A'+ΔA')+2・(b・d)/c}/a X1'2+2・X1'・ΔX1'+ΔX1'2+X2'2+2・X2'・ΔX2'+ΔX2'2 ={(1-(1-a)/c)・(A'+ΔA')+2・(1-a)・(1-c)/c}/a ' ΔX1 '2≒0、ΔX2 '2≒0から、 X1'・ΔX1'+X2'・ΔX2'=〔{(a+c-1)・(A'+ΔA')+2・(1-a-c+a・c)}/(a・c) -(X1'2+X2'2)〕/2 (10) の両辺にX2'を掛ける。 X2'・ΔX1'+X2'・ΔX2'=X2'・〔{A'+ΔA'-2・(1-c)}/c-(X1'+X2')〕 (11) (11)-(10)から、 (X2'-X1')・ΔX1'=X2'・{(A'+ΔA'-2・(1-c))/c-(X1'+X2')} -(1/2)・{((a+c-1)・(A'+ΔA')+2・(1-a-c+a・c))/(a・c)-(X1'2+X2'2)} (12) いま、 {A'-2・(1-c)}/c-(X1'+X2')=B (13) (1/2)・〔{(a+c-1)・A'+2(1-a-c+a・c)}/(a・c)-(X1'2+X2'2)〕=D (14) とおく。(12)、(13)及び(14)から、 (X2'-X1')・ΔX1'=X2'・B-D+(X2'/c)・ΔA'-(1/2)・{(a+c-1)/(a・c)}・ΔA' =X2'・B-D+{X2'/c-(1/2)・(a+c-1)/(a・c)}・ΔA' (15) の両辺にX1'を掛ける。 X1'・ΔX1'+X1'・ΔX2'=X1'・{(A'+ΔA'-2・(1-c))/c-(X1'+X2')} (16) (16)-(10)から、 (X1'-X2')・ΔX2'=X1'・{(A'+ΔA'-2・(1-c))/c-(X1'+X2')} -(1/2)・〔{(a+c-1)・(A'+ΔA')+2・(1-a-c+a・c)}/(a・c)-(X1'2+X2'2)〕 (17) (13)、(14)を(17)へ代入する。 (X1'-X2')・ΔX2'=X1'・B-D+(X1'/c)・ΔA'-(1/2)・{(a+c-1)/(a・c)}・ΔA' =X1'・B-D+{(X1'/c)-(1/2)・(a+c-1)/(a・c)}・ΔA' (18) (15)から、 ΔA'={(X2'-X1')・(X1-X1')-X2'・B+D}/{X2'/c-(1/2)((a+c-1)/(a・c))} (19) (18)から、 ΔA'={(X1'-X2')・(X2-X2')-X1'・B+D}/{X1'/c-(1/2)((a+c-1)/(a・c))} (20) X1'、X2'、B、D、a及びcは確定しているから、 (19)は、ΔA'=m・X1+n (21) (20)は、ΔA'=p・X2+q (22) で表される。m・p<0、n・q<0から、(21)及び(22)をグラフ
で表すと、図2の様になる。X1'、X2'として、USA標
準大気の屈折率を使用する為、通常X1'<X1、X2'<X2であ
るから、各層の電波屈折率の初期値をその真値に近ずけ
るには、ΔA'の絶対値を減らしながら、X1'、X2'を増加
させることにより、X1及びX2に近ずける必要がある。し
かるに、図4からΔA'の絶対値を減らすと、X1'とX2'
は、一方が増えると他方が減る関係にある。従って、(2
1)と(22)のいずれか一方を(21)と(22)の交点を通り、勾
配の絶対値が等しく、符号の異る直線に変換する。 ΔA'=-p・X2+q' (23) (21)及び(23)から、一方の屈折率を定めると、ΔA'は定
まる。従って、その結果として、他方の層の屈折率も確
定する。そして、いま定めたX1及びX2が各層の電波屈折
率の真値を表すとすれば、 A'+ΔA'=cosα0/(1-sin2α0/X1 2)1/2+cosα0/(1-sin2α0/X2 2)1/2=A (24) が成立しなければならない。 A'=cosα0/(1-sin2α0/X1'2)1/2+cosα0/(1-sin2α0/X2'2)1/2 (24') で表示されるが、然しながら、表25、26及び27か
ら判る様に、各層の電波屈折率の組み合わせに基ずく固
有の誤差値を有する為、(24)は成立しない。即ち、大気
ガス層及び電離層の互いに相隣る平行平面層の電波屈折
率、電波直進層と電離層の界面へ突入する電波の入射角
そして大気ガス層及び電離層の互いに相隣る平行平面層
を通過する電波経路長の間に(25)の関係がある。 cosαi0・(lij+lij+1)=ci・X1+di+ci・X2+di (25) αi0;電波直進層と電離層との界面へ突入するマイクロ
波の入射角。 lij、lij+1;大気ガス層及び電離層の互いに相隣る平行
平面層を通過するマイクロ波経路長。 ci、di;電波経路対応のKij・nij-nij特性曲線を表す
勾配と定数。但し、ci+di=1 いま、各層の電波屈折率の組み合わせに基ずく固有の誤
差値をΔA''とすると、 ΔA''=A-(A'+ΔA') (26) ΔA''を求める為、(21)、(24)及び(26)を用いて、表2
5、表26及び表27で表される数表を作成する。A−
(A’+ΔA’)を縦軸に、X2を横軸に表示すると図5
の様に表示される。即ち、他方の層の電波屈折率;X2
対応して、ΔA''は(27)で表される。 ΔA''=ζ・X2+η (27) 但し、ζは他方の層の電波屈折率;X2の範囲に対応した
ある一定の値を取るが、ηは一方の層の電波屈折率;X1
の範囲に対応した直線を描く。即ち、 η=κ・X1+ξ (28) (27)、(28)から、 ΔA''=ζ・X2+κ・X1+ξ (29) (29)は、ΔA''を表す近似式である為、(29)の左辺と右
辺の値は一致しない。そこで、この誤差を数表で表す
と、表25、表26及び表27の右端の様になる。又、
グラフで表すと、図6の様に放物線を描く。従って、こ
れを数式で表すと、 ΔA''-(ζ・X2+κ・X1+ξ)=ε・(X2-ν)2+ρ・(X1-τ)2+χ そうすると、一方の層の電波屈折率;X1を基準にして、
A-(A'+ΔΛ)=0となるΔΛを求めると、 ΔΛ=m・X1+n+ζ・X2+κ・X1+ξ+ε・(X2-ν)2+ρ・(X1-τ)2+χ (30) となる。次に、他方の層の電波屈折率;X2を基準にし
て、A-(A'+ΔΛ)=0となるΔΛを求めると、表28、表
29及び表30そして図7から同様に、 ΔΛ=-p・X2+q'+ζ'・X1+κ'・X2+ξ'+ε'・(X1-ν')2+ρ'・(X2-τ')2+χ' (31) (24)から、 cosα0/(1-sin2α0/X1 2)1/2+cosα0/(1-sin2α0/X2 2)1/2=A'+ΔΛ (31') 又、(25)から、 c・X1+d+c・X2+d=A'+ΔΛ (32) cosαi0={φa・Lzi+φc・Lzi-2・φc・h・Int(Lzi/2h)} /{(φa・u±φc・v)・Pi} (33) Lzi=n・h+u・Pi・cosαi0-hΣj=0 nKij・nij (34) h→0のときのマイクロ波を受信している。このとき、 φc・Lzi-2・φc・h・Int(Lzi/2h)→0 (35) いま、観測点で受信したマイクロ波が、電波直進層と電
離層との界面へ突入したときの入射角を臨界入射角と呼
び、αi0aと表せば、 cosαi0a=φa・Lzi/{(φa・u±φc・v)・Pi} (36) Lzi及びPiは確定しているから、式(36)からαi0a
も確定する。式(34)から、 hΣj=0 nKij・nij=n・h+u・Pi・cosαi0-Lzi (37) 式(36)を式(37)へ代入すると、 hΣj=0 nKij・nij=n・h+φa・u・Lzi/(φa・u±φc・v)-Lzi (38) 大気ガス層及び電離層を通過するマイクロ波の経路長を
iaとすると、式(38)から、 lia=(n・h+φa・u・Lzi/(φa・u±φc・v)-Lzi)/cosαi0a (39) いま、大気ガス層及び電離層を厚さhの平行平面層に分
割し、この各平行平面層内に於てマイクロ波は直進する
ものとすると、大気ガス層及び電離層を通過するマイク
ロ波の経路長はΔliaだけ減少する。その分、電波直進
層内のマイクロ波の経路長は、電波伝搬時間は一定であ
るから増加する。従って、衛星と観測点間を通る水平面
との間の距離は、 Δlia・cosαi0a (40) だけ増加する。故に、式(33)及び式(40)から、 cosαi0a={φa・(Lzi+Δlia・cosαi0a)+φc・(Lzi+Δlia・cosαi0a) -2・φc・h・Int((Lzi+Δlia・cosαi0a)/2h)} /{(φa・u±φc・v)・Pi} (41) αi0a、Lzi及びPiが確定しているから、式(41)か
らΔliaも確定する。従って、大気ガス層及び電離層を
厚さhの平行平面層に分割したとき、各平行平面層に於
ては、マイクロ波は直進するものとすれば、 (lia-Δlia)・cosαi0a=Ai'+ΔΛi' (42) しかしながら、Δliaがある正の数値をとるように、大
気ガス層及び電離層をある厚さの平行平面層に分割して
も、その様な大気ガス層及び電離層を伝搬するマイクロ
波は存在しない。現実に存在するマイクロ波は、Δlia
がゼロとなる様に、大気ガス層及び電離層を伝搬するマ
イクロ波である。かかるマイクロ波は式(33)に於
て、hを限りなくゼロに近ずけたものであるが、電波直
進層と電離層との界面へ突入する電波の入射角を正確に
求める為に考案したモデルのシュミュレーションの表1
1から判る様に、大気ガス層及び電離層を厚さ1m以下
の平行平面層に分割したとき、Δliaがゼロとなる。こ
のことは、大気ガス層及び電離層を厚さ1mの平行平面
層に分割したとき、そこを通過するマイクロ波は、通常
我々が観測するマイクロ波と全く等価であることを意味
する。従って、式(37)及び式(42)から、 lia・cosαi0a=Ai'+ΔΛi' =n・1+u・Pi・cosαi0a-Lzi (43) ある電波経路;iのなかの相隣る平行平面層との間に於
て、式(31’)が成立する。従って、ある電波経路全
体について、 Σj=1 n/2(cosαi0a/(1-sin2αi0a/nj 2)1/2+cosαi0a/(1-sin2αi0a/nj 2)1/2 =Aij=1 n/2(Aj'+ΔΛj') (44) が成立する。 Σj=1 n/2(Aj'+ΔΛj')=Σj=1 n/2Aj'+Σj=1 n/2ΔAj' =Ai'+ΔΛi' (45) 式(30)から、 ΔΛj'=mj・Xj+nj+ζ・Xj+1j・Xj+ξ +ε・(Xj+1j)2j・(Xjj)2j (46) xj=xj'+Δxj' (47) xj+1=xj+1'+Δxj+1' (48) 式(47)及び式(48)を式(46)へ代入して、Δ
j'≒ 0、Δxj+1'≒0とすれば、 ΔΛj'=mj・(xj+Δxj')+nj+ζ・(xj+1'+Δxj+1')+κ・(xj'+Δxj')+ξ +εj・(xj+1'+Δxj+1'-νj)2j・(xj'+Δxj'-τj)2j =mj・xj'+nj+ζ・xj+1'+κ・xj'+ξ+εj・xj+1'2j・νj 2-2・εj・νj・xj+1' +ρj・xj'2j・τj 2-2・ρj・τj・xj'+ρj・χj +(mj+κ+2・ρj・xj'-2・ρj・τj)・Δxj'+(2・εj・xj+1'-2・εj・νj)・Δxj+1' =ωj+σ・Δxj'+ψ・Δxj+1' (49) 従って、式(45)及び式(49)から、 Σj=1 n/2Aj'+Σj=1 n/2ΔΛj' =Σj=1 n/2Aj'+Σj=1 n/2jj・Δxj'+ψ・Δxj+1') (50) Σj=1 n/2Aj'は定数であるから、式(44)及び式(5
0)から、 Σj=1 naij・Δxj'=Ai (51) 式(43)及び式(51)から、 Σj=1 naij・Δxj'=n+u・Pi・cosαi0a-Lzi (52) 即ち、Δxj(j=1〜n)を変数とする多元一次連立
方程式が成立する。故に、各平行平面層の電波屈折率;
jは、多元一次連立方程式;(52)の解;Δxj'を
求め、 xj=xj'+Δxj'(j=1〜n) として求まる。但し、nは偶数である。
2. The area from the ground surface to 1000 km above the ground is divided into n parallel plane layers parallel to the horizontal plane passing through the observation point, and the radio wave refractive index of each parallel plane layer is obtained. (See Fig. 5) True value of radio wave refractive index of layer 1; X 1 True value of radio wave refractive index of layer 2; X 2 Initial value of radio wave refractive index of layer 1; X 1 ' Initial wave refractive index of layer 2 Value; Error in radio wave refractive index of X 2 ' Layer 1; Error in radio wave refractive index of Δ X 1 ' Layer 2; ΔX 2 ' Incident angle of microwave entering the interface between the radio wave rectilinear layer and the ionosphere; α 0 Layer 1 Refraction angle of microwaves; α 1 Refraction angle of microwaves in layer 2; Inclination of two characteristic curves corresponding to cosine of α 2 α 0 ; a, c Path length of microwaves passing through layer 1 and α 0 True cosine of the product of the cosine of the microwave passing through layer 2 and the cosine of α 0 ; the product of the path length of the microwave passing through layer A and the cosine of α 0 And the initial value of the sum of products of the path length of the microwave passing through the layer 2 and the cosine of α 0 ; A ′ The product of the path length of the microwave passing through the layer 1 and the cosine of α 0 , and the layer 2 through a path length of a microwave and alpha 0 of Error of the sum of the product of the chord; a .DELTA.A '. c ・ X 1 + d + c ・ X 2 + d = A (a ・ X 1 + b) ・ X 1 + (a ・ X 2 + b) ・ X 2 = A c + d = 1 a + b = 1 X 1 = X 1 '+ ΔX 1 ' X 2 = X 2 '+ ΔX 2 ' A = A '+ ΔA'. See Japanese Patent Application No. 361415 for the details of the establishment of the equations, and. ,
Substitute ,, and. c ・ (X 1 '+ ΔX 1 ') + 1-c + c ・ (X 2 '+ ΔX 2 ') + 1-c = A '+ ΔA' ∴ ΔX 1 '+ ΔX 2 ' = {A '+ From ΔA'-2 ・ (1-c)} / c- (X 1 '+ X 2 '), a ・ X 1 2 + b ・ X 1 + a ・ X 2 2 + b ・ X 2 = A a ・From (X 1 2 + X 2 2 ) + b ・ (X 1 + X 2 ) = A (8-1), c ・ (X 1 + X 2 ) +2 ・ d = A ∴ X 1 + X 2 = (A-2 ・ d) / c (8-2) Substituting (8-2) into (8-1), a ・ (X 1 2 + X 2 2 ) + b ・ (A-2 ・ d ) / c = A ,,, and are assigned to. (X 1 '+ ΔX 1 ') 2 + (X 2 '+ ΔX 2 ') 2 = {A '+ ΔA'-(b / c) ・ (A '+ ΔA') + 2 ・ (b ・ d) / c} / a = {1-b / c) (A '+ ΔA') + 2 ・ (b ・ d) / c} / a X 1 ' 2 +2 ・ X 1 ' ・ ΔX 1 '+ ΔX 1 ' 2 + X 2 ' 2 +2 ・ X 2 '・ ΔX 2 ' + ΔX 2 ' 2 = {(1- (1-a) / c) ・ (A' + ΔA ') + 2 ・ (1-a ) ・ (1-c) / c} / a 'ΔX 1 ' 2 ≒ 0, ΔX 2 '2 ≒ 0, X 1 ' ・ ΔX 1 '+ X 2 ' ・ ΔX 2 '= 〔{(a + c -1) ・ (A '+ ΔA') + 2 ・ (1-a-c + a ・ c)} / (a ・ c)-(X 1 ' 2 + X 2 ' 2 )] / 2 (10) Multiply both sides by X 2 '. X 2 '・ ΔX 1 ' + X 2 '・ ΔX 2 ' = X 2 '・ [{A' + ΔA'-2 ・ (1-c)} / c- (X 1 '+ X 2 ')] ( 11) From (11)-(10), (X 2 '-X 1 ') ・ ΔX 1 '= X 2 ' ・ {(A '+ ΔA'-2 ・ (1-c)) / c- (X 1 '+ X 2 ')}-(1/2) ・ {((a + c-1) ・ (A '+ ΔA') + 2 ・ (1-a-c + a ・ c)) / (a・ C)-(X 1 ' 2 + X 2 ' 2 )} (12) Now, {A'-2 ・ (1-c)} / c- (X 1 '+ X 2 ') = B (13) (1/2) ・ [{(a + c-1) ・ A '+ 2 (1-a-c + a ・ c)} / (a ・ c)-(X 1 ' 2 + X 2 ' 2 ) ] = D (14) From (12), (13) and (14), (X 2 '-X 1 ') ・ ΔX 1 '= X 2 ' ・ B-D + (X 2 '/ c) ・ ΔA'-(1/2)・ {(A + c-1) / (a ・ c)} ・ ΔA '= X 2 ' ・ B-D + {X 2 '/ c- (1/2) ・ (a + c-1) / (a・ C)} ・ ΔA '(15) is multiplied by X 1 ' on both sides. X 1 '・ ΔX 1 ' + X 1 '・ ΔX 2 ' = X 1 '・ {(A' + ΔA'-2 ・ (1-c)) / c- (X 1 '+ X 2 ')} ( 16) From (16)-(10), (X 1 '-X 2 ') ・ ΔX 2 '= X 1 ' ・ {(A '+ ΔA'-2 ・ (1-c)) / c- (X 1 '+ X 2 ')}-(1/2) ・ [{(a + c-1) ・ (A '+ ΔA') + 2 ・ (1-a-c + a ・ c)} / (a・ C)-(X 1 ' 2 + X 2 ' 2 )] (17) Substituting (13) and (14) into (17). (X 1 '-X 2 ') ・ ΔX 2 '= X 1 ' ・ B-D + (X 1 '/ c) ・ ΔA'-(1/2) ・ {(a + c-1) / (a ・c)} ・ ΔA '= X 1 ' ・ B-D + {(X 1 '/ c)-(1/2) ・ (a + c-1) / (a ・ c)} ・ ΔA' (18) ( From (15), ΔA '= {(X 2 ' -X 1 ') ・ (X 1 -X 1 ') -X 2 '・ B + D} / {X 2 ' / c- (1/2) (( a + c-1) / (a ・ c))} (19) (18), ΔA '= {(X 1 ' -X 2 ') ・ (X 2 -X 2 ') -X 1 '・ B + D} / {X 1 '/ c- (1/2) ((a + c-1) / (a ・ c))} (20) X 1 ', X 2 ', B, D, a and c Since (19) is fixed, ΔA '= m · X 1 + n (21) (20) is expressed as ΔA' = p · X 2 + q (22). From m · p <0 and n · q <0, (21) and (22) are shown in a graph as shown in FIG. Since the refractive index of the USA standard atmosphere is used as X 1 'and X 2 ', it is usually X 1 '<X 1 and X 2 '<X 2 , so the initial value of the radio wave refractive index of each layer is the true value. In order to get closer to X, it is necessary to approach X 1 and X 2 by increasing X 1 'and X 2 ' while decreasing the absolute value of ΔA '. However, when the absolute value of ΔA 'is reduced from Fig. 4, X 1 ' and X 2 '
Has a relationship where one increases and the other decreases. Therefore, (2
Either one of (1) and (22) is converted to a straight line that passes through the intersection of (21) and (22) and has the same absolute value of gradient and different sign. ΔA ′ = − p · X 2 + q ′ (23) When one of the refractive indices is determined from (21) and (23), ΔA ′ is determined. Therefore, as a result, the refractive index of the other layer is also determined. Then, assuming that X 1 and X 2 just determined represent the true value of the radio wave refractive index of each layer, A '+ ΔA' = cos α 0 / (1-sin 2 α 0 / X 1 2 ) 1/2 + cos α 0 / (1-sin 2 α 0 / X 2 2 ) 1/2 = A (24) must hold. A '= cos α 0 / (1-sin 2 α 0 / X 1 ' 2 ) 1/2 + cos α 0 / (1-sin 2 α 0 / X 2 ' 2 ) 1/2 (24') However, as can be seen from Tables 25, 26, and 27, (24) does not hold because it has an inherent error value based on the combination of the radio wave refractive indexes of the layers. That is, the radio wave refractive index of the parallel plane layers adjacent to each other in the atmospheric gas layer and the ionosphere, the incident angle of the radio wave entering the interface between the radio wave rectilinear layer and the ionosphere, and passing through the parallel plane layers adjacent to each other in the atmospheric gas layer and the ionosphere. There is a relationship of (25) between the radio path lengths to be performed. cos α i0・ (l ij + l ij + 1 ) = c i・ X 1 + d i + c i・ X 2 + d i (25) α i0 ; of the microwave rushing into the interface between the rectilinear layer and the ionosphere Angle of incidence. l ij , l ij + 1 ; Microwave path length through the parallel plane layers adjacent to each other in the atmospheric gas layer and the ionosphere. c i , d i ; a gradient and a constant representing the K ij · n ij -n ij characteristic curve corresponding to the radio wave path. However, if c i + d i = 1 and ΔA '' is the error value peculiar to the combination of the radio wave refractive indices of each layer, ΔA '' = A- (A '+ ΔA') (26) ΔA ' Table 2 using (21), (24) and (26)
5, the tables shown in Tables 26 and 27 are prepared. A-
When (A '+ ΔA') is displayed on the vertical axis and X 2 is displayed on the horizontal axis, FIG.
Is displayed. That is, ΔA ″ is represented by (27) corresponding to the radio wave refractive index of the other layer; X 2 . ΔA '' = ζ · X 2 + η (27) where ζ has a certain value corresponding to the range of the radio wave refractive index of the other layer; X 2 , but η has the radio wave refractive index of one layer; X 1
Draw a straight line corresponding to the range. That is, from η = κ ・ X 1 + ξ (28) (27), (28), ΔA '' = ζ ・ X 2 + κ ・ X 1 + ξ (29) (29) represents ΔA '' Since it is an approximate expression, the values on the left and right sides of (29) do not match. Therefore, when this error is represented by a numerical table, it becomes like the right end of Table 25, Table 26, and Table 27. or,
When expressed in a graph, a parabola is drawn as shown in FIG. Therefore, if this is expressed by a mathematical formula, ΔA ''-(ζ ・ X 2 + κ ・ X 1 + ξ) = ε ・ (X 2 -ν) 2 + ρ ・ (X 1 -τ) 2 + χ Radio wave refractive index of one layer; based on X 1 ,
If ΔΛ such that A- (A '+ ΔΛ) = 0 is obtained, ΔΛ = m ・ X 1 + n + ζ ・ X 2 + κ ・ X 1 + ξ + ε ・ (X 2 -ν) 2 + ρ ・(X 1 -τ) 2 + χ (30). Next, with reference to the radio wave refractive index of the other layer; X 2 , ΔΛ for A- (A ′ + ΔΛ) = 0 is obtained. From Table 28, Table 29, Table 30, and FIG. ΔΛ = -p ・ X 2 + q '+ ζ' ・ X 1 + κ '・ X 2 + ξ' + ε '・ (X 1 -ν') 2 + ρ '・ (X 2 -τ') 2 + From χ '(31) (24), cos α 0 / (1-sin 2 α 0 / X 1 2 ) 1/2 + cos α 0 / (1-sin 2 α 0 / X 2 2 ) 1/2 = A' + ΔΛ (31 ') Also, from (25), c ・ X 1 + d + c ・ X 2 + d = A' + ΔΛ (32) cosα i0 = {φa ・ L zi + φc ・ L zi -2 ・φc ・ h ・ Int (L zi / 2h)} / {(φa ・ u ± φc ・ v) ・ P i } (33) L zi = n ・ h + u ・ P i・ cosα i0 -hΣ j = 0 n The microwave when K ij · n ij (34) h → 0 is received. At this time, φc ・ L zi -2 ・ φc ・ h ・ Int (L zi / 2h) → 0 (35) Now, when the microwave received at the observation point enters the interface between the radio wave rectilinear layer and the ionosphere the angle of incidence is called the critical angle of incidence, if indicated as α i0a, cosα i0a = φa · L zi / {(φa · u ± φc · v) · P i} (36) L zi and P i are determined From equation (36), α i0a
Is also confirmed. From equation (34), hΣ j = 0 n K ij · n ij = n · h + u · P i · cos α i0 -L zi (37) Substituting equation (36) into equation (37), hΣ j = 0 n K ij・ n ij = n ・ h + φa ・ u ・ L zi / (φa ・ u ± φc ・ v) -L zi (38) The path length of microwaves passing through the atmospheric gas layer and the ionosphere is l ia Then, from equation (38), l ia = (n ・ h + φa ・ u ・ L zi / (φa ・ u ± φc・ v) -L zi ) / cosα i0a (39) Now, the atmospheric gas layer and ionosphere Is divided into parallel plane layers having a thickness h, and the microwave travels straight in each parallel plane layer, the path length of the microwave passing through the atmospheric gas layer and the ionosphere is reduced by Δl ia . Accordingly, the microwave path length in the radio wave straight-ahead layer increases because the radio wave propagation time is constant. Therefore, the distance between the satellite and the horizontal plane passing between the observation points increases by Δl ia · cos α i0a (40). Therefore, from equations (33) and (40), cosα i0a = {φa ・ (L zi + Δl iacosα i0a ) + φc・ (L zi + Δl iacosα i0a ) -2 ・φc・ h ・ Int ((L zi + Δl ia · cos α i0a ) / 2h)} / {(φa · u ± φc · v) · P i } (41) Since α i0a , L zi and P i are determined, the formula ( 41) Δl ia also determined from. Therefore, when the atmospheric gas layer and the ionosphere are divided into parallel plane layers of thickness h, in each parallel plane layer, if the microwave goes straight, (l ia −Δl ia ) · cos α i0a = A i '+ ΔΛ i ' (42) However, even if the atmospheric gas layer and the ionosphere are divided into parallel plane layers of a certain thickness so that Δl ia takes a positive value, such an atmospheric gas layer and There are no microwaves propagating in the ionosphere. The microwave that actually exists is Δl ia
Is a microwave that propagates through the atmospheric gas layer and the ionosphere so that is zero. In the formula (33), such a microwave has h as close to zero as possible, but a model devised to accurately determine the incident angle of the radio wave entering the interface between the radio wave rectilinear layer and the ionosphere. Simulation Table 1
As can be seen from 1, when the atmospheric gas layer and the ionosphere are divided into parallel plane layers having a thickness of 1 m or less, Δl ia becomes zero. This means that when the atmospheric gas layer and the ionosphere are divided into parallel plane layers with a thickness of 1 m, the microwave passing therethrough is completely equivalent to the microwave that we normally observe. Therefore, from equations (37) and (42), l ia · cos α i0a = A i '+ ΔΛ i ' = n · 1 + u · P i · cos α i0a -L zi (43) Equation (31 ') is established between the adjacent parallel plane layers. Therefore, Σ j = 1 n / 2 ( cosα i0a / (1-sin 2 α i0a / n j 2 ) 1/2 + cosα i0a / (1-sin 2 α i0a / n j 2 ) 1/2 = A i = Σ j = 1 n / 2 (A j '+ ΔΛ j ') (44) holds Σ j = 1 n / 2 (A j '+ ΔΛ j ') = Σ j = 1 n / 2 A j '+ Σ j = 1 n / 2 ΔA j ' = A i '+ ΔΛ i ' (45) From equation (30), ΔΛ j '= m j · X j + n j + ζ · X j + 1 + κ j・ X j + ξ + ε ・ (X j + 1j ) 2 + ρ j・ (X jj ) 2 + χ j (46) x j = x j '+ Δx j '(47) x j + 1 = x j + 1 ' + Δx j + 1 '(48) Substituting equations (47) and (48) into equation (46), we obtain Δ
If x j '≈ 0 and Δx j + 1 ' ≈ 0, then ΔΛ j '= m j · (x j + Δx j ') + n j + ζ · (x j + 1 '+ Δx j + 1 ' ) + κ ・ (x j '+ Δx j ') + ξ + ε j・ (x j + 1 '+ Δx j + 1 ' -ν j ) 2 + ρ j・ (x j '+ Δx j ' -τ j ) 2 + χ j = m j・ x j '+ n j + ζ ・ x j + 1 ' + κ ・ x j '+ ξ + ε j・ x j + 1 ' 2 + ε j・ ν j 2- 2 ・ ε j・ ν j・ x j + 1 '+ ρ j・ x j ' 2 + ρ j・ τ j 2 -2 ・ ρ j・ τ j・ x j '+ ρ j・ χ j + (m j + κ + 2 ・ ρ j・ x j '-2 ・ ρ j・ τ j ) ・ Δx j ' + (2 ・ ε j・ x j + 1 '-2 ・ ε j・ ν j ) ・ Δx j + 1 '= ω j + σ ・ Δx j ' + ψ ・ Δx j + 1 '(49) Therefore, from Equation (45) and Equation (49), Σ j = 1 n / 2 A j ' + Σ j = 1 n / 2 ΔΛ j '= Σ j = 1 n / 2 A j ' + Σ j = 1 n / 2j + σ j・ Δx j '+ ψ ・ Δx j + 1 ') (50) Σ j = 1 Since n / 2 A j 'is a constant, formula (44) and formula (5
0), Σ j = 1 n a ij · Δx j '= A i (51) From formula (43) and formula (51), Σ j = 1 n a ij · Δx j ' = n + u · P i Cos α i0a −L zi (52) That is, a multidimensional linear simultaneous equation with Δx j (j = 1 to n) as a variable is established. Therefore, the radio wave refractive index of each parallel plane layer;
x j is a solution of the multidimensional linear simultaneous equations; (52); Δx j ′ is obtained and x j = x j ′ + Δx j ′ (j = 1 to n). However, n is an even number.

【0003】3. ある時刻;Tに於て、上空にある衛
星の位置する点Pの三次元位置を正確に求める。(図8
参照) 地表面から高さ1000kmまでの領域を、地表面上の観
測点Aを通る水平面に平行な厚さhmの平行平面層に分
割する。各平行平面層の電波屈折率;nijは既知であ
る。これは非常に厳密な表現であって、通常ある一群の
電波経路内の各平行平面層の電波屈折率は、同じ平行平
面層内に於ては同じであると考えてよい。即ち、各平行
平面層の電波屈折率はnjで表される。ある衛星のある
時刻;Tにおける位置を点Pとする。点Pに位置するあ
る衛星から放射された電波が、電波直進層と電離層との
界面上の一点Mに臨界入射角α i0aで突入し、この電波
が電離層及び大気ガス層を伝搬し、地表面上の観測点A
に到達したとする。尚、以後この電波を電波PMAと呼
称する。同様に、点Pに位置するある衛星から放射され
た電波が、電波直進層と電離層との界面上のもう一つの
点Nに臨界入射角βi0aで突入し、この電波が電離層及
び大気ガス層を伝搬し、地表面上のもう一つの観測点B
に到達したとする。但し、観測点Bは、観測点Aを通る
同一水平面内の直線にして20km以内の距離にあるもの
とする。又、以後、この電波を電波PNBと呼称する。
点Pから観測点Aを通る水平面に下ろした垂線の足を点
Qとし、この垂線が、電波直進層と電離層との界面と交
わる点を点Rとする。尚、電波直進層と電離層との界面
は、観測点Aを通る水平面に平行である。点M及び点N
から、観測点Aを通る水平面に下ろした垂線の足を点K
及び点Lとし、又、観測点A及びBから、観測点Aを通
る水平面に法線AH及びBJを立てる。観測点A及びB
における電波PMA及びPNBの入射角をαin及び
βin、仰角をγin及びδinとする。又、∠ABQ=
θB、∠MNR=θNとする。電波PMA及び電波PNB
の電離層及び大気ガス層を通過する電波経路長をlAM
びlBNとすると、 lAM=h・f(cosαi0a)※ lBN=h・f(cosβi0a)※ 故に、点Pに位置するある衛星から放射された電波が、
観測点A及びBに到達するまでの時間をPi及びQiとす
ると、電波PMA及び電波PNBの電波直進層を通過す
る電波経路長をlPM及びlPNとして、式及びから、 lPM=u・Pi-lAM=u・Pi-h・f(cosαi0a) lPN=u・Qi-lBN=u・Qi-h・f(cosβi0a) 観測点Aと観測点Bとの間の距離がrであったとする
と、 r・cosνB=u・(Qi-Pi) 但し、νBは、電波PNBと直線ABとのなす角度であ
り、又、uは光の速度である。lAM及びlBNの水平成分をl
AK及びlBLとすると、 lAK=h・sinαi0a・g(cosαi0a)※ lBL=h・sinβi0a・g(cosβi0a)※ PR=PM・cosαi0a=lPM・cosαi0a={u・Pi-h・f(cosαi0a)}・cosαi0a 又、 PR=PN・cosβi0a=lPN・cosβi0a={u・Qi-h・f(cosβi0a)}・cosβi0a 式及びから、 {u・Pi-h・f(cosαi0a)}・cosαi0a={u・Qi-h・f(cosβi0a)}・cosβi0a ∴ {u・Pi-h・f(cosαi0a)}/{u・Qi-h・f(cosβi0a)}=cosβi0a/cosαi0a (10) △ABQにおいて、AB‖KLから、 KQ/AQ=LQ/BQ (11) AQ=AK+KQ=lAK+MR=lAK+PM・sinαi0a=lAK+lPM・sinαi0a =h・sinαi0a・g(cosαi0a)+{u・Pi-h・f(cosαi0a)}・sinαi0a (12) BQ=BL+LQ=lBL+NR=lBL+PN・sinβi0a=lBL+lPN・sinβi0a =h・sinβi0a・g(cosβi0a)+{u・Qi-h・f(cosβi0a)}・sinβi0a (13) KQ=MR=PM・sinαi0a=lPM・sinαi0a={u・Pi-h・f(cosαi0a)}・sinαi0a (14) LQ=NR=PN・sinβi0a=lPN・sinβi0a={u・Qi-h・f(cosβi0a)}・sinβi0a (15) 式(12)、(13)、(14)及び(15)を式(11)へ代入する。 〔{u・Pi-h・f(cosαi0a)}・sinαi0a〕/〔h・sinαi0a・g(cosαi0a) +{u・Pi-h・f(cosαi0a)}・sinαi0a〕 =〔{u・Qi-h・f(cosβi0a)}・sinβi0a〕/〔h・sinβi0a・g(cosβi0a) +{u・Qi-h・f(cosβi0a)}・sinβi0a〕 ∴ {u・Pi-h・f(cosαi0a)}/{u・Pi+h・g(cosαi0a)-h・f(cosαi0a)} ={u・Qi-h・f(cosβi0a)}/{u・Qi+h・g(sinβi0a)-h・f(cosβi0a)} (16) ある時刻;Tに於ける上空にある衛星の位置する点Pか
らの電波を地上にある観測点の位置する点Aで受信し
て、その衛星の軌道情報からその衛星の位置を測定する
と、あたかもその衛星が点P1にあるかの様に観測され
る。点P1の位置は、前述1.の方法により正確に求め
ることができる。従って、点P1から放射された電波
が、電波直進層と電離層との界面へ突入する臨界入射角
をδi0aとすると、臨界入射角δi0aも正確にもとめるこ
とができる。点Pは点P1の近辺に存在するから、αi0a
及びβi0aの大きさは、δi0aの大きさに近似的に等しい
と考えてよい。点Lから直線AQに平行線を引き、直線AB
との交点を点Sとする。△ABQにおいて、AQ‖SLか
ら、 BS/AB=SL/AQ ∴ BS=(SL/AQ)・AB=(AK/AQ)・AB (SL=AK) AQ=AK+KQ=AK+MR=AK+MP・sinαi0a=lAK+lPM・sinαi0a =h・sinαi0a・g(cosαi0a)+{u・Pi-h・f(cosαi0a)}・sinαi0a ∴ BS=h・sinαi0a・g(cosαi0a)・r/〔h・sinαi0a・g(cosαi0a) +{u・Pi-h・f(cosαi0a)}・sinαi0a〕 =h・g(cosαi0a)・r/{u・Pi+h・g(cosαi0a)-h・f(cosαi0a)} (29) △BLSにおいて、 BS2+BL2-2・BS・BL・cosθB=SL2 ∴ cosθB=(BS2+BL2-SL2)/(2・BS・BL) (30) BS2+BL2-SL2=〔{h・g(cosαi0a)・r}/{u・Pi+h・g(cosαi0a)-h・f(cosαi0a)}〕2 +{h・sinβi0a-g(cosβi0a)}2-{h・sinαi0a・g(cosαi0a)}2 (31) 2・BS・BL=2・〔h・g(cosαi0a)・r/{u・Pi+h・g(cosαi0a)-h・f(cosαi0a)}〕 ・{h・sinβi0a・g(cosβi0a)} =2・h2・r・sinβi0a・g(cosαi0a)・g(cosβi0a)/{u・Pi +h・g(cosαi0a)-h・f(cosαi0a)} (32) 式(31)及び(32)を、式(30)へ代入し、整頓すると、 cosθB=〔g2(cosαi0a)・r2+{u・Pi+h・g(cosαi0a)-h・f(cosαi0a)}2 ・{sin2βi0a・g2(cosβi0a)-sin2αi0a・g2(cosαi0a)}〕 /〔2・r・sinβi0a・g(cosαi0a)・g(cosβi0a)・ {u・Pi+h・g(cosαi0a)-h・f(cosαi0a)}〕 (33) 又、 cosνB=sinβin・cosθB =(sinβi0a/nin)・cosθB (34) △ABQにおいて、AB‖KLから、 KL/AB=KQ/AQ KQ=MR=MP・sinαi0a=lPM・sinαi0a={u・Pi-h・f(cosαi0a)}・sinαi0a ∴ MN=KL=(KQ/AQ)・AB =[{u・Pi-h・f(cosαi0a)}・sinαi0a/〔h・sinαi0a・g(cosαi0a) +{u・Pi-h・f(cosαi0a)}・sinαi0a〕]・r ={u・Pi-h・f(cosαi0a)}・r/{u・Pi+h・g(cosαi0a)-h・f(cosαi0a)}(34') PN−PM=MN・cosνn から、式、及び(3
4’)より、従って、 {u・Qi-h・f(cosβi0a)}-{u・Pi-h・f(cosαi0a)} =[{u・Pi-h・f(cosαi0a)}・r/{u・Pi+h・g(cosαi0a) -h・f(cosαi0a)}]・cosνN (35) cosνN=sinβi0a・cosθN cosνB=sinβin・cosθB AB‖MN、BQ‖NRから、 θNB cosνN/cosνB=cosνB/sinβin ∴ cosνN/cosνB=sinβi0/sinβin=nin 式(35)の左辺を整頓して、 u・(Qi-Pi)-h・f(cosβi0a)+h・f(cosαi0a) =r・cosνB-h・f(cosβi0a)+h・f(cosαi0a) =[{u・Pi-h・f(cosαi0a)}・r/{u・Pi+h・g(cosαi0a) -h・f(cosαi0a)}]・nin・cosνB (36) 式(36)を整頓して、 r・cosνB・〔1-nin・{u・Pi-h・f(cosαi0a)}/{u・Pi +h・g(cosαi0a)-h・f(cosαi0a)}〕 =h・f(cosβi0a)-h・f(cosαi0a) (37) 式(33)、(34)及び(37)から、 [〔g2(cosαi0a)・r2+{u・Pi+h・g(cosαi0a)-h・f(cosαi0a)}2 ・{sin2βi0a・g2(cosβi0a)-sin2αi0a・g2(cosαi0a)}〕 /〔2・nin・g(cosαi0a)・g(cosβi0a)・ {u・Pi+h・g(cosαi0a)-h・f(cosαi0a)}] ・〔1-nin・{u・Pi-h・f(cosαi0a)}/{u・Pi +h・g(cosαi0a)-h・f(cosαi0a)}〕 =h・f(cosβi0a)-h・f(cosαi0a) (38) 式(38)をPiの高次式として整理すと、 u3・(1-nin)・{sin2βi0a・g2(cosβi0a)-sin2αi0a・g2(cosαi0a)}・Pi3 +u2・h・g(cosαi0a)・{sin2βi0a・g2(cosβi0a)-sin2αi0a・g2(cosαi0a)}・Pi2 -u2・h・f(cosαi0a)・{sin2βi0a・g2(cosβi0a)-sin2αi0a・g2(cosαi0a)}・Pi2 +u2・h・nin・f(cosαi0a)・{sin2βi0a・g2(cosβi0a) -sin2αi0a・g2(cosαi0a)}・Pi2 +2・u2・h・(1-nin)・{g(cosαi0a)-f(cosαi0a)}・{sin2βi0a・g2(cosβi0a) -sin2αi0a・g2(cosαi0a)}・Pi2 +2・u2・h・nin・g(cosαi0a)・g(cosβi0a)・{f(cosβi0a)-f(cosαi0a)}・Pi2 +u・(1-nin)・r2・g2(cosαi0a)・Pi +2・u・h2・{g(cosαi0a)-f(cosαi0a)}・{sin2βi0a・g2(cosβi0a) -sin2αi0a・g2(cosαi0a)}・{g(cosαi0a) -f(cosαi0a)+nin・f(cosαi0a)}・Pi +u・h2・(1-nin)・{g2(cosαi0a)-2・g(cosαi0a)・f(cosαi0a) +f2(cosαi0a)}・{sin2βi0a・g2(cosβi0a) -sin2αi0a・g2(cosαi0a)}・Pi +4・u・h2・nin・g(cosαi0a)・g(cosβi0a)・{g(cosαi0a) -f(cosαi0a)}・{f(cosβi0a)-f(cosαi0a)}・Pi +h・r2・g3(cosαi0a)-h・r2・g2(cosαi0a)・f(cosαi0a) +h・nin・r2・g2(cosαi0a)・f(cosαi0a) +h3・{g2(cosαi0a)-2・g(cosαi0a)・f(cosαi0a) +f2(cosαi0a)}・{sin2βi0a・g2(cosβi0a) -sin2αi0a・g2(cosαi0a)}・{g(cosαi0a)-f(cosαi0a)+nin・f(cosαi0a)} +2・h3・nin・g(cosαi0a)・g(cosβi0a)・{g2(cosαi0a) -2・g(cosαi0a)・f(cosαi0a) +f2(cosαi0a)}・{f(cosβi0a)-f(cosαi0a)} =0 (39) u・(Qi-Pi)=r・cosνB (40) cosαi0a=φaα・Lzi/{(φaα・u±φcα・v)・Pi} (41) cosβi0a=φaβ・Lzi/{(φaβ・u±φcβ・v)・Qi} (42) Lzi=n・h+u・Pi・cosαi0a-h・f(cosαi0a)・cosαi0a (43) Lzi=n・h+u・Qi・cosβi0a-h・f(cosβi0a)・cosβi0a (44) 式(43)を式(41)へ代入する。 cosαi0a=φaα・{n・h+u・Pi・cosαi0a-h・f(cosαi0a)・
cosαi0a}/{(φaα・u±φcα・v)・Pi} 整頓して、 ±φcα・v・Pi・cosαi0a=φaα・n・h-φaα・h・f(cosαi0a)・cosαi0a (45) ∴Pi={φaα・n・h-φaα・h・f(cosαi0a)・cosαi0a} /(±φcα・v・cosαi0a) (46) 式(44)を式(42)へ代入する。前と同様に、 Qi={φaβ・n・h-φaβ・h・f(cosβi0a)・cosβi0a} /(±φcβ・v・cosβi0a) (47) 式(46)及び式(47)を式(40)へ代入する。 u・〔{φaβ・n・h-φaβ・h・cosβi0a)・cosβi0a}/(±φcβ・v・cosβi0a) -{φaα・n・h-φaα・h・cosαi0a)・cosαi0a}/(±φcα・v・cosαi0a)〕 =r・cosνB (48) 式(46)を式(43)へ代入する。 Lzi=n・h+u・〔{φaα・n・h-φaα・h・f(cosαi0a)・cosαi0a} /(±φcα・v・cosαi0a)〕・cosαi0a-h・f(cosαi0a)・cosαi0a =n・h+(u/v)・{φaα・n・h-φaα・h・f(cosαi0a)・cosαi0a}/±φcα -h・f(cosαi0a)・cosαi0a (49) 式(47)を式(44)へ代入する。 Lzi=n・h+u・〔{φaβ・n・h-φaβ・h・cosβi0a)・cosβi0a} /(±φcβ・v・cosβi0a)〕・cosβi0a-h・cosβi0a)・cosβi0a =n・h+(u/v)・{±(φaβ・n・h-φaβ・h・f(cosβi0a)・cosβi0a}/±φcβ -h・f(cosβi0a)・cosβi0a (50) 式(49)及び式(50)から、 (u/v)・{φaα・n・h-φaα・h・f(cosαi0a)・cosαi0a}/±φaα -h・f(cosαi0a)・cosαi0a =(u/v)・{φaβ・n・h-φaβ・h・f(cosβi0a)・cosβi0a}/±φaβ -h・f(cosβi0a)・cosβi0a (51) 式(48)及び式(34)から、 (u/v)・〔{φaβ・n・h-φaβ・h・cosβi0a)・cosβi0a}/(±φcβ・cosβi0a) -{φaα・n・h-φaα・h・cosαi0a)・cosαi0a}/(±φcα・cosαi0a)〕 =〔g2(cosαi0a)・r2+{u・Pi+h・g(cosαi0a)-h・f(cosαi0a)}2 ・{sin2βi0a・g2(cosβi0a)-sin2αi0a・g2(cosαi0a)}〕 /〔2・nin・g(cosαi0a)・g(cosβi0a)・ {u・Pi+h・g(cosαi0a)-h・f(cosαi0a)}〕 (52) 式(52)に式(46)を代入する。 (u/v)・〔{φaβ・n・h-φaβh・(cosβi0a)・cosβi0a}/(±φcβ・cosβi0a) -{φaα・n・h-φaα・h・f(cosαi0a)・cosαi0a}/(±φcα・cosαi0a)〕 =〔g2(cosαi0a)・r2+{u・{φaα・n・h-φaα・h・f(cosαi0a)・cosαi0a} /(±φcα・v・cosαi0a)+h・g(cosαi0a)-h・f(cosαi0a)}2 ・{sin2βi0a・g2(cosβi0a)-sin2αi0a・g2(cosαi0a)}〕 /〔2・nin・g(cosαi0a)・g(cosβi0a)・ {u・{φaα・n・h-φaα・f(cosαi0a)・cosαi0a} /(±φcα・v・cosαi0a)+h・g(cosαi0a)-h・f(cosαi0a)}〕(53) αi0a及びβi0aの近似値δi0aが正しく求められている
から、φaα、φaβ、φcα及びφcβを表す二次式の係
数は確定する。従って、式(13)、(14)ともにc
osαi0a及びcosβi0aの式となる。故に、式(5
1)及び式(53)から、αi0a及びβi0aを求めること
ができる。このようにして求めたαi0a及びβi0aは、い
わゆる臨界入射角の計算値であって誤差を含む。この場
合、電波経路近傍の電離層及び大気ガス層の電波屈折率
は確定しているから、電離層及び大気ガス層の電波屈折
率の総和:Xも確定する。いま、臨界入射角の計算値の
真値をそれぞれαi0at及びβi0atとすれば、前述1か
ら、 αi0a=p(αi0at)・x2+q(αi0at)・x+r(αi0at) (54) βi0a=p(βi0at)・x2+q(βi0at)・x+r(βi0at) (55) 従って、臨界入射角の計算値であるαi0a及びβi0a及び
電離層及び大気ガス層の電波屈折率の総和:Xが確定し
ているから、αi0a及びβi0aに対応する臨界入射角の真
値であるαi0at及びβi0atが、式(54)、(55)か
ら求まる。この様にして求めたαi0at及びβi0atを式
(39)のαi0a及びβi0aへ代入して、Piを求める。
故に、Piが確定すれば、式(43)からLziが求ま
る。従って、点Pの三次元位置が求まる。 ※lAM及びlBNは、1. 衛星が位置すると仮想される
点P1から放射されるマイクロ波の伝搬経路の正確なフ
ォローに記述したと同様に、電離層及び大気ガス層にお
ける電波屈折率の総和と電波直進層と電離層の界面へ突
入する電波の入射角の真値の関数として表示される。
尚、小さなモデルによるシュミュレーションの表31、
32及び33参照。即ち、 lAM=h・f(cosαi0a)=p'(cosαi0a)・x2+q'(cosαi0a)・x+r'(cosαi0a) (56) lBN=h・f(cosβi0a)=p'(cosβi0a)・x2+q'(cosβi0a)・x+r'(cosβi0a) (57) 同様に、 lAK=h・sinαi0a・g(cosαi0a) =k'(cosαi0a)・x2+l'(cosαi0a)・x+m'(cosαi0a) (58) lBL=h・sinβi0a・g(cosβi0a) =k'(cosβi0a)・x2+l'(cosβi0a)・X+m'(cosβi0a) (59) Xは電離層及び大気ガス層における電波屈折率の総和
で、既に確定しているから、式(56)、(57)、
(58)及び(59)から、lAM、lBN、lAk及びl BL
は、αi0a及びβi0aの余弦の関数となる。
3. At a certain time; at T, a guard in the sky
Accurately determine the three-dimensional position of the point P where the star is located. (Fig. 8
See) The area from the ground surface to a height of 1000 km
It is divided into parallel plane layers of thickness hm parallel to the horizontal plane passing through the measurement point A.
Divide. Radio wave refractive index of each parallel plane layer; nijIs known
It This is a very exact expression, and usually a set of
The radio wave refractive index of each parallel plane layer in the radio wave path is the same
It can be considered that they are the same in the surface layer. That is, each parallel
The refractive index of the plane layer is njIt is represented by. There is a satellite
A point P is a position at time T. Located at point P
Radio waves emitted from the satellite
The critical incident angle α at one point M on the interface i0aThis radio wave
Observation point A on the ground surface propagating through the ionosphere and atmospheric gas layer
Is reached. In the following, this radio wave is called the radio wave PMA.
To call. Similarly, it is emitted from a satellite located at point P.
Generated radio waves are reflected on the interface between the rectilinear layer and the ionosphere.
Critical incident angle β at point Ni0aThis radio wave penetrates into the ionosphere
And another observation point B on the ground surface
Is reached. However, the observation point B passes through the observation point A
A straight line within the same horizontal plane and within a distance of 20km
And In addition, hereinafter, this radio wave is referred to as a radio wave PNB.
Point the foot of the perpendicular drawn from the point P to the horizontal plane passing through the observation point A
Q, and this perpendicular line intersects the interface between the radio wave straight layer and the ionosphere.
A point R is defined as the point where the change occurs. The interface between the radio wave straight layer and the ionosphere
Is parallel to the horizontal plane passing through the observation point A. Point M and point N
From the point K to the foot of the vertical line that goes down to the horizontal plane passing through the observation point A.
And point L, and from observation points A and B through observation point A.
Establish normals AH and BJ on the horizontal plane. Observation points A and B
The incident angle of radio waves PMA and PNB atinas well as
βin, Elevation angle γinAnd δinAnd Also, ∠ABQ =
θB, ∠MNR = θNAnd Radio wave PMA and radio wave PNB
Of the radio wave path through the ionosphere and atmospheric gas layer ofAMOver
And lBNThen lAM= h ・ f (cosαi0a) * LBN= h ・ f (cosβi0a) * Therefore, the radio wave radiated from a certain satellite located at point P is
P is the time to reach observation points A and BiAnd QiTosu
Then, the radio waves pass through the radio wave straight layers of the radio waves PMA and PNB.
Radio path lengthPMAnd lPNWhere, and from lPM= u ・ Pi-lAM= u ・ Pi-h ・ f (cosαi0a) lPN= u ・ Qi-lBN= u ・ Qi-h ・ f (cosβi0a) It is assumed that the distance between the observation point A and the observation point B is r.
And r ・ cosνB= u ・ (Qi-Pi) Where νBIs the angle between the radio wave PNB and the straight line AB.
And u is the speed of light. lAMAnd lBNThe horizontal component of l
AKAnd lBLThen lAK= h ・ sinαi0a・ G (cos αi0a) * LBL= h ・ sinβi0a ・ g (cos βi0a) * PR = PM ・ cosαi0a = lPM・ Cos αi0a = {u ・ Pi-h ・ f (cosαi0a)} ・ Cos αi0a  Also, PR = PN ・ cosβi0a = lPN・ Cos βi0a = {u ・ Qi-h ・ f (cosβi0a)} ・ Cos βi0a  From the expression and, {u · Pi-h ・ f (cosαi0a)} ・ Cos αi0a = {u ・ Qi-h ・ f (cosβi0a)} ・ Cos βi0a ∴ {u ・ Pi-h ・ f (cosαi0a)} / {u ・ Qi-h ・ f (cosβi0a)} = cos βi0a/ cos αi0a (10) In ABAB, from AB | KL, KQ / AQ = LQ / BQ (11) AQ = AK + KQ = lAK+ MR = lAK+ PM ・ sinαi0a= lAK+ lPM・ Sinαi0a = h ・ sinαi0a・ G (cos αi0a) + (u ・ Pi-h ・ f (cosαi0a)} ・ Sinαi0a (12) BQ = BL + LQ = lBL+ NR = lBL+ PN ・ sinβi0a= lBL+ lPN・ Sinβi0a = h ・ sinβi0a・ G (cos βi0a) + {u ・ Qi-h ・ f (cosβi0a)} ・ Sinβi0a (13) KQ = MR = PM ・ sinαi0a= lPM・ Sinαi0a= {u ・ Pi-h ・ f (cosαi0a)} ・ Sinαi0a (14) LQ = NR = PN ・ sinβi0a= lPN・ Sinβi0a= {u ・ Qi-h ・ f (cosβi0a)} ・ Sinβi0a (15) Substituting equations (12), (13), (14) and (15) into equation (11). [{U ・ Pi-h ・ f (cosαi0a)} ・ Sinαi0a] / [H ・ sinαi0a・ G (cos αi0a) + (u ・ Pi-h ・ f (cosαi0a)} ・ Sinαi0a] = [{U ・ Qi-h ・ f (cosβi0a)} ・ Sinβi0a] / [H ・ sinβi0a・ G (cos βi0a) + {u ・ Qi-h ・ f (cosβi0a)} ・ Sinβi0a] ∴ {u ・ Pi-h ・ f (cosαi0a)} / {u ・ Pi+ h ・ g (cos αi0a) -h ・ f (cosαi0a)} = {u ・ Qi-h ・ f (cosβi0a)} / {u ・ Qi+ h ・ g (sin βi0a) -h ・ f (cos βi0a)} (16) At a certain time; Is it the point P at which the satellite in the sky is located at T?
Received these radio waves at point A, which is located on the ground at the observation point.
And measure the position of the satellite from the orbital information of the satellite
And as if the satellite were at point P1Observed as if
It Point P1The position of 1 is as described above. Accurately determined by
You can Therefore, the point P1Radio waves emitted from
Is the critical incident angle at which the electromagnetic wave enters the interface between the rectilinear layer and the ionosphere.
Δi0aThen the critical incident angle δi0aCan be stopped accurately
You can Point P is point P1Exists in the vicinity ofi0a
And βi0aIs the size of δi0aIs approximately equal to the size of
You can think of it. Draw a parallel line from the point L to the straight line AQ and draw the straight line AB
Let S be the point of intersection with. △ In ABQ, is AQ | SL?
BS / AB = SL / AQ ∴ BS = (SL / AQ) ・ AB = (AK / AQ) ・ AB (SL = AK) AQ = AK + KQ = AK + MR = AK + MP ・ sinαi0a= lAK+ lPM・ Sinαi0a = h ・ sinαi0a・ G (cos αi0a) + (u ・ Pi-h ・ f (cosαi0a)} ・ Sinαi0a ∴BS = h ・ sinαi0a・ G (cos αi0a) ・ R / (h ・ sinαi0a・ G (cos αi0a) + (u ・ Pi-h ・ f (cosαi0a)} ・ Sinαi0a] = H ・ g (cosαi0a) ・ R / {u ・ Pi+ h ・ g (cos αi0a) -h ・ f (cosαi0a)} (29) △ BS, BS2+ BL2-2 ・ BS ・ BL ・ cos θB= SL2 ∴ cos θB= (BS2+ BL2-SL2) / (2 ・ BS ・ BL) (30) BS2+ BL2-SL2= 〔(H ・ g (cosαi0a) ・ R} / {u ・ Pi+ h ・ g (cos αi0a) -h ・ f (cosαi0a)}]2 + {h ・ sinβi0a-g (cosβi0a)}2-{h ・ sinαi0a・ G (cos αi0a)}2 (31) 2 ・ BS ・ BL = 2 ・ (h ・ g (cos αi0a) ・ R / {u ・ Pi+ h ・ g (cos αi0a) -h ・ f (cosαi0a)}] ・ {H ・ sinβi0a・ G (cos βi0a)} = 2 ・ h2・ R ・ sinβi0a・ G (cos αi0a) ・ G (cosβi0a) / (u ・ Pi + h ・ g (cos αi0a) -h ・ f (cosαi0a)} (32) Substituting Eqs. (31) and (32) into Eq. (30) and putting them in order, cos θB= 〔G2(cos αi0a) ・ R2+ {u ・ Pi+ h ・ g (cos αi0a) -h ・ f (cosαi0a)}2 ・ (Sin2βi0a・ G2(cos βi0a) -sin2αi0a・ G2(cos αi0a)}] / [2 ・ r ・ sinβi0a・ G (cos αi0a) ・ G (cosβi0a) ・ (U ・ Pi+ h ・ g (cos αi0a) -h ・ f (cosαi0a)}] (33) Also, cosνB= sinβin・ Cos θB = (sin βi0a/ nin) ・ Cos θB (34) In ABAB, from AB | KL, KL / AB = KQ / AQ KQ = MR = MP ・ sinαi0a= lPM・ Sinαi0a= {u ・ Pi-h ・ f (cosαi0a)} ・ Sinαi0a ∴ MN = KL = (KQ / AQ) ・ AB = [{u ・ Pi-h ・ f (cosαi0a)} ・ Sinαi0a/ 〔H ・ sinαi0a・ G (cos αi0a) + (u ・ Pi-h ・ f (cosαi0a)} ・ Sinαi0a]] ・ R = {u ・ Pi-h ・ f (cosαi0a)} ・ R / {u ・ Pi+ h ・ g (cos αi0a) -h ・ f (cosαi0a)} (34 ') PN-PM = MN · cosνn From the expression, and (3
4 '), therefore, (u ・ Qi-h ・ f (cosβi0a)}-{u ・ Pi-h ・ f (cosαi0a)} = [{u ・ Pi-h ・ f (cosαi0a)} ・ R / {u ・ Pi+ h ・ g (cos αi0a) -h ・ f (cosαi0a)}] ・ CosνN (35) cosνN= sinβi0a・ Cos θN cosνB= sinβin・ Cos θB From AB‖MN, BQ‖NR, θN= θB cosνN/ cosνB= cosνB/ sinβin ∴ cosνN/ cosνB= sinβi0/ sinβin= nin Arrange the left side of equation (35) so that u ・ (Qi-Pi) -h ・ f (cos βi0a) + h ・ f (cos αi0a) = r ・ cosνB-h ・ f (cosβi0a) + h ・ f (cos αi0a) = [{u ・ Pi-h ・ f (cosαi0a)} ・ R / {u ・ Pi+ h ・ g (cos αi0a) -h ・ f (cosαi0a)}] ・ Nin・ CosνB (36) By rearranging equation (36), r ・ cosνB・ [1-nin ・ {u ・ Pi-h ・ f (cosαi0a)} / {u ・ Pi + h ・ g (cos αi0a) -h ・ f (cosαi0a)}] = H ・ f (cosβi0a)-h ・ f (cosαi0a) (37) From formulas (33), (34) and (37), [(g2(cos αi0a) ・ R2+ {u ・ Pi+ h ・ g (cos αi0a) -h ・ f (cosαi0a)}2 ・ (Sin2βi0a・ G2(cos βi0a) -sin2αi0a・ G2(cos αi0a)}] / [2 ・ nin・ G (cos αi0a) ・ G (cosβi0a) ・ (U ・ Pi+ h ・ g (cos αi0a) -h ・ f (cosαi0a)}] ・ [1-nin・ {U ・ Pi-h ・ f (cosαi0a)} / {u ・ Pi + h ・ g (cos αi0a) -h ・ f (cosαi0a)}] = H ・ f (cosβi0a) -h ・ f (cosαi0a) (38) Equation (38) can be rearranged as a higher-order equation of Pi.3・ (1-nin) ・ (Sin2βi0a・ G2(cos βi0a) -sin2αi0a・ G2(cos αi0a)} ・ Pi3 + u2・ H ・ g (cos αi0a) ・ (Sin2βi0a・ G2(cos βi0a) -sin2αi0a・ G2(cos αi0a)} ・ Pi2 -u2・ H ・ f (cos αi0a) ・ (Sin2βi0a・ G2(cos βi0a) -sin2αi0a・ G2(cos αi0a)} ・ Pi2 + u2・ H ・ nin・ F (cosαi0a) ・ (Sin2βi0a・ G2(cos βi0a) -sin2αi0a・ G2(cos αi0a)} ・ Pi2 +2 ・ u2・ H ・ (1-nin) ・ (G (cosαi0a) -f (cosαi0a)} ・ {Sin2βi0a・ G2(cos βi0a) -sin2αi0a・ G2(cos αi0a)} ・ Pi2 +2 ・ u2・ H ・ nin・ G (cos αi0a) ・ G (cosβi0a) ・ (F (cosβi0a) -f (cosαi0a)} ・ Pi2 + u ・ (1-nin) ・ R2・ G2(cos αi0a) ・ Pi +2 ・ u ・ h2・ (G (cosαi0a) -f (cosαi0a)} ・ {Sin2βi0a・ G2(cos βi0a) -sin2αi0a・ G2(cos αi0a)} ・ {G (cosαi0a) -f (cosαi0a) + nin・ F (cosαi0a)} ・ Pi + u ・ h2・ (1-nin) ・ (G2(cos αi0a) -2 ・ g (cos αi0a) ・ F (cos αi0a) + f2(cos αi0a)} ・ {Sin2βi0a・ G2(cos βi0a) -sin2αi0a・ G2(cos αi0a)} ・ Pi +4 ・ u ・ h2・ Nin・ G (cos αi0a) ・ G (cosβi0a) ・ (G (cosαi0a) -f (cosαi0a)} ・ {F (cosβi0a) -f (cosαi0a)} ・ Pi + h ・ r2・ G3(cos αi0a) -h ・ r2・ G2(cos αi0a) ・ F (cos αi0a) + h ・ nin・ R2・ G2(cos αi0a) ・ F (cos αi0a) + h3・ (G2(cos αi0a) -2 ・ g (cos αi0a) ・ F (cos αi0a) + f2(cos αi0a)} ・ {Sin2βi0a・ G2(cos βi0a) -sin2αi0a・ G2(cos αi0a)} ・ {G (cosαi0a) -f (cosαi0a) + nin・ F (cosαi0a)} +2 ・ h3・ Nin・ G (cos αi0a) ・ G (cosβi0a) ・ (G2(cos αi0a) -2 ・ g (cos αi0a) ・ F (cos αi0a) + f2(cos αi0a)} ・ {F (cosβi0a) -f (cosαi0a)} = 0 (39) u ・ (Qi-Pi) = r ・ cosνB (40) cos αi0a= φaα ・ Lzi/ {(Φaα ・ u ± φcα ・ v) ・ Pi} (41) cos βi0a= φaβ ・ Lzi/ {(Φaβ ・ u ± φcβ ・ v) ・ Qi} (42) Lzi= n ・ h + u ・ Pi・ Cos αi0a-h ・ f (cosαi0a) ・ Cos αi0a (43) Lzi= n ・ h + u ・ Qi・ Cos βi0a-h ・ f (cosβi0a) ・ Cos βi0a (44) Substituting equation (43) into equation (41). cosαi0a= φaα ・ {n ・ h + u ・ Pi・ Cos αi0a-h ・ f (cosαi0a) ・
cosαi0a} / {(Φaα ・ u ± φcα ・ v) ・ Pi} Keep in order ± φcα ・ v ・ Pi・ Cos αi0a= φaα ・ n ・ h-φaα ・ h ・ f (cosαi0a) ・ Cos αi0a (45) ∴Pi= {Φaα ・ n ・ h-φaα ・ h ・ f (cosαi0a) ・ Cos αi0a} / (± φcα ・ v ・ cosαi0a) (46) Substituting equation (44) into equation (42). As before, Qi= {Φaβ ・ n ・ h-φaβ ・ h ・ f (cosβi0a) ・ Cos βi0a} / (± φcβ ・ v ・ cosβi0a) (47) Substituting equation (46) and equation (47) into equation (40). u ・ [{φaβ ・ n ・ h-φaβ ・ h ・ cosβi0a) ・ Cos βi0a} / (± φcβ ・ v ・ cosβi0a)-{Φaα ・ n ・ h-φaα ・ h ・ cosαi0a) ・ Cos αi0a} / (± φcα ・ v ・ cosαi0a)] = R ・ cosνB (48) Substituting equation (46) into equation (43). Lzi= n ・ h + u ・ [{φaα ・ n ・ h-φaα ・ h ・ f (cosαi0a) ・ Cos αi0a} / (± φcα ・ v ・ cosαi0a)] ・ Cos αi0a-h ・ f (cosαi0a) ・ Cos αi0a = n ・ h + (u / v) ・ {φaα ・ n ・ h-φaα ・ h ・ f (cosαi0a) ・ Cos αi0a} / ± φcα -h ・ f (cosαi0a) ・ Cos αi0a (49) Substituting equation (47) into equation (44). Lzi= n ・ h + u ・ ({φaβ ・ n ・ h-φaβ ・ h ・ cosβi0a) ・ Cos βi0a} / (± φcβ ・ v ・ cosβi0a)] ・ Cos βi0a-h ・ cos βi0a) ・ Cos βi0a = n ・ h + (u / v) ・ {± (φaβ ・ n ・ h-φaβ ・ h ・ f (cosβi0a) ・ Cos βi0a} / ± φcβ -h ・ f (cosβi0a) ・ Cos βi0a (50) From equation (49) and equation (50), (u / v) ・ {φaα ・ n ・ h-φaα ・ h ・ f (cosαi0a) ・ Cos αi0a} / ± φaα -h ・ f (cosαi0a) ・ Cos αi0a = (u / v) ・ {φaβ ・ n ・ h-φaβ ・ h ・ f (cosβi0a) ・ Cos βi0a} / ± φaβ -h ・ f (cosβi0a) ・ Cos βi0a (51) From equation (48) and equation (34), (u / v) ・ [{φaβ ・ n ・ h-φaβ ・ h ・ cosβi0a) ・ Cos βi0a} / (± φcβ ・ cosβi0a)-{Φaα ・ n ・ h-φaα ・ h ・ cosαi0a) ・ Cos αi0a} / (± φcα ・ cosαi0a)) = (G2(cos αi0a) ・ R2+ {u ・ Pi+ h ・ g (cos αi0a) -h ・ f (cosαi0a)}2 ・ (Sin2βi0a・ G2(cos βi0a) -sin2αi0a・ G2(cos αi0a)}] / [2 ・ nin・ G (cos αi0a) ・ G (cosβi0a) ・ (U ・ Pi+ h ・ g (cos αi0a) -h ・ f (cosαi0a)}] (52) Substituting equation (46) into equation (52). (u / v) ・ ({φaβ ・ n ・ h-φaβh ・ (cosβi0a) ・ Cos βi0a} / (± φcβ ・ cosβi0a)-{Φaα ・ n ・ h-φaα ・ h ・ f (cosαi0a) ・ Cos αi0a} / (± φcα ・ cosαi0a)) = (G2(cos αi0a) ・ R2+ {u ・ {φaα ・ n ・ h-φaα ・ h ・ f (cosαi0a) ・ Cos αi0a} / (± φcα ・ v ・ cosαi0a) + h ・ g (cos αi0a) -h ・ f (cosαi0a)}2 ・ (Sin2βi0a・ G2(cos βi0a) -sin2αi0a・ G2(cos αi0a)}] / [2 ・ nin・ G (cos αi0a) ・ G (cosβi0a) ・ (U ・ {φaα ・ n ・ h-φaα ・ f (cosαi0a) ・ Cos αi0a} / (± φcα ・ v ・ cosαi0a) + h ・ g (cos αi0a) -h ・ f (cosαi0a)}) (53) αi0aAnd βi0aApproximate value of δi0aIs required correctly
From φaα, φaβ, φcα and φcβ,
The number is fixed. Therefore, both equations (13) and (14) are c
osαi0aAnd cosβi0aThe formula is Therefore, the formula (5
From 1) and equation (53), αi0aAnd βi0aSeeking
You can Α obtained in this wayi0aAnd βi0aYes
It is a calculated value of the critical incident angle and includes an error. This place
The refractive index of the ionosphere and atmospheric gas layer near the radio path
Is determined, the radio refraction of the ionosphere and atmospheric gas layer
Sum of rates: X is also determined. Now of the calculated value of the critical incidence angle
The true value is αi0atAnd βi0atIf so, the above 1
Et ali0a= p (αi0at) ・ X2+ q (αi0at) ・ X + r (αi0at) (54) βi0a= p (βi0at) ・ X2+ q (βi0at) ・ X + r (βi0at) (55) Therefore, the calculated value of the critical angle of incidence αi0aAnd βi0aas well as
Sum of radio wave refractive indices in the ionosphere and atmospheric gas layer: X is confirmed
Therefore, αi0aAnd βi0aTrue of the critical angle of incidence corresponding to
The value αi0atAnd βi0atIs equation (54) or (55)?
Can be obtained from Α obtained in this wayi0atAnd βi0atThe formula
Α of (39)i0aAnd βi0aTo P,iAsk for.
Therefore, PiIf is determined, then from equation (43), LziWanted
It Therefore, the three-dimensional position of the point P is obtained. * LAMAnd lBNIs 1. Virtual when the satellite is located
The exact path of the microwave propagation path radiated from point P1
In the same way as described in
Of the radio wave refractive index and the collision between the radio wave straight layer and the ionosphere
It is displayed as a function of the true value of the incident angle of the incoming radio wave.
In addition, Table 31 of simulation by a small model,
See 32 and 33. That is, lAM= h ・ f (cosαi0a) = p '(cosαi0a) ・ X2+ q '(cos αi0a) ・ X + r '(cos αi0a) (56) lBN= h ・ f (cosβi0a) = p '(cosβi0a) ・ X2+ q '(cosβi0a) ・ X + r '(cos βi0a) (57) Similarly, lAK= h ・ sinαi0a・ G (cos αi0a) = k '(cos αi0a) ・ X2+ l '(cosαi0a) ・ X + m '(cos αi0a) (58) lBL= h ・ sinβi0a・ G (cos βi0a) = k '(cos βi0a) ・ X2+ l '(cosβi0a) ・ X + m '(cos βi0a) (59) X is the sum of the radio wave refractive indices in the ionosphere and atmospheric gas layer.
Since it has already been decided, equations (56), (57),
From (58) and (59), lAM, LBN, LAkAnd l BL
Is αi0aAnd βi0aIt is a function of the cosine of.

【図面の簡単な説明】[Brief description of drawings]

【図1】 衛星が位置すると仮想される点P1から放射
されるマイクロ波の伝搬経路の正確なフォローをする際
の参照図である。
FIG. 1 is a reference diagram for accurately following a propagation path of a microwave radiated from a point P 1 which is supposed to be located when a satellite is located.

【図2】 地表面から上空10kmまでの領域を幾っか
の平行平面層に分割し、その平行平面層の電波屈折率を
種々に変えながら、この領域を伝搬するマイクロ波の特
性を解析する為のシュミュレーション用の小さなモデル
を表す。
[Fig. 2] An area from the ground surface to 10 km above the ground is divided into some parallel plane layers, and the characteristics of microwaves propagating in this area are analyzed while changing the radio wave refractive index of the parallel plane layers variously. Represents a small model for a simulation.

【図3】 小さなモデルを使ってシュミュレーションを
行なつたときの、電離層及び大気ガス層の電波屈折率の
総和と地表面から上空10kmの高さにある電波直進層
と電離層との界面へ突入するマイクロ波の臨界入射角の
真値とその計算値との差の間の関係を表す。
[Fig.3] Sum of radio wave refractive indices of the ionosphere and atmospheric gas layer and the entry into the interface between the radio wave rectilinear layer and the ionosphere at a height of 10 km above the ground surface when simulating using a small model. The relationship between the true value of the critical incident angle of the microwave and the calculated value is shown.

【図4】 層1を通過するマイクロ波の経路長と電波直
進層と電離層の界面へ突入するマイクロ波の入射角α0
の余弦との積と、層2を通過するマイクロ波の経路長と
α0の余弦との積の和の誤差;ΔA'と層1及び2の電波
屈折率;X1及びX2の関係を表す。
FIG. 4 is a path length of microwaves passing through the layer 1 and an incident angle α 0 of microwaves entering the interface between the radio wave rectilinear layer and the ionosphere.
The relationship between X 1 and X 2; between the product of the cosine, the product sum of errors of the cosine of the path length and alpha 0 of the microwave passing through the layer 2; .DELTA.A 'a radio refractive index of the layer 1 and 2 Represent

【図5】 相隣なる平行平面層の一方の電波屈折率を横
軸に、各層の電波屈折率の組み合わせに基ずく固有の誤
差との関係を、他方の層の電波屈折率をパラメータとし
て表示したものである。
FIG. 5 shows a relationship between a radio wave refractive index of one of adjacent parallel plane layers and an inherent error based on a combination of radio wave refractive indexes of the layers with the radio wave refractive index of the other layer as a parameter. It was done.

【図6】 相隣なる平行平面層の電波屈折率の組み合わ
せに基ずく固有の誤差と、この相隣なる平行平面層の各
電波屈折率を変数とする一次式の値との差を、相隣なる
平行平面層の一方の電波屈折率を変数として表したもの
である。
FIG. 6 shows a difference between a specific error based on a combination of radio wave refractive indices of adjacent parallel plane layers and a value of a linear equation having each radio wave refractive index of adjacent parallel plane layers as a variable. The radio wave refractive index of one of the adjacent parallel plane layers is expressed as a variable.

【図7】 図6に於ける二次曲線の最小値は、相隣なる
平行平面層の他方の電波屈折率を変数とする二次式とし
て表示されることを示す。
FIG. 7 shows that the minimum value of the quadratic curve in FIG. 6 is displayed as a quadratic equation having the radio wave refractive index of the other adjacent parallel plane layer as a variable.

【図8】 電離層及び大気ガス層の電波屈折率が判る
と、上空にある衛星から放射された電波の経路が確定す
る。そこで、地上に二つの観測点を設け、上空にある衛
星からの電波を同時に受信して、この二つの電波経路を
幾何学的に解析し、上空にある衛星の三次元位置を求め
る為の参照図である。
FIG. 8: When the radio wave refractive indices of the ionosphere and atmospheric gas layer are known, the paths of radio waves emitted from satellites in the sky are determined. Therefore, two observation points are set up on the ground, radio waves from satellites in the sky are simultaneously received, and these two radio wave paths are geometrically analyzed to obtain the three-dimensional position of the satellite in the sky. It is a figure.

【表2】 [Table 2]

【表3】 [Table 3]

【表4】 [Table 4]

【表5】 [Table 5]

【表6】 [Table 6]

【表7】 [Table 7]

【表8】 [Table 8]

【表9】 [Table 9]

【表10】 [Table 10]

【表11】 [Table 11]

【表11−1】 [Table 11-1]

【表12】 [Table 12]

【表13】 [Table 13]

【表14】 [Table 14]

【表15】 [Table 15]

【表16】 [Table 16]

【表17】 [Table 17]

【表18】 [Table 18]

【表19】 [Table 19]

【表20】 [Table 20]

【表21】 [Table 21]

【表22】 [Table 22]

【表22−1】 [Table 22-1]

【表22−2】 [Table 22-2]

【表23−1】 [Table 23-1]

【表23−2】 [Table 23-2]

【表23−3】 [Table 23-3]

【表24−1】 [Table 24-1]

【表24−2】 [Table 24-2]

【表25】 [Table 25]

【表26】 [Table 26]

【表27】 [Table 27]

【表28】 [Table 28]

【表29】 [Table 29]

【表30】 [Table 30]

【表31】 [Table 31]

【表32】 [Table 32]

【表33】 [Table 33]

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年7月8日[Submission date] July 8, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図3[Name of item to be corrected] Figure 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図3】 [Figure 3]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図5[Name of item to be corrected] Figure 5

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図5】 [Figure 5]

【手続補正3】[Procedure 3]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図6[Name of item to be corrected] Figure 6

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図6】 [Figure 6]

【手続補正4】[Procedure amendment 4]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図7[Name of item to be corrected] Figure 7

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図7】 [Figure 7]

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】ある時刻:Tに於て、上空にある電波放射
源:Pからのマイクロ波を、地上にある観測点:Aで受
信して、電波放射源:Pからのマイクロ波伝搬時間及び
電波放射源:Pと観測点:Aを通る水平面との間の垂直
距離の概略値を求める。そして、この二つの概略値によ
って定義される点:P1に電波放射源があるものとし
て、点:P1からのマイクロ波の伝搬を忠実にフォロー
して、点:P1からのマイクロ波の伝搬時間、点P1と観
測点:Aを通る水平面との垂直距離及び点P1からのマ
イクロ波の電波直進層と電離層との界面へ突入したとき
の臨界入射角の余弦を正しく求める方法。
1. At a certain time: T, a microwave from a radio wave radiation source: P in the sky is received at an observation point: A on the ground, and a microwave propagation time from the radio wave radiation source: P is received. And, the approximate value of the vertical distance between the radio wave radiation source: P and the observation point: A passing through the horizontal plane is obtained. Then, assuming that the point: P 1 defined by these two approximate values has a radio wave radiation source, the propagation of the microwave from the point: P 1 is faithfully followed, and the microwave from the point: P 1 is Propagation time, a vertical distance between the point P 1 and the observation point: horizontal plane passing through A, and a method of correctly obtaining the cosine of the critical incident angle when the microwave from the point P 1 enters the interface between the radio wave rectilinear layer and the ionosphere.
【請求項2】時刻:Tのとき、点P2に在った電波放射
源から放射されたマイクロ波が、電波直進層と電離層と
の界面上の一点Eに突入後、地表面上にある点Aに位置
する観測点に到達したとすると、電波経路:AEP2
点P2を越えた延長線上の点P3に電波放射源があり、点
3から時刻:(T−P23/u)のとき放射されたマ
イクロ波は、時刻:Tのとき、点P2から放射されたマ
イクロ波と同じ電波経路を通って、点Aに位置する観測
点に同時に到達する。又、次の式が成立する。尚、ΔP
i=P23/uで、Pi》ΔPiであるとする。 cosαi0a=φa・(Lzi+u・ΔPi・cosαi0a)/{(φa・u±φ
c)・(Pi+ΔPi)} 但し、αi0a:電波直進層と電離層との界面上の一点E
へ突入したマイクロ波の臨界入射角。 Pi:点P2から放射されたマイクロ波の伝搬時間。 Lzi:点P2と点Aを通る水平面との間の垂直距離。 φa:電波直進層と電離層との界面へ突入するマイクロ
波の入射角をφ度単位に変化させたときのKij-nij
性曲線の傾き。 φc:電波直進層と電離層との界面へ突入するマイクロ
波の入射角をφ度単位に変化させたときのKij・nij-n
ij特性曲線の傾き。 u:光の速度。 v:地球の自転速度。 Kij:各電波経路に対応する各平行平面層の電波屈折係
数。 Kij=cosαi0a/(nij 2-sin2αi0a)1/2 nij:各電波経路に対応する各平行平面層の電波屈折
率。 i:各電波経路を表す記号。 j:電波直進層と電離層との界面から地表面方向へ何番
目に在る平行平面層であるかを表す記号。
2. At time: T, the microwave radiated from the radio wave radiation source located at the point P 2 is on the ground surface after entering a point E on the interface between the radio wave rectilinear layer and the ionosphere. When reaching the observation point located at point a, Telecommunications path: There are radio source to P 3 points on the extended line beyond the point P 2 of the AEP 2, the time from point P 3: (T-P 2 P 3 / u), the microwave radiated at the time: T simultaneously reaches the observation point located at the point A through the same radio wave path as the microwave radiated from the point P 2 at the time T. Also, the following equation holds. In addition, ΔP
Let i = P 2 P 3 / u and P i >> ΔP i . cosα i0a = φa ・ (L zi + u ・ ΔP icosα i0a ) / {(φa ・ u ± φ
c) · (P i + ΔP i )} where α i0a : a point E on the interface between the radio wave rectilinear layer and the ionosphere
The critical angle of incidence of the microwave entering the. P i : Propagation time of the microwave radiated from the point P 2 . L zi : vertical distance between the point P 2 and a horizontal plane passing through the point A. φa: The slope of the K ij -n ij characteristic curve when the incident angle of the microwave entering the interface between the radio wave rectilinear layer and the ionosphere is changed in units of φ degrees. φc: K ij · n ij -n when the incident angle of the microwave entering the interface between the radio wave rectilinear layer and the ionosphere is changed in units of φ degrees.
ij The slope of the characteristic curve. u: speed of light. v: Earth's rotation speed. K ij : Radio wave refraction coefficient of each parallel plane layer corresponding to each radio wave path. K ij = cos α i0a / (n ij 2 -sin 2 α i0a ) 1/2 n ij : Radio wave refractive index of each parallel plane layer corresponding to each radio wave path. i: A symbol representing each radio wave route. j: A symbol indicating the number of parallel plane layers that are located in the direction from the interface between the radio wave straight layer and the ionosphere toward the ground surface.
【請求項3】電波放射源(又は電波反射源)からのマイ
クロ波伝搬時間及び電波放射源(又は電波反射源)と観
測点を通る水平面との間の垂直距離から求めるマイクロ
波の電波直進層と電離層との界面への臨界入射角(以
後、臨界入射角の計算値と称する。)には、その真値と
の間に誤差があり、その誤差、臨界入射角の計算値及び
電離層及び大気ガス層の電波屈折率の総和の計算値は、
電離層及び大気ガス層の電波屈折率の総和と臨界入射角
の真値により、それぞれ唯一つ定まる。いま、臨界入射
角の計算値をW、臨界入射角の真値をαi0a、臨界入射
角の真値とその計算値との差をY、電離層及び大気ガス
層の電波屈折率の総和の内、平行平面層の個数に関係し
ない部分をX及び電離層及び大気ガス層の電波屈折率の
総和の計算値の内、平行平面層の個数に関係しない部分
をZとすると、 W+Y=αi0a Y=f(αi0a)・X2+g(αi0a)・X+h(αi0a) Z=k(αi0a)・X2+l(αi0a)・X+m(αi0a) W=p(αioa)・X2+q(αi0a)・X+r(αi0a) が成立する。又、この場合、Xは電離層及び大気ガス層
の各平行平面層の電波屈折率の順序には影響されない。
3. A microwave straight-ahead layer obtained from a microwave propagation time from a radio wave radiation source (or a radio wave reflection source) and a vertical distance between the radio wave radiation source (or a radio wave reflection source) and a horizontal plane passing through an observation point. There is an error between the critical incident angle at the interface between the ionosphere and the ionosphere (hereinafter referred to as the calculated value of the critical incident angle), and the error, the calculated value of the critical incident angle, and the ionosphere and the atmosphere. The calculated value of the sum of the radio wave refractive index of the gas layer is
It is uniquely determined by the sum of the radio wave refractive indices of the ionosphere and atmospheric gas layer and the true value of the critical incident angle. Now, the calculated value of the critical incident angle is W, the true value of the critical incident angle is α i0a , the difference between the true value of the critical incident angle and the calculated value is Y, and the sum of the radio wave refractive indices of the ionosphere and atmospheric gas layer is included. , X is the part that is not related to the number of parallel plane layers, and Z is the part that is not related to the number of parallel plane layers in the calculated sum of the radio wave refractive indices of the ionosphere and the atmospheric gas layer, and W + Y = α i0a Y = f (α i0a ) ・ X 2 + g (α i0a ) ・ X + h (α i0a ) Z = k (α i0a ) ・ X 2 + l (α i0a ) ・ X + m (α i0a ) W = p (α ioa ) × X 2 + q (α i0a ) × X + r (α i0a ) holds. Further, in this case, X is not affected by the order of the radio wave refractive indices of the parallel plane layers of the ionosphere and the atmospheric gas layer.
【請求項4】ある時刻:Tに於て、衛星が位置すると仮
定される点P1から放射されるマイクロ波の経路を、請
求項1、2及び3の方法により正確にフォローすること
により、点P1と観測点Aとの間の電波伝搬時間:Pi
び垂直距離:Lziの真値を求める。又、点P1から放射
されると仮定したマイクロ波の電波直進層と電離層との
界面へ突入したときの臨界入射角の余弦:αi0aを、そ
の真値との差が10-13度より小さくなる様に求める。
そして、この様にして求めた三っのデータを使って、地
表面から上空1000kmまでの領域を通過する電波経
路長:kiを、その真値との差が10-07より小さくなる
様に正確に求める。そして、この電波経路に於ける地表
面から上空1000kmまでの電離層及び大気ガス層内
に於ける電波経路長と臨界入射角の積は、 n・h+u・Pi・cosαi0a-Lzi=ki で表示される。但し n:地表面から上空1000km
までの領域に於ける平行平面層の個数 h:平行平面層の厚さ u:光の速度 次に、地表面から上空1000kmまでの領域を、厚さ
1mの平行平面層に分割し、相隣なる平行平面層を通過
する電波経路長が、外形的伝搬経路のみならず、相隣な
る層の電波屈折率の組み合わせにより、固有の誤差を含
み、相隣なる層を通過する電波経路長と臨界入射角の余
弦の積をAj’+ΔΛj’とすると、 Aj'+ΔΛj'=Aj'+mj・xj+nj+ζ・xj+1j・xj+ξ +ε・(xj+1j)2j・(xjj)2j Aj'=cosαi0a/(1-sin2αi0a/xj'2)1/2 +cosαi0a/(1-sin2αi0a/xj+1'2)1/2 で表示され、これを一つの電波経路全てについて集計す
る。即ち、 Σj=1 n/2(Aj'+ΔΛj')=Σj=1 n/2{Aj'+mj・xj+nj+ζ・xj+1j・xj+ξ +ε・(xj+1j)2j・(xjj)2j} 但し、Xj、Xj+1:相隣なる平行平面層の電波屈折率の
真値 Xj'、Xj+1':相隣なる平行平面層の電波屈折率の初期
値 各平行平面層の電波屈折率の初期値として、USA標準
大気の電波屈折率を与える。USA標準大気の電波屈折
率は、厚さ1kmの平行平面層の電波屈折率であるの
で、同じ層内においては、電波屈折率は直線的に変化す
るものとして、厚さ1mの層の上面と下面との電波屈折
率を求め、その相加平均を取る。即ち、 xj=xj'+Δxj (j=1,2,・・・・・・・・,1000000) から、式は、 Σj=1 n/2(Aj'+ΔAj')=Σj=1 naj・Δxj これを1000000個の電波経路について行なう。即
ち、時刻:Tを変えながら Σi=1 nΣj=1 n/2(Aij'+ΔΛij')=Σi,j=1 naij・Δxj 又、式についても、同様1000000個の電波経路
について行なう。n、h、u、Pi、αi0a及びLziは確
定しているから、kiは定数となり、 Σi=1 n(n・h+u・Pi・cosαi0a-Lzi)=Σi=1 nki Σi=1 nki=Σ(Aij'+ΔΛij')から、 Σi,j=1 naij・Δxji=1 nki なるΔxjを変数とするn元一次連立方程式が成立する。
これを解き、式からxjを求める。
4. At a certain time: T, by accurately following the path of the microwave radiated from the point P 1 where the satellite is assumed to be located by the method of claims 1, 2 and 3, The true value of the radio wave propagation time: P i and the vertical distance: L zi between the point P 1 and the observation point A is obtained. Also, the difference between the cosine of the critical incident angle when the microwave enters the interface between the radio wave rectilinear layer and the ionosphere, assumed to be radiated from the point P 1, and α i0a is 10 −13 degrees. Ask to be smaller.
Then, using the three data thus obtained, the difference between the radio path length: k i passing through the area from the ground surface to 1000 km above the sky: k i is smaller than 10 -07 , Accurately seek. Then, the product of the radio wave path length and the critical incident angle in the ionosphere and atmospheric gas layer from the ground surface to 1000 km above the radio wave path is n · h + u · P i · cosα i0a -L zi = It is displayed as k i . However, n: 1000 km above the ground surface
The number of parallel plane layers in the area up to h: the thickness of the parallel plane layer u: the speed of light Next, the area from the ground surface to 1000 km above the ground is divided into parallel plane layers with a thickness of 1 m and adjacent to each other. The length of the radio wave path that passes through the parallel plane layer includes a unique error due to the combination of the radio wave refractive indices of the adjacent layers as well as the external propagation path. If the product of the cosine of the incident angle is A j '+ ΔΛ j ', then A j '+ ΔΛ j ' = A j '+ m j · x j + n j + ζ · x j + 1 + κ j · x j + ξ + ε ・ (x j + 1j ) 2 + ρ j・ (x jj ) 2 + χ j A j '= cos α i0a / (1-sin 2 α i0a / x j ' 2 ) 1 It is displayed as / 2 + cos α i0a / (1-sin 2 α i0a / x j + 1 ' 2 ) 1/2 , and this is totaled for one radio wave path. That is, Σ j = 1 n / 2 (A j '+ ΔΛ j ') = Σ j = 1 n / 2 {A j '+ m j・ x j + n j + ζ ・ x j + 1 + κ j・x j + ξ + ε · (x j + 1 −ν j ) 2 + ρ j · (x j −τ j ) 2 + χ j } where X j , X j + 1 : of adjacent parallel plane layers True value of radio wave refractive index X j ', X j + 1 ': initial value of radio wave refractive index of parallel plane layers adjacent to each other. give. Since the radio wave refractive index of the USA standard atmosphere is the radio wave refractive index of a parallel plane layer having a thickness of 1 km, it is assumed that the radio wave refractive index changes linearly in the same layer as the upper surface of a layer having a thickness of 1 m. The radio wave refractive index with the lower surface is obtained, and the arithmetic mean is taken. That is, from x j = x j '+ Δx j (j = 1,2, ・ ・ ・ ・ ・ ・ ・ ・, 1000000), the formula is Σ j = 1 n / 2 (A j ' + ΔA j ') = Σ j = 1 n a j · Δ x j This is performed for 1,000,000 radio wave paths. That is, while changing the time: T, Σ i = 1 n Σ j = 1 n / 2 (A ij '+ ΔΛ ij ') = Σ i, j = 1 n a ij · Δx j Do this for each radio path. Since n, h, u, P i , α i0a, and L zi are fixed, k i becomes a constant, and Σ i = 1 n (n · h + u · P i · cos α i0a −L zi ) = Σ i = 1 n k i Σ i = 1 n k i = Σ a (a ij '+ ΔΛ ij' ), Σ i, j = 1 n a ij · Δx j = Σ i = 1 n k i becomes [Delta] x j variables The following n-dimensional simultaneous equations are established.
Solve this and find x j from the equation.
【請求項5】電離層及び大気ガス層における電波屈折率
が判るならば、上空にある衛星からある時刻:Tのとき
放射された電波の経路は確定する。そこで、地上に二つ
の観測点を設け、衛星からの電波を同時に受信する。但
し、この二つの観測点の内の一つは観念的な観測点であ
り、実際に設定する観測点は一つでいい。このとき、地
表面から上空1000kmの高さにある電波直進層と電
離層との界面へ突入する電波の臨界入射角をそれぞれα
i0a及びβi0aとすると、αi0aとβi0aとの間に、次の関
係が成立する。 (u/v)・{φaα・n・h-φaα・h・f(cosαi0a)・cosαi0a}/±φaα -h・f(cosαi0a)・cosαi0a =(u/v)・{φaβ・n・h-φaβ・h・f(cosβi0a)・cosβi0a}/±φaβ -h・f(cosβi0a)・cosβi0a (51) 従って、この式(51)を解くことにより、αi0a及び
βi0aは確定する。更に、地上にある二つの観測点で同
時に受信した衛星からの二つの電波経路の幾何学的解析
により、臨界入射角αi0a、βi0a及び電波伝搬時間:P
iとの間に、次の関係が成立する。 u3・(1-nin)・{sin2βi0a・g2(cosβi0a)-sin2αi0a・g2(cosαi0a)}・Pi3 +u2・h・g(cosαi0a)・{sin2βi0a・g2(cosβi0a)-sin2αi0a・g2(cosαi0a)}・Pi2 -u2・h・f(cosαi0a)・{sin2βi0a・g2(cosβi0a)-sin2αi0a・g2(cosαi0a)}・Pi2 +u2・h・nin・f(cosαi0a)・{sin2βi0a・g2(cosβi0a) -sin2αi0a・g2(cosαi0a)}・Pi2 +2・u2・h・(1-nin)・{g(cosαi0a)-f(cosαi0a)}・{sin2βi0a・g2(cosβi0a) -sin2αi0a・g2(cosαi0a)}・Pi2 +2・u2・h・nin・g(cosαi0a)・g(cosβi0a)・{f(cosβi0a)-f(cosαi0a)}・Pi2 +u・(1-nin)・r2・g2(cosαi0a)・Pi +2・u・h2・{g(cosαi0a)-f(cosαi0a)}・{sin2βi0a・g2(cosβi0a) -sin2αi0a・g2(cosαi0a)}・{g(cosαi0a) -f(cosαi0a)+nin・f(cosαi0a)}・Pi +u・h2・(1-nin)・{g2(cosαi0a)-2・g(cosαi0a)・f(cosαi0a) +f2(cosαi0a)}・{sin2βi0a・g2(cosβi0a) -sin2αi0a・g2(cosαi0a)}・Pi +4・u・h2・nin・g(cosαi0a)・g(cosβi0a)・{g(cosαi0a) -f(cosαi0a)}・{f(cosβi0a)-f(cosαi0a)}・Pi +h・r2・g3(cosαi0a)-h・r2・g2(cosαi0a)・f(cosαi0a) +h・nin・r2・g2(cosαi0a)・f(cosαi0a) +h3・{g2(cosαi0a)-2・g(cosαi0a)・f(cosαi0a) +f2(cosαi0a)}・{sin2βi0a・g2(cosβi0a) -sin2αi0a・g2(cosαi0a)}・{g(cosαi0a)-f(cosαi0a)+nin・f(cosαi0a)} +2・h3・nin・g(cosαi0a)・g(cosβi0a)・{g2(cosαi0a) -2・g(cosαi0a)・f(cosαi0a) +f2(cosαi0a)}・{f(cosβi0a)-f(cosαi0a)} =0 (39) cosαi0a及びcosβi0aは既に確定しているから、
式(39)から電波伝搬時間:Piも確定する。従っ
て、衛星と観測点間の垂直距離も決定するから、衛星と
観測点との相対位置が確定し、もし衛星か観測点のいず
れかの絶対位置が確定しているならば、他方の絶対位置
も決まる。 但し、u:光の速度 v:地球の自転速度 n:電離層及び大気ガス層内にある観測点を通る水平面
に平行な平面層の個数 h:電離層及び大気ガス層内にある平行平面層の厚さ φaα、φaβ:kij-nij特性曲線の傾き kij:各電波経路:iに対応する各平行平面層:jの電
波屈折係数 Kij=cosαi0a/(nij 2-sin2αi0a)1/2ij:各電波経路:iに対応する各平行平面層:jの電
波屈折率 r:二つの観測点間の距離 nin:二つの観測点の内、実際に設定された観測点の位
置する点の電波屈折係数 f(cosαi0a)、g(cosαi0a):電波直進層と
電離層との界面へαi0aの臨界入射角で突入する電波の
電離層及び大気ガス層内の伝搬経路長及びその水平成分 f(cosβi0a)、g(cosβi0a):電波直進層と
電離層との界面へβi0aの臨界入射角で突入する電波の
電離層及び大気ガス層内の伝搬経路長及びその水平成分 衛星と観測点の位置を決定する基準となるxyz座標の
y座標は、地球の自転方につねに一致するように取られ
ている。又、φaα及びφaβは、cosαi0a及びco
sβi0aの二次式で表示され、且その係数は確定してい
る。
5. If the radio wave refractive index in the ionosphere and atmospheric gas layer is known, the path of the radio wave radiated from the satellite in the sky at a certain time: T is determined. Therefore, two observation points are set up on the ground to simultaneously receive radio waves from satellites. However, one of these two observation points is an ideal observation point, and only one observation point is actually set. At this time, the critical incident angle of the radio wave entering the interface between the radio wave rectilinear layer and the ionosphere at a height of 1000 km above the ground surface is α
Given i0a and β i0a , the following relationship holds between α i0a and β i0a . (u / v) ・ {φaα ・ n ・ h-φaα ・ h ・ f ( cosα i0a ) ・cosα i0a } / ± φaα -h ・ f ( cosα i0a ) ・cosα i0a = (u / v) ・ {φaβ ・n ・ h-φaβ ・ h ・ f ( cosβ i0a ) ・cosβ i0a } / ± φaβ -h ・ f ( cosβ i0a ) ・cosβ i0a (51) Therefore, by solving this equation (51), α i0a and β i0a is fixed. Furthermore, the critical incident angles α i0a and β i0a and the radio wave propagation time: P are obtained by geometrical analysis of the two radio wave paths from the satellite which are simultaneously received at the two observation points on the ground.
The following relation holds with i . u 3・ (1-n in ) ・ {sin 2 β i0a・ g 2 ( cosβ i0a ) -sin 2 α i0a・ g 2 ( cosα i0a )} ・ Pi 3 + u 2・ h ・ g ( cosα i0a ) ・{sin 2 β i0a・ g 2 ( cosβ i0a ) -sin 2 α i0a・ g 2 ( cosα i0a )} ・ Pi 2 -u 2・ h ・ f ( cosα i0a ) ・ {sin 2 β i0a・ g 2 ( cosβ i0a ) -sin 2 α i0a・ g 2 ( cosα i0a )} ・ Pi 2 + u 2・ h ・ n in・ f ( cosα i0a ) ・ {sin 2 β i0a・ g 2 ( cosβ i0a ) -sin 2 α i0a・ G 2 ( cosα i0a )} ・ Pi 2 +2 ・ u 2・ h ・ (1-n in ) ・ {g ( cosα i0a ) -f ( cosα i0a )} ・ {sin 2 β i0a・ g 2 ( cosβ i0a ) -sin 2 α i0a・ g 2 ( cosα i0a )} ・ Pi 2 +2 ・ u 2・ h ・ n in・ g ( cosα i0a ) ・ g ( cosβ i0a ) ・ {f ( cosβ i0a ) -f ( cosα i0a )} ・ Pi 2 + u ・ (1-n in ) ・ r 2・ g 2 ( cosα i0a ) ・ P i +2 ・ u ・ h 2・ {g ( cosα i0a ) -f ( cosα i0a )}・ {Sin 2 β i0a・ g 2 ( cosβ i0a ) -sin 2 α i0a・ g 2 ( cosα i0a )} ・ {g ( cosα i0a ) -f ( cosα i0a ) + n in・ f ( cosα i0a )} ・P i + u ・ h 2・ (1-n in ) ・ {g 2 ( cosα i0a ) -2 ・ g ( cosα i0a ) ・ f ( cosα i0a ) + f 2 ( cosα i0a )} ・ {sin 2 β i0a・ G 2 (cos β i0a ) -sin 2 α i0 a・ g 2 ( cosα i0a )} ・ P i +4 ・ u ・ h 2・ n in・ g ( cosα i0a ) ・ g ( cosβ i0a ) ・ {g ( cosα i0a ) -f ( cosα i0a )} ・ { f ( cosβ i0a ) -f ( cosα i0a )} ・ P i + h ・ r 2・ g 3 ( cosα i0a ) -h ・ r 2・ g 2 ( cosα i0a ) ・ f ( cosα i0a ) + h ・ n in・ R 2・ g 2 ( cosα i0a ) ・ f ( cosα i0a ) + h 3・ {g 2 ( cosα i0a ) -2 ・ g ( cosα i0a ) ・ f ( cosα i0a ) + f 2 ( cosα i0a )} ・{sin 2 β i0a・ g 2 ( cosβ i0a ) -sin 2 α i0a・ g 2 ( cosα i0a )} ・ {g ( cosα i0a ) -f ( cosα i0a ) + n in・ f ( cosα i0a )} +2・ H 3・ n in・ g ( cosα i0a ) ・ g ( cosβ i0a ) ・ {g 2 ( cosα i0a ) -2 ・ g ( cosα i0a ) ・ f ( cosα i0a ) + f 2 ( cosα i0a )} ・ { f ( cosβ i0a ) -f ( cosα i0a )} = 0 (39) cosα i0a and cosβ i0a are already determined,
The radio wave propagation time: Pi is also determined from the equation (39). Therefore, since the vertical distance between the satellite and the observation point is also determined, the relative position between the satellite and the observation point is determined, and if the absolute position of either the satellite or the observation point is determined, the absolute position of the other is determined. Is also determined. Where u: speed of light v: rotation speed of the earth n: number of plane layers parallel to the horizontal plane passing through the observation points in the ionosphere and atmospheric gas layer h: thickness of parallel plane layers in the ionosphere and atmospheric gas layer Φaα, φaβ: slope of the characteristic curve k ij -n ij k ij : parallel plane layer corresponding to each radio wave path: i: radio wave refraction coefficient of j K ij = cos α i0a / (n ij 2 -sin 2 α i0a ) 1/2 nij : Radio wave index of each parallel plane layer: j corresponding to each radio path: i r: Distance between two observation points n in : Observation actually set among the two observation points Telecommunications refraction coefficient of a point located at point f (cosα i0a), g ( cosα i0a): propagation path of radio wave rectilinear layer and Telecommunications ionospheric and atmospheric gas layer to rush at a critical angle of incidence alpha I0a to interface with the ionosphere the length and the horizontal component f (cosβ i0a), g ( cosβ i0a): Telecommunications straight layer and the interface to the beta I0a critical input of the ionosphere Propagation path lengths of radio waves entering at an angle in the ionosphere and atmospheric gas layer and their horizontal components The y-coordinates of the xyz coordinates, which are the criteria for determining the positions of the satellite and the observation point, should be set so as to always match the rotation direction of the earth. Has been. Also, φaα and φaβ are cosα i0a and co
It is expressed by the quadratic formula of sβ i0a , and its coefficient is fixed.
JP7944794A 1994-03-26 1994-03-26 Measurement of wave refractive index of ionosphere and atmospheric gas layer via follow-up of wave propagation route and measurement of relative position between target and observation point Pending JPH07260918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7944794A JPH07260918A (en) 1994-03-26 1994-03-26 Measurement of wave refractive index of ionosphere and atmospheric gas layer via follow-up of wave propagation route and measurement of relative position between target and observation point

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7944794A JPH07260918A (en) 1994-03-26 1994-03-26 Measurement of wave refractive index of ionosphere and atmospheric gas layer via follow-up of wave propagation route and measurement of relative position between target and observation point

Publications (1)

Publication Number Publication Date
JPH07260918A true JPH07260918A (en) 1995-10-13

Family

ID=13690142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7944794A Pending JPH07260918A (en) 1994-03-26 1994-03-26 Measurement of wave refractive index of ionosphere and atmospheric gas layer via follow-up of wave propagation route and measurement of relative position between target and observation point

Country Status (1)

Country Link
JP (1) JPH07260918A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2626404C1 (en) * 2016-07-12 2017-07-27 федеральное государственное автономное образовательное учреждение высшего образования "Северо-Кавказский федеральный университет" Determination method of the nonuniform ionosphere electron density high level profile
JPWO2020003513A1 (en) * 2018-06-29 2020-12-17 三菱電機株式会社 Radar device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2626404C1 (en) * 2016-07-12 2017-07-27 федеральное государственное автономное образовательное учреждение высшего образования "Северо-Кавказский федеральный университет" Determination method of the nonuniform ionosphere electron density high level profile
JPWO2020003513A1 (en) * 2018-06-29 2020-12-17 三菱電機株式会社 Radar device

Similar Documents

Publication Publication Date Title
US4134681A (en) Method of determining relative orientation of physical systems
CN104504240B (en) Spacecraft precision measure computational methods
CN105068065A (en) Satellite-borne laser altimeter on-orbit calibration method and system
Mason Algebraic two-satellite TOA/FOA position solution on an ellipsoidal Earth
Guillory et al. Uncertainty assessment of a prototype of multilateration coordinate measurement system
Crouse Basic tracking using nonlinear 3D monostatic and bistatic measurements in refractive environments
Guangcai et al. An iterative Doppler velocity log error calibration algorithm based on Newton optimization
Tong et al. A misalignment angle error calibration method of underwater acoustic array in strapdown inertial navigation system/ultrashort baseline integrated navigation system based on single transponder mode
JPH07260918A (en) Measurement of wave refractive index of ionosphere and atmospheric gas layer via follow-up of wave propagation route and measurement of relative position between target and observation point
CN103454652A (en) High-precision GNSS system with multiple or double GNSS receiving systems
Lyu et al. Novel approach to determine spinning satellites’ attitude by RCS measurements
CN106338261B (en) A kind of two beam interferometer instrument exit plane glistening light of waves interfascicular angular deviation scaling methods
JPH07159512A (en) Determination of three-dimensional position of satellite by measuring radio wave refractive index in atmospheric gas player and ionospheric layer
Runnalls et al. Terrain-referenced navigation using the IGMAP data fusion algorithm
Hayward et al. Real time calibration of antenna phase errors for ultra short baseline attitude systems
Li et al. An integrated positioning and attitude determination system for immersed tunnel elements: a simulation study
RU2536609C1 (en) Method and device for determining coordinates of radio-frequency source
CN103983275B (en) Double reference signal source aircraft directions scaling method
RU2238521C1 (en) Method of determination of vectors of air and ground speeds and drift angle of flying vehicle and complex laser unit for realization of this method
Crouse et al. Efficient 2D Sensor Location Estimation using Targets of Opportunity.
Gomez et al. Comparison of space shuttle GPS flight data to geometric theory of diffraction predictions
JPH06130103A (en) Measurement of radio-wave refractive index of atmosphere gas layer and ionization layer only due to radio-wave propagation time
RU2422836C2 (en) Transducer of speed vector projection with angle calibration
CN105067277A (en) Engine thrust line correction method
JPH10268028A (en) Measurement of refractive index of actual sky due to conversion of actual sky to virtual sky